高频变压器的设计
高频变压器的设计公式
高频变压器的设计公式电源高频变压器的设计方法简介设计高频变压器是电源设计过程中的难点,下面以反应式电流不连续电源高频变压器为例,向大家介绍一种电源高频变压器的设计方法。
设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。
设计步骤:1、计算高频变压器初级峰值电流Ipp由于是电流不连续性电源,当功率管导通时,电流会到达峰值,此值等于功率管的峰值电流。
由电感的电流和电压关系V=L*di/dt可知:输入电压:Vin(min)=Lp*Ipp/Tc 取1/Tc=f/Dmax,那么上式为:Vin(min)=Lp*Ipp*f/Dmax其中: V in :直流输入电压,VLp :高频变压器初级电感值,mHIpp :变压器初级峰值电流,ADmax:最大工作周期系数f :电源工作频率,kHz在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f将其与电感电压相除可得:Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f) 由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax)其中:Vin(min)=1.4*Vacin(min)-20V(直流涟涉及二极管压降)=232V,取最大工作周期系数Dmax=0.45。
那么:Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A当功率管导通时,集极要能承受此电流。
2、求最小工作周期系数Dmin 在反应式电流不连续电源中,工作周期系数的大小由输入电压决定。
Dmin=Dmax/[(1-Dmax)*k+Dmax]其中:k=Vin(max)/Vin(min)Vin(max)=260V*1.4-0V(直流涟波)=364V,假设允许10%误差,Vin(max)=400V。
正激反激式双端开关电源高频变压器设计详解
正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
高频变压器设计的五个步骤
变压器的设计过程包括五个步骤:①确定原副边匝数比;为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些.为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为:②确定原边和副边的匝数;首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为③确定绕组的导线线径;在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 .为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度(4)确定绕组的导线股数绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流.原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.).副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积过大,说明磁芯太大,可选择小一些的磁芯.重新选择磁芯后,再重新计算,直到所选磁芯基本合适为止。
高频变压器的设计
高频变压器的设计高频变压器制作脉冲变压器也可称作开关变压器,或简单地称作高频变压器。
在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。
随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。
因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。
随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。
开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。
(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。
在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。
(3)绕组线路比较复杂,多半都有中心抽头。
这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。
图1 开关电源原理图本文介绍了一款如图1所示的DC―DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。
要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。
根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。
2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。
磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。
坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度Bs也不是很高,且加工工艺复杂。
考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度Bs较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。
高频变压器设计规范
高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。
2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。
3.引用/参考标准或资料无。
4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。
反激变压器:又称单端反激式变压器或Buck-Boost转换器。
因其输出端在原边绕组断开电源时获得能量故而得名。
5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。
主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。
现我司高频变压器通常采用锰锌铁氧体材料。
磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。
以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。
通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。
图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。
EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。
每种规格磁芯对应多种尺寸可供选择。
一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。
图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。
高频变压器设计与参数设计
高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。
高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。
高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。
同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。
这些特性都会影响变压器的性能,从而影响其最终的性能表现。
在设计高频变压器时,首先应考虑变压器的工作频率。
一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。
随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。
其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。
此外,还必须考虑到变压器的电压比以及母线电压。
电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。
母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。
另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。
外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。
最后,需要重点考虑变压器的绝缘系统。
绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。
总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。
最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。
专业高频变压器设计计算公式大全
专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。
下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。
(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。
(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。
2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。
(2)计算磁通量:Φ=B*A其中,Φ是磁通量。
(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。
3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。
(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。
4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。
(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。
(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。
这些公式提供了一些变压器设计的基本计算方法。
在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。
高频变压器设计
高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。
高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。
一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。
整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。
整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。
(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。
21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。
高频变压器设计公式
高频变压器设计公式加载其电感量按下式计算:线圈公式阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷ 7.06 = 8.116mH据此可以算出绕线圈数:圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋)圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)D------线圈直径N------线圈匝数d-----线径H----线圈高度W----线圈宽度单位分别为毫米和mH。
空心线圈电感量计算公式:l=(0.01*D*N*N)/(L/D+0.44)线圈电感量l单位: 微亨线圈直径D单位: cm线圈匝数N单位: 匝线圈长度L单位: cm频率电感电容计算公式:l=25330.3/[(f0*f0)*c]工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q值决定谐振电感: l 单位: 微亨1。
针对环行CORE,有以下公式可利用: (IRON)L=N2.AL L= 电感值(H)H-DC=0.4πNI / l N= 线圈匝数(圈)AL= 感应系数H-DC=直流磁化力I= 通过电流(A)l= 磁路长度(cm)l及AL值大小,可参照Microl对照表。
例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nHL=33.(5.5)2=998.25nH≒1μH当流过10A电流时,其L值变化可由l=3.74(查表)H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)即可了解L值下降程度(μi%)2。
600W双管正激变换器中高频变压器的设计方案
600W双管正激变换器中高频变压器的设计方案高频变压器是600W双管正激变换器中的核心组件,其设计方案的合理与否直接影响到整个变换器的性能和稳定性。
以下是一个设计高频变压器的一般步骤以及一些重要的设计考虑因素。
1.确定输入输出参数:设计高频变压器的第一步是确定输入输出参数,包括输入电压、输出电压和输出电流。
这些参数将直接决定变压器的设计规格和尺寸。
2.确定磁芯材料:选择适当的磁芯材料对于高频变压器的设计非常重要。
常用的磁芯材料有Ui、U、E、N、Mn、FeSi、FeCo和NiZn等。
需要根据设计要求和工作频率选择磁芯材料,并考虑磁芯的损耗、饱和磁感应强度和剩磁等因素。
3.计算变压器的参数:根据输入输出参数,计算变压器的参数,包括匝数比、磁感应强度和磁路饱和电流等。
这些参数可以通过一系列公式和计算方法得到,也可以通过电磁仿真软件进行模拟计算。
4.设计主线圈和辅线圈:根据计算结果设计主线圈和辅线圈。
主线圈是连接输入和输出的线圈,而辅助线圈主要用于调节输出电压和电流的稳定性。
线圈的匝数和绕组方式需要根据变压器的参数和使用场景来确定。
5.选择绝缘材料和绕组方式:绝缘材料的选择对于变压器的工作稳定性和安全性至关重要。
常见的绝缘材料有聚酯薄膜、纸板、气缸绝缘和涂漆。
在选定绝缘材料后,需要选择合适的绕组方式,包括层式绕组和环式绕组等。
6.优化设计:在设计过程中,需要不断进行优化,以提高变压器的性能和效率。
可以通过调整线圈的结构、优化磁芯的形状以及选择适当的电路连接方式来实现优化设计。
7.进行样品测试:完成设计后,制作样品进行测试和验证,包括输入输出电压波形、效率、温升和电气性能等。
根据测试结果进行调整和改进,以达到设计要求。
8.制造和组装:根据最终确定的设计方案,进行变压器的制造和组装。
需要注意的是,在制造过程中保证绕组的质量和精度,并进行适当的绝缘处理。
总结:设计高频变压器需要考虑诸多因素,包括输入输出参数、磁芯材料、线圈设计、绕组方式、绝缘材料等。
高频变压器的设计方法
高频变压器设计方法高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。
下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。
(1) 高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。
原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。
如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。
副绕组匝数由输出电压决定。
导线截面(直径)决定于绕组的电流密度。
还要注意的是导线截面(直径)的大小还与漏感有关。
高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排;②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。
另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。
对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。
等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。
其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。
另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。
如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。
(2) 高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。
软磁材料有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率一定的情况下,可减轻磁芯体积。
如何设计高频变压器
如何设计高频变压器随着现代电子技术的不断发展和应用,高频变压器在电子设备中扮演着重要的角色。
它是一种将交流电能从一种电压转换为另一种电压的装置。
本文将介绍如何设计高频变压器,包括选材、线圈设计等方面。
1. 选材在设计高频变压器时,选材是十分重要的一环。
首先,需要选择合适的铁芯材料。
铁芯材料的选择应考虑其磁导率、饱和磁感应强度和磁滞损耗等因素。
常见的铁芯材料有硅钢片、铁氧体等。
硅钢片具有低磁滞和低损耗的特点,适用于高频变压器。
其次,选用合适的绝缘材料,以确保电流不会产生泄露。
2. 线圈设计线圈是高频变压器中十分重要且复杂的组成部分。
在线圈设计时,需要考虑以下几个方面。
2.1 匝数计算高频变压器的输出电压与输入电压之间的比值取决于线圈匝数的比值。
因此,首先需要计算出所需的匝数比例。
匝数的选择也要考虑线圈的尺寸和结构。
2.2 线径选择线径的选择对线圈的电流承载能力和电阻有着重要影响。
通常情况下,高频变压器要求线圈电阻较小,因此选择较细的线径有利于减小电阻。
2.3 绝缘设计由于高频变压器在工作时会产生较高的电压,因此对线圈的绝缘设计尤为重要。
合适的绝缘材料和合理的绝缘结构可以确保线圈工作安全可靠。
3. 磁路设计磁路设计是高频变压器设计过程中的关键环节。
合理的磁路设计可以提高能量传输效率和减少能量损耗。
3.1 磁路长度磁路长度的选择对变压器磁感应强度和损耗有着重要影响。
通常情况下,较短的磁路长度有利于提高磁通密度和减小损耗。
3.2 磁路饱和磁路的饱和状态会导致能量损耗和变压器效率的降低。
因此,在设计过程中应合理选择铁芯的截面积和材料以避免饱和。
4. 温度控制高频变压器在工作过程中会产生一定的热量,因此需要进行有效的温度控制。
合适的散热设计和温度监测可以确保变压器的稳定工作。
综上所述,设计高频变压器需要考虑各种因素,包括选材、线圈设计、磁路设计和温度控制等。
只有综合考虑这些因素,并根据具体应用需求加以调整,才能得到高性能和高效率的高频变压器。
高频变压器设计方法
8、效率η; 9、温升∝。
二、计算步骤:1、计算视在功率PT ;视在功率PT 因工作电路不同而别,如下图:7、选用磁芯型式;高频变压器的设计方法之一一、设计条件: 1、工作电路; 2、原边电压Vp ; 3、输出电压Vo; 4、输出电流Io ; 5、开关工作频率fs ; 6、工作磁通密度Bw ; AP=Aw · Ae视在功率与线路结构关系线路(b ) PT=Po ( + 1 )线路(a ) PT=Po (1+ )线路(b) PT=Po ( +√ )AP 值是磁芯窗口面积Aw 与磁芯有效截面积Ae 的乘积,即各种磁芯的AP 示意图如下:1η1η1η2EI 叠片铁芯GC 型铁芯环形铁芯R( b )R( a )AP=()Ae Aw Le Wt Ml 其中:V01=KvAP 0.75 Wt=KwAP 0.75As=KsAP 0.5根据选取的磁芯,查出(计算)出如下参数:Le ——磁芯有效磁路长度(cm ); Wt ——磁芯重量(KG ); Ml ——绕组平均匝长(cm )。
式中:AP ——为Aw 和Ae 两面积乘积(cm 4); PT ——变压器视在功率(w ); Bw ——工作磁通密度(T ); Fs ——开关工作频率(Hz ); Ko ——窗口使用系数,一般取0.4;Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44; Kj ——电流密度比例系数; X ——与磁芯有关常数。
J= KjAP X带绕铁芯罐形铁芯KoKf FsBwKjPT ×10411 + XNp=(匝)Ip=(A)(A/cm 2)(cm )(cm 2)(Ω)(W )3、计算原边绕组匝数Np :平均匝长计算如下图:4、计算原边电流I p :5、计算电流密度J :J=Kj (Aw · Ae )X6、计算原边绕组裸线直径dP 和截面积Axp :Ppcu = I p 2Rp 8、计算副边绕组匝数:dP=1.13※式中,在有中心抽头电路时,Ip 需乘0.707的修正因素,根据计算的dP 值选取初级导线,并查出带漆皮的线径、截面积和每cm 电阻(Ω/cm )值。
高频变压器设计
高频变压器设计
设计高频变压器需要考虑以下几个方面:
1. 选择合适的磁性材料:高频变压器需要使用高效的磁性材料,如铁氧体材料或软磁合金材料。
这些材料能够有效地吸收和传导高频电磁场。
2. 选择合适的线圈和绕组设计:高频变压器的线圈和绕组需要采用低电阻、低损耗的材料,并且绕组需要紧密结合,以减小电流的涡流损耗。
3. 根据设计要求确定变压器的参数:根据设计要求,确定变压器的输入电压、输出电压、功率等参数,以及变压器的工作频率,从而确定变压器的结构和尺寸。
4. 进行磁路设计:根据变压器的磁路特性,设计合适的磁路结构,包括铁芯的形状和尺寸,以及绕组的位置和布局。
5. 进行磁路和电路的仿真和优化:使用电磁仿真软件,对变压器的磁路和电路进行仿真和优化,以改善变压器的性能。
6. 进行变压器的制造和组装:根据设计要求,制造和组装变压器,包括绕线、绝缘、封装等步骤。
同时,对制造过程进行严格的控制和测试,以保证变压器的质量和性能。
7. 进行变压器的测试和调试:对制造好的变压器进行测试和调试,包括输出电压和功率的测试,以及变压器的效率和稳定性等性能的评估。
总之,设计高频变压器需要综合考虑磁性材料、线圈和绕组、磁路结构、电路仿真和优化等多个因素,以满足设计要求并提高变压器的性能。
高频变压器设计 (2)
高频变压器设计引言高频变压器是在高频电路中广泛使用的一种电子元件,它能够将电能从一个电路传递到另一个电路,同时改变电压的大小。
高频变压器在电力转换、通信设备、医疗设备等领域具有重要的应用价值。
本文将介绍高频变压器的基本概念、工作原理和设计要点。
基本概念变压器的定义变压器是一种互感器,它是由两个或多个线圈(即初级线圈和次级线圈)共享同一个磁场而构成。
通过改变初级线圈与次级线圈的匝数比,可以实现输入电压和输出电压之间的变换。
高频变压器的特点高频变压器与低频变压器相比,具有以下特点: 1. 工作频率高:高频变压器的工作频率通常在几十kHz至上百MHz之间,远高于50Hz的低频变压器。
2. 体积小:由于高频变压器的工作频率高,变压器的尺寸可以大大缩小,适用于紧凑型电子设备的应用。
3. 能量损耗大:由于高频变压器的工作频率高,导致变压器在传递电能过程中会发生更多的损耗,需要合理设计以降低能量损失。
4. 绝缘要求高:高频变压器中由于电磁感应作用,会产生高峰值的电压,对变压器的绝缘要求较高。
工作原理高频变压器的工作原理与低频变压器类似,都是基于电磁感应原理。
当交流电流通过初级线圈时,会在铁芯内产生一个交变磁场。
这个交变磁场通过铁芯传递到次级线圈中,从而诱导出次级线圈中的交流电流。
设计要点1. 确定变压器的需求在设计高频变压器之前,首先需要确定变压器的输入电压、输出电压和功率等需求。
根据这些需求来选择合适的铁芯材料和线圈匝数比。
2. 选择合适的铁芯材料铁芯材料在高频变压器设计中起着至关重要的作用。
常见的铁芯材料有铁氧体、磁性不良合金等。
选择合适的铁芯材料可以降低能量损耗,提高变压器的效率。
3. 计算线圈匝数比线圈匝数比的确定对于高频变压器的设计也是非常重要的。
通过合理的线圈匝数比,可以实现输入电压和输出电压之间的变换。
4. 考虑绝缘问题由于高频变压器中存在较高峰值的电压,对于绝缘性能的要求也较高。
合理的绝缘设计可以确保变压器的安全性和稳定性。
AP法设计高频变压器
AP法设计高频变压器高频变压器是一种用于电能传递和变换的重要电力元件。
它可以将交流电能从一个电路转移到另一个电路,同时改变电压和电流的比例。
高频变压器在电子设备和电力系统中广泛应用,具有体积小、效率高和响应时间快等优点。
本文将以AP法(Air-Gap Power Transformer)为例,详细介绍高频变压器的设计。
一、高频变压器的结构和工作原理高频变压器的基本结构由两个或多个绕组、铁芯和外部绝缘层组成。
其中铁芯通过提供磁耦合效应来支撑变压器的工作,绕组则对电流进行传输和调节。
高频变压器按照铁芯结构可以分为显性铁芯和暗性铁芯。
常见的显性铁芯包括EI型铁芯、环形铁芯和矩形铁芯等,暗性铁芯则采用微波磁芯或铁氟龙材料。
高频变压器的工作原理可以总结为两个方面:基频交流信号的传输和变压,以及高频信号的耦合和变换。
二、高频变压器设计的基本步骤1.确定设计要求:根据实际应用需求,确定变压器的输入电压、输出电压、功率和工作频率等参数。
2.计算绕组参数:根据输入输出参数计算绕组元件的电压、电流和匝数。
根据电流和匝数计算线圈长度和截面积,并进行冷却和散热分析。
3.计算铁芯参数:根据绕组参数和工作频率计算铁芯的磁导率、磁链密度和截面积等参数,确定铁芯的材料和尺寸。
4.优化设计:根据计算结果对各个参数进行优化,以提高变压器的效率和响应速度。
5.确定绝缘和外壳形式:根据设计需求选择合适的绝缘材料和外壳形式,确保变压器的电气安全性和机械强度。
三、高频变压器设计中的关键技术1.绕组设计:合理的绕组设计可以减少电流损耗和漏磁现象,提高变压器的效率。
设计时可以采用多层绕组、薄绝缘线和高填充因子。
2.铁芯设计:合适的铁芯材料和结构可以提供足够的磁导率和饱和磁场,从而减小磁耦合误差和磁滞损耗。
3.冷却设计:高频变压器由于工作在高频范围内,容易产生大量的热量。
合理的冷却设计可以增加变压器的功率容量和寿命。
4.电磁屏蔽设计:在高频环境中,电磁干扰是一个非常重要的问题。
高频变压器设计
高频变压器参数计算方法一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=10^4高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N^2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I^2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级线圈的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率管所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比 D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频变压器的设计高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。
高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。
单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。
在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。
高频变压器是开关电源中进行能量储存与传输的重要部件,单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。
为此,一个高效率高频变压器应具备直流损耗和交流损耗低、漏感小、绕组本身的分布电容及各绕组之间的耦合电容要小等条件。
高频变压器的直流损耗是由线圈的铜损耗造成的。
为提高效率,应尽量选择较粗的导线,并取电流密度J=4~10A/mm2。
高频变压器的交流损耗是由高频电流的趋肤效应以及磁芯的损耗引起的。
高频电流通过导线时总是趋向于从表面流过,这会使导线的有效流通面积减小,并使导线的交流等效阻抗远高于铜电阻。
高频电流对导体的穿透能力与开关频率的平方根成反比,为减小交流铜阻抗,导线半径不得超过高频电流可达深度的2倍。
可供选用的导线线径与开关频率的关系曲线如图1所示。
举例说明,当f=100kHz时,导线直径理论上可取φ0.4mm。
但为了减小趋肤效应,实际可用更细的导线多股并绕,而不用一根粗导线绕制。
在设计高频变压器时必须把漏感减至最小。
因为漏感愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就愈大,这必然导致电源效率降低。
对于一个符合绝缘及安全性标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%。
要想达到1%以下的指标,在制造工艺上将难于实现。
减小漏感时可采取以下措施:o减小初级绕组的匝数NP;o增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b);o增加绕组的高、宽比;o减小各绕组之间的绝缘层;o增加绕组之间的耦合程度。
电源高频变压器的设计方法设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,介绍一种电源高频变压器的设计方法。
设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。
设计步骤:1、计算高频变压器初级峰值电流Ipp2、求最小工作周期系数Dmin3、计算高频变压器的初级电感值Lp4、计算出绕组面积Aw和铁心有效面积Ae的乘积Aw*Ae,选择铁心尺寸。
5、计算空气间隙长度Lg6、计算变压器初级线圈Np7、计算变压器次级线圈Ns高频变压器:整流、变压在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。
随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。
因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。
作为开关电源最主要的组成部分,高频变压器相对于传统的工频变压器有以下优点:利用铁氧体材料制成的高频变压器具有转换效率高、体积小巧的特点;而传统的工频变压器工作在50Hz下,输出相同功率时需要较大的截面积而导致变压器体积庞大,不利于电源的小型化设计,而且电源转换效率也低于开关电源。
电脑使用的开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电。
在这个电路中,开关管的最大电流对电源输出功率的大小有一定的限制(通常应用于300W电源的MOS管体积较大,有的电源甚至使用了耐流达到10A的开关管),而高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少,由于工作在很高的频率下,对元件质量的要求和线路的搭配有很高的要求。
抑制高频变压器的音频噪声高频变压器EE或EI型磁芯之间的吸引力,能使两个磁芯发生位移;绕组电流相互间的引力或斥力,也能使线圈产生偏移。
此外,受机械振动时能导致周期性的形变。
上述因素均会使高频变压器在工作时发出音频噪声。
10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz。
为防止磁芯之间产生相对位移,通常以环氧树脂作胶合剂,将两个磁芯的3个接触面(含中心柱)进行粘接。
但这种刚性连接方式的效果并不理想。
因为这无法将音频噪声减至最低,况且胶合剂过多,磁芯在受机械应力时还容易折断。
国外最近采用一种特殊的“玻璃珠”(glass beads)胶合剂,来粘合EE、EI等类型的铁氧体磁芯,效果甚佳。
这种胶合剂是把玻璃珠和胶着物按照1:9的比例配制而成的混合物,它在100℃以上的温度环境中放置1h即可固化。
其作用与滚珠轴承有某种相似之处,固化后每个磁芯仍能独立地在小范围内产生形变或移位,而总体位置不变,这就对形变起到了抑制作用。
用玻璃珠胶合剂粘接的高频变压器内部。
采用这种工艺可将音频噪声降低5dB。
高频变压器的屏蔽为防止高频变压器的泄漏磁场对相邻电路造成干扰,可把一铜片环绕在变压器外部,该屏蔽带相当于短路环,能对泄漏磁场起到抑制作用,屏蔽带应与地接通。
基本知识将两个线圈靠近放在一起,当一个线圈线中的电流变化时,穿过另一线圈的磁通会发生相应的变化,从而使该线圈中出现感应电势,这就是互感现象。
变压器就是根据互感原理制成的。
按工作频率分,有高频变压器、中频变压器、低频变压器、脉冲变压器。
如收音机的磁性天线,它是高频;在收音机的中频放大级,用的是中频的,俗称“中周”;低频的种类较多,有电源变压器、输入变压器等;电视机的行输出变压器,也称“高压包”,它是一种脉冲变压器。
变压比、额定功率、温升、效率、空载电流、绝缘电阻均为其主要技术参数。
在电路中电压变换、电流变换、传递功率、阻抗匹配、或阻抗变换等用途。
电子变压器在电源技术中的作用作用电子变压器和半导体开关器件,半导体整流器件,电容器一起,称为电源装置中的4大主要元器件。
它在电源装置中的作用:o起电压和功率变换作用;o起传递宽带、声频、中周功率和信号作用;o起传递脉冲、驱动和触发信号作用;o起原边和副边绝缘隔离作用;o起单相变三相或三相变单相作用,起改变输出相位作用;o起改变输出频率作用;o起改变输出阻抗与负载阻抗相匹配作用;o起稳定输出电压或电流作用,起调节输出电压作用;o起交流和直流滤波作用;o起抑制电磁干扰作用,起抑制噪声作用;o起吸收浪涌电流作用,减缓电流变化速率;o起储能作用,起帮助半导体开关换向作用;o起开关作用;o起调节电感作用;o起变换电压、电流或脉冲检测信号。
从以上的列举可以看出,不论是直流电源,交流电源,还是特种电源,都离不开电子变压器。
有人把电源界定为经过高频开关变换的直流电源和交流电源。
在介绍软磁电磁元件在电源技术中的作用时,往往举高频开关电源中的各种电磁元件为例证。
同时,在电子电源中使用的软磁电磁元件中,各种变压器占主要地位,因此用变压器作为电子电源中软磁元件的代表,称它们为“电子变压器”。
绕制变压器的材料要绕制一个变压器我们必须对有关的材料要有一定的认识,下面为你提供了这方面的知识。
1、铁心材料:使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。
我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000。
2、通常用的材料有漆包线,沙包线,丝包线,最常用的漆包线。
对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。
一般情况下最好用Q2型号的高强度的聚脂漆包线。
3、绝缘材料在绕制过程中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。
4、浸渍材料:绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。
高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此其设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。
有时可能偏重性能和效率,有时可能偏重价格和成本。
现在,轻、薄、短、小,成为它的发展方向,是强调降低成本。
其中成为一大难点的高频电源变压器,更需要在这方面下功夫。
如果能认真考虑一下它的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。
不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。
往往一种新产品最后被成本否决。
一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思。
产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。
因此,为了节约时间,根据以往的经验,对它的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计。