2021届湖南省新高考数学模拟试卷及答案解析

合集下载

湖南省湘潭市2021届新高考数学模拟试题含解析

湖南省湘潭市2021届新高考数学模拟试题含解析

湖南省湘潭市2021届新高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( )A .4B .6C .8D .10 【答案】C【解析】【分析】画出函数sin y x =π和12(1)y x =--的图像,sin y x =π和12(1)y x =--均关于点()1,0中心对称,计算得到答案.【详解】 2(1)sin 10x x π-+=,验证知1x =不成立,故1sin 2(1)x x π=--, 画出函数sin y x =π和12(1)y x =--的图像, 易知:sin y x =π和12(1)y x =--均关于点()1,0中心对称,图像共有8个交点, 故所有解之和等于428⨯=.故选:C .【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点()1,0中心对称是解题的关键.2.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6- B .6 C .5 D .5-【答案】A【解析】【分析】由{}3A B ⋂=,得3B ∈,代入集合B 即可得b .【详解】{}3A B ⋂=Q ,3B ∴∈,930b ∴-+=,即:6b =-,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.3.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( )A .917B .817C .1735D .935【答案】A【解析】【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】 设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上 的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为 ()9(/)()17P AB P B A P A ==. 故选:A.【点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.4.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32- D .2-【答案】A【解析】【分析】 画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化为直线3y x z =+,当直线3y x z =+过点A 时,此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -, 所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1【答案】A【解析】【分析】 根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案.【详解】解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥,当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.6.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D【解析】【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=, 即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n m m n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.7.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B【解析】【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值.【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.8.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( )A .45B .42C .25D .36 【答案】D【解析】【分析】由等差数列的性质可知1928a a a a +=+,进而代入等差数列的前n 项和的公式即可.【详解】由题,192899()9()9(210)36222a a a a S ++⨯-+====. 故选:D【点睛】本题考查等差数列的性质,考查等差数列的前n 项和.9.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43 B .916 C .34 D .169【答案】D【解析】【分析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为r ,则r ,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D. 【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF 交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( )A .23B .12C .13D .14【答案】C【解析】【分析】连接OM ,OM 为ABC ∆的中位线,从而OFM AFB ∆∆:,且12OF FA =,进而12c a c =-,由此能求出椭圆的离心率.【详解】如图,连接OM ,Q 椭圆E :()222210x y a b a b +=>>的右顶点为A ,右焦点为F , B 、C 为椭圆上关于原点对称的两点,不妨设B 在第二象限,直线BF 交直线AC 于M ,且M 为AC 的中点∴OM 为ABC ∆的中位线,∴OFM AFB ∆∆:,且12OFFA =, 12c a c ∴=-, 解得椭圆E 的离心率13c e a ==. 故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.11.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( )A .0B .1C .2D .4 【答案】A【解析】【分析】根据2m =或22m +=,验证交集后求得m 的值.【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.12.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D【解析】【分析】由(0)0f =可得1a =,所以22()log (1)(0)f x x x x =+≥+,由()f x 为定义在R 上的奇函数结合增函数+增函数=增函数,可知()y f x =在R 上单调递增,注意到(2)(2)5f f -=-=-,再利用函数单调性即可解决.【详解】因为()f x 在R 上是奇函数.所以(0)0f =,解得1a =,所以当0x ≥时,22()log (1)f x x x =++,且[0,)x ∈+∞时,()f x 单调递增,所以()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故有342x +>-,解得2x >-.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省常德市2021届新高考第二次模拟数学试题含解析

湖南省常德市2021届新高考第二次模拟数学试题含解析

湖南省常德市2021届新高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 【答案】A 【解析】 【分析】分子分母同乘1i +,即根据复数的除法法则求解即可. 【详解】 解:23(23)(1)151(1)(1)22i i i i i i i +++==-+--+, 故选:A 【点睛】本题考查复数的除法运算,属于基础题.2.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}na 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,3.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) AB.7CD【答案】B 【解析】 【分析】利用两角差的正弦公式和边角互化思想可求得tan 3B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 32b A a B B a B π⎛⎫=-=- ⎪⎝⎭,即1sin sin cos sin sin 2A B A B A B =-,即3sin sin cos A B A A =, sin 0A >,3sin B B ∴=,得tan 3B =,0B π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c b C B=,因此,1sin sin 7c B C b ===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.4.已知函数()()()1sin,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1niii a b =+∑的值为( )A .5022449+B .5022549+C .4922449+D .4922549+【解析】 【分析】对此分段函数的第一部分进行求导分析可知,当2x =时有极大值(2)1f =,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点n a 的通项公式2n a n =,且相应极大值12n n b -=,分组求和即得【详解】当13x ≤≤时,()cos 22x f x πππ-⎛⎫'=⎪⎝⎭, 显然当2x =时有,()0f x '=, ∴经单调性分析知2x =为()f x 的第一个极值点又∵3100x <≤时,()2(2)f x f x =- ∴4x =,6x =,8x =,…,均为其极值点 ∵函数不能在端点处取得极值 ∴2n a n =,149n ≤≤,n Z ∈ ∴对应极值12n nb -=,149n ≤≤,n Z ∈∴()4949491(298)491(12)22449212i i i a b =+⨯⨯-+=+=+-∑ 故选:C 【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题5.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( ) A .74B .94C .52D .2【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案. 【详解】如图所示,画出可行域和目标函数,根据图像知:当8,10x y ==时,810z a b =+有最大值为40,即81040z a b =+=,故4520a b +=.()()5115112541945252521002020204b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭. 当254b a a b =,即104,33a b ==时等号成立. 故选:B .【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.6.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( ) A .13 B .14 C .15 D .16【答案】A【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 7.将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象,如果()g x 在区间[]0,a 上单调递减,那么实数a 的最大值为( )A .8π B .4π C .2π D .34π【答案】B 【解析】【分析】根据条件先求出()g x 的解析式,结合三角函数的单调性进行求解即可. 【详解】将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象, 则()cos 2cos 242g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 设22x πθ=+, 则当0x a <≤时,022x a <≤,22222x a πππ<+≤+,即222a ππθ<≤+, 要使()g x 在区间[]0,a 上单调递减, 则22a ππ+≤得22a π≤,得4a π≤,即实数a 的最大值为4π, 故选:B. 【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题. 8.已知1cos ,,32πααπ⎛⎫=-∈⎪⎝⎭,则()sin πα+= ( )A .3B .3-C .3±D .13【答案】B 【解析】 【分析】利用诱导公式以及同角三角函数基本关系式化简求解即可. 【详解】1cos 3α=-,,2παπ⎛⎫∈ ⎪⎝⎭2122sin 1cos 193αα∴=-=-=()22sin sin 3παα∴+=-=-本题正确选项:B 【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.9.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤ 【答案】B 【解析】 【分析】根据计算结果,可知该循环结构循环了5次;输出S 前循环体的n 的值为12,k 的值为6,进而可得判断框内的不等式. 【详解】因为该程序图是计算11111246810++++值的一个程序框圈 所以共循环了5次所以输出S 前循环体的n 的值为12,k 的值为6, 即判断框内的不等式应为6k ≥或5k > 所以选C 【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.10.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】求得()51x ax +的二项展开式的通项为15C kkk a x+⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果. 【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立. 故选:B. 【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.11.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤ B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-【答案】B 【解析】 【分析】直接利用集合的基本运算求解即可. 【详解】解:全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,{}U |1A x x ∴=≥则(){}{}{}|1|12|12U A B x x x x x x =-=,故选:B . 【点睛】本题考查集合的基本运算,属于基础题. 12.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-32【答案】A 【解析】 【分析】利用等差数列的求和公式及等差数列的性质可以求得结果. 【详解】由1371352S a ==,74a =,得()()68822256a a +-=-=.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省永州市2021届新高考数学四模考试卷含解析

湖南省永州市2021届新高考数学四模考试卷含解析

湖南省永州市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B I 的真子集个数为( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】求出A B I 的元素,再确定其真子集个数. 【详解】由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B I 中有两个元素,因此它的真子集有3个. 故选:C. 【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集.2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.CD .23【答案】C 【解析】试题分析:设AC BD 、的交点为O ,连接EO ,则AEO ∠为,AE SD 所成的角或其补角;设正四棱锥的棱长为a,则1,,2AE EO a OA ===,所以222cos 2AE OA EO AEO AE OA +-∠=⋅2221)()()a a +-==,故C 为正确答案. 考点:异面直线所成的角.3.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题. 4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行; ②若一个平面经过另一个平面的垂线,则这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④【分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择. 【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④. 故选:D 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.5.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .16481【答案】C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =.本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( ) A .e B .1e 2- C .1 D .2e e - 【答案】D 【解析】 【分析】依题意,可得()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,于是可得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,继而可得()221211a e e e e ⎛⎫---=-⎪⎝⎭,解之即可. 【详解】解:()2222()a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,因为所有点(,())s f t (,)s t D ∈所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭, 解得2ea e =-, 故选:D. 【点睛】本题考查利用导数研究函数的单调性,理解题意,得到221(2)(1)1a e e e e---=-是关键,考查运算能力,属于中档题.7.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D 【解析】 【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值. 【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=,即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n mm n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D. 【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u= lny ,v=(x-4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v+2,则变量y 的最大值的估计值是( ) A .e B .e 2C .ln2D .2ln2【答案】B 【解析】 【分析】将u= lny ,v=(x-4)2代入线性回归方程ˆu=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值. 【详解】解:将u= lny ,v=(x -4)2代入线性回归方程ˆu=-0.5v+2得: ()2ln 0.542y x =--+,即()20.542x y e --+=,当4x =时,()20.542x --+取到最大值2, 因为xy e =在R 上单调递增,则()20.542x y e --+=取到最大值2e .故选:B. 【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,. 9.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( )A .12-B .15-C .16-D .18-【答案】C 【解析】 【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值. 【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n项和中,前4项的和最小,且4146281216S a d =+=-+=-. 故选:C 【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.10.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.11.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .6【答案】A 【解析】 【分析】根据题意可将1127kxx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln xf x x=,利用导数,判断其单调性即可得到实数k 的最小值. 【详解】因为不等式有正整数解,所以0x >,于是1127k xx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k xx≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln xf x x-'=, ∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以 当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k≥,解得9k ≥.故选:A . 【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.12.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题 二、填空题:本题共4小题,每小题5分,共20分。

湖南省永州市2021届新高考第二次模拟数学试题含解析

湖南省永州市2021届新高考第二次模拟数学试题含解析

湖南省永州市2021届新高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1 B .2C .3D .7【答案】D 【解析】 【分析】求出3(21)x +展开项中的常数项及含x 的项,问题得解。

【详解】3(21)x +展开项中的常数项及含x 的项分别为:()()333121C x =,()1123216C x x ⨯=,所以311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为:11167x x⨯+⨯=. 故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。

2.如图,长方体1111ABCD A B C D -中,1236AB AA ==,112A P PB =u u u r u u u r,点T 在棱1AA 上,若TP ⊥平面PBC .则1TP B B ⋅=uu r uuu r( )A .1B .1-C .2D .2-【答案】D 【解析】 【分析】根据线面垂直的性质,可知TP PB ⊥;结合112A P PB =u u u r u u u r即可证明11PTA BPB ∆≅∆,进而求得1TA .由线段关系及平面向量数量积定义即可求得1TP B B ⋅uu r uuu r.【详解】长方体1111ABCD A B C D -中,1236AB AA ==, 点T 在棱1AA 上,若TP ⊥平面PBC .则TP PB ⊥,112A P PB =u u u r u u u r则11PTA BPB ∠=∠,所以11PTA BPB ∆≅∆, 则111TA PB ==,所以11cos TP B B TP B B PTA ⋅=⋅⋅∠uu r uuu r uu r uuu r22⎛⎫=⨯=- ⎝, 故选:D. 【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题. 3.若集合{}10A x x =-≤≤,01xB x x ⎧⎫=<⎨⎬-⎩⎭,则A B =U ( )A .[)1,1-B .(]1,1-C .()1,1-D .[]1,1-【答案】A 【解析】 【分析】用转化的思想求出B 中不等式的解集,再利用并集的定义求解即可. 【详解】解:由集合01x B x x ⎧⎫=<⎨⎬-⎩⎭,解得{|01}B x x =<<,则{}{}{}[)|10|01|111,1A B x x x x x x =-<<=-<=-U U 剟? 故选:A . 【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.4.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .5【答案】B 【解析】【分析】作出约束条件的可行域,在可行域内求34z x y =+的最小值即为34x y +的最小值,作34y x =-,平移直线即可求解. 【详解】作出实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩的可行域,如图(阴影部分)令34z x y =+,则344z y x =-+, 作出34y x =-,平移直线,当直线经过点()1,0A 时,截距最小, 故min 3103z =⨯+=, 即34x y +的最小值为3. 故选:B 【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题. 5.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18-D .4-【答案】A 【解析】 【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.6.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( ) A .5ln 2+ B .5ln 2- C .3ln 2+ D .3ln 2-【答案】A 【解析】 【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值. 【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以min min 42()25ln 2AB f a f ===+⎝⎭故选:A . 【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题. 7.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8 B .9C .10D .11【答案】D 【解析】 【分析】由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的x 的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件2642a a a +=,求得42a =-,从而求得1033n n a =-+,解不等式求得结果. 【详解】由题意,本题符合几何概型,区间[]3,3-长度为6,使得301xx -≥-成立的x 的范围为(]1,3,区间长度为2, 故使得301x x -≥-成立的概率为2163d ==, 又26442a a a +=-=,42a ∴=-,()11024333n na n ∴=-+-⨯=-+, 令0n a >,则有10n >,故n 的最小值为11, 故选:D. 【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目. 8.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 9.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题.10.在ABC ∆中,D 为BC 中点,且12AE ED =u u u r u u u r ,若BE AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .1B .23-C .13-D .34-【答案】B 【解析】 【分析】选取向量AB u u u r ,AC u u u r 为基底,由向量线性运算,求出BE u u u r,即可求得结果.【详解】13BE AE AB AD AB =-=-u u u r u u u r u u u r u u u r u u u r ,1()2AD AB AC =+u u u r u u u r u u u r,5166BE AB AC AB AC λμ∴=-+=+u u u r u u ur u u u r u u u r u u u r ,56λ∴=-,16μ=,23λμ∴+=-.故选:B. 【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 11.已知复数()()2019311i i z i --=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .25z =【答案】D 【解析】 【分析】利用i 的周期性先将复数z 化简为42i z =-+即可得到答案. 【详解】因为2i 1=-,41i =,5i i =,所以i 的周期为4,故4504334i 24i 24i 242i i i iz ⨯++++====-+-, 故z 的虚部为2,A 错误;z 在复平面内对应的点为(4,2)-,在第二象限,B 错误;z 的共 轭复数为42z i =--,C 错误;22(4)225z =-+=,D 正确. 故选:D. 【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.12.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A.83+B.83+C.43+D.43+【答案】A 【解析】由题意得到该几何体是一个组合体,前半部分是一个高为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为2111448323V π=⨯⨯⨯⨯=+故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 二、填空题:本题共4小题,每小题5分,共20分。

2021年湖南省新高考数学模拟试卷解析版

2021年湖南省新高考数学模拟试卷解析版

2021年湖南省新高考数学模拟试卷解析版
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.已知集合A={﹣1,0,1,2},B={x|x2=x},则A∩B=()A.{0}B.{1}C.{0,1}D.{0,1,2}【分析】求出集合A,B,由此能求出A∩B.
【解答】解:∵集合A={﹣1,0,1,2},
B={x|x2=x}={0,1},
∴A∩B={0,1}.
故选:C.
【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.
2.(1+i)2=()
A.2i B.﹣2i C.2D.﹣2
【分析】直接展开两数和的平方求解.
【解答】解:(1+i)2=1+2i+i2=2i.
故选:A.
【点评】本题考查复数代数形式的乘除运算,是基础题.
3.下列命题中的假命题是()
A.∃x∈R,lgx=0B.∃x∈R,tan x=1
C.∀x∈R,x2>0D.∀x∈R,3x>0
【分析】由x=1计算可判断A;由x =时,计算可判断B;由完全平方数非负可判断C;由指数函数的值域可判断D.
【解答】解:当x=1时,lgx=0,故A正确;
当x =时,tan x=1,故B正确;
∀x∈R,x2≥0,故C错误;
由指数函数的值域可得,3x>0恒成立,故D正确.
故选:C.
第1 页共24 页。

2021届湖南省湘潭市新高考数学模拟试卷及答案解析

2021届湖南省湘潭市新高考数学模拟试卷及答案解析
A.直线B.圆C.椭圆D.抛物线
二.填空题(共7小题,满分36分)
11.(6分)lg(3x)+lgy=lg(x+y+1),则x+y的取值范围是.
12.(6分)若x2020=a0+a1(x﹣1)+a2(x﹣1)2+…+a2020(x﹣1)2020,则 .
13.(6分)已知实数x,y满足约束条件 ,则z=x+2y的最大值为.
所以由题意可得: 3,
所以离心率e ,
故选:A.
4.“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
【解答】解:当a=1时,直线a2x﹣y+1=0,
即为x﹣y+1=0,斜率为k1=1,
直线x+y=0,斜率为k2=﹣1,
所以“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的充分不必要条件.
故选:A.
5.某几何体的三视图如图所示,则该几何体的体积是( )
A.6B.4C.3D.2
【解答】解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,底面为直角梯形,高为2.
17.如图,已知等腰梯形ABCD中,AB=2DC=4, ,E是DC的中点,F是线段BC上的动点,则 的最小值是
三.解答题(共5小题,满分74分)
18.(14分)如图,在四边形ABCD中,∠CAB=45°,AB=2,∠ACD=90°,BC=3.
(Ⅰ)求cos∠ACB的值;
(Ⅱ)若DC ,求对角线BD的长度.
A. B.
C. D.
8.已知函数f(x)=xsinx+ln|x|,则y=f(x)的大致图象为( )

湖南省怀化市2021届新高考数学四模考试卷含解析

湖南省怀化市2021届新高考数学四模考试卷含解析

湖南省怀化市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知随机变量X 的分布列是则()2E X a +=( ) A .53 B .73 C .72 D .236【答案】C【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果.【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=, 因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.2.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A【解析】 依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12.3.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C的渐近线的距离为2c ,则双曲线的渐近线方程为()A.y =B.y = C .y x =± D .2y x =±【答案】A【解析】【分析】 利用双曲线C :()222210,0x y a b a b -=>>,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=的距离为2c ,可得:=,可得2b c =,b a =C的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题. 4.已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)= A .12 B.C .12- D. 【答案】A【解析】【详解】由题意可得三角函数的定义可知:22cos 47sin cos 47sin 47cos 47α==+o o o o ,22sin 47cos sin 47sin 47cos 47α==+o o o o ,则: ()()sin 13sin cos13cos sin13cos 47cos13sin 47sin131cos 4713cos 60.2ααα-=-=-=+==o o oo o o oo o o 本题选择A 选项.5.一个陶瓷圆盘的半径为10cm ,中间有一个边长为4cm 的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率π的值为(精确到0.001)( )A .3.132B .3.137C .3.142D .3.147【答案】B【解析】【分析】结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:22451 3.137101000S S ππ=≈⇒≈⋅正圆. 故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题6.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A .48B .72C .90D .96 【答案】D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有13C •34A =72种选择方案;②当甲学生不参加任何比赛时,共有44A =24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.7.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718 B .79 C .718- D .79- 【答案】A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】1sin 3α=Q ,cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫∴+-=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22211cos sin 12sin 22ααααααα⎫==-=-⎪⎪⎝⎭⎝⎭2117122318⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.8.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++= 【答案】A【解析】【分析】计算AB 的中点坐标为()3,0,圆半径为r =.【详解】AB 的中点坐标为:()3,0,圆半径为22AB r ===, 圆方程为22(3)2x y -+=.故选:A .【点睛】 本题考查了圆的标准方程,意在考查学生的计算能力.9.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( )A .35B .36C .45D .54【答案】C【解析】由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .【详解】Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.10.已知函数()f x 的定义域为[]0,2,则函数()()2g x f x = )A .[]0,1B .[]0,2 C .[]1,2D .[]1,3 【答案】A【解析】 试题分析:由题意,得022{820x x ≤≤-≥,解得01x ≤≤,故选A . 考点:函数的定义域.11.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163iB .6iC .203iD .20【答案】C【解析】【分析】根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】()()()32326z i a i a a i =-+=++-∵()()()32z i a i a R =-+∈为纯虚数,∴320a +=且60a -≠得23a =-,此时203z i = 故选:C.【点睛】本题考查复数的概念与运算,属基础题.12.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( )A .25B .32C .35D .40【答案】C【解析】【分析】设出等差数列{}n a 的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得10a .【详解】设等差数列{}n a 的首项为1a ,公差为d ,则 313127339a a d S a d =+=⎧⎨=+=⎩,解得11,4a d =-=,∴45n a n =-,即有10410535a =⨯-=. 故选:C .【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前n 项和公式的应用,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省岳阳市2021届新高考数学模拟试题(3)含解析

湖南省岳阳市2021届新高考数学模拟试题(3)含解析

湖南省岳阳市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 为数单位,z 为z 的共轭复数,若13z i =+,则z z ⋅=( ) A .110 B .110i C .1100 D .1100i 【答案】A【解析】【分析】由复数的除法求出z ,然后计算z z ⋅.【详解】13313(3)(3)1010i z i i i i -===-++-, ∴223131311()()()()10101010101010z z i i ⋅=-+=+=. 故选:A.【点睛】 本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.2.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.3.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=u u u v u u u v ,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )AB C .2 D 【答案】C【解析】【分析】 由0FA FB +=u u u r u u u r 得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可 【详解】因为0FA FB +=u u u r u u u r ,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==. 故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.4.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .2【答案】A【解析】【分析】利用等差的求和公式和等差数列的性质即可求得.【详解】 ()1252512511152550442a a S a a a a +==⇒+=⇒+=. 故选:A .【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.5.设i 是虚数单位,若复数103m i ++(m R ∈)是纯虚数,则m 的值为( ) A .3-B .1-C .1D .3【答案】A【解析】【分析】根据复数除法运算化简,结合纯虚数定义即可求得m 的值.【详解】由复数的除法运算化简可得1033m m i i+=+-+, 因为是纯虚数,所以30m +=,∴3m =-,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.6.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .6【答案】A【解析】【分析】根据双曲线的标准方程求出右顶点A 、右焦点F 的坐标,再求出过点F 与C 的一条渐近线的平行的直线方程,通过解方程组求出点B 的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:3,45a b c ==∴=,因此右顶点A 的坐标为(3,0),右焦点F 的坐标为(5,0),双曲线的渐近线方程为:43y x =±,根据双曲线和渐近线的对称性不妨设点F 作平行C 的一条渐近线43y x =的直线与C 交于点B ,所以直线FB 的斜率为43,因此直线FB 方程为:4(5)3y x =-,因此点B 的坐标是方程组:224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩的解,解得方程组的解为:1753215x y ⎧=⎪⎪⎨⎪=-⎪⎩,即1732(,)515B -,所以AFB △的面积为:13232(53)21515⨯-⨯-=. 故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.7.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( )A .2019πB .22019πC .42019πD .4038π【答案】B【解析】【分析】根据三角函数的两角和差公式得到()f x =2sin(2019)4x π+,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数()sin 2019cos 201944f x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭)sin 2019cos 2019cos 2019sin 20192x x x x +++ )sin 2019cos 20192sin(2019)4x x x π=+=+则函数的最大值为2,2M m n m n ⋅-=-存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则区间(m,n)长度要大于等于半个周期,即min 2220192019m n m n ππ-≥∴-= 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.8.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<【答案】A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现,1,1m m m -+三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是2,1,,1,2m m m m m --++五种情况,所以分析可以求得1212,()()p p E E ξξ><,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.9.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( )A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .||5z =D .13122z i i =++ 【答案】D 【解析】【分析】 首先求得12z i =-+,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数12z i =-+,则(12)2z i i i i ⋅=-+⋅=--,所以A 选项不正确;复数z 的共轭复数是12i --,所以B 选项不正确;22||(1)25z =-+=,所以C 选项不正确;12(12)(1)1311222z i i i i i i -+-+⋅-===+++,所以D 选项正确. 故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.10.函数()2xx e f x x=的图像大致为( ) A . B .C .D .【答案】A【解析】【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可.【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x ==,当0x →,()0f x →,排除B , 故选:A .【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.11.函数52sin ()([,0)(0,])33x xx x f x x -+=∈-ππ-U 的大致图象为 A . B .C .D .【答案】A【解析】【分析】【详解】因为5()2sin()52sin ()()3333x x x x x x x x f x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D , 又5()033f π-πππ=>-,排除C ,故选A . 12.已知复数z 满足32i z i ⋅=+(i 是虚数单位),则z =( )A .23i +B .23i -C . 23i -+D . 23i --【答案】A【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由32i z i ⋅=+,得()()2323223i i i z i i i +-+===--, ∴23z i =+.故选A .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省益阳市2021届新高考数学二月模拟试卷含解析

湖南省益阳市2021届新高考数学二月模拟试卷含解析

湖南省益阳市2021届新高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在101()2x x-的展开式中,4x 的系数为( ) A .-120 B .120C .-15D .15【答案】C 【解析】 【分析】 写出101()2x x -展开式的通项公式1021101()2r r r r T C x -+=-,令1024r -=,即3r =,则可求系数. 【详解】101()2x x -的展开式的通项公式为101021101011()()22r r r r r r r T C x C x x --+=-=-,令1024r -=,即3r =时,系数为33101()152C -=-.故选C【点睛】本题考查二项式展开的通项公式,属基础题.2.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( ) A .43i + B .43i - C .43i -+ D .43i --【答案】A 【解析】 【分析】利用复数的乘法、除法运算求出z ,再根据共轭复数的概念即可求解. 【详解】由34zi i =+,则3434431i i z i i +-===--, 所以z =43i +. 故选:A 【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题. 3.已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .()0,1C .1,12⎛⎫⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭【答案】C 【解析】【分析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式. 【详解】 由101xx+>-得11x -<<, 在(1,1)x ∈-时,3y x =是增函数,sin y x =是增函数,12lnln(1)11x y x x+==-+--是增函数,∴31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭是增函数, ∴由(21)(0)f a f ->得0211a <-<,解得112a <<. 故选:C. 【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.4.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )A BC D .2【答案】A 【解析】 【分析】求出双曲线的一条渐近线方程,利用圆P 与双曲线C 的一条渐近线交于,M N 两点,且90MPN ∠=︒,则可根据圆心到渐近线距离为2a 列出方程,求解离心率. 【详解】不妨设双曲线C 的一条渐近线0bx ay -=与圆P 交于,M N ,因为90MPN ∠=︒,所以圆心P 到0bx ay -=22b c ==,即2222c a -=,因为1ce a=>,所以解得e = 故选A . 【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于,a c 的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.5.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,3a b c C π+==,则ABC ∆的面积为( )A BC .D .【答案】A 【解析】 【分析】由余弦定理可得227a b ab +-=,结合2=1a b +可得a ,b ,再利用面积公式计算即可. 【详解】由余弦定理,得2272cos a b ab C =+-=22a b ab +-,由22721a b ab a b ⎧=+-⎨=+⎩,解得23a b =⎧⎨=⎩,所以,11sin 232222ABC S ab C ∆==⨯⨯⨯=. 故选:A. 【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.6.定义在R 上的函数()()f x x g x =+,()22(2)g x x g x =--+--,若()f x 在区间[)1,-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式不一定成立的是( ) A .()2112f t t f ⎛⎫++>⎪⎝⎭B .(2)0()f f t ->>C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】D 【解析】 【分析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可. 【详解】由条件可得(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+=∴函数()f x 关于直线1x =-对称;()f x Q 在[1-,)+∞上单调递增,且在20t -<<时使得(0)()0f f t <g ;又(2)(0)f f -=Q()0f t ∴<,(2)(0)0f f -=>,所以选项B 成立;223112()0224t t t ++-=++>Q ,21t t ∴++比12离对称轴远, ∴可得21(1)()2f t t f ++>,∴选项A 成立;22(3)(2)250t t t +-+=+>Q ,|3||2|t t ∴+>+,∴可知2t +比1t +离对称轴远 (2)(1)f t f t ∴+>+,选项C 成立;20t -<<Q ,22(2)(1)23t t t ∴+-+=+符号不定,|2|t ∴+,|1|t +无法比较大小, (1)()f t f t ∴+>不一定成立.故选:D . 【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 7.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e +∞ B .24(0,)e C .2(0,4)e D .(0,)+∞【答案】B 【解析】 【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围.【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+,令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee-=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e. 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.8.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.9.已知等差数列{a n },则“a 2>a 1”是“数列{a n }为单调递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n }中,若a 2>a 1,则d >0,即数列{a n }为单调递增数列, 若数列{a n }为单调递增数列,则a 2>a 1,成立, 即“a 2>a 1”是“数列{a n }为单调递增数列”充分必要条件, 故选C .考点:必要条件、充分条件与充要条件的判断.10.已知双曲线2222:1(0,0)x y E a b a b-=>>满足以下条件:①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点(4,2)P 的幂函数()f x x α=的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是( ) A.12B.12C .32D1【答案】B 【解析】 【分析】由已知可求出焦点坐标为(1,0)(-1,0),,可求得幂函数为()f x =设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率. 【详解】依题意可得,抛物线24y x =的焦点为(1,0)F ,F 关于原点的对称点(1,0)-;24α=,12α=,所以12()f x x ==,()f x '=,设0(Q x0=01x =,∴ ()1,1Q ,可得22111a b -=,又1c =,222c a b =+,可解得a =故双曲线的离心率是ce a ===. 故选B . 【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.11.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+=⎪⎝⎭( ) A .13B.3-C.3-D .13-【答案】D 【解析】 【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案. 【详解】//a b∴r r 1cos tan sin 3ααα∴=⋅=1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D 【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.12.已知AM BN ,分别为圆()221:11O x y ++=与()222:24O x y -+=的直径,则AB MN ⋅u u u r u u u u r的取值范围为( ) A .[]0,8 B .[]0,9 C .[]1,8 D .[]1,9【答案】A 【解析】 【分析】由题先画出基本图形,结合向量加法和点乘运算化简可得()()212121212129AB MN O O AO O B O O AO O B AO O B -⎡⎤⋅=++⎡⎤⋅=⎣⎦-⎣⎦++u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u u u u u r u u u u r u v u u u r u u u v u ,结合12AO O B +u u u u v u u u u v的范围即可求解【详解】 如图,()()()()1122112212121212AB MN AO O O O B MO O O O N O O AO O B O O AO O B ⎡⎤⎡⎤⋅⎣⎦⎣⎦⋅=++⋅++=++-+u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r 2221212129O O AO O B AO O B =-+=-+u u u u u v u u u u v u u u u v u u u u v u u u u v 其中[][]1221,211,3AO O B +∈-+=u u u u v u u u u v ,所以[]2293,910,8AB MN ⋅∈-⎡⎤⎣-=⎦u u u r u u u u r .故选:A 【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。

湖南省永州市2021届新高考数学一月模拟试卷含解析

湖南省永州市2021届新高考数学一月模拟试卷含解析

湖南省永州市2021届新高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A .12π B .6π C .3π D .4π 【答案】D 【解析】 【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案. 【详解】将将函数()sin 2f x x =的图象向左平移ϕ个单位长度, 可得函数()sin[2()]sin(22)g x x x ϕϕ=+=+ 又由函数()g x 为偶函数,所以2,2k k Z πϕπ=+∈,解得,42k k Z ππϕ=+∈, 因为02πϕ≤≤,当0k =时,4πϕ=,故选D .【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题. 2.已知i 是虚数单位,若1zi i=-,则||z =( )A B .2C D .3【答案】A 【解析】 【分析】 直接将1zi i=-两边同时乘以1i -求出复数z ,再求其模即可. 【详解】 解:将1zi i=-两边同时乘以1i -,得 ()11z i i i =-=+考查复数的运算及其模的求法,是基础题.3.已知函数21()log 1||f x x ⎛⎫=+⎪⎝⎭(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃⎪⎝⎭【答案】D 【解析】 【分析】先判断函数的奇偶性和单调性,得到1lg 1x -<<,且lg 0x ≠,解不等式得解. 【详解】由题得函数的定义域为(,0)(0,)-∞+∞U . 因为()()f x f x -=,所以()f x 为(,0)(0,)-∞+∞U 上的偶函数,因为函数11||y y x =+=,都是在(0,)+∞上单调递减. 所以函数()f x 在(0,)+∞上单调递减. 因为(1)3,(lg )3(1)f f x f =>=, 所以1lg 1x -<<,且lg 0x ≠,解得1,1(1,10)10x ⎛⎫∈⋃ ⎪⎝⎭.故选:D 【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.4.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21eD对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立, ∴230m +>令ln (23)y x m x n =-+-,可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '<当1023x m <<+0y '> ∴123x m =+,max 1ln1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n nm n f m n e ++≥=Q 11(,)n nf m n e+-'=令110n ne+-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e =故选:C. 【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题. 5.已知复数z ,满足(34)5z i i -=,则z =( )A .1B .CD .5首先根据复数代数形式的除法运算求出z ,求出z 的模即可. 【详解】 解:55(34)4334255i i i iz i +-+===-,1z ∴==,故选:A 【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.6.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为A .16B .23C .53D .56【答案】C 【解析】 【分析】 【详解】将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin()33g x x ωωππ=+-的图象,因为函数()g x 的图象的一条对称轴是6x π=,所以sin()1633ωωπππ+-=±,即,6332k k ωωππππ+-=+π∈Z ,所以52,3k k ω=+∈Z ,又0>ω,所以ω的最小值为53.故选C . 7.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .5【答案】B 【解析】 【分析】利用双曲线的定义和条件中的比例关系可求.122155642F F e PF PF ===--.选B. 【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c 的关系式.8.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ uuu r(O 为坐标原点),设OZ r =u u u r ,以射线Ox为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A.B .4C.D .16【答案】D 【解析】 【分析】根据复数乘方公式:()()cos sin cos sin nn r i r n i n θθθθ+=+⎡⎤⎣⎦,直接求解即可. 【详解】)4441216cos sin 266z ii i ππ⎡⎤⎫⎛⎫==+=+⎢⎥⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos 4sin 4866i ππ⎡⎤⎛⎫⎛⎫=⨯+⨯=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,16z ==.故选:D 【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.9.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( )A .10,10⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()10,+∞ 【答案】B构造函数()()g x f x x =-,利用导数研究函数的单调性,即可得到结论. 【详解】设()()g x f x x =-,则函数的导数()()1g x f x ''=-,()1f x Q '<,()0g x '∴<,即函数()g x 为减函数,(1)1f =Q ,(1)(1)1110g f ∴=-=-=,则不等式()0<g x 等价为()(1)g x g <,则不等式的解集为1x >,即()f x x <的解为1x >,22(1)1f g x g x Q <,由211g x >得11gx >或11gx <-,解得10x >或1010x <<, 故不等式的解集为10,(10,)10⎛⎫⋃+∞ ⎪⎝⎭.故选:B . 【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.10.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( ) A .-4 B .-2C .0D .4【答案】B 【解析】 【分析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】奇函数()f x 是R 上的减函数,则()00f =,且2100m nm n m ≤-⎧⎪--≤⎨⎪≥⎩,画出可行域和目标函数,2z m n =-,即2n m z =-,z 表示直线与y 轴截距的相反数,根据平移得到:当直线过点()0,2,即0.2m n ==时,2z m n =-有最小值为2-. 故选:B .【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.11.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元【答案】D【解析】【分析】直接根据折线图依次判断每个选项得到答案.【详解】-=,故选项A正确;由图可知月收入的极差为9030601至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:D.12.已知函22()(sin cos )2cos f x x x x =++,,44x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的最小值为( ) A.2-B .1C .0D.【答案】B 【解析】 【分析】())2,4f x x π=++,44x ππ⎡⎤∈-⎢⎥⎣⎦,32444x πππ-≤+≤利用整体换元法求最小值.【详解】由已知,2()12sin cos 2cos sin 2cos22f x x x x x x =++=++)2,4x π=++又44x ππ-≤≤,32444x πππ∴-≤+≤,故当244x ππ+=-,即4πx =-时,min ()1f x =.故选:B. 【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省衡阳市2021届新高考数学一月模拟试卷含解析

湖南省衡阳市2021届新高考数学一月模拟试卷含解析

湖南省衡阳市2021届新高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数2()22cos f x x x =-图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位长度,则所得函数图象的一个对称中心为( ) A .3,08π⎛⎫⎪⎝⎭B .3,18⎛⎫-- ⎪⎝⎭π C .3,08⎛⎫-⎪⎝⎭π D .3,18⎛⎫-⎪⎝⎭π 【答案】D 【解析】 【分析】先化简函数解析式,再根据函数()y Asin x ωϕ=+的图象变换规律,可得所求函数的解析式为22sin 134y x π⎛⎫=-- ⎪⎝⎭,再由正弦函数的对称性得解.【详解】23sin 22cos y x x =-()21cos 2x x =-+2sin 216x π⎛⎫=-- ⎪⎝⎭,∴将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为22sin 136y x π⎛⎫=-- ⎪⎝⎭,再向右平移8π个单位长度,所得函数的解析式为 22sin 1386y x ππ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦22sin 134x π⎛⎫=-- ⎪⎝⎭,233,3428x k x k k Z ππππ-=⇒=+∈, 0k =可得函数图象的一个对称中心为3,18⎛⎫- ⎪⎝⎭π,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.2.如果实数x y 、满足条件10{1010x y y x y -+≥+≥++≤,那么2x y -的最大值为( )A .2B .1C .2-D .3-【答案】B 【解析】 【分析】 【详解】解:当直线2x y z -=过点()0,1A -时,z 最大,故选B3.已知复数21z i =+ ,其中i 为虚数单位,则z =( ) A 5B 3C .2D 2【答案】D 【解析】 【分析】把已知等式变形,然后利用数代数形式的乘除运算化简,再由复数模的公式计算得答案. 【详解】 解:()()()2121111i z i i i i -===-++- , 则112z =+=故选:D. 【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.4.已知:|1|2p x +> ,:q x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .3a ≤-C .1a ≥-D .1a ≥【答案】D【解析】 【分析】“p ⌝是q ⌝的充分不必要条件”等价于“q 是p 的充分不必要条件”,即q 中变量取值的集合是p 中变量取值集合的真子集. 【详解】由题意知::|1|2p x +>可化简为{|31}x x x <->或,:q x a >, 所以q 中变量取值的集合是p 中变量取值集合的真子集,所以1a ≥. 【点睛】利用原命题与其逆否命题的等价性,对p ⌝是q ⌝的充分不必要条件进行命题转换,使问题易于求解. 5.已知()f x 为定义在R 上的奇函数,且满足f x f x (4)(),+=当(0,2)x ∈时,2()2f x x =,则(3)f =( ) A .18- B .18C .2-D .2【答案】C 【解析】 【分析】由题设条件()()4f x f x +=,可得函数的周期是4,再结合函数是奇函数的性质将()3f 转化为()1f 函数值,即可得到结论. 【详解】由题意,()()4f x f x +=,则函数()f x 的周期是4, 所以,()()()3341f f f =-=-,又函数()f x 为R 上的奇函数,且当()0,2x ∈时,()22f x x =,所以,()()()3112f f f =-=-=-. 故选:C. 【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题. 6.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =( )A .(3,)+∞B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3)【答案】A 【解析】 【分析】计算()(),13,B =-∞-+∞,再计算交集得到答案.【详解】{}()()2230,13,B xx x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞.故选:A . 【点睛】本题考查了交集运算,属于简单题.7.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C 【解析】 【分析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数. 【详解】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形. ∴该三棱锥的表面中直角三角形的个数为3. 故选:C. 【点睛】本小题主要考查由三视图还原为原图,属于基础题.8.已知()()11,101,012x f x f x x x ⎧--<<⎪+⎪=⎨⎪≤<⎪⎩,若方程()21f x ax a -=-有唯一解,则实数a 的取值范围是( )A .{}()81,-⋃+∞B .{}()116,12,2⎛⎤-⋃⋃+∞⎥⎝⎦C .{}()18,12,2⎡⎤-⋃⋃+∞⎢⎥⎣⎦D .{}[]()321,24,-⋃⋃+∞【答案】B 【解析】 【分析】求出()f x 的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出a 的范围即可. 【详解】解:令10x -<<,则011x <+<, 则1(1)2x f x ++=, 故21,101(),012x x f x x x ⎧--<<⎪⎪+=⎨⎪<⎪⎩,如图示:由()21f x ax a -=-, 得()(21)1f x a x =+-,函数(21)1y a x =+-恒过1(2A -,1)-,由1(1,)2B ,(0,1)C ,可得1121112ABk +==+,2OA k =,11412AC k +==,若方程()21f x ax a -=-有唯一解, 则122a <或24a >,即1a 12<或2a >; 当22111ax a x +-=-+即图象相切时, 根据0∆=,298(2)0a a a --=, 解得16(0a =-舍去),则a 的范围是{}()116,12,2⎛⎤-⋃⋃+∞ ⎥⎝⎦, 故选:B .【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题. 9.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A 2 B 3C .2D .3【答案】A 【解析】()11z i i i =-=+,故2z = A.10.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1 B .)31±C .)31±D .5【答案】C 【解析】 【分析】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,计算12PF a =,24PF a =,22a PN c =,12abF N c=,根据勾股定理计算得到答案. 【详解】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,121212QF QF QP PF QF PF a -=+-==,故24PF a =,在1Rt MOF ∆中,1sin a MFO c ∠=,故1cos b MFO c ∠=,故22a PN c=,12ab F N c =, 根据勾股定理:242242162a ab a c c c ⎛⎫=+- ⎪⎝⎭,解得31b a =. 故选:C .【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力. 11.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4 B .6C .3D .8【答案】A 【解析】 【分析】根据所给函数解析式满足的等量关系及指数幂运算,可得()()m f f n f m n ⎛⎫+=⎪⎝⎭;利用定义可证明函数()f x 的单调性,由赋值法即可求得函数()f x 在[]1,16上的最大值.【详解】函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,则()()m f f n f m n ⎛⎫+=⎪⎝⎭; 任取()12,0,x x ∈+∞,且12x x <,则1201x x <<, 故120x f x ⎛⎫<⎪⎝⎭, 令1mx ,2n x =,则()()1212x f f x f x x ⎛⎫+= ⎪⎝⎭,即()()11220x f x f x f x ⎛⎫-=<⎪⎝⎭,故函数()f x 在()0,∞+上单调递增, 故()()max 16f x f =, 令16m =,4n =,故()()()44164f f f +==, 故函数()f x 在[]1,16上的最大值为4. 故选:A. 【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.12.设函数()()sin f x x ωϕ=+(0>ω,0ϕπ<≤)是R 上的奇函数,若()f x 的图象关于直线4x π=对称,且()f x 在区间,2211ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则12f π⎛⎫= ⎪⎝⎭( )A B .2-C .12 D .12-【答案】D 【解析】 【分析】根据函数()f x 为R 上的奇函数可得ϕ,由函数()f x 的对称轴及单调性即可确定ω的值,进而确定函数()f x 的解析式,即可求得12f π⎛⎫⎪⎝⎭的值.【详解】函数()()sin f x x ωϕ=+(0>ω,0ϕπ<≤)是R 上的奇函数, 则ϕπ=,所以()sin f x x ω=-.又()f x 的图象关于直线4x π=对称可得42k πωππ=+,k Z ∈,即24k ω=+,k Z ∈,由函数的单调区间知,12114ππω≤⋅, 即 5.5ω≤,综上2ω=,则()sin 2f x x =-,1122fπ⎛⎫=-⎪⎝⎭.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省郴州市2021届新高考数学一模考试卷含解析

湖南省郴州市2021届新高考数学一模考试卷含解析

湖南省郴州市2021届新高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离【答案】B 【解析】 化简圆到直线的距离,又 两圆相交. 选B2.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为2a 的正方形模型内均匀投点,落入阴影部分的概率为p ,则圆周率π≈( )A .42p +B .41p +C .64p -D .43p +【答案】A 【解析】 【分析】计算出黑色部分的面积与总面积的比,即可得解. 【详解】由2222244S a a p S a ππ--===阴正,∴42p π=+. 故选:A 【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.3.设i 为虚数单位,复数()()1z a i i R =+-∈,则实数a 的值是( ) A .1 B .-1 C .0 D .2【答案】A 【解析】 【分析】根据复数的乘法运算化简,由复数的意义即可求得a 的值. 【详解】复数()()1z a i i R =+-∈, 由复数乘法运算化简可得()11a a i z =++-,所以由复数定义可知10a -=, 解得1a =, 故选:A. 【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.4.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( ) A .112V B .18VC .16VD .19V【答案】D 【解析】 【分析】由题意画出图形,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,可得当11111,33BM BB C C N C ==时1AM MN ND ++最小,设正方体1AC 的棱长为3a ,得327V a =,进一步求出四面体1AMND 的体积即可. 【详解】 解:如图,∵点M ,N 分别在棱11,BB CC 上,要1AM MN ND ++最小,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,1,,AM MN ND 三线共线时,1AM MN ND ++最小,∴11111,33BM BB C C N C == 设正方体1AC 的棱长为3a ,则327a V =,∴327V a =. 取13BG BC =,连接NG ,则1AGND 共面,在1AND ∆中,设N 到1AD 的距离为1h ,12212212222211111112(3)(3)32,(3)10,(32)(2)22,cos 21022255319sin 25511sin 22319192D NA AD a a a D N a a a AN a a a D NA a a D NA S D N AN D NA AD a h h ∆=+==+==+=∴∠==⋅⋅∴∠=∴=⋅⋅⋅∠=⋅⋅∴,设M 到平面1AGND 的距离为2h ,22111111[(2)322]3231922219222M AGN A MGNa a V V h a a a a a a h a --∴=∴⋅⋅⋅⋅+⋅-⋅⋅-⋅⋅∴=⋅⋅= 123131933919AMND a V V a ∴=⨯⨯==. 故选D . 【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题. 5.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( ) A .322- B .233-C .23-D .22-【答案】A 【解析】 【分析】求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,211(1)4mmx x-=+++, 求出等式左边式子的范围,将等式右边代入,从而求解. 【详解】解:由题意可得,焦点F (1,0),准线方程为x =−1, 过点P 作PM 垂直于准线,M 为垂足,由抛物线的定义可得|PF|=|PM|=x +1, 记∠KPF 的平分线与x 轴交于(m,0),(1m 1)H -<<根据角平分线定理可得||||||=||||||PF PM FH PK PK KH =,211(1)4mmx x-∴=+++, 当0x =时,0m =,当0x ≠时,212,142(1)4112x xx x⎡⎫=∈⎪⎢⎪++⎣⎭+++,211032221m m m-∴≤<⇒<≤-+, 综上:0322m ≤≤-. 故选:A . 【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题. 6.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-的图象大致为( )A .B .C .D .【答案】B 【解析】 【分析】先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案. 【详解】()f x 是奇函数,排除C ,D ;()2()ln 0f ππππ=-<,排除A.故选:B. 【点睛】本题考查函数图象的判断,属于常考题.7.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A .[1,2]-B .[2]C .⎡⎤⎢⎥⎣⎦D .[2]【答案】D 【解析】 【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果. 【详解】解:把函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后, 可得32sin 38y x πϕ⎛⎫=-+ ⎪⎝⎭的图象; 再根据得到函数的图象关于直线3x π=对称,33382k πππϕπ∴⨯-+=+,k Z ∈, 78πϕ∴=,函数7()2sin 38f x x π⎛⎫=+⎪⎝⎭.在,88ππ⎡⎤-⎢⎥⎣⎦上,753,824x πππ⎡⎤+∈⎢⎥⎣⎦,sin 382x π⎡⎤⎛⎫∴-∈-⎢⎥ ⎪⎝⎭⎣⎦,故()2sin 3[8f x x π⎛⎫=-∈ ⎪⎝⎭,即()f x 的值域是[2],故选:D. 【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.8.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF 为等腰三角形,则椭圆Г的离心率e =A .13BC .12D 【答案】B【解析】 【分析】 【详解】设2||BF t =,则12||BF a t =-,||AB a t =+,因为1||AF a =,所以1||||AB AF >.若11||||AF BF =,则2a a t =-,所以a t =, 所以11||||||2A A a BF B F =+=,不符合题意,所以1||||BF AB =,则2a t a t -=+, 所以2a t =,所以1||||3BF AB t ==,1||2AF t =,设12BAF θ∠=,则sin e θ=,在1ABF 中,易得1cos23θ=,所以2112sin 3θ-=,解得sin θ=(负值舍去),所以椭圆Г的离心率e =B . 9.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( ) A .15B .25C .35D .110【答案】B 【解析】 【分析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率. 【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个, 基本事件总数2353C 10n C ==,6和28恰好在同一组包含的基本事件个数22123234m C C C C =+=, ∴6和28恰好在同一组的概率42105m p n ===. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断: ①直线OB 与直线OE 的斜率乘积为2-;②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③ B .①② C .①③ D .②③【答案】B 【解析】 【分析】由题意,可设直线DE 的方程为2x my =+,利用韦达定理判断第一个结论;将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,进而判断第二个结论;设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,进而判断第三个结论. 【详解】解:由题意,可设直线DE 的方程为2x my =+, 代入抛物线C 的方程,有2480y my --=. 设点B ,E 的坐标分别为()11,x y ,()22,x y , 则124y y m +=,128y y =-.所()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以①正确. 将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-, 根据抛物线的对称性可知,A ,E 两点关于x 轴对称, 所以直线//AE y 轴.所以②正确.如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线, 则12||||||222d d BF EF BE d R ++==>=.所以③不正确.故选:B. 【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.11.已知四棱锥E ABCD -,底面ABCD 是边长为1的正方形,1ED =,平面ECD ⊥平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为( ) A .26B .13C .23D .1【答案】B 【解析】 【分析】过点E 作EH CD ⊥,垂足为H ,过H 作HF AB ⊥,垂足为F ,连接EF.因为//CD 平面ABE ,所以点C 到平面ABE 的距离等于点H 到平面ABE 的距离h .设(0)2CDE πθθ∠=<≤,将h 表示成关于θ的函数,再求函数的最值,即可得答案. 【详解】过点E 作EH CD ⊥,垂足为H ,过H 作HF AB ⊥,垂足为F ,连接EF. 因为平面ECD ⊥平面ABCD ,所以EH ⊥平面ABCD , 所以EH HF ⊥.因为底面ABCD 是边长为1的正方形,//HF AD ,所以1HFAD ==.因为//CD 平面ABE ,所以点C 到平面ABE 的距离等于点H 到平面ABE 的距离. 易证平面EFH⊥平面ABE ,所以点H 到平面ABE 的距离,即为H 到EF 的距离h . 不妨设(0)2CDE πθθ∠=<≤,则sin EH θ=,21sin EF θ=+因为1122EHFSEF h EH FH =⋅⋅=⋅⋅,所以21sin sin h θθ+=, 所以222211sin 1sin h θθ==≤++,当2πθ=时,等号成立.此时EH 与ED 重合,所以1EH =,2111133E ABCD V -=⨯⨯=. 故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.12.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D .【点睛】本题考查了等差数列的计算,意在考查学生的计算能力. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省衡阳市2021届新高考数学四月模拟试卷含解析

湖南省衡阳市2021届新高考数学四月模拟试卷含解析

湖南省衡阳市2021届新高考数学四月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()x f x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e-D .2e-【答案】A 【解析】 【分析】求导得到'()xf x e =,根据切线方程得到ln b a a =,故2ln ab a a =,设()2ln g x x x =,求导得到函数在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,故()12min g x g e -⎛⎫= ⎪⎝⎭,计算得到答案. 【详解】()x f x e b =+,则'()x f x e =,取0x e a =,()0a >,故0ln x a =,()0f x a b =+.故(ln 1)a b a a +=+,故ln b a a =,2ln ab a a =.设()2ln g x x x =,()()'2ln 2ln 1g x x x x x x =+=+,取()'0g x =,解得12x e -=.故函数在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,故()12min12g x g e e -⎛⎫==- ⎪⎝⎭. 故选:A . 【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力. 2.若复数()(1)2z i i =++(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】将z 整理成a bi +的形式,得到复数所对应的的点,从而可选出所在象限. 【详解】解:221()()2313z i i i i i =++=++=+,所以z 所对应的点为()1,3在第一象限.故选:A. 【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把2i 当成1进行计算.3.若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,2D .()2,e【答案】A 【解析】试题分析:由题意得()ln 120f x x ax =+-='有两个不相等的实数根,所以()120f x a x-'=='必有解,则0a >,且102f a ⎛⎫>⎪⎝⎭',∴102a <<. 考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求f′(x )―→求方程f′(x )=0的根―→列表检验f′(x )在f′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f′(x 0)=0,且在该点左、右两侧的导数值符号相反.4. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( ) A .15B .25C .35D .45【答案】C 【解析】 【分析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为2510C =,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率. 【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为2510C =,则6和28恰好在同一组包含的基本事件个数21234C C +=, ∴6和28不在同一组的概率1043105P -==.故选:C. 【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.5.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( ) A .3 B .4C .5D .6【答案】B 【解析】 【分析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数. 【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示, 利用列举法,可得下表,可知需要的次数为4次. 故选:B. 【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.6.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x e x a >,即函数x ey a=的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xey a=的变化趋势,从而得a 的范围. 【详解】由题0x e x a ->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设xe y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.7.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( )A .3πB .4πC .8πD .13π【答案】A 【解析】 【分析】由题意画出图形,求出三棱锥S-ABC 的外接球的半径,再求出外接球球心到D 的距离,利用勾股定理求得过点D 的平面截球O 所得截面圆的最小半径,则答案可求. 【详解】如图,设三角形ABC 外接圆的圆心为G ,则外接圆半径AG=23⨯=设三棱锥S-ABC 的外接球的球心为O ,则外接球的半径4=取SA 中点E ,由SA=4,AD=3SD ,得DE=1, 所以=.则过点D 的平面截球O=所以过点D的平面截球O 所得截面的最小面积为23ππ⋅=故选:A 【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.8.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】由题意首先确定导函数的符号,然后结合题意确定函数在区间()()(),0,0,1,1,-∞+∞和0,1x x ==处函数的特征即可确定函数图像. 【详解】函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在1x =处取得极大值,∴当1x >时,()0f x '<;当1x =时,()0f x '=;当1x <时,()0f x '>.0x ∴<时,()0y xf x '=->,01x <<时,()0y xf x '=-<,当0x =或1x =时,()0y xf x '=-=;当1x >时,()0xf x '->. 故选:B 【点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.9.已知全集{},1,2,3,4,U Z A ==()(){}130,B x x x x Z =+->∈,则集合()U A C B ⋂的子集个数为( ) A .2 B .4C .8D .16【答案】C 【解析】 【分析】先求B.再求U C B ,求得()U A C B ⋂则子集个数可求 【详解】由题()(){}{}130,1x 3,U C B x x x x Z x x Z =+-≤∈=-≤≤∈={}1,0,1,2,3=-, 则集合(){}1,2,3U A C B ⋂=,故其子集个数为328=故选C 【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题 10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A .121B .221C .115D .215【答案】B 【解析】 【分析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求. 【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有2721C =,其和等于16的结果(3,13),(5,11)共2种等可能的结果, 故概率221P =. 故选:B. 【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.11.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .不充分不必要【答案】B 【解析】 【分析】由线面关系可知m n ⊥,不能确定n 与平面α的关系,若//n α一定可得m n ⊥,即可求出答案. 【详解】,m m n α⊥⊥,不能确定αn ⊂还是αn ⊄,//m n n α∴⊥,当//n α时,存在a α⊂,//,n a , 由,m m a α⊥⇒⊥ 又//,n a 可得m n ⊥,所以“m n ⊥”是“//n α”的必要不充分条件, 故选:B 【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.12.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞【答案】C 【解析】 【分析】根据题意,由函数的图象变换分析可得函数()y f x =为偶函数,又由函数()y f x =在区间[)0,+∞上单调递增,分析可得()()()1222log 2log 2log2f a f fa f a ⎛⎫<-⇒<⇒< ⎪⎝⎭,解可得a 的取值范围,即可得答案. 【详解】将函数()1y f x =-的图象向左平移1个单位长度可得函数()y f x =的图象,由于函数()1y f x =-的图象关于直线1x =对称,则函数()y f x =的图象关于y 轴对称,即函数()y f x =为偶函数,由()12log 2f a f ⎛⎫<- ⎪⎝⎭,得()()2log 2fa f <,函数()y f x =在区间[)0,+∞上单调递增,则2log 2a <,得22log 2-<<a ,解得144a <<. 因此,实数a 的取值范围是1,44⎛⎫⎪⎝⎭.故选:C. 【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数()y f x =的奇偶性,属于中等题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省益阳市2021届新高考数学一模试卷含解析

湖南省益阳市2021届新高考数学一模试卷含解析

湖南省益阳市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.中,如果,则的形状是( ) A .等边三角形 B .直角三角形C .等腰三角形D .等腰直角三角形【答案】B 【解析】 【分析】 化简得lgcosA =lg=﹣lg2,即,结合, 可求,得代入sinC=sinB ,从而可求C ,B ,进而可判断.【详解】 由,可得lgcosA ==﹣lg2,∴,∵,∴,,∴sinC =sinB ==,∴tanC =,C=,B =.故选:B 【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.2.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率e = A .13B .33C .12D .22【答案】B 【解析】 【分析】 【详解】设2||BF t =,则12||BF a t =-,||AB a t =+,因为1||AF a =,所以1||||AB AF >.若11||||AF BF =,则2a a t =-,所以a t =, 所以11||||||2A A a BF B F =+=,不符合题意,所以1||||BF AB =,则2a t a t -=+, 所以2a t =,所以1||||3BF AB t ==,1||2AF t =,设12BAF θ∠=,则sin e θ=,在1ABF V 中,易得1cos23θ=,所以2112sin 3θ-=,解得3sin 3θ=(负值舍去),所以椭圆Г的离心率33e =.故选B . 3.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>=【答案】B 【解析】 【分析】利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可. 【详解】如图,1111111,D C CC C E AC ==,设O 为11A C 的中点,1O 为11C E 的中点, 由图可知过1AB 且与1BC 平行的平面α为平面11AB D ,所以直线l 即为直线1AD , 由题易知,11,D AB O CB ∠∠的补角,1D AC ∠分别为αβγ,,, 设三棱柱的棱长为2,在1D AB ∆中,1125225,,D B AB AD ===2212542555cos cos 2225D AB α+-∠==∴=⨯⨯;在1O BC ∆中,111125,,O B BC OC = (221541155cos cos 225O CB β+-∠==∴=⨯⨯; 在1D AC ∆中,114225,,CD AC AD ===,155cos cos 5525D AC α∠==∴=cos cos cos ,αβγαβγ=<∴=>Q .故选:B 【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.4.若函数()x f x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( )A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭D .(0,)e【答案】D 【解析】 【分析】由题可知,可转化为曲线()2g x ax =-与ln y x =有两个公共点,可转化为方程2ln ax x -=有两解,构造函数2ln ()xh x x+=,利用导数研究函数单调性,分析即得解 【详解】函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在ln y x =上,即曲线()2g x ax =-与ln y x =有两个公共点, 即方程2ln ax x -=有两解,即2ln xa x+=有两解, 令2ln ()xh x x +=,则21ln ()xh x x --'=,则当10x e<<时,()0h x '>;当1x e >时,()0h x '<,故1x e =时()h x 取得极大值1h e e ⎛⎫= ⎪⎝⎭,也即为最大值, 当0x →时,()h x →-∞;当x →+∞时,()0h x →, 所以0a e <<满足条件. 故选:D 【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.5.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min 2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是()A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】 【分析】根据已知得到函数()f x 两个对称轴的距离也即是半周期,由此求得ω的值,结合其对称轴,求得θ的值,进而求得()f x 解析式.根据图像变换的知识求得()g x 的解析式,再利用三角函数求单调区间的方法,求得()g x 的单调递减区间. 【详解】解:已知函数()sin()f x x ωθ=+,其中0>ω,00,2π⎛⎫∈ ⎪⎝⎭,其图像关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min1222x x ππω-==⋅,∴2ω=. 再根据其图像关于直线6x π=对称,可得262k ππθπ⨯+=+,k ∈Z .∴6πθ=,∴()sin 26f x x π⎛⎫=+⎪⎝⎭. 将函数()f x 的图像向左平移6π个单位长度得到函数()sin 2cos 236g x x x ππ⎛⎫=++= ⎪⎝⎭的图像. 令222k x k πππ≤≤+,求得2k x k πππ≤≤+,则函数()g x 的单调递减区间是,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z ,故选B. 【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.6.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重4斤;在细的一端截下一尺,重2斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( ) A .73斤 B .72斤 C .52斤 D .3斤【答案】B【解析】 【分析】依题意,金箠由粗到细各尺重量构成一个等差数列,14a =则52a =,由此利用等差数列性质求出结果. 【详解】设金箠由粗到细各尺重量依次所成得等差数列为{}n a ,设首项14a =,则52a =,∴公差5124151512a a d --===---,2172a a d ∴=+=. 故选B 【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.7.过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上顶点B ,且与椭圆C 相交于另一点A ,点A 在y 轴上的射影为A ',若34FO AA =',O 是坐标原点,则椭圆C 的离心率为( ) AB.C .12D【答案】D 【解析】 【分析】求得点B 的坐标,由34FO AA =',得出3BF FA =u u u r u u u r,利用向量的坐标运算得出点A 的坐标,代入椭圆C 的方程,可得出关于a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率. 【详解】由题意可得()0,B b 、(),0F c -.由34FO AA =',得34BF BA =,则31BF FA =,即3BF FA =u u u r u u u r. 而(),BF c b =--u u u r ,所以,33c b FA ⎛⎫=-- ⎪⎝⎭u u u r ,所以点4,33b A c ⎛⎫-- ⎪⎝⎭.因为点4,33b A c ⎛⎫-- ⎪⎝⎭在椭圆2222:1x yC a b+=上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=, 整理可得2216899c a ⋅=,所以22212c e a ==,所以2e =.即椭圆C的离心率为22故选:D. 【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出a 、b 、c 的齐次等式,充分利用点A 在椭圆上这一条件,围绕求点A 的坐标来求解,考查计算能力,属于中等题.8.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅u u u r u u u r的值为( ) A .4 B .8C .6D .12【答案】B 【解析】 【分析】可画出图形,根据条件可得2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u u v u u u v u u u v ,从而可解出22AC AO BOBC BO AO ⎧=+⎨=+⎩u u u v u u u v u u u vu u u v u u u v u u u v ,然后根据OA OB ⊥,2AB =进行数量积的运算即可求出()()282AO BO BO AO AC BC ⋅=⋅++=u u u r u u u r u u u r u u u u u u r u u u rr .【详解】 如图:点O 为ABC ∆的三条中线的交点11()(2)33AO AB AC AC BC ∴=+=-u u u r u u u r u u u r u u u r u u u r ,11()(2)33BO BA BC BC AC =+=-u u u r u u u r u u u r u u u r u u u r∴由2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u u v u u u v u u u v 可得:22AC AO BO BC BO AO⎧=+⎨=+⎩u u u v u u u v u u u v u u u v u u u v u u u v ,又因OA OB ⊥,2AB =,222(2)(2)2228AC BC AO BO BO AO AO BO AB ∴⋅=+⋅+=+==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .故选:B 【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.9.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( )A .B .C .D .±【答案】D 【解析】 【分析】根据抛物线的定义,结合||3AF =,求出A 的坐标,然后求出AF 的斜率即可. 【详解】解:抛物线的焦点(1,0)F ,准线方程为1x =-,设(,)A x y ,则||13AF x =+=,故2x =,此时y =±(2,A ±.则直线AF 的斜率k ==±. 故选:D . 【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题. 10.已知i 是虚数单位,则(2)i i +=( ) A .12i + B .12i -+C .12i --D .12i -【答案】B 【解析】 【分析】根据复数的乘法运算法则,直接计算,即可得出结果. 【详解】() 22112i i i i +=-=-+.故选B 【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型. 11.已知(),A A Ax y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B Bx y ,则2AB yy +的最大值为( )A .3B .2CD【答案】C 【解析】 【分析】设射线OA 与x 轴正向所成的角为α,由三角函数的定义得sin A y α=,2sin()3B y πα=+,2A B y y +=3sin 22αα+,利用辅助角公式计算即可.【详解】设射线OA 与x 轴正向所成的角为α,由已知,cos ,sin A A x y αα==,22cos(),sin()33B B x y ππαα=+=+,所以2A B y y +=2sin α+2sin()3πα+=12sin sin cos 22ααα-+=3sin )226πααα+=+≤,当3πα=时,取得等号.故选:C. 【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.12.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若p ,求抛物线C2的焦点坐标;
(2)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
22.(15分)已知函数f(x)=x2﹣x+aln(x+1),其中a∈R.
(1)求函数f(x)的单调区间.
(2)若函数f(x)有两个极值点x1、x2,且x1<x2,证明: .
2021届湖南省新高考数学模拟试卷
①对于任意x,y∈S,若x≠y,都有xy∈T;
②对于任意x,y∈T,若x<y,则 ∈S;下列命题正确的是( )
A.若S有4个元素,则S∪T有7个元素
B.若S有4个元素,则S∪T有6个元素
C.若S有3个元素,则S∪T有5个元素
D.若S有3个元素,则S∪T有4个元素
二.填空题(共7小题,满分36分)
11.我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{ }就是二阶等差数列,数列{ },(n∈N*)的前3项和.
A. B.
C. D.
【解答】解:f(x) ,则f(﹣x) f(x),
则函数f(x)为奇函数,故A,C错误,
当x>1时,f(xபைடு நூலகம்>0,故排除B,
A.3B.5C.3或5D.2或3
3.若不等式组 所表示的平面区域的面积为2,则 的取值范围是( )
A. B.
C. D.
4.函数f(x) 的图象大致为( )
A. B.
C. D.
5.某几何体的三视图如图所示,则该几何体的体积是( )
A.20B.24C.60D.80
6.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )
(1)若{bn}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{an}的通项公式;
(2)若{bn}为等差数列,公差d>0,证明:c1+c2+c3+…+cn<1 ,n∈N*.
21.(15分)如图,已知椭圆C1: y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点.过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
7.数列{an}满足an﹣an+1=kan•an+1(k为实数,n∈N*),数列{bn}满足bn ,且b1+b2+…+b9=90,则b4•b6的最大值是( )
A.10B.100C.200D.400
8.椭圆 )的右焦点与抛物线E:y2=4x的焦点F重合,点P是椭圆C与抛物线E的一个公共点,点Q(0,1)满足QF⊥QP,则椭圆C的离心率为( )
12.(6分)设a dx,则二项式(x2 )6的展开式中常数项的值为.
13.(6分)已知3cos2α=4sin( α),α∈( ,π),则sin2α=
14.已知正四棱柱ABCD﹣A1B1C1D1中AB=2,AA1=3,O为上底面中心.设正四棱柱ABCD﹣A1B1C1D1与正四棱锥O﹣A1B1C1D1的侧面积分别为S1,S2,则 .
A. 1B. C. D. 1
9.已知函数f(x)=log2(x2+2)+klog2( x),若对任意t∈(﹣1,3),任意x∈R,不等式f(x)+f(﹣x)≥kt+1恒成立,则k的取值范围为( )
A.( ,1)B.[ ,1]C.(﹣1, )D.[﹣1, ]
10.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:
2021届湖南省新高考数学模拟试卷
一.选择题(共10小题,满分40分,每小题4分)
1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )
A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}
2.设复数z=(m2﹣8m+15)+(m2﹣5m+6)i,(m∈R),则当z表示实数时,m的值为( )
19.(15分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,D、E、F、G分别为AA1,AC、A1C1、BB1,的中点,且 , , .
(1)证明:AF∥平面BEC1;
(2)证明:AC⊥FG;
(3)求直线BD与平面BEC1所成角的正弦值.
20.(15分)已知数列{an},{bn},{cn}满足a1=b1=c1=1,cn+1=an+1﹣an,cn+1 •cn(n∈N*).
15.(6分)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b=.
16.(6分)已知一个袋子中装有1个黑球、2个白球、3个红球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,则摸出白球比黑球多一个的概率为,记摸到的白球的个数为X,则随机变量X的数学期望是.
3.若不等式组 所表示的平面区域的面积为2,则 的取值范围是( )
A. B.
C. D.
【解答】解:图中点A(2,0), ,C(0,2),故阴影部分的面积为 ,解之得 , ,设点P(x,y), ,则m的几何意义是点P与点D(1,﹣2)连线的斜率,由图可知,m≤﹣4或 ,故取值范围是 .
故选:C.
4.函数f(x) 的图象大致为( )
故选:B.
2.设复数z=(m2﹣8m+15)+(m2﹣5m+6)i,(m∈R),则当z表示实数时,m的值为( )
A.3B.5C.3或5D.2或3
【解答】解:∵复数z=(m2﹣8m+15)+(m2﹣5m+6)i(m∈R)是实数,
∴m2﹣5m+6=0,即(m﹣3)(m﹣2)=0,解得m=3或2.
故选:D.
参考答案与试题解析
一.选择题(共10小题,满分40分,每小题4分)
1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )
A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}
【解答】解:集合P={x|1<x<4},Q={x|2<x<3},
则P∩Q={x|2<x<3}.
17.已知平面向量 , 满足|2 | ,设 , 3 ,向量 , 的夹角为θ,则cos2θ的最小值为.
三.解答题(共5小题,满分74分)
18.(14分)已知△ABC中,三内角A,B,C的对边分别为a,b,c,且满足(sinB+sinC)2=sin2A+sinBsinC.
(1)求A;
(2)若b+c=6,△ABC的面积为 ,求a.
相关文档
最新文档