小升初奥数流水行船问题

合集下载

小学奥数之流水行船问题

小学奥数之流水行船问题

流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。

水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。

甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。

甲船返【例2小时。

由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

求水流的速度。

【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。

将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。

【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。

客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。

客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。

客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。

求水流的速度。

【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。

50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。

由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。

50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。

小升初数学专题流水行船问题

小升初数学专题流水行船问题

小升初数学专题流水行船问题1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B 地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米。

2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。

4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米。

5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时。

小升初奥数行程问题之流水行船解题方法

小升初奥数行程问题之流水行船解题方法

小升初奥数行程问题之流水行船解题方法小升初奥数行程问题之流水行船解题方法常见解题方法1、一只船在河流中只有一只船在河流中航行时,无论有没有往返,我们只要牢牢抓住流水行船的基本公式就可以解决这类问题!2、两只船在河流中的相遇、追及流水行船问题中的相遇与追击:两只船在河流中的相遇问题:当甲、乙两船(甲在上游、乙在下游)在河流中相向开出,他们单位时间内开出的路程等于甲、乙两船的速度和。

这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船速度+乙船速度。

这就是说,两船在流水中的相遇问题与在静水中及两车在陆地上得相遇问题一样,与水速没有关系。

同样道理,如果两只船在河流中同向运动,一只船追上另一只船所用的'时间,也只与路程和船速有关,与水速无关。

这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速度-乙船速度;甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速度-乙船速度。

这说明无论同向顺水行驶还是同向逆水行驶,流水中的追及问题与在静水中的追及问题及两车在陆地上的追及问题性质上是一样的。

3、流水落物漂流物速度=水流速度,从落物到发现的时间t1=从发现到拾回的时间t2(与船速、水速、顺行逆行无关)。

这是因为:①若顺行:从落物到发现的速度差=船速+水速-水速=船速,路程差=船速×t1;从发现到拾回的速度和=船速-水速+水速=船速,路程和就是之前的路程差,即船速×t1=船速×t2,所以有t1=t2。

②若逆行:从落物到发现的速度和=船速-水速+水速=船速,路程和=船速×t1;从发现到拾回的速度差=船速+水速-水速=船速,路程差就是之前的路程和,即船速×t1=船速×t2,所以有t1=t2。

此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。

【小升初奥数行程问题之流水行船解题方法】。

小学奥数流水行船问题

小学奥数流水行船问题

流水行船问题一、知识要点船在流水中航行的问题叫做行船问题行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。

船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游往上游逆水而行的速度叫逆水速度。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差间题的解题方法,我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题1】船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【练习1】1.一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。

这条河水流速度是多少千米?2.一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米,这艘轮船顺水航行270千米到达目的地,用了几小时?如果按原航道返回,需要几小时?【例题2】一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行速度和水速各是多少?1.甲、乙两港之间的水路长180千米,一只船从甲港开往乙港,顺水6小时到达,从乙港返回到甲港,逆水10 小时到达,求船在静水中的速度和水速。

2.一艘船从A地顺流而下开往B地,每小时行28千米,返回A地时用了6小时。

已知水速是每小时4千米,A、B两地相距多少千米?【例题3】甲、乙两港相距200千米。

一艘船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍。

这艘轮船从乙港放回甲港用多少小时?【练习3】1.A、B两个码头相距112千米,一艘船从B码头逆水而上,行了8小时到达A码头。

专题07 流水行船问题(一)-小升初数学(通用版)

专题07 流水行船问题(一)-小升初数学(通用版)

专题07 流水行船问题(一)2022-2023学年小升初数学行程问题高频常考易错真题专项汇编一.解答题1.两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米,往返两地的平均速度是每小时多少千米?2.一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后.又从乙地返回甲地,比逆水航行提前2.5小时到达.已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?3.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度.4.甲、乙两港间的水路长360千米,一艘船从甲港开往乙港顺水行驶10时到达,从乙港返回甲港,逆水行驶12时到达。

求船在静水中的速度和水流的速度。

5.一艘轮船带的燃料最多可以用6小时。

去时顺风每小时航行60km;返回时逆风,每小时航行40km。

轮船最多航行多少千米就立即返回?6.假日里,小明一家驾着游艇去航行,返回时,因逆风速度要减慢20%.已知游艇的动力能源一次只能用5.4小时,问游艇最多开出几小时后就应该返回?7.沿河有上、下两个市镇,相距85千米.有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米.求往返依次所需的时间.8.一艘船在静水中每小时行18千米,水流速度是每小时2千米,这船从甲地顺水航行.到乙地需8小时,船从乙地返回甲地需几小时?9.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行.甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?10.游船顺流而下每小时行10千米,逆流而上每小时行8千米,甲、乙两船同时从A、B 两地出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过5小时同时回到出发点,在这5小时中有多少时间两船的航行方向相同.11.古时候,一个楚国人乘坐木船顺流而下欣赏美景,行至某处不慎将宝剑的掉落水中,他马上在船上作下记号,已知木船在静水中行驶的速度为60米/分钟,水流速度为30米/分钟,又前行半个时辰后(一个时辰为两个小时),经高人点拨,他立刻按原路返回.他经过多少时间可以找回宝剑?(写出计算过程)12.某人在河里游泳,逆流而上,他在A处丢失一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到。

(完整版)小升初奥数行程问题--流水行船

(完整版)小升初奥数行程问题--流水行船
第十六讲 行程问题--流水行船
知识点梳理
(一)基本概念 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情 况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 古语:“逆水行舟不进则退”
船速:是指船本身的速度,也就是在静水中单位时间里所走过的路程 。 水速:是指水在单位时间里流过的路程 。 顺水速度和逆水速度:分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
水上追及问题
车辆同向:路程差=速度差×时间
如果两船逆向追赶时,也有:
两船同向:路程差=船速差×时间
甲船逆水速度-乙船逆水速度
推导:甲船顺水速度-乙船顺水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
结论:水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
例6.一只小船从A地到B地往返一 次共用2小时,回来时顺水,比 去时的速度每小时多行驶8千米, 因此第二小时比第一小时多行 驶6千米,求AB两地间的距离。
看图解析
水速=(顺-逆)÷2=8÷2=4千米

A
B
每小时多行8千米

第二小时比第一小时多行6千米
解析
顺水比逆水每小时多行驶8千米,可知水流速度每小时4千米,
T逆=9÷(1+5)×5=7.5小时, 8/3× 7.5=20千米 答:甲乙两港相距20km。
例8. 有甲、乙两船,甲船和漂流物 同时从河西向东而行,乙船也同 时从河东向西而行。甲船行4小 时后与漂流物相距100千米,乙 船行12小时后与漂流物相遇, 两船的划速相同,河长多少千米?
船速:(26+16)÷2=21(千米/小时) 水速:(26—16)÷2=5(千米/小时)

小升初数学流水行船追及问题应用题练习及答案解析

小升初数学流水行船追及问题应用题练习及答案解析

追及--流水行船问题【含义】行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:小船在两个码头间航行,顺水需4小时,逆水需5小时,若一只木筏顺水漂过这段距离需_____ 小时?解:1、我们可以假设一个路程。

假设两个码头之间的距离是200千米,顺水需4小时,则顺水的速度是每小时200÷4=50(千米),逆水需5小时,则逆水的速度是每小时200÷5=40(千米)。

2、根据“水速=(顺水行驶速度-逆水行驶速度)÷2”得到,水流速度是每小时(50-40)÷2=5(千米)。

3、一只木筏顺水漂过的速度就是水流速度,所以木筏顺水漂过这段距离需要200÷5=40(小时)。

例2:某船在同一条河中顺水船速是每小时20千米,逆水船速是每小时10千米,这条河的水流速度是每小时_____ 千米?解:顺水船速=船速+水流速度,逆水船速=船速-水流速度,可以看出,顺水船速比逆水船速多2个水流速度,因此,水流速度=(20-10)÷2=5(千米/时)。

例3:某条大河水流速度是每小时5千米,一艘静水船速是每小时20千米的货轮逆水航行5小时能到达目的地,这艘货轮原路返回到出发地需要多少小时?解:1、逆水速度=静水船速-水流速度,所以货轮逆水速度是20-5=15(千米/时),行驶5小时共行了15×5=75(千米)。

小升初数学冲刺打卡训练-流水行船问题 人教版(教师版)

小升初数学冲刺打卡训练-流水行船问题 人教版(教师版)

【小升初冲刺】打卡训练--流水行船问题流水行船问题1.基本公式:顺水速度=船速+水速,即V顺=V船+V水;逆水速度=船速-水速,即V逆=V船-V水;船速=(顺水速度+逆水速度)÷2,即V船=(V顺+V逆)÷2:水速=(顺水速度-逆水速度)÷2;即V水=(V顺-V逆)÷2;漂浮物速度=水流速度两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

2.要点注意:(1)从上游到下游为顺水而行,从下游到上游为逆水而行(2)暴雨只改变水速,不改变船速;船的性能变化只改变船速,不改变水速(3)顺流而下返回时是逆水,逆流而上返回时是顺水3.流水行船中的相遇与追及流水行船中的相遇与追及问题,不考虑水速的影响1、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?正确答案: 10分析:求时间的问题,先找相应的路程和速度。

解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。

2、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流要8小时,水流速度为每小时2.5千米,求船在静水中的速度。

正确答案: 17.5分析:顺流船速是静水船速与水流速度之和,而逆流船速是两者之差,由此可见,顺流与逆流船速之差是水流速的2倍,这就是关键。

解答:设船在静水中速度为U千米/时,则:(U+2.5)×6=(U-2.5)×8,解得U=17.5,即船在静水中速度为17.5千米/时。

评注:行船问题是行程问题中常见的一种,解这些题时注意船速、水流之间的关系。

数学专项复习小升初典型奥数之流水行船问题

数学专项复习小升初典型奥数之流水行船问题

数学专项复习小升初典型奥数之流水行船问题在小升初的数学学习中,流水行船问题是一个较为常见且重要的知识点。

对于孩子们来说,理解并掌握这一问题的解题方法,不仅有助于提升数学思维能力,还能为今后更复杂的数学学习打下坚实的基础。

接下来,让我们一起深入探讨流水行船问题。

一、什么是流水行船问题流水行船问题,简单来说,就是研究船在流动的水中行驶的速度、时间和路程之间关系的问题。

在这类问题中,船的行驶速度会受到水流速度的影响。

我们需要清楚两个基本概念:船在静水中的速度(简称“船速”)和水流的速度(简称“水速”)。

船速是指船在平静的水中行驶的速度,如果水是静止不动的,那么船速就是船实际行驶的速度。

水速则是水流本身的速度。

当船顺着水流行驶时,船的实际速度等于船速加上水速,我们称之为“顺水速度”;当船逆着水流行驶时,船的实际速度等于船速减去水速,这就是“逆水速度”。

二、流水行船问题的基本公式1、顺水速度=船速+水速2、逆水速度=船速水速3、船速=(顺水速度+逆水速度)÷ 24、水速=(顺水速度逆水速度)÷ 2这几个公式是解决流水行船问题的关键,一定要牢记哦!三、典型例题分析例 1:一艘船在静水中的速度是每小时 20 千米,水流速度是每小时5 千米。

这艘船顺水航行 4 小时,能行驶多远?首先,我们求出顺水速度:20 + 5 = 25(千米/时)然后根据路程=速度×时间,可得行驶的路程为:25 × 4 = 100(千米)例 2:一艘船从甲地开往乙地,顺水航行需要 8 小时,逆水航行需要 12 小时。

已知水流速度是每小时 4 千米,求甲乙两地的距离。

设船在静水中的速度为 x 千米/时。

根据顺水速度=船速+水速,可得顺水速度为(x + 4)千米/时;逆水速度=船速水速,逆水速度为(x 4)千米/时。

因为路程=速度×时间,且甲乙两地的距离是固定的,所以可列方程:8(x + 4) = 12(x 4)8x + 32 = 12x 484x = 80x = 20则顺水速度为 20 + 4 = 24(千米/时)甲乙两地的距离为 24 × 8 = 192(千米)例 3:一艘轮船在两个港口之间往返航行,顺流而下需要 4 小时,逆流而上需要 6 小时。

小升初奥数第26讲 行程问题 (六)流水行船

小升初奥数第26讲  行程问题 (六)流水行船
例 1 一只渔船顺水行 25 千米,用了 5 小时,水流的速度是每小时 1 千米。 此船在静水中的速度是多少?
1
练习:一只渔船逆水行 25 千米,用了 5 小时,水流的速度是每小时 1 千 米。此船在静水中的速度是多少?
例 2 一只渔船在静水中每小时航行 4 千米,逆水 4 小时航行 12 千米。水 流的速度是每小时多少千米?
1.李刚驾驶一只小船在河中行驶,顺流划行的速度时每小时 10 千米,逆流划 行的速度时每小时 6 千米,水流的速度是多少?
2. 甲、乙之间的水路是 234 千米,一只船从甲港到乙港需 9 小时,从乙港返回 甲港需 13 小时,问船速和水速各为每小时多少千米?
3.一只油轮,逆流而行,每小时行 12 千米,7 小时可以到达乙港。从乙港返航 需要 6 小时,求船在静水中的速度和水流速度?
6.一轮船在甲、乙两个码头之间航行,顺水航行要 8 小时行完全程,逆水航行 要 10 小时行完全程。已知水流速度是每小时 3 千米,求甲、乙两码头之间的 距离?
4
7.某河有相距 12 0 千米的上下两个码头,每天定时有甲、乙两艘同样速度的 客船从上、下两个码头同时相对开出。这天,从甲船上落下一个漂浮物,此物 顺水漂浮而下,5 分钟后,与甲船相距 2 千米,预计乙船出发几小时后,可与 漂浮物相遇?
例 4 甲、乙两个码头相距 144 千米,一艘汽艇在静水中每小时行 20 千米, 水流速度是每小时 4 千米。求由甲码头到乙码头顺水而行需要几小时,由乙码 头到甲码头逆水而行需要多少小时?
练习甲、乙两个码头相距 400 千米,一艘汽艇在静水中每小时行 15 千米, 水流速度是每小时 5 千米。求由甲码头到乙码头顺水而行需要几小时,由乙码 头到甲码头逆水而行需要多少小时?

【小升初专项训练】04流水行船问题

【小升初专项训练】04流水行船问题

第4讲流水行船问题第一关求速度【知识点】船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速﹣水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度﹣船速,船速=顺水速度﹣水速.由公式(2)可以得到:水速=船速﹣逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量.另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度﹣逆水速度)÷2.【例1】一艘轮船在一段水域中顺水航行的速度为18千米/小时,逆水航行的速度为15千米/小时,则这段水域中水流的速度为多少千米/小时?【答案】1.5【例2】一条船顺流航行6小时,行了96千米,如果原路返回,就要8小时,这条船在静水中每小时行多少千米?【答案】14【例3】某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时多少千米?【答案】10【例4】一条货轮在甲、乙两地之间航行,如果顺水行完全程要6小时,逆水行完全程要10小时,且已知船在静水中的速度为每小时14千米,那么水流的速度是多少?【答案】3.5【例5】船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米.船速每小时多少千米,水速每小时多少千米?【答案】9;3【例6】一艘轮船由A码头顺水航行到B码头需要16小时,这艘轮船由B码头逆水航行到A码头需要20小时,已知这艘轮船在静水中的速度为每小时18千米,则水流的速度为每小时多少千米?【答案】2【例7】一只小船第一次顺流航行48千米,逆流航行8千米,共用10小时,第2次用同样的时间顺流航行24千米,逆流航行14千米.这只小船在静水中速度是多少千米/小时?【答案】5【例8】一艘轮船往返于A、B两地之间,由A至B是顺水航行,船的静水速度是每小时20千米,由A至B用了8小时,逆水航行时间是顺水航行时间的1.5倍,求水流速度.【答案】每小时4千米【例9】甲乙两港相距400千米,甲港在乙港的上游,有一艘游轮从甲港出发到达乙港后返回共用10小时,水速是游轮静水速度的,那么水速是多少千米/小时?【答案】30【例10】一木船顺水每小时行12km,逆水每小时行8km,求船速和水速各是多少?【答案】船速每小时10千米,水速每小时2千米【例11】甲、乙两地相距80km,一艘轮船顺水航行需4小时,逆水航行需5小时,那么这艘轮船在静水中的速度和水流的速度分别为多少km/h?【答案】静水:18km/h;水流:2km/h.【例12】两地相距240千米,一艘轮船在其间航行,顺流需要12小时,逆流需要20小时,该轮船在静水中的速度是多少?水流速度是多少?【答案】该轮船在静水中的速度是每小时17千米,水流速度是每小时3千米【例13】一只小船在河里划行,上行(逆水)的速度是每小时5千米,下行的速度是每小时7千米,如果小船的划行速度始终相同,求小船的速度和河的水流速度.【答案】小船的速度为6千米/小时,河的水流速度为1千米/小时【例14】一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?【答案】船速为14千米/时;水速为2千米/时【例15】一载货船行驶于100千米长的河中,逆行需10小时,顺行需5小时,求船速和水速.【答案】这船的船速是15千米/小时,水速是5千米/小时【例16】A、B两个港口的水路长480千米,一艘船从A港开往B港顺水12小时到达,从B港返回A 港,逆水16小时到达,求船在静水中的速度和水流的速度?【答案】船在静水中的速度是35千米,水流速度是5千米【例17】有一条宽河的右边水速比左边水速快1千米/时.有一人喜欢沿河游泳,从右边逆流而上12小时游了36千米,又用了6小时从左边游回原地.这条河左边的水速和右边的水速各是多少?【答案】这条河左边的水速为1千米/小时,右边的水速为2千米/小时【例18】一艘船顺流而下每小时行21千米.已知这艘船顺流2小时与逆流3小时所走的路程相等,求船速是水流速度的几倍.【答案】5【例19】小明在河中划船逆流而上,不慎将水壶掉进河中,经过20分钟小明才发现,他立即返回寻找,结果在离丢失地点下游600米处找到水壶.那么水流的速度是多少?【答案】15米/分钟【例20】某人在河中游泳,逆流而上,当游到一桥下时,将水壶丢失,他又向前游了20分钟才发觉,立即折回追赶水壶,当追到离桥2千米处才将水壶追上,求河水每小时流多少千米?【答案】3【例21】甲、乙两船在同﹣条河流的两个码头同时相向而行,其中甲船逆行.经9小时乙船在越过全水程中点45千米处和甲相遇.如果两船的静水速度相同,问水流速度是多少?【答案】5千米/小时【例22】一人乘木筏在河面顺流而下,行至一座桥下时此人想锻炼一下身体,便跳入水中顺水游泳,10分钟后掉头往回游,在离桥500米远的地方与木筏汇合,假设水流速度及比人在静水中游泳的速度一直不变,求水流速度.【答案】每小时1500米第二关求时间【例23】一艘客轮顺水航行900千米用10小时,水速5千米/小时,它返回需要多少时间?【答案】11.25【例24】一艘轮船从甲地到乙地,顺水需要航行8小时,逆水需要航行12小时,那么它在无风的湖里行驶同样的距离需要多长时间?【答案】9.6【例25】一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用多少小时?【答案】5【例26】一条船顺流行驶40千米需要5小时,水流速度为每小时2千米,这条船逆流行驶40千米需要多少小时?【答案】10【例27】水流速度每小时5千米.现在有一船逆水在120千米的河中航行需要6小时,顺水航行需几小时?【答案】4【例28】A河是B河的支流,A河水的流速为每小时3千米,B河水的流速是每小时2千米,一艘船沿A河顺水航行了6小时,行了126千米到达B河,在B河还要逆水航行64千米,这艘船还要航行几小时?【答案】4【例29】甲河是乙河的支流,甲河的水速为3千米每小时,乙河的水速为2千米每小时,一艘船沿着甲河顺水航行7小时后到达乙河,一共航行了133千米,这艘船在乙河中逆水航行84千米需要多少时间?【答案】6【例30】一艘轮船从甲港开往乙港,顺水航行每小时行36km,15小时到达,沿原路从乙港返回甲港,逆水航行平均每小时行30km,多长时间能够返回甲港?【答案】18【例31】一艘船往返相距为100千米的A、B两港之间,已知船在静水中的速度是15千米/小时,水流速度是5千米/小时,由A港顺流而下到B港要几个小时?由B港返回A港要几小时?【答案】5;10【例32】小明2014年2月28日上午9时25分乘坐一搜轮船从甲港开出,按每小时航行24千米云集2014年3月2日中午1时55分到达乙港,但是由于天气影响,轮船每小时只能航行21千米,求小明乘坐船到达乙港的时间.【答案】2014年3月2日21时25分【例33】一位少年短跑选手,顺风跑180米用了20秒,在同样的风速下,逆风跑140米也用了20秒.问:在无风的时候,他跑200米要用多少秒?【答案】25【例34】甲乙两地相距600千米,一辆汽车从甲地开往乙地,计划8小时到达.因为顺风,每小时比计划多行5千米,实际几小时到达?【答案】7.5【例35】已知码头A在B的上游,一艘船从A出发不停的在A,B间往返(掉头的时间不计),若船从出发到第二次到达码头B用5.5小时,从出发到第3次返回码头A用12小时.问:船从码头B行驶到A需要几小时?【答案】2.5【例36】一只小船逆流而行,一顶小红帽从船上落入水中被发现时,小红帽一遇校船相距600米,已知小船在静水中的速度是每分钟120米,水流的速度是每分钟20米,问小船掉头后需要多少分时间可追溯到小红帽?【答案】5【例37】一艘货轮从甲港到乙港用了4天,从乙港返回甲港用了3天,假设水速始终保持不变,如果货轮出发时船长在河中放下一个漂流瓶,那么货轮回到甲港后,再经过多少天漂流瓶会到达甲港?【答案】21【例38】甲、乙两船在静水中航速相同,分别从A、B两港口同时出发,相向而行,水流速度为每小时5km,5小时后相遇.已知两港口之间的距离为350km.求甲船从A港口顺流而下几小时到达B港口?【答案】8.75【例39】某河有相距36千米的上、下两码头,每年定时有甲、乙两艘船速度相同的客轮分别从两码头同时出发相向而行,一天甲船从上游码头出发时掉下一物,物品浮于水面顺水而下,5分钟后,与甲船相距2千米.预计乙船出发后几小时可以与此物相遇?【答案】1.5【例40】一艘船在静水中每小时行18千米,水流的速度是每小时2千米,这船从甲地顺水航行,到乙地需10小时,船从乙地返回甲地需多少小时?【答案】12.5【例41】甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需多少小时?【答案】7【例42】静水中船速每小时18千米,从甲地到乙地的176千米航程中,这只轮船顺水航行了8小时,如果再逆水航行112千米,共需要多少小时?【答案】8【例43】一艘船在静水中的速度为每小时9千米,沿江顺流而下,由A码头到B码头用了2小时35分,两码头之间的航程为31千米.当此船按原速逆流而上返回A码头时需用多少小时?【答案】5小时10分钟【例44】一艘轮船从A港开往B港是顺水而行,从B港开往A港时,逆水而行,已知轮船顺水而行与逆水而行的速度是4:3,往返一次共用12小时,求从A港到B港所用的时间.【答案】【例45】一条船从A城到B城要行6天,而从B城到A城要行9天,现在从A城放一个无动力的木筏,它飘到B城需要多少天?【答案】36【例46】一只轮船每小时航行20千米,水速为每小时3千米.这只轮船顺水航行207千米后再逆水航行102千米,共需多少小时?【答案】15【例47】一艘快艇顺流而行,从A地到B地需要8个小时;一塑料漂浮物从A地漂流到B地需要32小时,若不考虑其他因素影响,该快艇从B地到A地需要多少小时?【答案】16【例48】从甲地到乙地的水路有375千米,江水的流速是每小时5千米,一艘客轮在静水中每小时行驶20千米.它在甲、乙两地往返一次需要多少小时?【答案】40【例49】甲乙两港之间相距360千米,一轮船往返共用35个小时,顺水比逆水快5个小时,现有一机帆船静水船速为每小时12千米,它往返两港的时间是多少小时?【答案】64【例50】A、B两港相距90千米,客船往返两港需20小时,已知顺流速度是逆流速度的3倍.货船的静水速度是客船静水速度的两倍,那么货船往返两港需要多少小时?【答案】8【例51】一艘快艇在甲乙两个港口之间往返,水速不变,去时用了6小时,回来只用了12小时,如果水速增大一倍,这艘快艇往返一次需要多少时间?【答案】28.8【例52】某船往返于A、B两港之间,船顺水走完全程需12小时,逆水走完全程需要15小时,这天因故使水速加大,该船顺水走完全程只需10小时,问这天该船逆水而上走完全程需多长时间?【答案】20【例53】一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要多少小时?【答案】20【例54】一小船逆流航行,在途中掉下一箱可漂浮物品,20分钟后发现,掉头回追,回追上这只木箱还需多少时间?【答案】20【例55】小船运木材,逆流而上,在途中A处掉下一块木材顺水下流.5分钟后发现,小船立即掉头追木材(掉头时间忽略不计),再经过多少分钟才能追上这块木材?【答案】5【例56】一个人在河中游泳,逆流而上,在A处将帽子丢失,他向前游了15分后,才发现帽子丢了,立即返回去找,在离A处30米的地方追到了帽子,则他返回来追帽子用了多少分?【答案】15【例57】某人逆水游泳在大桥下丢失一只水壶,经过15分钟才发现丢失水壶,立刻返回寻找,在离大桥1千米处追到,他返回找水壶用了多少分钟?【答案】15【例58】某人驾船在河流中匀速逆流行驶,8:00时船上的一个木箱不慎掉入水中,一个小时后发现情况,马上掉头以相同的速度追赶顺流而下的木箱.请问他追上木箱的时间为多少?【答案】10点【例59】一小船由A港到B港顺流而行需6小时,由B港到A港逆流而行需8小时,一天从早晨6点由A港出发顺流而行到B港,发现一个救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈.(1)若小船按水流速度由A港飘到B港需要多少小时?(2)救生圈是在何时掉入水中的?【答案】(1)48;(2)上午11点【例60】一艘轮船从A城到B城,顺水航行每小时行20km,返回时每小时行15km.顺水航行和逆水航行的速度比是4:3,在相同的时间里,行的路程比是4:3,往返A,B两城所需的时间比是多少?【答案】3:4【例61】甲、乙两船在同一条河上顺水航行,目前正相距48千米,甲船的速度是32千米/小时,乙船的速度是24千米/小时,水流速度是4千米/小时,那么,多少小时后,甲船超过乙船12千米?【答案】7.5【例62】小明乘电动扶梯上楼需15秒,如果在乘电梯的同时向上走需10秒,问:电动扶梯不动时徒步上楼需几秒?【答案】30【例63】自动扶梯停止运行时,一个小孩要用90秒钟才能走完60米长的自动扶梯.自动扶梯运行时则可用60秒钟将乘客从底端送到顶端.若小孩在运行的自动扶梯上行走,问小孩从扶梯底端到达顶端需要多少秒?【答案】36【例64】商场一二层之间有120级扶梯,小明站着不动乘扶梯上楼需要60秒,如果在乘扶梯的同时小明继续向上走需要24秒上楼,那么扶梯不动时,小明徒步沿扶梯上楼需要多少秒?【答案】40【例65】某商场有一滑动电梯,从一楼到二楼需要分钟,小明从一楼步行到二楼要分钟,小明在运行的滑动电梯上从一楼走到二楼需要多少分钟?【答案】【例66】河流上有A、B两个码头,其中A码头在上游,B码头在下游.现有甲、乙两艘船,静水中甲船速度是乙船的两倍;甲、乙同时分别从A、B两个码头出发,相向而行;甲船在出发的时候将一箱可飘浮于水面上的货物遗留在了河面上,20分钟后两船相遇,此时甲船又将一箱同样的货物遗留在了河面上.一段时间之后,甲船发现自己少了货物调头回去寻找,当甲找到第二箱货物的同时,乙船恰好遇到了甲遗留的第一箱货物.那么,甲从出发开始过了多少分钟才发现自己的货物丢失?【答案】40第三关求路程【例67】一只船逆流而上,水速2千米/小时,船速32千米/小时,4小时行多少千米?【答案】120【例68】一船航行于A、B两个码头之间,顺水航行需3h,逆水航行需5h,已知水流速度是4km/h,求这两个码头之间的距离.【答案】60【例69】一艘轮船从A港列B港,顺水航行每小时30千米,返回A港时逆水航行用了7小时,已知水速是每小时3千米,问A、B两港相距多少千米?【答案】168【例70】某人在河中游泳,从A地到B地用了6分钟,从B地到A地用了3分钟,已知水流的速度为每分钟30米,求A地到B地多少米.【答案】360【例71】一艘轮船在两码头之间航行,如果顺水航行需8小时如果逆水航行需11小时,已知水速为每小时3千米,那么两码头之间的距离是多少千米?【答案】176【例72】一艘船在静水中每小时行18千米,水流的速度是每小时2千米,这船从甲地顺水航行,到乙地需10小时,甲乙两地距离是多少千米?【答案】200【例73】一艘轮船从A地出发去B地为顺流,需10小时;从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有多少千米?【答案】600【例74】一艘轮船由甲港开往乙港,到达乙港后立即返回.去时顺水,每时行20km,返回时逆水,每时行驶6km,往返共用18时,甲乙两港相距多少千米?【答案】【例75】轮船从甲地到乙地,顺水每小时行25千米,逆水每小时行15千米,来回一次共行4小时,甲乙两地相距多少千米?【答案】37.5【例76】一架飞机在两城之间飞行,顺风时飞机需2小时,逆风时飞行需3小时,已知风速是每小时24千米,求两城之间的距离.【答案】24488【例77】一架飞机飞行于甲、乙两个城市之间.顺风时需要5小时30分钟,逆风时需要6小时;若风速是每小时24千米.则求两城之间的距离.【答案】3168【例78】一艘客轮往返甲、乙两港,顺水速度是15千米/小时,逆水速度是的12千米/小时.现在甲港放一个木排顺水漂流到乙港,要用3天才能到达.那么,甲、乙两港的水路长多少千米?【答案】108【例79】一艘船在两个码头之间往返一个来回,顺水速度比逆水速度快12km/h,一共6小时,已知前三小时比后三小时多走30km,求全程是多少千米?【答案】105【例80】某人乘船由A地顺流而下到达B地,然后又逆流而上到达C地,共用了3小时,已知船在静水中的速度为每小时8千米,水流速度为每小时4千米,如果A、C两地间的距离为12千米,那么A、B两地间的距离是多少千米?【答案】18【例81】一只小船从甲地到乙地往返一次共用了2小时,回来时是顺水,比去时的速度每小时多行驶7.5千米,因此第二小时比第一小时多行5千米,求甲地与乙地之间的距离.【答案】10【例82】一条河流旁依次有3个码头,甲、乙、丙,小明划船从甲地到丙地然后到乙地要2小时,而从乙地先去丙地最后返回甲地用了2.5小时,已知他划船时,逆流的速度是3千米/时,顺水的速度市6千米/时,那么甲、乙两地相距多少千米?【答案】3【例83】一只小船从A港到B港往返一次共用2小时,回来时顺水,比去时每小时多行驶8千米,因此第2小时比第1小时多行驶了6千米.A、B两港的距离是多少千米?【答案】15【例84】沸羊羊和慢羊羊在湖里划船比赛.沸羊羊每分钟划行100米,10分钟(其中有5分钟休息)到达终点,慢羊羊每分钟划行60米,15分钟(其中有7.5分钟休息)也到达终点,如果休息时水在流动,船自行前行,那么划船的赛程是多少米?【答案】600【例85】巡逻艇从河流的下游向上游行驶进行巡逻,并要求在3个小时之内回到出发地点,已知船在静水中的速度为12千米/小时,水速为2千米/时,那么这艘巡逻艇最远能开出多少千米?【答案】17.5【例86】一艘轮船所带的燃料最多可以用27小时,轮船去时顺水而行,每小时可以行15千米,回时逆水每小时可以行12千米,问这艘船最远行驶多少千米就要往回行驶?【答案】180【例87】小泉在一条小河上以固定的速度划一条小船,他顺流划行了2小时,然后逆流划行返回到原来的出发地点,用了3小时.已知这条河的水流速度是2千米/时.那么小泉的出发地点与他开始返回的地点之间的距离是多少千米?【答案】24【例88】一条河的水流速度为每小时4千米,河上两港相距100千米,甲、乙两船于上午8:00从A港起航开往B港,第二天上午8:00两船从B港起航开往A港.甲船两天的上午10:00都在M处,乙船两天的上午10:00都在N处,则M、N相距多少千米?【答案】2【例89】甲乙两艘货船,甲船在前30千米处逆水而行,乙船在后追赶.甲乙两船的静水速度分别是36千米/时和42千米/时.水流速度是4千米/时.求甲船行多少千米被乙船追上?【答案】160【例90】甲乙两船从一条河的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,两船在距离中点10千米处相遇,A、B两个码头间的距离为多少千米?【答案】110【例91】甲、乙两船在静水中的速度相同,两船分别从A、B两港同时出发,相向而行,甲船顺流而下,乙船逆流而上.已知水速是船在静水中速度的12%,那么当两船第一次相遇时,甲船航行的路程占两港间距离的百分之几?【答案】56%【例92】在一条河里,两船分别从上、下游的A、B两地相向而行,水的流速是每分钟30米.两船的静水速度都是每分钟700米.这天,两船又分别自A、B两地相向而行,但由于暴雨使水速是平时的2倍,所以两船相遇的地点比平时相遇点相差60米.求A、B两地的距离.【答案】2800【例93】A,B两个码头间的水路为60千米,其中A码头在上游,B码头在下游.第一天,水速为每小时3千米,甲、乙两船分别从A,B两码头同时起航同向而行,3小时后乙船追上甲船.已知甲船的静水速度为每小时10千米,乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米,甲、乙两船分别从A,B两码头同时起航相向而行,出发多长时间后相遇?【答案】30千米/时;1.5【例94】甲乙两艘轮船,静水速度分别是24千米/时和36米/时,甲船从A码头顺水而下,同时乙船从B码头逆水而上,水流速度是3千米/时.出发5小时后两船相遇,求A、B两个码头之间的距离?【答案】300【例95】甲、乙两船从相距270千米的A、B两地相向而行,甲船以每小时36千米的速度从A出发,乙船以每小时54千米的速度从B地出发,此时风速是每小时18千米.若甲船顺水航行.那么,它们多少小时相遇.相遇时距甲船的出发点A地多少千米?【答案】3;162【例96】两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了50秒,女孩用了150秒,已知扶梯在静止时,男孩每秒走2米,女孩每秒走1米,那么这个行动扶梯长多少米?【答案】75【例97】小明和小红逆着自动扶梯行驶方向行走,10秒里小明走15级,小红走13级.结果到达另一端时,小明走了1分钟,小红走了1.5分钟.扶梯静止时可见部分共有多少级?【答案】36【例98】哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了80级,在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了40级,如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯体静止时,自动扶梯能看到的部分有多少级?【答案】60【例99】小王从上升的自动扶梯上楼和下楼,已知小王的步速不变,他上楼走了30级,下楼走了70级分别到楼上和楼下,那么该自动扶梯露在外面的级数是多少级?【答案】12【例100】哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了80级,在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了40级,如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?【答案】70。

小升初奥数 第11讲《列车过桥与流水行船》

小升初奥数 第11讲《列车过桥与流水行船》
时8千米,沿岸边水的流速为每小时6千米 。一条船在河中心顺流而下,13小时航行 了520千米。这条船沿岸边返回需要多少 小时?
六年级
8
A、B两个码头相距120千米,一艘轮船 从A码头逆水行驶6小时到达B码头。已知 轮船在静水中的速度为22千米/时,求这艘 轮船从B码头顺水返回A码头所用的时间。
六年级
端午节划龙舟,全长3.6千米,顺流划行 时共花了12分钟,逆流划行时共花了18分 钟。顺流与逆流的速度平均每分钟相差多 少米?
六年级
6
甲、乙两码头相距192千米,一艘汽艇顺 水行完全程需要8小时。已知这条河的水流 速度为每小时4千米,求这艘汽艇从乙码头 返回甲码头逆水航行的时间。
六年级
7
一条大河,河中心主航道水流速度为每小
秒。问这列火车的长度为
米。
8.一列火车匀速驶过两个隧道,第一个隧道长480
米,用了30秒;第二个隧道长600米,用了36秒。
则这列火车的长度是
米。
六年级
4
甲、乙两港间的水路长432千米,一只船 从上游甲港航行到下游乙港需要18小时, 从乙港返回甲港需要24小时,船在静水中 的速度是多少?
六年级
5
第11讲 列车过桥与流水行船问题
路程÷速度=时间
六年级
1
(一)填空:
1.一只船在水中航行,水流速度为每小时2千米,
船在静水中航行的速度为每小时8千米。两地相距
80千米。则顺水航行的速度为
千米/小时,
需要
小时。若这只船原路返回,逆水航行
的速度为
千米/小时。需要
小时返
回原地。
2.一艘船在江中航行,水流速度为每小时1千米,
六年级
15

六年级上册数学小升初常考奥数第36讲 流水行船问题

六年级上册数学小升初常考奥数第36讲 流水行船问题

第36讲流水行船问题一、知识要点当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。

当顺风时,借着风力,相对而言用里较少。

在你的生活中是否也遇到过类似的如流水行船问题。

解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。

划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。

划速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速—水速;顺流船速=逆流船速+水速×2;逆流船速=逆流船速—水速×2。

二、精讲精练【例题1】一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A 地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A、B两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。

解:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B地到A地行驶的路程为[(20—x)×6×1.5]千米。

列方程为(20+x)×6=(20—x)×6×1.5x=4答:水流速度为每小时4千米。

练习1:1、水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?2、水流速度每小时5千米。

现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?3、一船从A 地顺流到B 地,航行速度是每小时32千米,水流速度是每小时4千米,212天可以到达。

次船从B 地返回到A 地需多少小时? 答案1、逆水速度:320÷8-15-15=40-15-15=10(千米/小时) 逆水时间:320÷10=32(小时) 答:若逆水行320千米,需要32小时。

小学五年级上册数学 思维奥数题:《流水行船问题》

小学五年级上册数学 思维奥数题:《流水行船问题》
水速为:30-16=14(千米/时)
返回原处所需时间为:176÷(30=14)=4(小时).
6、一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?
顺水速度为25+3=28(千米/时)
需要航行140÷28=5(小时).
7、光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,ຫໍສະໝຸດ 静水中航行320千米需要多少小时?
解:路程差÷船速=追及时间
2÷4=0.5(小时)。
答:他们二人追回水壶需用0.5小时。
4、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
解:①相遇时用的时间
336÷(24+32)
从甲地到乙地的顺水速度为15+3=18(千米/时),甲、乙两地路程为18×8=144(千米),从乙地到甲地的逆水速度为15-3=12(千米/时),返回所需要的时间为144÷12=12(小时).
9、一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.
逆水速度:208÷13=16(千米/小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26—16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
这只船的逆水速度为:18×2÷3=12(千米/时)

【奥数】流水行船奥数题解题思路

【奥数】流水行船奥数题解题思路

【奥数】流水行船奥数题解题思路流水行船奥数题解题思路我们知道,船顺水航行时,船一方面按自己本身的速度即船速在水面上行进,同时整个水面又按水流动的速度在前进,因此船顺水航行的实际速度(简称顺水速度)就等于船速和水速的和,即:顺水速度=船速+水速同理:逆水速度=船速-水速可推知:船速=(顺水速度+逆水速度)/2;水速=(顺水速度-逆水速度)/21.一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。

已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。

则甲、丙两港间的距离为( )A.44千米B.48千米C.30千米D.36千米【答案】A。

解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。

设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44。

2.一艘轮船在两码头之间航行。

如果顺水航行需8小时,如果逆水航行需11小时。

已知水速为每小时3千米,那么两码头之间的距离是多少千米?A.180B.185C.190D.176【答案】D。

解析:设全程为s,那么顺水速度为,逆水速度为,由(顺水速度-逆水速度)/2=水速,知道 - =6,得出s=176。

拓展阅读一年级上册人教版期中知识点汇总一年级上册人教版期中测试卷(附答案)讲解二年级上册人教版期中复习提纲二年级上册人教版期中测试卷(附答案)讲解三年级上册人教版期中知识点汇总三年级上册人教版期中测试卷及答案四年级上册人教版期中复习提纲四年级上册人教版期中测试卷及答案五年级上册人教版期中知识点汇总五年级上册人教版期中测试卷及答案六年级上册人教版期中知识点汇总六年级上册人教版期中测试卷及答案。

(完整版)小升初奥数流水行船问题

(完整版)小升初奥数流水行船问题
的逆水速度=船速-水速,故:速度差=(船速+水速)-(船速-水速)=2×水速,即:
每小时甲船比乙船多走6×2=12(千米).
4小时的距离差为12×4=48(千米)
顺水速度 - 逆水速度
速度差=(船速+水速)-(船速-水速)
=船速+水速 -船速+水速
=2×6=12(千米)
12×4=48(千米)
例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路, 用了3小时.甲船返回原地比去时多用了几小 时?
所以返回原处需要:144÷32=4.5(小时)
例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺 水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?
解析:(船速+6)×4=(船速-6)×7,
可得船速=22,两港之间的距离为:
6×7+6×4=66,
66÷(7-4)=22(千米/时)
(22+6)×4=112千米.
例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小
时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差 多少千米?
解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什 么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船
小升初奥数 流水行船问题
流水行船问题
流水问题是研究船在流水中的行程问题, 因此,又叫行船问题。 在小学数学中 涉及到的题目, 一般是匀速运动的问题。 这类问题的主要特点是, 水速在船逆行 和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船的静水速+水速(1)

第21讲 流水行船问题(提高版)-2022-2023学年小升初数学专项复习讲义(通用版)

第21讲 流水行船问题(提高版)-2022-2023学年小升初数学专项复习讲义(通用版)

第21讲流水行船问题(提高版)1、流水行船问题。

一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速逆速=船速-水速2、解题关键。

因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

3、解题规律。

船行速度=(顺水速度+ 逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间一.填空题(共8小题)1.轮船顺流航行135千米,再逆流航行70千米,共用12.5小时,而顺流75千米,再逆流110千米,也用12.5小时,水流速度是千米/时。

2.船运木材,逆流而上,在途中掉下一块木头在水里,2分钟后,船掉头追木头(掉头时间不算),已知船在静水中的速度是18千米/小时,再经过分钟小船追上木头.3.一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行.4.甲乙两港相距247.5千米,一艘轮船从甲港驶向乙港用了4.5小时,返回时因为逆水比去时多用1小时,则水流速度为.5.某轮船顺流航行3h,逆流航行1.5h,已知轮船在静水中的速度为/akm h,水流速度为ykm h,则轮船共航行了km。

/6.一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米,那么A、B两地间的航程有千米.7.甲、乙两城相距350千米,一艘客轮在其间往返航行,从甲城到乙城是顺流,用去10小时;从乙城返回甲城是逆流,用去14小时.那么,船在静水中的速度是千米/时,水流速度是千米/时.8.甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米.这只机帆船往返两港要小时.二.解答题(共17小题)9.一艘邮轮从A港到B港是顺水航行,平均速度为36千米/时,22小时到达B港。

小升初典型奥数之流水行船问题

小升初典型奥数之流水行船问题

小升初典型奥数之流水行船问题在小升初的奥数学习中,流水行船问题是一个较为常见且重要的知识点。

对于很多同学来说,初次接触这类问题可能会感到有些困惑,但只要掌握了其中的关键要点和解题方法,就会发现其实并没有那么难。

首先,咱们来了解一下什么是流水行船问题。

想象一下,一艘船在河里航行,河水是流动的,这时候船的行驶速度就会受到河水流动速度的影响。

如果船顺着水流的方向行驶,那么水流会帮助船加快速度;如果船逆着水流的方向行驶,水流就会阻碍船的前进,让船的速度变慢。

在流水行船问题中,有几个关键的概念咱们得弄清楚。

第一个是船在静水中的速度,也就是船在没有水流影响时自己本身的速度,咱们通常用“船速”来表示。

第二个是水流的速度,一般称为“水速”。

第三个是船顺流航行的速度,这个速度等于船速加上水速,我们简称为“顺流速度”。

第四个是船逆流航行的速度,它等于船速减去水速,也就是“逆流速度”。

了解了这些基本概念后,咱们来看几个具体的例子。

比如说,有一艘船在静水中的速度是每小时 20 千米,水流的速度是每小时 5 千米。

那么船顺流航行的速度就是 20 + 5 = 25 千米/小时,逆流航行的速度就是 20 5 = 15 千米/小时。

接下来,咱们说说解决流水行船问题的常用公式。

顺流速度=船速+水速逆流速度=船速水速船速=(顺流速度+逆流速度)÷ 2水速=(顺流速度逆流速度)÷ 2有了这些公式,咱们就可以来解决各种具体的问题啦。

比如这样一道题:一艘船从 A 地顺流而下到 B 地,用了 6 小时,已知船在静水中的速度是每小时 25 千米,水流速度是每小时 5 千米。

求 A、B 两地的距离。

这道题中,我们已经知道了顺流速度=船速+水速= 25 + 5 =30 千米/小时,又知道顺流航行的时间是 6 小时,根据距离=速度×时间,A、B 两地的距离就是 30×6 = 180 千米。

再来看一道稍微复杂点的题:一艘船从 A 地到 B 地顺流航行需要 4 小时,从 B 地返回 A 地逆流航行需要 6 小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数流水行船问题讲解及练习答案流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

解析:顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的距离差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。

水流速:(60-30)÷2=15(千米/小时).甲船顺水速:12O÷3=4O(千米/小时)。

甲船逆水速:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。

甲船返回原地比去时多用时间:12-3=9(小时).例9:(难度等级※※)船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。

由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?解析:本题在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9-15=5(千米/小时).暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).例10:两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?解析:先求出甲船往返航行的时间分别是:逆流时间(105+35) ÷2=70(小时),顺流时间:(105-35) ÷2=35(小时).再求出甲船逆水速度每小时560÷70=8(千米),顺水速度每小时560÷35=16(千米),因此甲船在静水中的速度是每小时(16+8) ÷2=12(千米),水流的速度是每小时(16-8) ÷2=4(千米),乙船在静水中的速度是每小时12×2=24(千米),所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=48(小时).例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。

*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。

水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。

*例3一只船,顺水每小时行20千米,逆水每小时行12千米。

这只船在静水中的速度和水流的速度各是多少?解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略。

*例4某船在静水中每小时行18千米,水流速度是每小时2千米。

此船从甲地逆水航行到乙地需要15小时。

求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略。

*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。

已知水速为每小时3千米。

此船从乙港返回甲港需要多少小时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略。

*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。

求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?解:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)答略。

*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。

一只船在河中间顺流而下,6.5小时行驶260千米。

求这只船沿岸边返回原地需要多少小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:260÷26=10(小时)综合算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略。

*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。

顺水行150千米需要多少小时?解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)综合算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略。

*例9一只轮船在208千米长的水路中航行。

顺水用8小时,逆水用13小时。

求船在静水中的速度及水流的速度。

解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:(26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:(26-16)÷2=5(千米/小时)答略。

*例10 A、B两个码头相距180千米。

甲船逆水行全程用18小时,乙船逆水行全程用15小时。

相关文档
最新文档