2018年高考文科数学北京卷
2018年高考文科数学北京卷及答案解析
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前北京市2018年普通高等学校招生全国统一考试文科数学本试卷满分150分.考试时长120分钟.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{||}2|x A x =<,2,0,{1,2}B =-,则A B = ( )A .{}0,1B .{}1,0,1-C .{}2,0,1,2-D .{}1,0,1,2-2.在复平面内,复数11i-的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音频率为( )ABC.D. 6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .47.在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )A .AB B .CDC .EFD .GH毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)8.设集合{(,)|1,4,2}A x y x y ax y x ay =-+>-≥≤,则 ( )A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.设向量(1,0)a =,(1,)b m =-,若()a ma b ⊥-,则m = .10.已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为 .11.能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为 .12.若双曲线2221(0)4x y a a -=>,则a = . 13.若x ,y 满足12x y x +≤≤,则2y x -的最小值是 . 14.若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;c a的取值范围是 .三、解答题共6小题,共80分。
【真题】2018年北京市高考数学(文)试题含答案解析
2018年普通高等学校招生全国统一考试(北京卷)数学(文史类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I(A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,,2)在复平面内,复数的共轭复数对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56 C .76 D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件.5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等i 1-i于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ).A .1B .2C .3D .47. 在平面直角坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中的一段上,角α是以Ox 为始边,OP 为始边.若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD(C )»EF(D )¼GH8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空 (9)设向量()1,0a =,()1,b m =-。
2018年北京市高考数学文试题有答案(真题)
2018年普通高等学校招生全国统一考试(北京卷)数学(文史类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01,(B ){}-101,,(C ){}-201,,(D ){}-1012,,,2)在复平面内,复数的共轭复数对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d成等比数列”的(). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 .5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为(). A .32f B .322f C .1252f D .1272f6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(). A .1 B .2 C .3 D .4i1-i7. 在平面直角坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中的一段上,角α是以Ox 为始边,OP 为始边.若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD (C )»EF(D )¼GH8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈()B 对任意实数a ,()2,1A ∉ ()C 当且仅当0a <时,()2,1A ∉()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设向量()1,0a =r ,()1,b m =-r。
2018年北京高考数学(文)试题与答案
绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=I(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为学科#网(A(B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,»»»¼,,,AB CDEF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD (C )»EF(D )¼GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市2018年高考文科数学试题及答案汇总(word解析版
绝密★本科目考试启用前2018年普通高等学校招生全国统一考试(北京卷)数学(文史类)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、单选题(本大题共8小题,每小题5分,共40分。
)1.已知集合A={( │||<2)},B={-2,0,1,2},则A∩B=A. {0,1}B. {-1,0,1}C. {-2,0,1,2}D. {-1,0,1,2}2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.执行如图所示的程序框图,输出的s值为A.B.C.D.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A.B.C.D.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4A.B.C.D.设集合A={(x,y)│x-y≥1,ax+y>4,x-ay≤2)},则A.B.C.D.填空题(本大题共6小题,每小题____分,共____分。
)设向量a=(1,0),b=(-1,m),若a⊥(ma-b),则m=_________.已知直线l过点(1,0)且垂直于轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________.若,y满足+1 ≤ y ≤ 2,则2y -的最小值是___________.简答题(综合题)(本大题共6小题,每小题____分,共____分。
2018年北京高考数学(文)试题及答案
绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为学科#网(A(B(C)(D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2(C)3 (D)4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京市高考数学试卷(文科)
2018年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f6.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.47.(5分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设向量=(1,0),=(﹣1,m).若⊥(m ﹣),则m=.10.(5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.11.(5分)能说明“若a>b,则<”为假命题的一组a,b的值依次为.12.(5分)若双曲线﹣=1(a>0)的离心率为,则a=.13.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.14.(5分)若△ABC 的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是.三、解答题共6小题,共80分。
2018年北京市高考数学试卷及解析(文科)
2018年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1、(5.00分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A、{0,1}B、{﹣1,0,1}C、{﹣2,0,1,2}D、{﹣1,0,1,2}2、(5.00分)在复平面内,复数的共轭复数对应的点位于()A、第一象限B、第二象限C、第三象限D、第四象限3、(5.00分)执行如图所示的程序框图,输出的s值为()A、B、C、D、4、(5.00分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件5、(5.00分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于、若第一个单音的频率为f,则第八个单音的频率为()A、 fB、 fC、 fD、f6、(5.00分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A、1B、2C、3D、47、(5.00分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边、若tanα<cosα<sinα,则P所在的圆弧是()A、B、C、D、8、(5.00分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A、对任意实数a,(2,1)∈AB、对任意实数a,(2,1)∉AC、当且仅当a<0时,(2,1)∉AD、当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9、(5.00分)设向量=(1,0),=(﹣1,m)、若⊥(m ﹣),则m=、10、(5.00分)已知直线l过点(1,0)且垂直于x轴、若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为、11、(5.00分)能说明“若a>b,则<”为假命题的一组a,b的值依次为、12、(5.00分)若双曲线﹣=1(a>0)的离心率为,则a=、13、(5.00分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是、14、(5.00分)若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是、三、解答题共6小题,共80分。
【真题】2018年北京市高考数学(文)试题含答案解析
A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件
D .既不充分也不必要条件 .
5. “十二平均律 ”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个 理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三
个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于
i
2)在复平面内,复数 1 - i的共轭复数对应的点位于
(A )第一象限
( B)第二象限
( C )第三象限
( D)第四象限
3.执行如图所示的程序框图,输出的 1
A. 2 5
B. 6 7
C. 6 7
D. 12
s 值为( ).
4.设 a , b , c , d 是非零实数,则 “ad bc ”是 “a , b , c , d 成等比数列 ”的( ).
12 2 .若第一个单音的频率为 f ,则第八个单音的频率为(
).
A. 3 2 f
32
B. 2 f
12 5
C. 2 f D. 12 27 f
6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(
).
A.1
B. 2
C. 3
D. 4
2018 年普通高等学校招生全国统一考试 (北京卷)
数学(文史类) 第一部分(选择题 共 40 分) 一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出 符合题目要求的一项 .
A
1.若集合
xx 2 B
,
x 2,0,1, 2 ,则 A,0,1 (C) -2,0,1 (D ) -1,0,1,2
2018年普通高等学校招生全国统一考试 文科数学(北京卷)精校版(含答案)
好教育云平台 高考真题汇编卷 第1页(共8页) 好教育云平台 高考真题汇编卷 第2页(共8页)2018年普通高等学校招生全国统一考试(北京卷)文 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分. 1.已知集合{}2A x x =<,{}–2,0,1,2B =,则A B =I ( ) A .{}0,1B .{}–1,0,1C .{}–2,0,1,2D .{}–1,0,1,22.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为( ) A .32fB .322fC .1252fD .1272f6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .47.在平面坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )A .»ABB .»CDC .»EFD .¼GH8.设集合(){},1,4,2A x y x y ax y x ay =-≥+>-≤,则( ) A .对任意实数a ,()2,1A ∈ B .对任意实数a ,()2,1A ∉ C .当且仅当0a <时,()2,1A ∉ D .当且仅当32a ≤时,()2,1A ∉ 第II 卷二、填空题共6小题,每小题5分,共30分.9.设向量()10=,a ,()1,m =-b ,若()m ⊥-a a b ,则m =_________. 此卷只装订不密封班级 姓名 准考证号 考场号 座位号好教育云平台 高考真题汇编卷 第3页(共8页) 好教育云平台 高考真题汇编卷 第4页(共8页)10.已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________. 11.能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为_________. 12.若双曲线()222104x y a a -=>5,则a =_________. 13.若x ,y 满足12x y x +≤≤,则2y x -的最小值是_________.14.若ABC △)2223a c b +-,且C ∠为钝角,则B ∠=_________;ca的取值范围是_________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题13分)设{}n a 是等差数列,且1ln 2a =,235ln 2a a +=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++L .16.(本小题13分)已知函数()2sin 3cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.好教育云平台 高考真题汇编卷 第5页(共8页) 好教育云平台 高考真题汇编卷 第6页(共8页)17.(本小题13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800510好评率04.02.015.025.02. 01.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加01.,哪类电影的好评率减少01.,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .好教育云平台 高考真题汇编卷 第7页(共8页) 好教育云平台 高考真题汇编卷 第8页(共8页)19.(本小题13分)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围.20.已知椭圆()2222:10x y M a b a b +=>>6焦距为22斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程; (2)若1k =,求||AB 的最大值;(3)设()20P -,,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点7142Q ⎛⎫- ⎪⎝⎭,共线,求k .好教育云平台 高考真题汇编卷答案 第1页(共6页) 好教育云平台 高考真题汇编卷答案 第2页(共6页)2018年普通高等学校招生全国统一考试(北京卷)文 科 数 学 答 案第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案ADBBDCCD第II 卷二、填空题:本大题共6小题,每题5分,共30分. 9.【答案】1- 10.【答案】()1,011.【答案】1,1-(答案不唯一) 12.【答案】4 13.【答案】314.【答案】60o ;()2+∞,.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.【答案】(1)ln2n ;(2)122n +-.【解析】(1)设等差数列{}n a 的公差为d ,235ln 2a a +=Q ,1235ln 2a d ∴+=, 又1ln2a =,ln 2d ∴=,()11ln 2n a a n d n ∴=+-=. (2)由(1)知ln 2n a n =,ln 2ln 2e e e 2nn a n n ===Q ,{}e n a ∴是以2为首项,2为公比的等比数列,212ln 2ln 2ln 221e e e e e e =222=22nn a a a n n +∴+++=++++++-L L L ,121e e e =22na a a n +∴+++-L .16.【答案】(1)π;(2)π3. 【解析】(1)()1cos 233111sin 2sin 2cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3. 17.【答案】(1)0025.;(2)0814.;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140503002008005102000+++++=. 第四类电影中获得好评的电影部数是20002550⨯=.,故所求概率为5000252000=.. (2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有14006500830008520007580008510091628⨯+⨯+⨯+⨯+⨯+⨯=......部. 由古典概型概率公式得()162808142000P B ==.. (3)增加第五类电影的好评率,减少第二类电影的好评率. 18.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥, Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥, Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =, ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .好教育云平台 高考真题汇编卷答案 第3页(共6页) 好教育云平台 高考真题汇编卷答案 第4页(共6页)19.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦Q ,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦',()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'.若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:x()1-∞,1()1,+∞()f x ' + 0 -()f xZ 极大值]()f x ∴在1x =处取得极大值,不合题意.(2)当0a >时,令()0f x '=得11x a=,21x =.①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当12x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:x()1-∞,111a ⎛⎫⎪⎝⎭, 1a 1a ⎛⎫+∞ ⎪⎝⎭, ()f x ' + 0-+()f xZ 极大值]极小值 Z()f x ∴在1x =处取得极大值,不合题意.③当12x x <,即1a >时,()f x ',()f x 随x 的变化情况如下表:x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ 1()1+∞,()f x ' +-+()f xZ 极大值]极小值 Z()f x ∴在1x =处取得极小值,即1a >满足题意.(3)当0a <时,令()0f x '=得11x a=,21x =,()f x ',()f x 随x 的变化情况如下表: x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫⎪⎝⎭ ()1+∞,()f x ' -+-()f x]极小值 Z 极大值]()f x ∴在1x =处取得极大值,不合题意.综上所述,a 的取值范围为()1+∞,.20.【答案】(1)2213x y +=;(26;(3)1.【解析】(1)由题意得222c =,所以2c =又6c e a =3a 2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y ⎧=++=⎪⎨⎪⎩消去y 可得2246330x mx m ++-=, 则()22236443348120m m m ∆=-⨯-=->,即24m <,设()11A x y ,,()22B x y ,,则1232mx x +=-,212334m x x -=,则()222212121264114m AB k x k x x x x ⨯-=+-=++-,好教育云平台 高考真题汇编卷答案 第5页(共6页) 好教育云平台 高考真题汇编卷答案 第6页(共6页)易得当20m =时,max ||6AB =AB 6. (3)设()11A x y ,,()22B x y ,,()33C x y ,,()44D x y ,,则221133x y += ①,222233x y += ②, 又()20P -,,所以可设1112PA y k k x ==+,直线PA 的方程为()12y k x =+, 由()122213y k x x y =++=⎧⎪⎨⎪⎩消去y 可得()222211113121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以11117124747x y C x x ⎛⎫--⎪++⎝⎭,,同理可得22227124747x yD x x ⎛⎫-- ⎪++⎝⎭,. 故3371,44QC x y ⎛⎫=+- ⎪⎝⎭uuu r ,447144QD x y ⎛⎫=+- ⎪⎝⎭uuu r ,,因为Q ,C ,D 三点共线,所以3443717104444x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+--+-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,将点C ,D 的坐标代入化简可得12121y y x x -=-,即1k =.。
2018年北京市高考数学试卷(文科)
2018年北京市高考数学试卷(文科)一、选择题(共8小题,每小题5分,共40分)1、已知集合A ={2<x x },B ={-2,0,1,2},则A B =( )A 、{0,1}B 、{-1,0,1}C 、{-2,0,1,2}D 、{-1,0,1,2} 2、在复平面内,复数i-11的共轭复数对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、执行如图所示的程序框图,输出的s 值为( ) A 、21 B 、65 C 、67 D 、127第3题图 第6题图 第7题图 4、设a 、b 、c 、d 是非零实数,则“bc ad =”是“a 、b 、c 、d 成等比数列”的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充分必要条件 D 、既不充分也不必要条件5、“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率为f ,则第八个单音的频率为( )A 、f 32B 、f 322C 、f 1252D 、f 12726、某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( ) A 、1 B 、2 C 、3 D 、47、在平面直角坐标系中,AB 、CD 、EF 、GH 是圆122=+y x 上的四段弧(如图),点P 其中一段上,角α以Ox 为始边,OP 为终边。
若αααsin cos tan <<,则P 所在的圆弧是( ) A 、AB B 、CD C 、EF D 、GH8、设集合A ={(x ,y )y x -≥1,4>+y ax ,ay x -≤2},则( ) A 、对任意实数a ,(2,1)∈A B 、对任意实数a ,(2,1)∉A C 、当且仅当a <0时,(2,1)∉A D 、当且仅当a ≤23时,(2,1)∉A二、填空题(共6小题,每小题5分,共30分)9、设向量a =(1,0),b =(-1,m ),若)(b a m a -⊥,则=m10、已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线ax y 42=截得的线段长为4,则抛物线的焦点坐标为11、能说明“若b a >,则ba 11<” 为假命题的一组a 、b 的值依次为 12、若双曲线14222=-y ax (0>a )的离心率为25,则=a13、若x 、y 满足1+x ≤y ≤x 2,则x y -2的最小值是14、若△ABC 的面积为)(43222b c a -+,且∠C 为钝角,则∠B = ,ac的取值范围是三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程) 15、设{}n a 是等差数列,且2ln 1=a ,2ln 532=+a a (1)求{}n a 的通项公式; (2)求:n a a a e e e +++ 2116、已知函数x x x x f cos sin 3sin )(2+=(1)求)(x f 的最小正周期; (2)若)(x f 在区间[3π-,m ]上的最大值为23,求m 的最小值。
2018年北京市高考数学试卷(文科)
2018年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A ={x||x|<2},B ={−2, 0, 1, 2},则A ∩B =( ) A.{0, 1} B.{−1, 0, 1} C.{−2, 0, 1, 2} D.{−1, 0, 1, 2}2. 在复平面内,复数11−i的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3. 执行如图所示的程序框图,输出的s 值为( )A.12 B.56C.76 D.7124. 设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为( )A.√23f B.√223fC.√2512fD.√2712f6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.47. 在平面直角坐标系中,AB ̂,CD ̂,EF ̂,GH ̂是圆x 2+y 2=1上的四段弧(如图),点P 其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ̂B.CD ̂C.EF ̂D.GĤ8. 设集合A ={(x, y)|x −y ≥1, ax +y >4, x −ay ≤2},则( )A.对任意实数a ,(2, 1)∈AB.对任意实数a ,(2, 1)∉AC.当且仅当a <0时,(2, 1)∉AD.当且仅当a ≤32时,(2, 1)∉A二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试数学试题文(北京卷,含解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2018年普通高等学校招生全国统一考试数学试题文(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A={(x||x|<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7. 在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O x为始边,OP为终边,若,则P所在的圆弧是A. B.C. D.【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京市高考文科数学试题及答案
2018年北京市高考文科数学试题及答案绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(??||??|<2)},B={?2,0,1,2},则(A){0,1}(B){?1,0,1}(C){?2,0,1,2}(D){?1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为(A)(B)(C)(D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1(B)2(C)3(D)4(7)在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O??为始边,OP为终边,若,则P所在的圆弧是(A)(B)(C)(D)(8)设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a<0时,(2,1)(D)当且仅当时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9)设向量a=(1,0),b=(?1,m),若,则m=_________.(10)已知直线l过点(1,0)且垂直于??轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.(11)能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.(12)若双曲线的离心率为,则a=_________.(13)若??,y满足,则2y的最小值是_________.(14)若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。
2018年普通高等学校招生全国统一考试 文科数学(北京卷)精校版(含答案)
2018年普通高等学校招生全国统一考试(北京卷)文 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分.1.已知集合,,则( )A .B .C .D .2.在复平面内,复数的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.执行如图所示的程序框图,输出的值为( )A .B .C .D .4.设,,,是非零实数,则“”是“,,,成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率,则第八个单音频率为( )A .B .C .D .6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .47.在平面坐标系中,,,,是圆上的四段弧(如图),点在其中一段上,角以为始边,为终边,若,则所在的圆弧是( )A .B .C .D .8.设集合,则( )A .对任意实数,B .对任意实数,C .当且仅当时,D .当且仅当时,第II 卷二、填空题共6小题,每小题5分,共30分.9.设向量,,若,则_________.此卷只装订不密封班级 姓名 准考证号 考场号 座位号10.已知直线过点且垂直于轴,若被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.11.能说明“若,则”为假命题的一组,的值依次为_________.12.若双曲线的离心率为,则_________.13.若,满足,则的最小值是_________.14.若的面积为,且为钝角,则_________;的取值范围是_________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)设是等差数列,且,.(1)求的通项公式;(2)求.16.(本小题13分)已知函数.(1)求的最小正周期;(2)若在区间上的最大值为,求的最小值.17.(本小题13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.(本小题14分)如图,在四棱锥中,底面为矩形,平面平面,,,,分别为,的中点.(1)求证:;(2)求证:平面平面;(3)求证:平面.19.(本小题13分)设函数.(1)若曲线在点处的切线斜率为0,求;(2)若在处取得极小值,求的取值范围.20.已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点,.(1)求椭圆的方程;(2)若,求的最大值;(3)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若,和点共线,求.2018年普通高等学校招生全国统一考试(北京卷)文科数学答案第I卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分.题号 1 2 3 4 5 6 7 8答案 A D B B D C C D第II卷二、填空题:本大题共6小题,每题5分,共30分.9.【答案】10.【答案】11.【答案】1,(答案不唯一)12.【答案】413.【答案】314.【答案】;.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15.【答案】(1);(2).【解析】(1)设等差数列的公差为,,,又,,.(2)由(1)知,,是以2为首项,2为公比的等比数列,,.16.【答案】(1);(2).【解析】(1),所以的最小正周期为.(2)由(1)知,因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.17.【答案】(1);(2);(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是.第四类电影中获得好评的电影部数是,故所求概率为.(2)设“随机选取1部电影,这部电影没有获得好评”为事件.没有获得好评的电影共有部.由古典概型概率公式得.(3)增加第五类电影的好评率,减少第二类电影的好评率.18.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1),且为的中点,,底面为矩形,,.(2)底面为矩形,,平面平面,平面,.又,平面,平面平面.(3)如图,取中点,连接,.,分别为和的中点,,且,四边形为矩形,且为的中点,,,,且,四边形为平行四边形,,又平面,平面,平面.19.【答案】(1);(2).【解析】(1),,,由题设知,即,解得.(2)方法一:由(1)得.若,则当时,;当时,.所以在处取得极小值.若,则当时,,.所以1不是的极小值点.综上可知,的取值范围是.方法二:.(1)当时,令得,,随的变化情况如下表:1极大值在处取得极大值,不合题意.(2)当时,令得,.①当,即时,,在上单调递增,无极值,不合题意.②当,即时,,随的变化情况如下表:10 0极大值极小值在处取得极大值,不合题意.③当,即时,,随的变化情况如下表:10 0极大值极小值在处取得极小值,即满足题意.(3)当时,令得,,,随的变化情况如下表:0 0极小值极大值在处取得极大值,不合题意.综上所述,的取值范围为.20.【答案】(1);(2);(3)1.【解析】(1)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(2)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.(3)设,,,,则①,②,又,所以可设,直线的方程为,由消去可得,则,即,又,代入①式可得,所以,所以,同理可得.故,,因为,,三点共线,所以,将点,的坐标代入化简可得,即.。
(精校版)2018年北京文数高考试题文档版(含答案)
M:
已知椭圆
x2 y 2 6 2 1(a b 0) 2 a b 的离心率为 3 ,焦距为 2 2 .斜率为 k 的直线 l 与椭圆 M 有两
个不同的交点 A,B. (Ⅰ)求椭圆 M 的方程; (Ⅱ)若 k 1 ,求 |AB | 的最大值; (Ⅲ)设 P (2, 0) ,直线 PA 与椭圆 M 的另一个交点为 C,直线 PB 与椭圆 M 的另一个交点为 D.若 C,D
(5) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做 出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起, 每一个单音的频率与它的前一个单音的频率的比都等于 的频率为 学科#网
3 (A) 2 f
12
2 .若第一个单音的频率为 f,则第八个单音
角 以 O为始边,OP 为终边,若 tan cos sin ,则 P 所在的圆弧是
(A) AB
(B) CD
(C) EF
(D) GH
(8)设集合 A {( x, y ) | x y 1, ax y 4, x ay 2}, 则 (A)对任意实数 a, (2,1) A (B)对任意实数 a, (2,1) A
3 2 2 c (a c b 2 ) (14)若 △ABC 的面积为 4 ,且∠C 为钝角,则∠B=_________; a 的取值范围是
_________. 三、解答题共 6 小题,共 80 分。解ห้องสมุดไป่ตู้应写出文字说明,演算步骤或证明过程。 (15) (本小题 13 分) 设
{an }
是等差数列,且
3 [ , m] 3 上的最大值为 2 ,求 m 的最小值.
2018年高考真题-北京卷-文科数学-A4精排版可打印-附答案-无水印
2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={( || |<2)},B ={−2,0,1,2},则AB =(A ){0,1}(B ){−1,0,1}(C ){−2,0,1,2}(D ){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,输出的s 值为(A )12(B )56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为(A(B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD(C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京高考试卷(文科)—含答案
2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 学科#网(A (B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
北京市2018年普通高等学校招生全国统一考试
文科数学
本试卷满分150分.考试时长120分钟.
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题
目要求的一项.
1.已知集合{||}2|x A x =<,2,0,{1,2}B =-,则A B =I
( )
A .{}0,1
B .{}1,0,1-
C .{}2,0,1,2-
D .{}1,0,1,2-
2.在复平面内,复数1
1i
-的共轭复数对应的点位于
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.执行如图所示的程序框图,输出的s 值为
( )
A .1
2
B .56
C .76
D .712
4.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率f ,则第八个单音频率为
( )
A .32f
B .322f
C .1252f
D .1272f 6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
( )
A .1
B .2
C .3
D .4
7.在平面坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是
( )
A .»
AB
B .»CD
C .»EF
D .¼GH
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------
效-------------
8.设集合{(,)|1,4,2}A x y x y ax y x ay =-+>-≥≤,则 ( )
A .对任意实数a ,(2,1)A ∈
B .对任意实数a ,(2,1)A ∉
C .当且仅当0a <时,(2,1)A ∉
D .当且仅当3
2
a ≤时,(2,1)A ∉
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.设向量(1,0)a =,(1,)b m =-,若()a ma b ⊥-,则m = .
10.已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为 .
11.能说明“若a b >,则11
a b
<”为假命题的一组a ,b 的值依次为 .
12.若双曲线22
21(0)4x y a a -=>
,则a = . 13.若x ,y 满足12x y x +≤≤,则2y x -的最小值是 . 14.若ABC △
2
22)a c b +-,且C ∠为钝角,则B ∠= ;c a
的取值范围是 .
三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)
设{}n a 是等差数列,且1ln 2a =,235ln 2a a +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12e e e n a a a +++….
16.(本小题满分13分)
已知函数2()sin cos f x x x x =+. (Ⅰ)求()f x 的最小正周期;
(Ⅱ)若()f x 在区间,3m π⎡⎤
-⎢⎥⎣⎦
上的最大值为32,求m 的最小值.
17.(本小题满分13分)
电影类型 第一类 第二类
第三类 第四类 第五类 第六类 电影部数 140
50
300
200
800
510
好评率
0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
18.(本小题满分14分)
如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,
PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.
(Ⅰ)求证:PE BC ⊥;
(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------
-------------
毕业学校_____________ 姓名________________ 考生号________________
________________ _____________
19.(本小题满分13分)
设函数2()[(31)32]e x f x ax a x a =-+++.
(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.
20.(本小题满分14分)
已知椭圆22
22:1(0)x y M a b a b
+=>>
,焦距为斜率为k 的直线l
与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;
(Ⅱ)若1k =,求||AB 的最大值;
(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一
个交点为D .若C ,D 和点71,42Q ⎛⎫
- ⎪⎝⎭
共线,求k .。