15-可靠性配置指导-BFD配置
BFD配置
1. 70BFD配置1. 70.1理解BFD1. 70.1.1BFD概述BFD(Bidirectional Forwarding Detection,双向转发检测)协议提供一种轻负载、快速检测两台邻接路由器之间转发路径连通状态的方法。
协议邻居通过该方式可以快速检测到转发路径的连通故障,加快启用备份转发路径,提升现有网络性能。
2. 70.1.2BFD报文格式BFD报文有两种类型分别是控制报文和回声报文。
其中回声报文只有BFD 会话本端系统关心远端不关心,因此协议没有规定其具体格式。
协议只规定了控制报文的格式,目前控制报文格式有两个版本(版本0和版本1),BFD 会话建立缺省采用版本1,但如果收到对端系统发送的是版本0的报文,将自动切换到版本0来建立会话,可以通过show bfd neighbors命令察看采用的版本。
版本1的格式如图表1:1. 图1.BFD控制报文格式●Vers:BFD协议版本号,目前为1●Diags:给出本地最后一次从UP状态转到其他状态的原因,包括:0—没有诊断信息1—控制超时检测2—回声功能失效3—邻居通告会话Down4—转发面复位5—通道失效6—连接通道失效7—管理Down●Sta:BFD本地状态,取值为:0代表AdminDown,1代表Down,2代表Init,3代表Up;●P:参数发生改变时,发送方在BFD报文中置该标志,接收方必须立即响应该报文●F:响应P标志置位的回应报文中必须将F标志置位●C:转发/控制分离标志,一旦置位,控制平面的变化不影响BFD检测,如:控制平面为OSPF,当OSPF重启/GR时,BFD可以继续检测链路状态●A:认证标识,置位代表会话需要进行验证●D:查询请求,置位代表发送方期望采用查询模式对链路进行检测●M:用于将来应用点到多点时使用,目前必须设置0●Detect Mult:检测超时倍数,用于检测方计算检测超时时间●Length:报文长度●My Discreaminator:BFD会话连接本端标识符●Your Discreaminator:BFD会话连接远端标识符●Desired Min Tx Interval:本地支持的最小BFD报文发送间隔●Required Min RX Interval:本地支持的最小BFD报文接收间隔●Required Min Echo RX Interval:本地支持的最小Echo报文接收间隔(如果本地不支持Echo功能,则设置0)●Auth Type:认证类型(可选),目前协议提供有:Simple PasswordKeyed MD5Meticulous Keyed MD5Keyed SHA1Meticulous Keyed SHA1●Auth Length:认证数据长度●Authentication Data:认证数据区RGOS从10.3(4b3)版本开始,支持版本1和版本0的报文格式,缺省情况下会话发送报文采用版本1,如果收到对端发送的版本0的报文,将自动切换到版本0来建立会话3. 70.1.3BFD工作原理BFD 提供的检测机制与所应用的接口介质类型、封装格式、以及关联的上层协议如OSPF、BGP、RIP等无关。
思科路由器BFD配置命令详解
Overview of BFD - Static Route SupportThe BFD - Static Route Support feature enables association of static routes with a static Bidirectional Forwarding Detection (BFD) configuration in order to monitor static route reachability using the configured BFD session. Depending on status of the BFD session, static routes are added to or removed from the Routing Information Base (RIB).Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate RIB.For a BFD session to be successfully established, BFD must be configured on the interface on the peer and there must be a BFD client registered on the peer for the address of the BFD neighbor. When an interface is used by dynamic routing protocols, the latter requirement is usually met by configuring the routing protocol instances on each neighbor for BFD. When an interface is used exclusively for static routing, this requirement must be met by configuring static routes on the peers.If a BFD configuration is removed from the remote peer while the BFD session is in the up state, the updated state of the BFD session is not signaled to IPv4 static. This will cause the static route to remain in the RIB. The only workaround is to remove the IPv4 static BFD neighbor configuration so that the static route no longer tracks BFD session state. Also, if you change the encapsulation type on a serial interface to one that is unsupported by BFD, BFD will be in a down state on that interface. The workaround is to shut down the interface, change to a supported encapsulation type, and then reconfigure BFD.A single BFD session can be used by an IPv4 static client to track the reachability of next hops through a specific interface. You can assign a BFD group for a set of BFD-tracked static routes. Each group must have one active static BFD configuration, one or more passive BFD configurations, and the corresponding static routes to be BFD-tracked. Nongroup entries are BFD-tracked static routes for which a BFD group is not assigned. A BFD group must accommodate static BFD configurations that can be part of different VRFs. Effectively, the passive static BFD configurations need not be in the same VRF as that of the active configuration.For each BFD group, there can be only one active static BFD session. You can configure the active BFD session by adding a static BFD configuration and a corresponding static route that uses the BFD configuration. The BFD session in a group is created only when there is an active static BFD configuration and the static route that uses the static BFD configuration. When the active static BFD configuration or the active static route is removed from a BFD group, all the passive static routes are withdrawn from the RIB. Effectively, all the passive static routes are inactive until an active static BFD configuration and a static route to be tracked by the active BFD session are configured in the group. Similarly, for each BFD group, there can be one or more passive static BFD configurations and their corresponding static routes to be BFD-tracked. Passive static session routes take effect only when the active BFD session state is reachable. Though the active BFD session state of the group is reachable, the passive static route is added to the RIB only if the corresponding interface state is up. When apassive BFD session is removed from a group, it will not affect the active BFD session if one existed, or the BFD group reachability status.How to Configure BFD - Static Route SupportConfiguring BFD - Static Route SupportPerform this task to configure BFD support for static routing. Repeat the steps in this procedure on each BFD neighbor. For more information, see the “Example: Configuring BFD Support for Static Routing” section.SUMMARY STEPS1.enable2.configure terminal3.interface type number4.ip address ip-address mask5.bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier6.exit7.ip route static bfd interface-type interface-number ip-address [group group-name [passive]]8.ip route [vrf vrf-name] prefix mask {ip-address | interface-type interface-number [ip-address]} [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]9.exit10.show ip static route11.show ip static route bfdConfiguration Examples for BFD - Static Route SupportExample: Configuring BFD - Static Route SupportIn the following example, the network consists of Device A and Device B. Serial interface 2/0 on Device A is connected to the same network as serial interface 2/0 on Device B. In order for the BFD session to come up, Device B must be configured.Device Aconfigure terminalinterface Serial 2/0ip address 10.201.201.1 255.255.255.0bfd interval 500 min_rx 500 multiplier 5ip route static bfd Serial 2/0 10.201.201.2ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2Device Bconfigure terminalinterface Serial 2/0ip address 10.201.201.2 255.255.255.0bfd interval 500 min_rx 500 multiplier 5ip route static bfd Serial 2/0 10.201.201.1ip route 10.1.1.1 255.255.255.255 Serial 2/0 10.201.201.1 Note that the static route on Device B exists solely to enable the BFD session between 10.201.201.1 and 10.201.201.2. If there is no useful static route that needs to be configured, select a prefix that will not affect packet forwarding, for example, the address of a locally configured loopback interface.In the following example, there is an active static BFD configuration to reach 209.165.200.225 through Ethernet interface 0/0 in the BFD group testgroup. As soon as the static route is configured that is tracked by the configured static BFD, a single hop BFD session is initiated to 209.165.200.225 through Ethernet interface 0/0. The prefix 10.0.0.0/8 is added to the RIB if a BFD session is successfully established. configure terminalip route static bfd Ethernet 0/0 209.165.200.225 group testgroup ip route 10.0.0.0 255.255.255.224 Ethernet 0/0 209.165.200.225 In the following example, a BFD session to 209.165.200.226 through Ethernet interface 0/0.1001 is marked to use the group testgroup. That is, this configuration is a passive static BFD. Though there are static routes to be tracked by the second static BFD configuration, a BFD session is not triggered for 209.165.200.226 through Ethernet interface 0/0.1001. The existence of the prefixes 10.1.1.1/8 and10.2.2.2/8 is controlled by the active static BFD session (Ethernet interface 0/0 209.165.200.225). configure terminalip route static bfd Ethernet 0/0 209.165.200.225 group testgroup ip route 10.0.0.0 255.255.255.224 Ethernet 0/0 209.165.200.225ip route static bfd Ethernet 0/0.1001 209.165.200.226 group testgroup passiveip route 10.1.1.1 255.255.255.224 Ethernet 0/0.1001209.165.200.226ip route 10.2.2.2 255.255.255.224 Ethernet 0/0.1001209.165.200.226Additional References for BFD - Static Route Support。
华为BFD配置
目录3 BFD配置3.1 BFD简介3.1.1 BFD概述3.1.2 AR1200支持的BFD特性3.2 配置BFD单跳检测3.2.1 建立配置任务3.2.2 使能全局BFD功能3.2.3 建立BFD会话3.2.4 检查配置结果3.3 配置BFD修改端口状态表3.3.1 建立配置任务3.3.2 使能BFD修改端口状态表3.3.3 检查配置结果3.4 配置BFD多跳检测3.4.1 建立配置任务3.4.2 使能全局BFD功能3.4.3 建立BFD会话3.4.4 检查配置结果3.5 配置静态标识符自协商BFD3.5.1 建立配置任务3.5.2 使能全局BFD功能3.5.3 建立BFD会话3.5.4 检查配置结果3.6 配置BFD延迟UP功能3.6.1 建立配置任务3.6.2 配置BFD会话延迟UP功能3.6.3 检查配置结果3.7 配置单臂ECHO功能3.7.1 建立配置任务3.7.2 使能全局BFD功能3.7.3 建立BFD会话3.7.4 检查配置结果3.8 调整BFD检测参数3.8.1 建立配置任务3.8.2 调整BFD检测时间3.8.3 配置BFD等待恢复时间3.8.4 配置BFD会话的描述信息3.8.5 检查配置结果3.9 配置全局多跳端口号功能3.9.1 建立配置任务3.9.2 配置全局多跳端口号3.9.3 检查配置结果3.10 配置BFD状态与接口状态联动3.11 配置BFD状态与子接口状态联动3.12 配置全局TTL功能3.12.1 建立配置任务3.12.2 配置全局TTL3.12.3 检查配置结果3.13 维护BFD3.13.1 清除BFD的统计数据3.13.2 监控BFD运行状况3.14 配置举例3.14.1 配置三层物理链路单跳检测示例3.14.2 配置VLANIF接口单跳检测示例3.14.3 配置BFD多跳检测示例3.14.4 配置Dot1q终结子接口支持BFD示例3.14.5 配置单臂ECHO功能示例3 BFD配置通过创建BFD会话,可以实现快速检测网络中链路故障。
H3C交换机BFD典型配置举例
设备 Device A
Device C
接口
Vlan-int10 Vlan-int20 Vlan-int40 Vlan-int20 Vlan-101/24 192.168.20.101/24 192.168.40.101/24 192.168.20.102/24 192.168.30.102/24
i目录1简介12配置前提13静态路由与bfd联动配置举例131组网需求132配置思路233使用版本234配置步骤2341配置各接口的ip地址2342配置静态路由2343配置devicea的bfd功能335验证配置336配置文件44rip与bfd联动配置举例641组网需求642配置思路643使用版本744配置步骤7441配置各接口的ip地址7442配置rip基本功能7443配置devicea的bfd参数845验证配置846配置文件95相关资料1111简介本文档介绍了bfd与路由协议联动的配置举例
3.4.1 配置各接口的IP地址 ·················································································································· 2 3.4.2 配置静态路由 ····························································································································· 2 3.4.3 配置Device A的BFD功能 ··········································································································· 3 3.5 验证配置 ··············································································································································· 3 3.6 配置文件 ··············································································································································· 4 4 RIP与BFD联动配置举例 ······················································································································· 6 4.1 组网需求 ··············································································································································· 6 4.2 配置思路 ··············································································································································· 6 4.3 使用版本 ··············································································································································· 7 4.4 配置步骤 ··············································································································································· 7 4.4.1 配置各接口的IP地址 ·················································································································· 7 4.4.2 配置RIP基本功能 ······················································································································· 7 4.4.3 配置Device A的BFD参数 ··········································································································· 8 4.5 验证配置 ··············································································································································· 8 4.6 配置文件 ··············································································································································· 9 5 相关资料 ············································································································································· 11
BDF联动配置
交换机A
[~SwitchA] bfd
[*SwitchA-bfd] quit
[*SwitchA] bfd atob bind peer-ip 10.1.1.2 interface vlanif 100 BFD对端的IP以及对于接口
配置BFD动态使能:[~SwitchA] interface vlanif 100
[~SwitchA-Vlanif100] vrrp vrid 1 bfd peer-ip 10.1.1.2
[*SwitchA-Vlanif100] vrrp vrid 1 bfd min-rx-interval 50 min-tx-interval 50 detect-multiplier 5
sys
BFD enable
bfd session-name bind peer-ip ip add 会话绑定信息
discriminator local discr-value 配置本地会话标识符
discriminator remote discr-value配置远端会话标识符
注意:本地标识符要与远端标识符要对应
[~SwitchA-Vlanif100] vrrp vrid 1 track interface vlanif 300 reduce 40
路由联动,接口视图下 :[~SwitchA-Vlanif100] vrrp vrid 1 track ip route 20.1.1.0 24 reduce 40
[*SwitchA-Vlanif100] commit
二、VRRP定义:虚拟路由冗余协议,将几台路由器虚拟成一台设备,将虚拟作为路由器默认网关,实现链路可靠性配置。
BFD配置
1. 70BFD配置1. 70.1理解BFD1. 70.1.1BFD概述BFD(Bidirectional Forwarding Detection,双向转发检测)协议提供一种轻负载、快速检测两台邻接路由器之间转发路径连通状态的方法。
协议邻居通过该方式可以快速检测到转发路径的连通故障,加快启用备份转发路径,提升现有网络性能。
2. 70.1.2BFD报文格式BFD报文有两种类型分别是控制报文和回声报文。
其中回声报文只有BFD 会话本端系统关心远端不关心,因此协议没有规定其具体格式。
协议只规定了控制报文的格式,目前控制报文格式有两个版本(版本0和版本1),BFD 会话建立缺省采用版本1,但如果收到对端系统发送的是版本0的报文,将自动切换到版本0来建立会话,可以通过show bfd neighbors命令察看采用的版本。
版本1的格式如图表1:1. 图1.BFD控制报文格式●Vers:BFD协议版本号,目前为1●Diags:给出本地最后一次从UP状态转到其他状态的原因,包括:0—没有诊断信息1—控制超时检测2—回声功能失效3—邻居通告会话Down4—转发面复位5—通道失效6—连接通道失效7—管理Down●Sta:BFD本地状态,取值为:0代表AdminDown,1代表Down,2代表Init,3代表Up;●P:参数发生改变时,发送方在BFD报文中置该标志,接收方必须立即响应该报文●F:响应P标志置位的回应报文中必须将F标志置位●C:转发/控制分离标志,一旦置位,控制平面的变化不影响BFD检测,如:控制平面为OSPF,当OSPF重启/GR时,BFD可以继续检测链路状态●A:认证标识,置位代表会话需要进行验证●D:查询请求,置位代表发送方期望采用查询模式对链路进行检测●M:用于将来应用点到多点时使用,目前必须设置0●Detect Mult:检测超时倍数,用于检测方计算检测超时时间●Length:报文长度●My Discreaminator:BFD会话连接本端标识符●Your Discreaminator:BFD会话连接远端标识符●Desired Min Tx Interval:本地支持的最小BFD报文发送间隔●Required Min RX Interval:本地支持的最小BFD报文接收间隔●Required Min Echo RX Interval:本地支持的最小Echo报文接收间隔(如果本地不支持Echo功能,则设置0)●Auth Type:认证类型(可选),目前协议提供有:Simple PasswordKeyed MD5Meticulous Keyed MD5Keyed SHA1Meticulous Keyed SHA1●Auth Length:认证数据长度●Authentication Data:认证数据区注意RGOS从10.3(4b3)版本开始,支持版本1和版本0的报文格式,缺省情况下会话发送报文采用版本1,如果收到对端发送的版本0的报文,将自动切换到版本0来建立会话3. 70.1.3BFD工作原理BFD 提供的检测机制与所应用的接口介质类型、封装格式、以及关联的上层协议如OSPF、BGP、RIP等无关。
BFD基本原理
Vers0 - ReDsieargved Sta P F C A D R Detec“t MMuylt D本is地cr系im统ina发tLo送er”nBgF,thD如控果制
1 - Simple Password 2 - Keyed MD5
My Discreaminator个本B地F不系D知本回报统道地声文间能这系报时隔够个统文想,支值能之要单持就够间采位的返支的用为接回持间的微收0的隔最秒两接,小收
BFD提供一个单一的机制,它能够用来对任何媒介、任何协议层进行实时 地检测,并且检测的时间与开销范围比较宽
Page
BFD检测原理
BFD(Bidirectional Forwarding Detection ): 双向转发检测 BFD实施在系统的业务层上,使检测更专注于业务报文转发的连通性 BFD可以运行在任何数据协议的顶层,对不同层次的网络提供检测 BFD能够在系统之间的任何类型通道上进行故障检测
BFD 基本原理
培训内容
BFD协议诞生背景 BFD检测原理 BFD配置方法 BFD测试中常见问题分析
Page
BFD协议诞生背景
网络设备要求对相邻系统之间通信故障进行快速检测,在出现故障时可 以更快的建立起替代通道或倒换到其他链路。
一些硬件如SDH等可以提供这个功能,但是对于很多硬件或者软件无法提 供这个功能,比如以太网。
还有一些设备上无法实现路径检测,比如转发引擎或者接口等;对于端到 端的检测,在目前的网络一般采用慢Hello机制,尤其在路由协议中,在没 有硬件帮助下,检测时间会很长(例如:OSPF需要2秒的检测时间,ISIS需 要1秒的检测时间)。
Page
BFD协议诞生背景
BFD对转发引擎之间通道故障提供轻负荷、反应快速的检测。这些故障包 括接口,数据链路,D检测原理 给出本地系统最后一次会话down的原因。 Values are:
bfd协议原理与配置
bfd协议原理与配置BFD(Bidirectional Forwarding Detection)协议是一种用于快速检测网络链路故障的协议。
它可以在网络设备之间进行双向检测,实时监测链路的可用性,从而快速发现和通知故障,以便进行快速的链路切换和故障恢复。
本文将介绍BFD协议的原理和配置方法。
一、BFD协议的原理BFD协议的原理是通过发送和接收连续的探测报文来检测链路的可用性。
BFD探测报文由源设备发送到目的设备,目的设备收到报文后会立即响应。
如果源设备在一定的时间内没有收到目的设备的响应,就会认为链路发生了故障。
BFD协议的原理基于以下几个关键点:1. 快速检测:BFD协议可以在毫秒级的时间内检测到链路故障,相比传统的路由协议,具有更高的检测速度和精度。
2. 低资源消耗:BFD协议在网络设备上的资源消耗非常低,可以在大规模网络中广泛应用。
3. 支持多种链路类型:BFD协议支持多种链路类型,包括以太网、MPLS和SONET等,适用于不同类型的网络环境。
4. 简单灵活的配置:BFD协议的配置相对简单灵活,可以根据实际需求进行配置和调整。
二、BFD协议的配置BFD协议的配置主要包括以下几个步骤:1. 配置BFD会话:首先需要在源设备和目的设备上配置BFD会话。
BFD会话定义了源设备和目的设备之间的链路,并指定了BFD探测报文的发送和接收参数。
配置BFD会话时需要指定链路的类型、检测间隔和探测报文的发送和接收端口等参数。
2. 启动BFD会话:配置完成后,需要在源设备和目的设备上启动BFD会话。
启动BFD会话后,源设备会开始发送BFD探测报文,目的设备收到报文后会进行响应。
如果在一定的时间内没有收到响应,源设备就会认为链路故障,并触发相应的故障处理机制。
3. 监控BFD会话状态:在BFD会话运行过程中,可以通过监控BFD会话状态来了解链路的可用性。
BFD会话状态通常包括Up (链路正常)、Down(链路故障)和AdminDown(会话被管理员禁用)等几种状态。
BFD协议原理及应用
通过使用BFD协议,VRRP备份组对转发路径故障的 感应灵敏度大大的提高了,故障造成的中断时间也 由秒级达到毫秒级,实现了VRRP的快速倒换。
Flag
--------------------------------------------------------------------------------
GE5/0/1
9 32768 1
0x8000, 0023-893d-1c00 {ACDEF}
GE5/0/2
10 32768 1
0x8000, 0023-893d-1c00 {ACDEF}
Routing Tables: Public
Destinations : 6 Routes : 6
Destination/Mask Proto Pre Cost
NextHop
Interface
18
测试一、Shutdown其中一个端口
S125_1
G5/0/1 G5/0/2
VLAN100
S125_2
X G5/0/1
Loading to Full Reply from 4.4.4.4: bytes=56 Sequence=45 ttl=255 time=1 ms Reply from 4.4.4.4: bytes=56 Sequence=46 ttl=255 time=1 ms Reply from 4.4.4.4: bytes=56 Sequence=47 ttl=255 time=1 ms Reply from 4.4.4.4: bytes=56 Sequence=48 ttl=255 time=1 ms %Sep 2 19:38:16:200 2010 125-1 BFD/4/LOG:Sess[1.1.1.1/1.1.1.2,Vlan100,Ctrl], Sta: DOWN->UP, Diag: 0 Reply from 4.4.4.4: bytes=56 Sequence=52 ttl=255 time=1 ms
HC120115029 BFD协议原理与配置
谢谢
间 BFD报文优先级
缺省值 未使能 1000毫秒 1000毫秒
3 0分钟 0秒钟
7(最高级)
备注 需使能 结合实际调整 结合实际调整 建议保持默认 结合实际调整 结合实际调整
建议保持
第22页 版权所有© 2019 华为技术有限公司
思考题
1. BFD会话建立过程有几个状态? 2. BFD功能能够与哪些路由协议做联动?
园区网
RTA G0/0/1 G0/0/2
# bfd # bfd 1 bind peer-ip 10.0.12.2 source-ip 10.0.12.1 auto commit # ip route-static 0.0.0.0 0.0.0.0 10.0.12.2 track bfd-session 1 ip route-static 0.0.0.0 0.0.0.0 10.0.13.2 preference 100
第18页 版权所有© 2019 华为技术有限公司
G0/0/1
RTB RTC
G0/0/1
ISP1 ISP2
BFD与BGP联动配置需求
Loopback0:1.1.1.1
RTA
BGP neighbor
网络
Loopback0:2.2.2.2
RTB
场景需求
某局通过两台路由器经过中间网络通道建立BGP的IBGP邻居关系。 已知RTA、RTB都支持BFD功能,要求使用BGP与BFD联动技术,采用BFD控制报文方式实现当
# interface Vlanif100 ip address 10.0.12.1 255.255.255.0 vrrp vrid 1 virtual-ip 10.0.12.254
华为交换机 01-01 BFD配置
1 BFD配置关于本章通过创建BFD会话,可以实现快速检测网络中链路故障。
1.1 BFD概述双向转发检测BFD(Bidirectional Forwarding Detection)用于快速检测系统之间的通信故障,并在出现故障时通知上层应用。
1.2 设备支持的BFD特性设备支持的BFD特性主要包括:BFD会话建立、BFD检测模式、单跳和多跳检测、静态标识符自协商BFD、单臂回声功能和动态改变BFD参数。
1.3 缺省配置介绍BFD会话常见参数的缺省配置。
1.4 配置BFD单跳检测通过配置BFD单跳检测,实现直连链路的快速检测。
1.5 配置BFD多跳检测配置BFD多跳检测,实现快速检测和监控网络中的多跳路径。
1.6 配置静态标识符自协商BFD如果对端设备采用动态BFD,而本端设备既要与之互通,又要能够实现BFD检测静态路由,必须配置静态标识符自协商BFD。
该功能主要用于检测采用静态路由实现三层互通的网络中。
1.7 配置BFD单臂回声功能通过配置单臂回声功能,实现快速检测和监控网络中的直连链路。
1.8 配置BFD与接口状态联动1.9 调整BFD参数用户可以根据不同场景调整BFD的时间参数。
1.10 检查配置结果BFD配置完成以后,可以查看已配置的BFD会话的情况。
1.11 清除BFD会话统计信息1.12 配置举例介绍BFD快速检测链路的各种示例。
配置示例中包括组网需求、配置注意事项和配置思路等。
1.13 常见配置错误常见配置错误包括了BFD常见故障原因以及处理步骤。
1.1 BFD概述双向转发检测BFD(Bidirectional Forwarding Detection)用于快速检测系统之间的通信故障,并在出现故障时通知上层应用。
为了减小设备故障对业务的影响、提高网络的可靠性,设备需要能够尽快检测到与相邻设备间的通信故障,以便能够及时采取措施,从而保证业务继续进行。
现有的故障检测方法主要包括以下几种:●硬件检测:硬件检测的优点是可以很快发现故障,但并不是所有介质都能提供硬件检测。
华为交换机路由器BFD配置
华为交换机路由器BFD配置BFD配置步骤华为路由器交换机BFD配置步骤一、静态BFD单跳和多跳检测BFD单跳检测:两个直连系统进行ip连通性检测;BFD会话必须绑定本端出接口和对端IP地址BFD多跳检测:两个系统之间的任意路径检测;BFD会话绑定对端IP地址1、静态BFD单跳检测配置(设备两端同时配置):配置前需先配置链路层参数,使接口的链路协议状态为UP,路由可达,如果是三层接口(包括子接口)还需配置IP地址。
二层接口和三层接口配置方法有些区别1、全局使能BFD[router 1]bfd2、配置BFD组播 IP地址(可选)。
默认值为224.0.0.184。
仅当对端设备无法配置IP地址(如二层设备)时采用。
如果BFD检测路径上存在重叠的BFD会话(如三层接口通过具有BFD功能的二层交换设备连接),必须配置不同的缺省组播IP地址,以免BFD报文被错误转发。
如果已经配置了缺省组播地址的BFD会话,则不能更改缺省组播地址。
[router 1-bfd]default-ip-address 224.0.0.1843、创建BFD会话绑定信息(区别不同的BFD会话)[Huawei]bfd test[Huawei-bfd-session-test]3.1对于三层接口创建IP连通性[router 1]bfd 1 bind peer-ip 10.1.1.254 interface GigabitEthernet 0/0/2(本端接口) source-ip 10.1.1.13.2对于二层接口创建检测链路物理状态[router 1]bfd 2 bind peer-ip default-ip interface GigabitEthernet 0/0/24、配置BFD会话本地标识符[Huawei-bfd-session-001]discriminator local 1005、配置BFD会话远端标识符[Huawei-bfd-session-001]discriminator remote 1016、提交BFD会话配置[Huawei-bfd-session-001]commit2、静态BFD 多跳配置检测多跳检测需要三层接口来实现,不能连接二成设备。
BFD协议解析实现快速检测网络链路故障的协议
BFD协议解析实现快速检测网络链路故障的协议BFD(Bidirectional Forwarding Detection,双向转发检测)协议是一种用于快速检测网络链路故障的协议。
它被广泛应用于各种网络设备和网络架构中,包括路由器和交换机等。
本文将对BFD协议的原理和实现进行详细解析,并探讨它在快速检测网络链路故障中的作用。
一、BFD协议的原理BFD协议基于数据包的发送和接收时间间隔来检测链路故障。
在BFD会话建立后,源端和目的端会周期性地发送BFD数据包,通过比较时间戳来计算链路的延迟、丢包和抖动等指标。
如果这些指标超过了预设的阈值,就表明链路故障,BFD会立即通知网络设备采取相应的恢复措施。
二、BFD协议的实现BFD协议的实现需要涉及以下几个关键步骤:1. 配置BFD会话参数:在使用BFD协议前,需要配置BFD会话的参数,包括会话的源端和目的端IP地址、传输协议类型、检测间隔和阈值等。
2. 发送BFD数据包:一旦BFD会话参数配置完成,源端和目的端就会互相发送BFD数据包。
这些数据包包含了时间戳等信息,用于计算链路指标。
3. 计算链路指标:接收到BFD数据包的一方会计算链路的延迟、丢包和抖动等指标,然后与预设的阈值进行比较,以确定是否发生链路故障。
4. 通知网络设备:一旦链路故障被检测到,BFD会立即通知网络设备采取相应的恢复措施,比如切换到备用链路或调整网络路由等,以保障网络的可用性。
三、BFD协议在快速链路故障检测中的作用BFD协议的快速链路故障检测特性使得网络设备能够在链路故障发生后迅速作出应对。
通过实时监测链路的状态和指标,BFD协议可以实现毫秒级别的链路故障检测和切换。
这对于支持对链路可用性有严格要求的网络应用来说是至关重要的。
在传统的链路故障检测机制中,如路由协议的邻居发现和路由表的更新,需要较长的时间来检测和处理链路故障,造成大量的数据丢失和服务中断。
而BFD协议通过其独特的快速检测机制,能够在故障发生后的几毫秒内通知网络设备,并进行相应的处理,大大减少了链路故障对网络的影响。
BFD静态路由配置
目录1 静态路由配置.....................................................................................................................................1-11.1 简介...................................................................................................................................................1-11.1.1 静态路由.................................................................................................................................1-11.1.2 缺省路由.................................................................................................................................1-11.1.3 静态路由应用..........................................................................................................................1-11.2 配置静态路由.....................................................................................................................................1-21.2.1 配置准备.................................................................................................................................1-21.2.2 配置静态路由..........................................................................................................................1-21.3 配置静态路由与BFD联动..................................................................................................................1-31.3.1 双向检测.................................................................................................................................1-31.3.2 单跳检测.................................................................................................................................1-31.4 配置静态路由快速重路由功能...........................................................................................................1-41.5 静态路由显示和维护..........................................................................................................................1-51.6 静态路由典型配置举例......................................................................................................................1-61.6.1 静态路由基本功能配置举例....................................................................................................1-61.6.2 静态路由快速重路由配置举例.................................................................................................1-81.6.3 配置静态路由与BFD联动........................................................................................................1-91 静态路由配置1.1 简介1.1.1 静态路由静态路由是一种特殊的路由,由管理员手工配置。
(仅供参考)BFD配置示例(Cisco、迈普、H3C、华为、锐捷)
BFD 配置示例注:不同型号设备或者不同系统版本配置命令会有出入,请详查操作手册。
1.1 Cisco 设备1.1.1 BFD 配置语法说明:配置步骤 1. enable2. configure terminal3. interface type number4. bfd interval milliseconds min_rx milliseconds multiplier intervalmultiplier5. end1.1.2 BFD For Static Route1. enable2. configure terminal3. interface type number4. ip address ip-address mask5. bfd interval milliseconds min_rx milliseconds multiplierinterval-multiplier 6. exit7. ip route static bfd interface-type interface-number ip-address [ group group-name [ passive ]] 8. ip route [ vrf vrf-name ] prefix mask {ip-address | interface-type interface-number [ip-address ]} [dhcp ] [distance ] [name next-hop-name ] [permanent | track number ] [tag tag ] 9. exit10.show ip static route 11.show ip static route bfd 12. exitRouter Aconfigure terminalinterface Serial 2/0ip address 10.201.201.1 255.255.255.0bfd interval 500 min_rx 500 multiplier 5ip route static bfd Serial 2/0 10.201.201.2ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2 Router Bconfigure terminalinterface Serial 2/0ip address 10.201.201.2 255.255.255.0bfd interval 500 min_rx 500 multiplier 5ip route static bfd Serial 2/0 10.201.201.1ip route 10.1.1.1 255.255.255.255 Serial 2/0 10.201.201.1 1.1.3BFD For RIP暂无。
华为BFD配置
2 BFD配置关于本章通过创建BFD会话,可以实现快速检测网络中链路故障。
2.1 BFD简介介绍BFD的定义和作用。
2.2 原理描述介绍BFD的实现原理。
2.3 应用场景介绍BFD的应用场景。
2.4 配置任务概览设备支持的BFD特性主要包括:BFD会话建立、BFD检测模式、单跳和多跳检测、静态标识符自协商BFD、单臂回声功能、联动功能和动态改变BFD参数。
2.5 配置注意事项介绍部署BFD的注意事项。
2.6 缺省配置介绍BFD会话常见参数的缺省配置。
2.7 配置BFD介绍BFD详细的配置过程。
2.8 配置BFD联动功能配置BFD联动功能,使BFD和其他协议联合使用,可以提高协议的切换性能,减少业务流量丢弃。
2.9 调整BFD参数用户可以根据不同场景调整BFD的时间参数。
2.10 维护BFD维护BFD,包括清除BFD会话统计信息、设置设备上送BFD报文的CAR值、查看设备丢弃BFD报文的统计信息、清除设备丢弃BFD报文的统计信息。
2.11 配置举例介绍BFD快速检测链路的各种示例。
配置示例中包括组网需求、配置注意事项和配置思路等。
2.12 常见配置错误常见配置错误包括了BFD常见故障原因以及处理步骤。
2.13 FAQ针对用户配置BFD过程中常问的问题,给出相应的解答。
2.14 参考信息介绍BFD的相关RFC清单。
2.1 BFD简介介绍BFD的定义和作用。
定义双向转发检测BFD(Bidirectional Forwarding Detection)是一种全网统一的检测机制,用于快速检测、监控网络中链路或者IP路由的转发连通状况。
目的为了减小设备故障对业务的影响,提高网络的可靠性,网络设备需要能够尽快检测到与相邻设备间的通信故障,以便及时采取措施,保证业务继续进行。
在现有网络中,有些链路通常通过硬件检测信号,如SDH告警,检测链路故障,但并不是所有的介质都能够提供硬件检测。
此时,应用就要依靠上层协议自身的Hello报文机制来进行故障检测。
BDF联动配置
BDF联动配置一、BFD定义:双向转发检测BFD(Bidirectional Forwarding Detection)是一种全网统一的检测机制,用于快速检测、监控网络中链路或者IP路由的转发连通状况。
BDF配置:配置步骤:(1)、使能全局BDF功能(2)、建立BFP回话,(3)、配置回话标识。
例如配置BDF多跳检测sysBFD enablebfd session-name bind peer-ip ip add 会话绑定信息discriminator local discr-value 配置本地会话标识符discriminator remote discr-value配置远端会话标识符注意:本地标识符要与远端标识符要对应process-interface-status 配置BFD与接口进行联动配置交换机A[~SwitchA] bfd[*SwitchA-bfd] quit[*SwitchA] bfd atob bind peer-ip 10.1.1.2 interface vlanif 100 BFD对端的IP以及对于接口[*SwitchA-bfd-session-atob] discriminator local 1 本地会话标识[*SwitchA-bfd-session-atob] discriminator remote 2 远端会话标识[*SwitchA-bfd-session-atob] min-rx-interval 50接收BFD报文时间间隔[*SwitchA-bfd-session-atob] min-tx-interval 50交换机B~SwitchB] bfd[*SwitchB-bfd] quit[*SwitchB] bfd btoa bind peer-ip 10.1.1.1 interface vlanif 100 [*SwitchB-bfd-session-btoa] discriminator local 2[*SwitchB-bfd-session-btoa] discriminator remote 1[*SwitchB-bfd-session-btoa] min-rx-interval 50[*SwitchB-bfd-session-btoa] min-tx-interval 50# 在SwitchB上配置VRRP与BFD联动,当BFD会话状态Down 时,SwitchB的优先级增加40。
华为交换机BFD怎么配置?华为交换机配置BFD心跳检测的技巧
华为交换机BFD怎么配置?华为交换机配置BFD⼼跳检测的技巧在华为交换机配置中,经常遇到各种问题,那么如何配置BFD⼼跳检测?下⾯就为⼤家带来详细的配置过程,详细请看下⽂介绍。
SecureCRT and SecureFX 8.7 安装特别版(附注册机+破解教程) 64位类型:远程控制⼤⼩:34.6MB语⾔:英⽂软件时间:2020-02-14查看详情⼀、华为交换机配置BFD⼼跳检测1、登录华为交换机,进⼊交换机的系统模式。
命令:system-view2、在交换机的系统模式下开启BFD功能。
bfd功能是为了检测设备在不正常掉线对⽤户进⾏告警通知。
3、退出BFD视图,创建BFD会话的绑定信息。
将Bfd的邻居端⼝与邻居借⼝进⾏绑定。
4、配置BFD会话的本地标识符和远端标识符,使⽤commit提交。
命令:discriminator local 1discriminator remote 25、在对端设备上配置反⽅向标识,检查BFD会话下的配置是否正确。
6、查看BFD会话状态。
命令:display bfd session all verbose⼆、在vlanif接⼝下配置BFD检测1、登录交换机,进⼊系统视图模式。
命令:system-view2、进⼊VLANIF接⼝,在接⼝下配置IP地址。
命令:ip address 192.168.50.1 243、在系统视图下配置BFD会话,本地和远端标识符,配置完成使⽤commit命令提交。
4、在远端交换机上进⾏同样的配置,注意配置本地和远端标识符的序号。
5、配置完成之后验证BFD会话状态。
命令:display bfd session all verbose6、使⽤命令display bfd interface vlanif 50,验证接⼝下bfd的状态。
以上就是华为交换机配置BFD⼼跳检测的技巧,希望⼤家喜欢,请继续关注。
OSPF-BFD功能的配置
O S P F-B F D功能的配置-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANSR6600路由器OSPF-BFD功能的配置方法一、组网需求:OSPF以发送hello报文的方式探测邻居的存在以及维持邻居关系。
而hello报文的发送间隔虽然比RIP路由更新报文要短很多,但依然无法满足某些要求快速检测邻居关系的需求。
因此需要将OSPF与BFD进行联动用以快速检测链路状态。
二、组网图:设备清单:SR66设备两台(例中使用SR6602版本2315P05);二层交换机一台三、配置步骤:RTA配置<RTA>system-view[RTA]ospf[RTA-ospf-1]area 0[RTA-ospf-1-area-0.0.0.0]network 192.168.1.0 0.0.0.255[RTA-ospf-1-area-0.0.0.0]quit[RTA-ospf-1]quit//设定bfd初始化时的方式(两端至少要有一个配置为active,默认为active)[RTA] bfd session init-mode active[RTA]interface gigabitethernet 0/0[RTA-GigabitEthernet0/0]ip address 192.168.1.1 24//在使能ospf的端口下使能bfd功能,并设定bfd的基本参数[RTA-GigabitEthernet0/0]ospf bfd enable[RTA-GigabitEthernet0/0] bfd min-transmit-interval 400[RTA-GigabitEthernet0/0] bfd min-receive-interval 400[RTA-GigabitEthernet0/0] bfd detect-multiplier 7RTB配置<RTB>system-view[RTB]ospf[RTB-ospf-1]area 0[RTB-ospf-1-area-0.0.0.0]network 192.168.1.0 0.0.0.255[RTB-ospf-1-area-0.0.0.0]quit[RTB-ospf-1]quit//设定bfd初始化时的方式(两端至少要有一个配置为active,默认为active)[RTB] bfd session init-mode active[RTB]interface gigabitethernet 0/0[RTB-GigabitEthernet0/0]ip address 192.168.1.2 24//在使能ospf的端口下使能bfd功能[RTB-GigabitEthernet0/0]ospf bfd enable[RTB-GigabitEthernet0/0] bfd min-transmit-interval 400[RTB-GigabitEthernet0/0] bfd min-receive-interval 400[RTB-GigabitEthernet0/0] bfd detect-multiplier 7四、配置关键点:注意在使能OSPF的端口下使能BFD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 BFD ··················································································································································· 1-11.1 BFD简介············································································································································ 1-11.1.1 BFD会话的建立与拆除 ··········································································································· 1-11.1.2 BFD会话的工作方式和检测模式 ····························································································· 1-11.1.3 BFD支持的应用 ······················································································································ 1-21.1.4 协议规范 ································································································································· 1-31.2 配置BFD ············································································································································ 1-31.2.1 echo报文方式配置 ·················································································································· 1-31.2.2 控制报文方式配置··················································································································· 1-41.3 开启告警功能····································································································································· 1-51.4 BFD显示和维护 ································································································································· 1-61 BFD1.1 BFD简介BFD(Bidirectional Forwarding Detection,双向转发检测)是一个通用的、标准化的、介质无关和协议无关的快速故障检测机制,用于检测IP网络中链路的连通状况,保证设备之间能够快速检测到通信故障,以便能够及时采取措施,保证业务持续运行。