新型半导体器件PPT课件
合集下载
第1章 半导体器件-PPT课件
V
V
a )
b )
jiaocaiwang
1.2半导体三极管
二、三极管的电流放大作用
三极管实现电流放大作 用的外部条件:发射结 正向偏置, 集电结反向 偏置。 NPN管必须满足: UC>UB>UE, 而PNP管必须满足: UC<UB<UE。
IB V R + U
BB b
IC
R + IE
c
U -
CC
-
a)
空穴 (少 子 )
内电场
IR
+
A
外电场
U
b)
jiaocaiwang
1.1半导体二极管
三、半导体二极管——结构、符号和类型
jiaocaiwang
1.1 半导体二极管
三、半导体二极管——伏安特性
iV / m A
正向特性:硅管的死 区电压0.5 V,导通压 降0.6~0.7 V,而锗管 为0.1 V和0.2~0.3 V 反向特性:饱和电流Is 反向击穿特性:UBR 温度特性:温度升高 时二极管正向特性曲 线向左移动,反向特 性曲线向下移动。
I/ m A
U
Z
U
B
U
U
A
Z
O
I A ( I Z m in ) IZ IZ IB (IZ m a x) U / V
V
A
B
jiaocaiwang
1.1 半导体二极管
四、特殊二极管——光电二极管、发光二极管
光电二极管正向电阻为几千欧,反向电阻为无穷大,工作在反偏 状态,主要用于需要光电转换的自动探测、控制装置以及光导纤 维通讯系统中作为接收器件等。符号如下: 发光二极管工作在正向偏置状态,导通时能发光,是一种把电能 转换成光能的半导体器件。常用作设备的电源指示灯、音响设备、 数控装置中的显示器。符号如下:
半导体器件分析课件
传感器与MEMS器件在医疗、环境监测等领域有广泛应用。研究新型传感器与MEMS器 件结构、材料和制程技术,提高器件的灵敏度、稳定性、可靠性等性能。
微波与毫米波器件
随着无线通信技术的发展,对微波与毫米波器件的需求增加。研究新型微波与毫米波器件 结构、材料和制程技术,提高器件的频率范围、功率容量、效率等性能。
根据能带理论,半导体材料具有特殊的能带结构,其价带和导带之间的间隙称为能 隙,电子需要吸收或释放能量才能从价带跃迁到导带。
能带理论是理解半导体器件工作原理的基础,它解释了为什么半导体材料具有导电 性,以及为什么半导体器件能够在外加电场的作用下控制电流的流动。
半导体器件的输运特性
半导体器件的输运特性是指电子 在半导体材料中的运动规律,包 括电子的扩散、漂移、散射等过
流几乎为零。
实际半导体器件的电流-电压特性会受到温度、材料、工艺等因素的影响, 表现出不同的特性。
半导体器件的频率特性
频率特性是指半导体器件在工作频率下 的性能表现。
频率特性主要受到载流子寿命、迁移率、 了解频率特性对于设计高频或微波频段
结电容等因素的影响。在高频下,半导
的半导体器件具有重要的意义。
体器件的性能会受到散射和寄生效应的
限制,表现出不同的频率响应。
03
CATALOGUE
半导体器件的制造工艺
半导体材料的选择与制备
半导体材料种类
半导体材料制备方法
硅、锗、硒、磷等元素及化合物半导 体材料,具有导电性能可控的特性。
采用物理或化学气相沉积、外延生长 等方法制备单晶或多晶半导体材料。
半导体材料纯度要求
可靠性强化
选择适合特定应用的半 导体材料和介质材料,
以改善器件性能。
微波与毫米波器件
随着无线通信技术的发展,对微波与毫米波器件的需求增加。研究新型微波与毫米波器件 结构、材料和制程技术,提高器件的频率范围、功率容量、效率等性能。
根据能带理论,半导体材料具有特殊的能带结构,其价带和导带之间的间隙称为能 隙,电子需要吸收或释放能量才能从价带跃迁到导带。
能带理论是理解半导体器件工作原理的基础,它解释了为什么半导体材料具有导电 性,以及为什么半导体器件能够在外加电场的作用下控制电流的流动。
半导体器件的输运特性
半导体器件的输运特性是指电子 在半导体材料中的运动规律,包 括电子的扩散、漂移、散射等过
流几乎为零。
实际半导体器件的电流-电压特性会受到温度、材料、工艺等因素的影响, 表现出不同的特性。
半导体器件的频率特性
频率特性是指半导体器件在工作频率下 的性能表现。
频率特性主要受到载流子寿命、迁移率、 了解频率特性对于设计高频或微波频段
结电容等因素的影响。在高频下,半导
的半导体器件具有重要的意义。
体器件的性能会受到散射和寄生效应的
限制,表现出不同的频率响应。
03
CATALOGUE
半导体器件的制造工艺
半导体材料的选择与制备
半导体材料种类
半导体材料制备方法
硅、锗、硒、磷等元素及化合物半导 体材料,具有导电性能可控的特性。
采用物理或化学气相沉积、外延生长 等方法制备单晶或多晶半导体材料。
半导体材料纯度要求
可靠性强化
选择适合特定应用的半 导体材料和介质材料,
以改善器件性能。
《半导体器件》PPT课件
b
+
D1
RL uO
D2
_
输出 波形
1.3.3 限幅电路
+ –
R
D1
D2
++
A Ri
––
工作原理
a. 当ui较小使二极管D1 、D1截止时
电路正常放大
b. 当ui 较大使二极管D1 或D1导通时
+ –
输入电压波形
ui
R
D1
D2
++
A Ri
––
0 t
R
+
D1
D2
++
A Ri
–
––
输出端电压波形
ui
因此,理想二极管正偏时,可视为短路线;反偏 时,可视为开路。
在分析整流,限幅和电平选择时,都可以把二极 管理想化。
1.3 半导体二极管的应用
1.3.1 在整流电路中的应用
整流电路(rectifying circuit)把交流电能转换为直流电能的电
路。
整流电路主要由整流二极管组成。经过整流电路之后的电压已经不 是交流电压,而是一种含有直流电压和交流电压的混合电压,习惯上 称单向脉动性直流电压。
1.2 半导体二极管
二
1.2.1 半导体二极管的结构和类
极
型
外壳
引线 阳极引线
管
铝合金小球
就
是
PN结
一
N型锗片
触丝
个
N型硅
金锑合金
封
底座
装
的
阴极引线
PN
结
点接触型
平面型
半导体二极管的外型和符号
正极
半导体器件 PPT课件
6
本征半导体:完全纯净的、结构完整的半导体晶体。 在硅和锗晶体中,原子按四角形系统组成晶 体点阵,每个原子都处在正四面体的中心,而四 个其它原子位于四面体的顶点,每个原子与其相 临的原子之间形成共价键,共用一对价电子。
硅和锗的晶 体结构:
7
硅和锗的共价键结构
+4 +4表示除 去价电子 后的原子
+4
21
空间电荷区, 也称耗尽层。
20
内电场越强,就使漂移 运动越强,而漂移使空 间电荷区变薄。 P型半导体漂移运动 内电场 Nhomakorabea N型半导体
- - - - - -
- - - - - - - - - - - - - - - - - -
+ + + + + +
+ + + + + + + + + + + + + + + + + + 扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽,
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼 (或铟),晶体点阵中的某些半导体原子被杂质 取代,硼原子的最外层有三个价电子,与相邻的 半导体原子形成共价键时, 空穴 产生一个空穴。这个空穴 +4 可能吸引束缚电子来填补, 使得硼原子成为不能移动 的带负电的离子。由于硼 +3 原子接受电子,所以称为 硼原子 受主原子。
你们好
模拟电子技术基础
第一章
半导体器件
2
第一章
§ 1.1 § 1.2 § 1.3
半导体器件
半导体的特性 半导体二极管 双极结型三极管
本征半导体:完全纯净的、结构完整的半导体晶体。 在硅和锗晶体中,原子按四角形系统组成晶 体点阵,每个原子都处在正四面体的中心,而四 个其它原子位于四面体的顶点,每个原子与其相 临的原子之间形成共价键,共用一对价电子。
硅和锗的晶 体结构:
7
硅和锗的共价键结构
+4 +4表示除 去价电子 后的原子
+4
21
空间电荷区, 也称耗尽层。
20
内电场越强,就使漂移 运动越强,而漂移使空 间电荷区变薄。 P型半导体漂移运动 内电场 Nhomakorabea N型半导体
- - - - - -
- - - - - - - - - - - - - - - - - -
+ + + + + +
+ + + + + + + + + + + + + + + + + + 扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽,
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼 (或铟),晶体点阵中的某些半导体原子被杂质 取代,硼原子的最外层有三个价电子,与相邻的 半导体原子形成共价键时, 空穴 产生一个空穴。这个空穴 +4 可能吸引束缚电子来填补, 使得硼原子成为不能移动 的带负电的离子。由于硼 +3 原子接受电子,所以称为 硼原子 受主原子。
你们好
模拟电子技术基础
第一章
半导体器件
2
第一章
§ 1.1 § 1.2 § 1.3
半导体器件
半导体的特性 半导体二极管 双极结型三极管
半导体器件教学课件PPT
ID(mA) 4
UGS=+2V
3
ID 2
可
变 电
1
阻பைடு நூலகம்
区0
恒流区
UGS
夹断区
UGS=+1V
UGS=0V
UGS=-1V UGS=-2V U DS (V
场效应管的微变等效电路
输入回路:开路
输出回路:交流压控恒流源,电流 Id gmU gs
D G
S
G +
U gs
D
Id gmU gs
-
S
11.5.1 结型场效应管(JFET)
地
N沟道
ID
IDSS
0 UGS(off)
UGS
D -VDD
G
正电压
ID
S 实际方向
地
P沟道
ID UGS(off) UGS
IDSS 转移特性曲线都设定的ID方 向从D到S
P沟道MOS场效应管
NMOS +VDD
D
ID
ID
IDO
G 正电压
实际方向 地 S
UGS(th) UGS
G 正负电压
D +VDD ID 实际方向
S地
ID IDSS
UGS(off) UGS
PMOS
G 负电压
D -VDD
ID
ID
UGS(th)
实际方向
UGS
S地
IDO
D -VDD
ID UGS(off)
ID
UGS
G
正负电压
实际方向
S地
IDSS
转移特性和输出特性都规定ID方向由D到S
15.4 场效应管放大电路 15.4.1 场效应共源极放大电路
《半导体器件》课件
总结词
高效转换,环保节能
详细描述
在新能源系统中,半导体器件用于实现高效能量转换和 环保节能。例如,太阳能电池板中的硅基太阳能电池可 以将太阳能转换为电能,而LED灯中的发光二极管则可 以将电能转换为光能。
THANKS
感谢观看
总结词
制造工艺复杂
详细描述
集成电路的制造工艺非常复杂,需要经过多个步骤和工艺 流程。制造过程中需要精确控制材料的物理和化学性质, 以确保器件的性能和可靠性。
总结词
具有小型化、高性能、低功耗等特点
详细描述
集成电路具有小型化、高性能、低功耗等特点,使得电子 设备更加轻便、高效和节能。同时,集成电路的出现也推 动了电子产业的发展和进步。
总结词
由半导体材料制成
详细描述
双极晶体管通常由半导体材料制成,如硅或锗。这些材料 在晶体管内部形成PN结,是实现放大和开关功能的关键 结构。
总结词
正向导通,反向截止
详细描述
在正向偏置条件下,双极晶体管呈现低阻抗,电流可以顺 畅地通过。在反向偏置条件下,双极晶体管呈现高阻抗, 电流被截止。
场效应晶体管
05
CATALOGUE
半导体器件的应用
电子设备中的半导体器件
总结词
广泛使用,基础元件
详细描述
在电子设备中,半导体器件是最基本的元件 之一,用于实现信号放大、传输和处理等功 能。例如,二极管、晶体管和集成电路等是 电子设备中不可或缺的元件。
通信系统中的半导体器件
总结词
高速传输,信号处理
详细描述
在通信系统中,半导体器件用于信号的高速 传输和处理。例如,激光二极管用于光纤通
总结词
通过电场控制电流的电子器件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Si Substrate
5 nm
Tri-Gate
Nanowire
5 nm
S DS
G
III-V Carbon Nanotube
FET
半导体Fu器tu件re 物opt理ions subject to research & change
2
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
12
中国科学技术大学物理系微电子专业
热载流子注入(Injection of Hot Carrier)
• 热载流子退化 在短沟道下,如果电压较大,横向(沟道方向) 和纵向(垂直沟道方向)的电场强度会大大增强。 在强电场作用下,载流子能量大大提高,使其平 均能量远大于kT,或等效载流子温度Te超过环境 (晶格)温度T,这时载流子称为热载流子。 热载流子效应 热载流子注入引起MOSFET器件性能退化的效应
半导体器件物理
08.11.2020
13
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
14
中国科学技术大学物理系微电子专业
• 栅感应漏极漏电(GIDL)
当增强型器件处于关态(VGS=0)时,在漏与栅交叠处的 栅氧化层中存在很强的电场(>3×106V/cm),对于N型 MOSFET,此电场方向由漏指向栅,漏极半导体内部电势 远高于界面处电势,即在漏极(交叠部分)靠近界面区的 能带发生强烈的向上弯曲,乃至表面反型为p型。因为杂 质浓度大,该反型层下的耗尽区极窄,使之导带电子可以 直接隧道穿透到反型层的价带区,与衬底流过来的空穴复 合。因此,电子由漏极流入,空穴由衬底流入,形成了漏 结的漏电流,这就是GIDL。
35 nm
SiGe S/D Strained Silicon
Research Options:
High-K & Metal Gate Non-planar Trigate III-V, CNT, NW
Source: Intel
08.11.2020
30 nm
20 nm
10 nm
Metal Gate High-k
半导体器件物理
08.11.2020
11
中国科学技术大学物理系微电子专业
• DIBL效应与器件穿通
DIBL即漏电压感应源势垒下降效应,是器件二维效应与 强电场效应结合的结果。当漏结加较大的电压时,结电场 向源区发展,因为沟道很窄,使漏结电场与源结相耦合, 当VDS高到一定程度,漏的结电场就会影响源pn结的势垒, 使因之为降源低势,垒这下便降是,就DI可BL用效较应低。栅一压个使明器显件结开果启是。使VT降低,
3
中国科学技术大学物理系微电子专业
§6.1 现代MOS器件
• ULSI发展的两个主要方向:深亚微米与亚 0.1微米集成和系统的芯片集成。
• 因此需要对深亚微米和亚0.1微米工艺、器 件和电路技术,器件的结构和相应的物理 机理的研究。微小MOSFET中的一些物理效 应,如器件尺寸变小,通常的一维器件模 型需要修正,出现二维、三维效应,同时 还会出现各种强电场效应。
• 金属栅和高K栅介质的应用
半导体器件物理
08.11.2020
5
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
6
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
7
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.20208中国科学技术大学物理系微电子专业
以及其他各方向上的参数错综复杂地相互作用时,器件的
三维特性越加突出;同时由于基本物理极限的限制,对亚 0.1μm器件的进一步缩小变得非常困难,这主要包括超薄 栅氧化层的制作;源、漏超浅结的形成以及小尺寸器件必
须在很低的电源电压下工作所带来的问题等。截至目前为 止,器件和ULSI CMOS工艺发展的实际情况是器件的各 个部分都在缩小。
半导体器件物理
08.11.2020
4
中国科学技术大学物理系微电子专业
一、MOSFET的按比例缩小
• 近20年来,恒压按比例缩小规则的使用比较成功, 但随着工艺的发展,器件性能和集成密度进一步 提高,目前逐渐逼近其基本的物理极限。
• 如果要进一步提高集成电路的性能,则需要考虑 更多的因素,而不仅仅是简单的按比例缩小器件 尺寸。需要同时在降低电源电压、提高器件性能 和提高器件可靠性等三个方面之间进行折衷选择。
D显因I著B为L。在也同一产时定生D的VIBVTLDrS效o下ll应,of会fL,g影越而响小且MDVOIDBSS越LF导E高T致,的的V亚T越阈r大o区ll,o特f因f性效此,应包越 括使S和Ioff退化。因此在深亚微米与亚0.1微米的设计中 要避免或抑制DIBL效应。
半导体器件物理
08.11.2020
半导体器件物理
08.11.2020
9
中国科学技术大学物理系微电子专业
• 实验结果表明,在进行折衷的过程中,源、漏结的参数, 尤其是结深、RSD和结的突变性是至关重要的因素。尽管 这种经验方法不是很理想,而且难以符合基于基本物理规
律的按比例缩小规则,但是这种经验方法更准确、更实用
一些。这是由于当器件横向尺寸的变化使器件的纵、横向
半导体器件物理
08.11.2020
10
中国科学技术大学物理系微电子专业
二、现代MOS器件的一些物理效应
• 短沟道效应 (SCE) 微小尺寸效应,狭义的定义,是指随沟道 缩短,阈值电压减小(n沟)或增大(p沟) 的效应(VT roll off)。 VT roll off现象包括VDS很低时测定VT随Lg 变化和VDS很高时VT随Lg的变化。
中国科学技术大学物理系微电子专业
第六章: 新型半导体器件
§6.1 现代MOS器件 §6.2 纳米器件 §6.3 §6.4 光电子器件 §6.5 量子器件
半导体器件物理
08.11.2020
1
Transistor Research中国科学技术大学物理系微电子专业
50 nm
SiGe S/D Strained Silicon
G艺ID条L件效而应改和变漏。区G上ID的L栅是S关iO态2层电质流量Io密ff的切主相要关组,成因,此必它须随被工 限制在额定Ioff值之内,这也是栅氧化层厚度下限的一个 根源。实验证明,对于优质的栅SiO2层,厚度到1.5nm仍 将是安全的。
5 nm
Tri-Gate
Nanowire
5 nm
S DS
G
III-V Carbon Nanotube
FET
半导体Fu器tu件re 物opt理ions subject to research & change
2
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
12
中国科学技术大学物理系微电子专业
热载流子注入(Injection of Hot Carrier)
• 热载流子退化 在短沟道下,如果电压较大,横向(沟道方向) 和纵向(垂直沟道方向)的电场强度会大大增强。 在强电场作用下,载流子能量大大提高,使其平 均能量远大于kT,或等效载流子温度Te超过环境 (晶格)温度T,这时载流子称为热载流子。 热载流子效应 热载流子注入引起MOSFET器件性能退化的效应
半导体器件物理
08.11.2020
13
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
14
中国科学技术大学物理系微电子专业
• 栅感应漏极漏电(GIDL)
当增强型器件处于关态(VGS=0)时,在漏与栅交叠处的 栅氧化层中存在很强的电场(>3×106V/cm),对于N型 MOSFET,此电场方向由漏指向栅,漏极半导体内部电势 远高于界面处电势,即在漏极(交叠部分)靠近界面区的 能带发生强烈的向上弯曲,乃至表面反型为p型。因为杂 质浓度大,该反型层下的耗尽区极窄,使之导带电子可以 直接隧道穿透到反型层的价带区,与衬底流过来的空穴复 合。因此,电子由漏极流入,空穴由衬底流入,形成了漏 结的漏电流,这就是GIDL。
35 nm
SiGe S/D Strained Silicon
Research Options:
High-K & Metal Gate Non-planar Trigate III-V, CNT, NW
Source: Intel
08.11.2020
30 nm
20 nm
10 nm
Metal Gate High-k
半导体器件物理
08.11.2020
11
中国科学技术大学物理系微电子专业
• DIBL效应与器件穿通
DIBL即漏电压感应源势垒下降效应,是器件二维效应与 强电场效应结合的结果。当漏结加较大的电压时,结电场 向源区发展,因为沟道很窄,使漏结电场与源结相耦合, 当VDS高到一定程度,漏的结电场就会影响源pn结的势垒, 使因之为降源低势,垒这下便降是,就DI可BL用效较应低。栅一压个使明器显件结开果启是。使VT降低,
3
中国科学技术大学物理系微电子专业
§6.1 现代MOS器件
• ULSI发展的两个主要方向:深亚微米与亚 0.1微米集成和系统的芯片集成。
• 因此需要对深亚微米和亚0.1微米工艺、器 件和电路技术,器件的结构和相应的物理 机理的研究。微小MOSFET中的一些物理效 应,如器件尺寸变小,通常的一维器件模 型需要修正,出现二维、三维效应,同时 还会出现各种强电场效应。
• 金属栅和高K栅介质的应用
半导体器件物理
08.11.2020
5
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
6
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.2020
7
中国科学技术大学物理系微电子专业
半导体器件物理
08.11.20208中国科学技术大学物理系微电子专业
以及其他各方向上的参数错综复杂地相互作用时,器件的
三维特性越加突出;同时由于基本物理极限的限制,对亚 0.1μm器件的进一步缩小变得非常困难,这主要包括超薄 栅氧化层的制作;源、漏超浅结的形成以及小尺寸器件必
须在很低的电源电压下工作所带来的问题等。截至目前为 止,器件和ULSI CMOS工艺发展的实际情况是器件的各 个部分都在缩小。
半导体器件物理
08.11.2020
4
中国科学技术大学物理系微电子专业
一、MOSFET的按比例缩小
• 近20年来,恒压按比例缩小规则的使用比较成功, 但随着工艺的发展,器件性能和集成密度进一步 提高,目前逐渐逼近其基本的物理极限。
• 如果要进一步提高集成电路的性能,则需要考虑 更多的因素,而不仅仅是简单的按比例缩小器件 尺寸。需要同时在降低电源电压、提高器件性能 和提高器件可靠性等三个方面之间进行折衷选择。
D显因I著B为L。在也同一产时定生D的VIBVTLDrS效o下ll应,of会fL,g影越而响小且MDVOIDBSS越LF导E高T致,的的V亚T越阈r大o区ll,o特f因f性效此,应包越 括使S和Ioff退化。因此在深亚微米与亚0.1微米的设计中 要避免或抑制DIBL效应。
半导体器件物理
08.11.2020
半导体器件物理
08.11.2020
9
中国科学技术大学物理系微电子专业
• 实验结果表明,在进行折衷的过程中,源、漏结的参数, 尤其是结深、RSD和结的突变性是至关重要的因素。尽管 这种经验方法不是很理想,而且难以符合基于基本物理规
律的按比例缩小规则,但是这种经验方法更准确、更实用
一些。这是由于当器件横向尺寸的变化使器件的纵、横向
半导体器件物理
08.11.2020
10
中国科学技术大学物理系微电子专业
二、现代MOS器件的一些物理效应
• 短沟道效应 (SCE) 微小尺寸效应,狭义的定义,是指随沟道 缩短,阈值电压减小(n沟)或增大(p沟) 的效应(VT roll off)。 VT roll off现象包括VDS很低时测定VT随Lg 变化和VDS很高时VT随Lg的变化。
中国科学技术大学物理系微电子专业
第六章: 新型半导体器件
§6.1 现代MOS器件 §6.2 纳米器件 §6.3 §6.4 光电子器件 §6.5 量子器件
半导体器件物理
08.11.2020
1
Transistor Research中国科学技术大学物理系微电子专业
50 nm
SiGe S/D Strained Silicon
G艺ID条L件效而应改和变漏。区G上ID的L栅是S关iO态2层电质流量Io密ff的切主相要关组,成因,此必它须随被工 限制在额定Ioff值之内,这也是栅氧化层厚度下限的一个 根源。实验证明,对于优质的栅SiO2层,厚度到1.5nm仍 将是安全的。