电磁场ppt
合集下载
《电磁学电磁场》课件
电磁场实验
1
实验目的和方法
电磁场实验的目的是通过实践探究电磁场的特性和规律,方法包括搭建实验装置和测量相关 参数。
2
实验步骤和设备
实验步骤包括电磁场产生、测量和调整等过程,设备包括电磁铁、导线、磁罗盘等。
3
实验结果和数据分析
通过实验得到的数据和观察结果,进行数据分析和结论总结,验证电磁场的理论知识。
《电磁学电磁场》PPT课 件
课程介绍:本课程将介绍电磁学和电磁场的基本概念和原理,帮助学生了解 电磁场的特性和应用。
电磁场的特性
定义和起源
电磁场是电荷和电流所产生 的物理场,源自麦克斯韦方 程组的理论。
麦克斯韦方程组
麦克斯韦方程组描述了电场 和磁场的相互作用和传播规 律,是电磁学的基本定律。
特性和属性
电磁场的挑战
电磁场的环境污染
电磁场的不当使用会对人体健康 和环境造成潜在的污的影响
电磁场可能对其他设备和系统产 生干扰,影响其正常运行和通信。
长期接触电磁场可能对人体健康 产生潜在影响,需要加强相关研 究和安全措施。
电磁场具有电场和磁场的强 度、方向、能量和传播速度 等特性和属性。
电磁场的应用
电磁感应
电磁感应现象是将磁场转化为 电场或电流,应用于发电机、 变压器等设备。
电磁波
电磁波的传播是通过电场和磁 场相互耦合形成的,应用于通 信、雷达等领域。
电磁场在生活中的应 用案例
电磁场的应用包括无线充电、 电磁炉、磁悬浮等,为我们的 生活带来了便利和创新。
《电磁场理论》课件
《电磁场理论》PPT课件
探索电磁场的奇妙世界。从电磁场的基本概念出发,深入了解麦克斯韦方程 组的原理,并探究电场和磁场的相互作用。
电磁场的基本概念
1 电磁场的定义
介绍电磁场的基本概念和特性,包括电场和磁场的形成和作用。
2 电磁场的方程
了解麦克斯韦方程组,掌握其含义并探索其丰富的物理意义。
3 场强和场线
电场和磁场的相互作用
洛伦兹力
探讨洛伦兹力的作用机制和应用,以及电磁场与带电粒子之间的相互作用。
电磁感应
解释电磁感应的原理和应用,研究磁场变化对电流和电动势的影响。
电磁波的产生和传播
电磁波的产生
深入了解电磁波的产生机制,探究电场和磁场的交 替在空间中的传播特性,包括传播速度、 衰减和反射等现象。
深入了解电磁感应在电动机、变压器等
电磁波的应用
2
设备中的应用原理和工作机制。
探索电磁波在通信、遥感和医学等领域
的广泛应用和前沿技术。
3
磁共振成像
介绍磁共振成像技术的原理和应用,探 究其在医学和科研领域的重要性。
总结和展望
总结电磁场理论的核心概念和主要内容,并展望未来电磁场理论的发展方向和前景。
解释电磁场强度的概念和场线的作用,以及如何分析和表示电磁场的分布情况。
麦克斯韦方程组的介绍
1
高斯定律
详细阐述高斯定律的原理和应用,探讨电场和磁场的产生和分布规律。
2
法拉第定律
深入理解法拉第定律,包括电磁感应的原理、电动势的产生和磁场变化的影响。
3
安培定律
解释安培定律的含义和应用,了解电流和磁场的相互作用及其影响。
电磁场的能量和动量
1 能量守恒定律
探究电磁场能量的来源和 转化,以及能量守恒定律 在电磁场中的应用。
探索电磁场的奇妙世界。从电磁场的基本概念出发,深入了解麦克斯韦方程 组的原理,并探究电场和磁场的相互作用。
电磁场的基本概念
1 电磁场的定义
介绍电磁场的基本概念和特性,包括电场和磁场的形成和作用。
2 电磁场的方程
了解麦克斯韦方程组,掌握其含义并探索其丰富的物理意义。
3 场强和场线
电场和磁场的相互作用
洛伦兹力
探讨洛伦兹力的作用机制和应用,以及电磁场与带电粒子之间的相互作用。
电磁感应
解释电磁感应的原理和应用,研究磁场变化对电流和电动势的影响。
电磁波的产生和传播
电磁波的产生
深入了解电磁波的产生机制,探究电场和磁场的交 替在空间中的传播特性,包括传播速度、 衰减和反射等现象。
深入了解电磁感应在电动机、变压器等
电磁波的应用
2
设备中的应用原理和工作机制。
探索电磁波在通信、遥感和医学等领域
的广泛应用和前沿技术。
3
磁共振成像
介绍磁共振成像技术的原理和应用,探 究其在医学和科研领域的重要性。
总结和展望
总结电磁场理论的核心概念和主要内容,并展望未来电磁场理论的发展方向和前景。
解释电磁场强度的概念和场线的作用,以及如何分析和表示电磁场的分布情况。
麦克斯韦方程组的介绍
1
高斯定律
详细阐述高斯定律的原理和应用,探讨电场和磁场的产生和分布规律。
2
法拉第定律
深入理解法拉第定律,包括电磁感应的原理、电动势的产生和磁场变化的影响。
3
安培定律
解释安培定律的含义和应用,了解电流和磁场的相互作用及其影响。
电磁场的能量和动量
1 能量守恒定律
探究电磁场能量的来源和 转化,以及能量守恒定律 在电磁场中的应用。
(电磁场PPT)第二章 恒定电场
第二章
由电路理论
恒定电场
2.1.3 欧姆定律的微分形式
U RI
R l
S
电导率与电阻率的关系: 1 ,
(r 电阻率), (电导率)。 r
图2.1.5 J 与 E 之关系
在场论中 dI J dS
dU dI R J dS dl
dS
E dl
J E 欧姆定律 微分形式。
第二章
恒定电场
U RI 欧姆定律 积分形式。
本章要求:
理解各种电流密度的概念,通过欧姆定律和焦耳 定律深刻理解场量之间的关系。
掌握导电媒质中的恒定电场基本方程和分界面衔 接条件。
熟练掌握静电比拟法和电导的计算。
第二章
恒定电场知识结构
基本物理量 J、 E
欧姆定律
恒定电场
J 的散度
基本方程
E 的旋度
边界条件
边值问题
电位
一般解法 电导与接地电阻 特殊解(静电比拟)
第二章
第二章 恒定电场
Steady Electric Field
导电媒质中的电流 电源电动势与局外场强 基本方程 • 分界面衔接条件 • 边值问题 导电媒质中恒定电场与静电场的比拟 电导和接地电阻
恒定电场
第二章
恒定电场
通有直流电流的导电媒质中同时存在着电流场和 恒定电场。恒定电场是动态平衡下的电荷产生的,电 荷作宏观运动,电荷的分布不随时间变化(即:恒定 ),它与静电场有相似之处。
—焦耳定律积分形式
第二章
2.2 电源电动势与局外场强
2.2.1 电源 (Source)
恒定电场
提供非静电力将其它形式的 能转为电能的装置称为电源。
图2.2.1 恒定电流的形成
电磁学全套ppt课件
30
变压器工作原理和参数设置方法
工作原理
变压器利用电磁感应原理,通过变换交流电 压、电流和阻抗来实现电能传输。其核心部 件为铁芯和线圈,通过线圈匝数比的变化实 现电压的升降。
参数设置方法
变压器的参数设置主要包括额定电压、额定 电流、额定功率、变比等。在设置参数时, 需要根据实际需求选择合适的变压器型号和
2024/1/25
7
02
静电场分析及应用
2024/1/25
8
电荷分布与电势计算
电荷分布基本概念
点电荷、电荷密度、体电荷密度、面电荷密 度、线电荷密度
电场强度定义及计算
矢量叠加原理、电场线描绘、电通量概念
2024/1/25
库仑定律及其适用条件
真空中的点电荷间相互作用力
电势定义及计算
电势差与电势关系、等势面描绘、电势叠加 原理
电磁学全套ppt课件
2024/1/25
1
• 电磁学基本概念与原理 • 静电场分析及应用 • 恒定电流与电路基础知识 • 磁场性质与磁感应强度计算 • 电磁感应现象与规律探讨 • 交流电产生、传输和转换过程剖析
2024/1/25
2
01
电磁学基本概念与原理
2024/1/25
3
电场与磁场定义及性质
电场
用电器安全使用注意事项
如正确使用电器、避免超负荷用电、 防止触电等。
2024/1/25
17
04
磁场性质与磁感应强度计算
2024/1/25
18
磁场产生原因及描述方法
磁场产生原因
电流或磁体周围存在磁场,磁场是由运动电荷产生的。
磁场描述方法
用磁感线形象地描述磁场,磁感线上某点的切线方向表示该点的磁场方向,磁感 线的疏密程度表示磁场的强弱。
变压器工作原理和参数设置方法
工作原理
变压器利用电磁感应原理,通过变换交流电 压、电流和阻抗来实现电能传输。其核心部 件为铁芯和线圈,通过线圈匝数比的变化实 现电压的升降。
参数设置方法
变压器的参数设置主要包括额定电压、额定 电流、额定功率、变比等。在设置参数时, 需要根据实际需求选择合适的变压器型号和
2024/1/25
7
02
静电场分析及应用
2024/1/25
8
电荷分布与电势计算
电荷分布基本概念
点电荷、电荷密度、体电荷密度、面电荷密 度、线电荷密度
电场强度定义及计算
矢量叠加原理、电场线描绘、电通量概念
2024/1/25
库仑定律及其适用条件
真空中的点电荷间相互作用力
电势定义及计算
电势差与电势关系、等势面描绘、电势叠加 原理
电磁学全套ppt课件
2024/1/25
1
• 电磁学基本概念与原理 • 静电场分析及应用 • 恒定电流与电路基础知识 • 磁场性质与磁感应强度计算 • 电磁感应现象与规律探讨 • 交流电产生、传输和转换过程剖析
2024/1/25
2
01
电磁学基本概念与原理
2024/1/25
3
电场与磁场定义及性质
电场
用电器安全使用注意事项
如正确使用电器、避免超负荷用电、 防止触电等。
2024/1/25
17
04
磁场性质与磁感应强度计算
2024/1/25
18
磁场产生原因及描述方法
磁场产生原因
电流或磁体周围存在磁场,磁场是由运动电荷产生的。
磁场描述方法
用磁感线形象地描述磁场,磁感线上某点的切线方向表示该点的磁场方向,磁感 线的疏密程度表示磁场的强弱。
电磁场理论优秀课件
第五章 准静态电磁场
麦克斯韦方程组描述了时变电磁场中时变电场与时变磁场相 互依存又相互制约,并以有限速度在空间传播,形成电磁波旳普 遍规律。此时,电磁场量旳鼓励与响应不是同步发生旳,场量旳 时间变量t与空间变量r有关。但在许多工程问题中,尤其在电气 设备、电力传播、生命科学等领域,时变电磁场旳频率教低,因 而在某些特定旳情况下,能够忽视二次源 B 或 D 旳作用,
例5-3 研究具有双层有损介质旳平板电容器接至直流电压 源旳过分过程,如图5-3所示。[书p.195例5-4]
解:设电容器在t≤0-时
处于零状态,极板上没有电
S
荷,即E1(0-)=E2(0-)=0,u(0-)
=0;t≥0+时,电容器旳端电 压被强制跃变,即u(0+)=U。
U
o
根据电容旳伏安关系
ε2 γ2 ε1 γ1
内外导体之间旳坡印亭矢量是
S E H •
•
•
••
U I
2 2 ln
b a
ez
同轴线传播旳平均功率应是坡印亭矢量在内外导体之间旳横截面
S上旳面积分,即
P
Re
S
••
U I
2 2 ln
b
a
dS
• ReUln
•
I
b a
b a
d
•
Re[U
•
I
]
P Re
••
U I
dS
• ReU
•
I
t
旳库仑电场Ec和感应电场Ei。在低频电磁场中,假如感应电场Ei
远不大于旳库仑电场Ec,则能够忽视Bt 现无旋性
旳作用,这时旳电场呈
E (E c E i) E c 0 (5-1)
麦克斯韦方程组描述了时变电磁场中时变电场与时变磁场相 互依存又相互制约,并以有限速度在空间传播,形成电磁波旳普 遍规律。此时,电磁场量旳鼓励与响应不是同步发生旳,场量旳 时间变量t与空间变量r有关。但在许多工程问题中,尤其在电气 设备、电力传播、生命科学等领域,时变电磁场旳频率教低,因 而在某些特定旳情况下,能够忽视二次源 B 或 D 旳作用,
例5-3 研究具有双层有损介质旳平板电容器接至直流电压 源旳过分过程,如图5-3所示。[书p.195例5-4]
解:设电容器在t≤0-时
处于零状态,极板上没有电
S
荷,即E1(0-)=E2(0-)=0,u(0-)
=0;t≥0+时,电容器旳端电 压被强制跃变,即u(0+)=U。
U
o
根据电容旳伏安关系
ε2 γ2 ε1 γ1
内外导体之间旳坡印亭矢量是
S E H •
•
•
••
U I
2 2 ln
b a
ez
同轴线传播旳平均功率应是坡印亭矢量在内外导体之间旳横截面
S上旳面积分,即
P
Re
S
••
U I
2 2 ln
b
a
dS
• ReUln
•
I
b a
b a
d
•
Re[U
•
I
]
P Re
••
U I
dS
• ReU
•
I
t
旳库仑电场Ec和感应电场Ei。在低频电磁场中,假如感应电场Ei
远不大于旳库仑电场Ec,则能够忽视Bt 现无旋性
旳作用,这时旳电场呈
E (E c E i) E c 0 (5-1)
电磁场课件
数值计算
数值计算是通过计算机进行数值计算的方法,可以解决各种复杂的电磁场问题,如电磁 散射、电磁感应等。
矩量法与高频近似方法
矩量法
矩量法是一种将连续的电磁场问题离散化为 一系列矩量项的方法,通过矩量项之间的相 互作用得到电磁场的解。
高频近似方法
高频近似方法是一种在高频情况下对电磁场 问题进行近似求解的方法,如RayleighSommerfeld方法等。
03
电磁场与纳米技术的 结合
纳米技术与电磁场的结合可以实现纳 米级的信息传输和能量转换,有望在 能源、医疗等领域实现创新。
电磁场在环保和可持续发展中的作用
电磁场在污染治理中的应 用
电磁场可以用于处理环境污染问题,如废水 、废气等,通过电磁场的作用,可以实现废 物的有效处理和资源的回收利用。
电磁场在节能减排中的应 用
电磁场可以用于生物组织工程,通过调节电磁场的分布和 强度,可以实现对生物组织的刺激和引导,有望在组织修 复和再生方面发挥重要作用。
CHAPTER 06
附录:电磁场实验及案例分析
电磁场实验操作指南
实验1:电磁感应实验
通过观察电磁感应现象,理解法拉第电磁感应定律和楞次定律。
学生需要使用实验器材,如电源、线圈、磁铁等,进行实验操作,并观察实验结果。通过改变实验条件 ,如改变磁铁的极性或电源的电压,学生可以深入理解法拉第电磁感应定律和楞次定律。
03
学生需要了解电磁场对生物体可能产生的影响,包括热效应和非热效应。通过 研究相关文献和实验数据,学生可以讨论电磁场对生物体的影响及其安全阈值 ,并提出可行的防护措施。
THANKS
[ 感谢观看 ]
CHAPTER 02
电磁场的基本原理
库伦定律与高斯定理
数值计算是通过计算机进行数值计算的方法,可以解决各种复杂的电磁场问题,如电磁 散射、电磁感应等。
矩量法与高频近似方法
矩量法
矩量法是一种将连续的电磁场问题离散化为 一系列矩量项的方法,通过矩量项之间的相 互作用得到电磁场的解。
高频近似方法
高频近似方法是一种在高频情况下对电磁场 问题进行近似求解的方法,如RayleighSommerfeld方法等。
03
电磁场与纳米技术的 结合
纳米技术与电磁场的结合可以实现纳 米级的信息传输和能量转换,有望在 能源、医疗等领域实现创新。
电磁场在环保和可持续发展中的作用
电磁场在污染治理中的应 用
电磁场可以用于处理环境污染问题,如废水 、废气等,通过电磁场的作用,可以实现废 物的有效处理和资源的回收利用。
电磁场在节能减排中的应 用
电磁场可以用于生物组织工程,通过调节电磁场的分布和 强度,可以实现对生物组织的刺激和引导,有望在组织修 复和再生方面发挥重要作用。
CHAPTER 06
附录:电磁场实验及案例分析
电磁场实验操作指南
实验1:电磁感应实验
通过观察电磁感应现象,理解法拉第电磁感应定律和楞次定律。
学生需要使用实验器材,如电源、线圈、磁铁等,进行实验操作,并观察实验结果。通过改变实验条件 ,如改变磁铁的极性或电源的电压,学生可以深入理解法拉第电磁感应定律和楞次定律。
03
学生需要了解电磁场对生物体可能产生的影响,包括热效应和非热效应。通过 研究相关文献和实验数据,学生可以讨论电磁场对生物体的影响及其安全阈值 ,并提出可行的防护措施。
THANKS
[ 感谢观看 ]
CHAPTER 02
电磁场的基本原理
库伦定律与高斯定理
电磁场课件-第三章微带传输线
导波速度
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03
电磁场与电磁波ppt完美版课件
探究一
探究二
随堂检测
画龙点睛变化的磁场周围产生电场,与是否有闭合电路存在无关。
2.对麦克斯韦电磁场理论的理解
探究一
探究二
随堂检测
实例引导例1根据麦克斯韦电磁场理论,下列说法正确的是( )A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.周期性变化的磁场周围空间一定产生周期性变化的电场解析:根据麦克斯韦电磁场理论,只有变化的电场才能产生磁场,均匀变化的电场产生恒定的磁场,非均匀变化的电场产生变化识
自我检测
1.正误判断。(1)电磁波也能产生干涉、衍射现象。( )答案:√(2)电磁波的传播不需要介质,可以在真空中传播。答案:√2.探究讨论。为什么电磁波是横波?答案:根据麦克斯韦电磁场理论,电磁波在真空中传播时,它的电场强度和磁感应强度是相互垂直的,且二者均与波的传播方向垂直。因此,电磁波是横波。
探究一
探究二
随堂检测
规律方法理解麦克斯韦的电磁场理论的关键掌握四个关键词:“恒定的”“均匀变化的”“非均匀变化的”“周期性变化的(即振荡的)”,这些都是对时间来说的,是时间的函数。
探究一
探究二
随堂检测
变式训练1如图所示的四种电场中,哪一种能产生电磁波( )
解析:由麦克斯韦电磁场理论,当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B、C图),会激发出磁场,但磁场恒定,不会激发出电场,故也不会产生电磁波;只有振荡的电场(即周期性变化的电场)(如D图),才会激发出振荡的磁场,振荡的磁场又激发出振荡的电场……如此周而复始,便会形成电磁波。答案:D
《交变电磁场》课件
电场对物质的极化作用
在电场的作用下,物质的分子或原子会发生极化现象,即正 负电荷中心分离,形成电偶极子。
磁场对物质的作用
磁场对物质的磁化作用
在磁场的作用下,物质的分子或原子会发生磁化现象,即产生磁偶极矩,形成磁畴结构 。
磁场对物质的洛伦兹力作用
在磁场和运动电荷的共同作用下,电荷会受到洛伦兹力的作用,导致电荷的运动轨迹发 生偏转。
THANKS
新型材料在交变电磁场领域的应用将进 一步拓展,为电磁场理论和技术的发展 提供新的思路和方向。
VS
详细描述
随着科技的不断发展,新型材料如碳纳米 管、石墨烯等在交变电磁场领域的应用逐 渐受到关注。这些新型材料具有优异的电 学、热学和力学性能,为交变电磁场的发 展提供了新的可能性。
高频、高强度交变电磁场的研究
《交变电磁场》PPT课件
contents
目录
• 交变电磁场概述 • 电磁场基本理论 • 交变电磁场的产生与变化 • 交变电磁场对物质的作用 • 交变电磁场的应用实例 • 交变电磁场的发展趋势与展望
01
交变电磁场概述
定义与特性
总结词
交变电磁场的定义和特性
详细描述
交变电磁场是指电磁场的强度、方向和相位随时间变化的电磁场。它具有周期 性、振荡性和方向性的特点,是电磁波传播的媒介。
交变电磁场对物质的综合作用
交变电磁场对物质的电动力学效应
在交变电磁场的作用下,物质中的电荷和电流会受到电动力学的效应,如电磁感应、电磁波的传播等 。
交变电磁场对物质的热效应
在交变电磁场的作用下,物质会产生热效应,即电磁能转化为热能,引起物质温度的升高。
05
交变电磁场的应用实例
交流电机的原理与应用
在电场的作用下,物质的分子或原子会发生极化现象,即正 负电荷中心分离,形成电偶极子。
磁场对物质的作用
磁场对物质的磁化作用
在磁场的作用下,物质的分子或原子会发生磁化现象,即产生磁偶极矩,形成磁畴结构 。
磁场对物质的洛伦兹力作用
在磁场和运动电荷的共同作用下,电荷会受到洛伦兹力的作用,导致电荷的运动轨迹发 生偏转。
THANKS
新型材料在交变电磁场领域的应用将进 一步拓展,为电磁场理论和技术的发展 提供新的思路和方向。
VS
详细描述
随着科技的不断发展,新型材料如碳纳米 管、石墨烯等在交变电磁场领域的应用逐 渐受到关注。这些新型材料具有优异的电 学、热学和力学性能,为交变电磁场的发 展提供了新的可能性。
高频、高强度交变电磁场的研究
《交变电磁场》PPT课件
contents
目录
• 交变电磁场概述 • 电磁场基本理论 • 交变电磁场的产生与变化 • 交变电磁场对物质的作用 • 交变电磁场的应用实例 • 交变电磁场的发展趋势与展望
01
交变电磁场概述
定义与特性
总结词
交变电磁场的定义和特性
详细描述
交变电磁场是指电磁场的强度、方向和相位随时间变化的电磁场。它具有周期 性、振荡性和方向性的特点,是电磁波传播的媒介。
交变电磁场对物质的综合作用
交变电磁场对物质的电动力学效应
在交变电磁场的作用下,物质中的电荷和电流会受到电动力学的效应,如电磁感应、电磁波的传播等 。
交变电磁场对物质的热效应
在交变电磁场的作用下,物质会产生热效应,即电磁能转化为热能,引起物质温度的升高。
05
交变电磁场的应用实例
交流电机的原理与应用
电磁场理论PPT课件
I
在非稳恒情况下,电流也是连续闭合的。
传导电流与位移电流的区别:
传导电流I
位移电流I d
变化的电场
不产生焦耳热
起源
热效应
存在媒体 二、全电流
电荷的运动 有
导体
导体、电介质、真空
如果电路中同时有传导电流和位移电流通过某一截面,则二者 之和称为全电流。 dD 全电流电流密度: j全 j jd j dt d 全电流电流强度: I 全 I I d I D dt 全电流在任何情况下总是连续的。
解:
(1)电容器两极板 间的位移电流
R
r
dD dD dE 2 S R 0 Id dt dt dt
2.8( A)
(2)以两板中心连线为轴,取半径为r的圆形回路,应 用全电流定律 d D 全电流为通过 L H dl I
dt
圆形回路的电流
当r R时
B L H dl H 2r 2r
L
H dl I 全 I I d I
D dS S t
位移电流的意义: 揭示了电场和磁场的内在联系
结论:传导电流和位移电流都能激发涡旋磁场。 位移电流的引入深刻地揭示了电场和磁场的内 在联系,反映了自然界对称性的美。法拉第电磁 感应定律表明了变化磁场能够产生涡旋电场,位 移电流假设的实质则是表明变化电场能够产生涡 旋磁场。变化的电场和变化的磁场互相联系,相 互激发,形成一个统一的电磁场。
H dl I
L
I:自由电流或
S
j dS
传导电流
S曲面:以闭合曲线L为边线的曲面 I:穿过曲面S的电流强度
非稳恒电流
I
高二物理竞赛电磁场课件(共15张PPT)
各截面的磁通量Φ应该相等:
BΦ S
NI
en, B
B1S B2S 0 Φ1 Φ2
en
在气隙内,由于 l ,磁场
散开不大,故仍可认为磁场集
中在其截面与铁芯截面相等的 空间内:
Φ B0 S B
计算 B 值:应用磁场强度 H 的环路定理
r
L H dllH dlH dlNI
l
Hl H0NI
NI
又 H0Br, H0B0 0 B0
Φ( l )NI 0rS 0S
同电阻 R l 对比 S
同全电流欧姆定律 I(Rr)对比
结论:磁通、磁阻和磁动势在形式上服从欧姆定律。并且 可以证明它们也形式的服从相应的串并联规律。
无外磁场时抗磁质分子磁矩为零 m0
B0
m
B0
抗
磁 质 的 磁
q
v
F
m
q F
m v
化
m
, B0 同向时
, B0 反向时
第十一章 麦克斯韦方程组和电磁辐射
本章将对电磁规律加以总结。
首先给出麦克斯韦方程组,然后介绍电磁波的一般性质
。
1、 麦克斯韦方程组
静止电荷和恒定电流的电磁现象
静电场的高斯定律
q
E dS
S
0
静电场的环路定理
稳恒磁场的高斯定律 (磁通连续定理)
Edr 0
L
LEi drSB t dS
BdS 0
抗磁质内磁场 BB0B
三. 电磁波的能量
辐射能:以电磁波的形式传播出去的能量。
在气隙内,由于
,磁场散开不大,故仍可认为磁场集中在其截面与铁芯截面相等的空间内:
真空中的电磁场规律——
电磁波的能流密度 S wu 红外线 紫外线
BΦ S
NI
en, B
B1S B2S 0 Φ1 Φ2
en
在气隙内,由于 l ,磁场
散开不大,故仍可认为磁场集
中在其截面与铁芯截面相等的 空间内:
Φ B0 S B
计算 B 值:应用磁场强度 H 的环路定理
r
L H dllH dlH dlNI
l
Hl H0NI
NI
又 H0Br, H0B0 0 B0
Φ( l )NI 0rS 0S
同电阻 R l 对比 S
同全电流欧姆定律 I(Rr)对比
结论:磁通、磁阻和磁动势在形式上服从欧姆定律。并且 可以证明它们也形式的服从相应的串并联规律。
无外磁场时抗磁质分子磁矩为零 m0
B0
m
B0
抗
磁 质 的 磁
q
v
F
m
q F
m v
化
m
, B0 同向时
, B0 反向时
第十一章 麦克斯韦方程组和电磁辐射
本章将对电磁规律加以总结。
首先给出麦克斯韦方程组,然后介绍电磁波的一般性质
。
1、 麦克斯韦方程组
静止电荷和恒定电流的电磁现象
静电场的高斯定律
q
E dS
S
0
静电场的环路定理
稳恒磁场的高斯定律 (磁通连续定理)
Edr 0
L
LEi drSB t dS
BdS 0
抗磁质内磁场 BB0B
三. 电磁波的能量
辐射能:以电磁波的形式传播出去的能量。
在气隙内,由于
,磁场散开不大,故仍可认为磁场集中在其截面与铁芯截面相等的空间内:
真空中的电磁场规律——
电磁波的能流密度 S wu 红外线 紫外线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multiresolution Time-Domain (MRTD) Methods Wavelet-based MRTD techniques provide another means to attack complex problems having a wide range of characteristic length scales: • Battle-Lemarie scaling and wavelet functions — L. Katehi, Purdue University • Haar scaling and wavelet functions — L. Carin, Duke University
其中,
分别表示 u, v 和 w 坐标方向的网格增量, 表示时间增量.
YEE 采用具有二阶精度的中心差分方式来表示空间和 时间导数。 举例来说,考虑f 在 u 方向的空间一阶偏导数(在固 定时间 来计算 ):
i下标中的 1 2 表示 1 2 u 的差分。
The Classic FDTD Algorithm
1 FDTD的发展简单回顾
FDTD Literature Database* As of Oct. 22, 2002, the total number of entries in this NSF/ONR - sponsored database was 4793. Breakdown: — Books: 9 — Ph.D. dissertations: 162 — Masters theses: 68 — Journal articles: 2549 — Conference proceedings: 1951 — Technical reports: 15 — Miscellaneous publications: 39 *Maintained by John Schneider, Washington State University
3 FDTD的算法发展趋势 Allen Taflove
Additional Algorithm Advances • PML absorbing boundary conditions, especially for non-Cartesian and unstructured grids • Multigrid / subgrid techniques • Digital signal postprocessing, especially to analyze time-windowed data for resonances of high-Q structures • Numerical hybrids linking FDTD to other computational electromagnetics techniques • Multiphysics modeling
FDTD介绍
赵勋旺 张玉
电子工程学院
计算电磁学
计算电磁学
本讲纲要
FDTD的发展简单回顾 FDTD的应用介绍
FDTD的算法发展趋势(Allen Taflove)
FDTD的基本概念
1 FDTD的发展简单回顾
• 2nd-order accurate central space differences • 2nd-order accurate leapfrog timestepping • Absorbing boundary condition at edge of the space lattice
1 FDTD的发展简单回顾
Why FDTD is Popular • It is conceptually simple and systematic. • It is accurate and robust. • It uses no linear algebra. • It treats impulsive behavior naturally. • It treats nonlinear behavior naturally. • It readily allows multi-physics simulations. • Personal computer capabilities have caught up with the requirements of FDTD for a wide range of important engineering and physics modeling problems.
本讲回顾: 1 概括介绍了FDTD方法的发展历程以及部分应用领域。 2 引出FDTD方法的基本点,后续章节将深入讨论。
习题1: 阅读补充读物[1],了解FDTD的详细发展历程。 [1] Kurtte-Difference Time-Domain Literature ,1999
比较详细的发展过程可以参见补充读物[1]
2 ★ 天线分析
手机天线 微带天线 喇叭天线 缝隙天线 螺旋天线… 以及天线阵列
FDTD的应用介绍
简化的手机天线模型
2
FDTD的应用介绍
★ 微波器件和导行波结构的研究
波导 介质波导 微带传输 孔缝耦合 铁氧体器件 谐振腔…
w h r
z y x
微带传输结构
1 FDTD的发展简单回顾
1966年,K. S. Yee(美籍香港人)首先提出了FiniteDifference Time-Domain Method, 并用于柱形金属柱 电磁散射分析。由于当时计算机技术还比较落后,这 一方法并未引起重视。 1972年,A. Taflove应用FDTD研究了UHF和微波对人类 眼睛的穿透,以了解“微波白内障”的成因。Taflove 成功地应用和发展了Yee的FDTD算法。
1 FDTD的发展简单回顾
In 1981, Mur 提出在计算区域截断边界处的一阶和 二阶MUR吸收边界条件,并给出其在FDTD中的离散形 式。这是一种非常有效的吸收边界条件,直到目前仍 是比较被广泛采用的一种吸收边界条件。 In 1982, Umashankar and Taflove 利用FDTD计 算目标雷达散射截面( RCS )。他们引入了总场和散 射场边界作为激励的方法,这使得一般入射情形时的 散射特性可以计算。
Cloaking
2 ★ EMC,EMI
环境和结构对 系统电磁参数的影响…
FDTD的应用介绍
2
FDTD的应用介绍
★ (核)电磁脉冲的传波和散射
飞机受雷电影响分析
电磁脉冲照射 飞机表面电流分布
2 ★ 其它领域
光学器件…
FDTD的应用介绍
2
FDTD的应用介绍
3 FDTD的算法发展趋势 Allen Taflove
1 FDTD的发展简单回顾
In 1990, Sullivan 利用FDTD分析人体内电磁波特性, 这是目前比较活跃的一个研究领域,尤其是研究手机 对人体的影响. In 1994, Berenger 引入了理想匹配层 (PML) 作为 吸收边界条件 . 这使得我们可以模拟宽角度、任意极化 的电磁波的吸收情形。
3 FDTD的算法发展趋势 Allen Taflove
Algorithms for Time-Stepping Beyond the Usual Courant Limit Very recently, a “one-step” method based upon the Chebyshev polynomial expansion approximation of a quantum-mechanics-like time-evolution operator has been proposed: • H. De Raedt, K. Michielsen, J. S. Kole, and M. T. Figge, University of Groningen, The Netherlands
一维Maxwell方程的Yee算法
一维Maxwell方程Yee算法
本讲介绍 K.S. Yee提出的 FDTD 算法,它是电磁场 FDTD分析的基础。 Yee的独特之处是在空间为每一个电场和磁场分量 的空间取样选择一种特殊的网格—称之为Yee网格, 在时间上,采用了蛙跳算法,使得利用一阶导数 的二阶中心差分近似从 Maxwell 方程获得的 FDTD 公式,既满足Maxwell方程的微分形式又满足其积 分形式。 因此, Yee 的 FDTD 算法非常稳固,具有很广的应 用领域。
0.0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 20
时间步
频率(GHz)
激励源
相位(rad)
0.5
5
课程安排: 1:介绍 2:1维MAXWELL方程YEE算法 3:3维MAXWELL方程YEE算法 4:数值稳定性与数值色散(1) 5:数值稳定性与数值色散(2) 6:吸收边界条件(1) 7:吸收边界条件(2) 8:激励源(1) 9:激励源(2)
1 FDTD的发展简单回顾
1996年, Gedney 提出各向异性介质的PML(UPML), 其支配方程是各向异性介质Maxwell方程。
2001年,Gui. aut, C. and K. Mahdjoubi, MPI 2维 虚拟拓扑并行FDTD
2003年,Samii 等人利用FDTD计算PBG结构反射特性。 近年来,在生物电磁学、复杂媒质结构、PBG、有 源天线、微带电路等众多领域应用广泛。
微带功分器结构
Waveguide filter
2 ★ 电磁散射
人体对电磁波吸收 地下目标散射(探地雷达) 等离子体隐身 导弹、飞机RCS …
FDTD的应用介绍
手机对大脑影响
飞机目标散射特性
2 ★ 周期结构
频率选择表面 周期阵列天线 电磁带隙结构 …
其中,
分别表示 u, v 和 w 坐标方向的网格增量, 表示时间增量.
YEE 采用具有二阶精度的中心差分方式来表示空间和 时间导数。 举例来说,考虑f 在 u 方向的空间一阶偏导数(在固 定时间 来计算 ):
i下标中的 1 2 表示 1 2 u 的差分。
The Classic FDTD Algorithm
1 FDTD的发展简单回顾
FDTD Literature Database* As of Oct. 22, 2002, the total number of entries in this NSF/ONR - sponsored database was 4793. Breakdown: — Books: 9 — Ph.D. dissertations: 162 — Masters theses: 68 — Journal articles: 2549 — Conference proceedings: 1951 — Technical reports: 15 — Miscellaneous publications: 39 *Maintained by John Schneider, Washington State University
3 FDTD的算法发展趋势 Allen Taflove
Additional Algorithm Advances • PML absorbing boundary conditions, especially for non-Cartesian and unstructured grids • Multigrid / subgrid techniques • Digital signal postprocessing, especially to analyze time-windowed data for resonances of high-Q structures • Numerical hybrids linking FDTD to other computational electromagnetics techniques • Multiphysics modeling
FDTD介绍
赵勋旺 张玉
电子工程学院
计算电磁学
计算电磁学
本讲纲要
FDTD的发展简单回顾 FDTD的应用介绍
FDTD的算法发展趋势(Allen Taflove)
FDTD的基本概念
1 FDTD的发展简单回顾
• 2nd-order accurate central space differences • 2nd-order accurate leapfrog timestepping • Absorbing boundary condition at edge of the space lattice
1 FDTD的发展简单回顾
Why FDTD is Popular • It is conceptually simple and systematic. • It is accurate and robust. • It uses no linear algebra. • It treats impulsive behavior naturally. • It treats nonlinear behavior naturally. • It readily allows multi-physics simulations. • Personal computer capabilities have caught up with the requirements of FDTD for a wide range of important engineering and physics modeling problems.
本讲回顾: 1 概括介绍了FDTD方法的发展历程以及部分应用领域。 2 引出FDTD方法的基本点,后续章节将深入讨论。
习题1: 阅读补充读物[1],了解FDTD的详细发展历程。 [1] Kurtte-Difference Time-Domain Literature ,1999
比较详细的发展过程可以参见补充读物[1]
2 ★ 天线分析
手机天线 微带天线 喇叭天线 缝隙天线 螺旋天线… 以及天线阵列
FDTD的应用介绍
简化的手机天线模型
2
FDTD的应用介绍
★ 微波器件和导行波结构的研究
波导 介质波导 微带传输 孔缝耦合 铁氧体器件 谐振腔…
w h r
z y x
微带传输结构
1 FDTD的发展简单回顾
1966年,K. S. Yee(美籍香港人)首先提出了FiniteDifference Time-Domain Method, 并用于柱形金属柱 电磁散射分析。由于当时计算机技术还比较落后,这 一方法并未引起重视。 1972年,A. Taflove应用FDTD研究了UHF和微波对人类 眼睛的穿透,以了解“微波白内障”的成因。Taflove 成功地应用和发展了Yee的FDTD算法。
1 FDTD的发展简单回顾
In 1981, Mur 提出在计算区域截断边界处的一阶和 二阶MUR吸收边界条件,并给出其在FDTD中的离散形 式。这是一种非常有效的吸收边界条件,直到目前仍 是比较被广泛采用的一种吸收边界条件。 In 1982, Umashankar and Taflove 利用FDTD计 算目标雷达散射截面( RCS )。他们引入了总场和散 射场边界作为激励的方法,这使得一般入射情形时的 散射特性可以计算。
Cloaking
2 ★ EMC,EMI
环境和结构对 系统电磁参数的影响…
FDTD的应用介绍
2
FDTD的应用介绍
★ (核)电磁脉冲的传波和散射
飞机受雷电影响分析
电磁脉冲照射 飞机表面电流分布
2 ★ 其它领域
光学器件…
FDTD的应用介绍
2
FDTD的应用介绍
3 FDTD的算法发展趋势 Allen Taflove
1 FDTD的发展简单回顾
In 1990, Sullivan 利用FDTD分析人体内电磁波特性, 这是目前比较活跃的一个研究领域,尤其是研究手机 对人体的影响. In 1994, Berenger 引入了理想匹配层 (PML) 作为 吸收边界条件 . 这使得我们可以模拟宽角度、任意极化 的电磁波的吸收情形。
3 FDTD的算法发展趋势 Allen Taflove
Algorithms for Time-Stepping Beyond the Usual Courant Limit Very recently, a “one-step” method based upon the Chebyshev polynomial expansion approximation of a quantum-mechanics-like time-evolution operator has been proposed: • H. De Raedt, K. Michielsen, J. S. Kole, and M. T. Figge, University of Groningen, The Netherlands
一维Maxwell方程的Yee算法
一维Maxwell方程Yee算法
本讲介绍 K.S. Yee提出的 FDTD 算法,它是电磁场 FDTD分析的基础。 Yee的独特之处是在空间为每一个电场和磁场分量 的空间取样选择一种特殊的网格—称之为Yee网格, 在时间上,采用了蛙跳算法,使得利用一阶导数 的二阶中心差分近似从 Maxwell 方程获得的 FDTD 公式,既满足Maxwell方程的微分形式又满足其积 分形式。 因此, Yee 的 FDTD 算法非常稳固,具有很广的应 用领域。
0.0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 20
时间步
频率(GHz)
激励源
相位(rad)
0.5
5
课程安排: 1:介绍 2:1维MAXWELL方程YEE算法 3:3维MAXWELL方程YEE算法 4:数值稳定性与数值色散(1) 5:数值稳定性与数值色散(2) 6:吸收边界条件(1) 7:吸收边界条件(2) 8:激励源(1) 9:激励源(2)
1 FDTD的发展简单回顾
1996年, Gedney 提出各向异性介质的PML(UPML), 其支配方程是各向异性介质Maxwell方程。
2001年,Gui. aut, C. and K. Mahdjoubi, MPI 2维 虚拟拓扑并行FDTD
2003年,Samii 等人利用FDTD计算PBG结构反射特性。 近年来,在生物电磁学、复杂媒质结构、PBG、有 源天线、微带电路等众多领域应用广泛。
微带功分器结构
Waveguide filter
2 ★ 电磁散射
人体对电磁波吸收 地下目标散射(探地雷达) 等离子体隐身 导弹、飞机RCS …
FDTD的应用介绍
手机对大脑影响
飞机目标散射特性
2 ★ 周期结构
频率选择表面 周期阵列天线 电磁带隙结构 …