高频变压器的设计(hao).ppt

合集下载

高频变压器设计

高频变压器设计

高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。

在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

高频变压器的设计

高频变压器的设计

组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/7/15
8
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
2020/7/15
2
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/15
3
2020/7/15
4
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/7/15
1
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。

高频变压器设计

高频变压器设计

5高频率的功率变压器THE HIGH-FREQUENCY POWER TRANSFORMER5-0概论(INTRODUCTION)很多科学家认为磁性元件的设计是一种“高深的技术”,其实这乃是一种最重的错误观念。

磁性元件的设计乃为精密的科学,而那些所有正确的基本电磁定律,乃由以前的科学家们所研究发展出来,如Maxwell, Ampere , Oersted ,与Gauss等人。

本章主要目的就是介绍基本的磁学定律,而且为了实际的电磁元件设计,如线圈与变压器,我们将以简单的,合逻辑的,有条理的方式来深入浅出介绍磁性与电性之间存在的关系。

5-1电磁的原理(PRINCIPLES OF ELECTROMAONETISM)考虑如图5-1所示的简单电路,此由电压源V,开关S与负载L,组成一个空气线圈(air coil)的电路,如果在某些情况下,开关S被关闭(closed),则会有电流I产生经由线上流至负载,当电流通过线圈时,就会有磁场被建立起来,如图中所示,连接于线圈之间所产生的磁场,此乃为称之为磁通量(flux),而磁场中的磁力线可称之为磁通链(flux linkages)。

图5-1流经空气线圈的电流I会有磁通量的产生图5-2 铁磁材料棒置于线圈之内会产生较多或较强的磁通量然而,在此线圈中的磁通量并不会很大,如果我们在线圈中加入磁性材料(铁磁材料)棒,则会有额外的磁场被感应产生,因此,也就会有更多的磁通量被产生,如图5-2所示。

而磁通链将沿着磁棒前进,并经由空气传导路径形成一回路,如果铁磁铁心(ferromagnetic core )以此种方式构成并取代了磁棒,则磁通就会呈现一连续的路径,且磁场将形成于铁心之内,因此所感应的磁场就会较强大,如图5-3所示。

图5-3 连续的铁磁性铁心会限制所有的磁通量于铁心内并有很强的磁场产生在磁场上某一点所测量的磁通聚集程度,我们称之为磁通量密度(magnetic flux density )或是磁感应(magnetic induction),以符号B 来表示。

高频变压器设计

高频变压器设计

高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。

高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。

一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。

整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。

整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。

(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。

21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。

高频变压器设计

高频变压器设计

高频变压器设计———领料———工程图及作业指导书确认———一次侧绕线———一次侧绝缘———二次侧绕线———二次侧绝缘———焊锡———铁粉芯研磨———铁粉芯组装———加工铜箔———半成品测试T1———电感值测试———漏电感值测试———直流电阻测试———相位测试———圈数比测试———高压绝缘测试———凡立水处理(真空含浸) ———阴乾处理———烤箱烤乾处理———加包外围胶带———整脚处理———切脚处理———贴危险标签及料号标签———外观处理———成品电气测试T——电感值测试——漏电感值测试——相位测试——圈数比测试——高压绝缘测———QA至终检区——尺寸外观检查电气测试装箱———入库2.低频变压器制作流程图.———领料———工程图确认及作业指导书———一次侧绕线———一次侧绝缘———二次侧绕线———二次侧绝缘———引线组装及焊锡———半成品断线测试T1 ———线架组装及矽钢片组装———矽钢片补片敲平———铁带组装———半成品测试T2电压测试电流测试高压绝缘测试———凡立水处理(真空含浸) ———阴乾处理———烤箱烤乾处理———加包外围胶带———整脚处理———切脚处理———贴危险标签及料号标签———外观处理———成品电气测试T3电压测试电流测试高压绝缘测试———QA至终检区--—尺寸外观检查电气测试装箱———入库3.圆盘制作流程图.———领料———工程图确认及作业指导书———铁芯加工———固定铁芯———绕线———固定———上线盘———刷凡立水———阴乾———剪线———剥漆———上套管,端子———焊锡———外观———贴标签———包装———入库4.ADAPTOR制作流程图.———领料———工作指令及作业指导书确认———插件———焊锡———切脚———补焊———焊DC CORD ———剪DC线头———清理PCB板———折PCB板———PCB板测试T1 ———焊次级至PCB ———焊初级至AC PIN ———半成品电气测试T2 ———组装CASE ———超音波封壳———成品电气测试T3———贴铭板———尺寸外观检查———装箱———FQC检验———入库5. T CORE线圈制作流程图.———领料———工程图确认及作业指导书———裁线———钩线———上底座———压脚.整脚———焊锡———半成品测试T1 ———含浸处理———阴乾处理———烘烤处理———冷却处理———剪脚———外观———成品测试T2 ———包装———FQC检验———入库6. R CORE线圈制作流程图.———领料———工程图确认及作业指导书———卷线———焊锡———上铁芯(点A.B胶) ———烤胶———上套管(或含浸处理)———烘烤套管(或烤乾凡立水) ———切脚———外观———测试T1 ———包装———FQC检验———入库7. DR CORE线圈制作流程图.———领料———工程图确认及作业指导书———绕线———理线压脚———焊锡———上套管———烘烤套管———切脚———外观———测试T1 ———包装———FQC检验———入库高频变压器设计高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

《高频变压器的介绍》课件

《高频变压器的介绍》课件
工作原理
基于电磁感应原理,通过在变压 器绕组中通入交流电,产生变化 的磁场,进而在另一绕组中感应 出电压。
分类与特点
分类
根据工作频率、用途、结构等特点, 高频变压器可分为多种类型,如电子 变压器、开关电源变压器等。
特点
体积小、重量轻、效率高、性能稳定 等。
应用领域
01
02
03
通信领域
用于信号传输、功率放大 等。
为了控制温升,需要采取有效的散热措施,如自然冷却、强制风冷等,以保持变 压器正常工作温度。
电压与电流容量
电压
高频变压器需要能够承受一定的输入电压和输出电压来自以确 保正常工作。电流容量
高频变压器需要能够承受一定的输入电流和输出电流,以满 足负载的需求。
05
高频变压器的应用实例
通信设备中的高频变压器
通信设备中的高频变压器主要用于信号传输和转换,例如在无线通信基站和卫星 通信设备中,高频变压器作为关键元件,实现信号的变频和功率放大等功能。
高频变压器在通信设备中需要具备高效率、低损耗和高可靠性等特性,以确保信 号传输的质量和稳定性。
电力电子设备中的高频变压器
电力电子设备中的高频变压器主要用于实现高压直流电( HVDC)的转换和传输,例如在高压直流输电(HVDC)系 统和无功补偿装置(SVC)中,高频变压器起到至关重要的 作用。
随着电子设备的小型化,高频变压器 也需要不断缩小体积,提高功率密度 。
集成化
将多个高频变压器集成在一个模块中 ,可以减小占用空间,提高设备的可 靠性和稳定性。
高频变压器在新能源领域的应用
风力发电
高频变压器可以用于风力发电系统的能源转换和 传输。
太阳能发电
高频变压器可以用于太阳能发电系统的能源转换 和传输。

高频变压器培训教材PPT课件

高频变压器培训教材PPT课件

线后开始绕线,原则上绕线应在指定的范围内绕线,不可上档墙胶带.
2.绕线方式
根据变压器要求不同,绕线的方式大致可分为以下几种:
2.1一层密绕:布线只占一层,紧密整齐的扁平电缆,线与线间没有空隙.(如圖6.1)
2.2均等绕:在绕线范围内以相等的间距进行绕线.(如圖6ห้องสมุดไป่ตู้2)
2.3多层密绕:在一个绕组一层无法绕完时,必须绕至第二层或二层以上,此绕
槽方式出线,若同一PIN有多组可使用同一凹槽或相邻的凹 槽出线,唯在焊锡及装套管时要注意避免短路。
17
高频变压器制作工艺
图 6.3
18
高频变压器制作工艺
19
高频变压器制作工艺
3.3绕线时需均匀整齐绕满BOBBIN绕线区为原则,除工程图面上有特别规 定绕法时,则以图面为准。
3.4变压器中有加铁氟龍套且有折回线时,其出入线所加之铁氟龍套管须与 BOBBIN凹槽口齐平(如图1),并自BOBBIN凹槽出线以防止因套管过长 造成拉力将线扯断。但若為LPIN水平方向缠线, 则套管应与BOBBIN 边齐平(或至少2/3长)。(如圖2)
6
高频变压器特性及用途
三. 变压器特性及用途:
1.EE,EI,EC,ER,ETD型变压器:
1.1特性: 工作频率高(20-500KHZ) 功率大(达1000W) 热稳定性高
1.2.用途: 开关电源主变压器,驱动变压器,辅助变压器,广泛应用于计算器,电源,UPS,显示
器,彩电及各类电子设备等.
2.PM,PQ型变压器:
14
三、高频变压器作业流程
───高压绝缘测试 ─── 外观检查1 ───含浸烘烤 ─── 整脚 ─── 洗脚 ─── 印字或贴标签 ─── 外观检查2 ───合脚 ─── 高压测试 ─── 成品测试(电感,漏感,直流电阻,相位,圈數比测试) ───包装入库

高频变压器设计

高频变压器设计

高频变压器设计
设计高频变压器需要考虑以下几个方面:
1. 选择合适的磁性材料:高频变压器需要使用高效的磁性材料,如铁氧体材料或软磁合金材料。

这些材料能够有效地吸收和传导高频电磁场。

2. 选择合适的线圈和绕组设计:高频变压器的线圈和绕组需要采用低电阻、低损耗的材料,并且绕组需要紧密结合,以减小电流的涡流损耗。

3. 根据设计要求确定变压器的参数:根据设计要求,确定变压器的输入电压、输出电压、功率等参数,以及变压器的工作频率,从而确定变压器的结构和尺寸。

4. 进行磁路设计:根据变压器的磁路特性,设计合适的磁路结构,包括铁芯的形状和尺寸,以及绕组的位置和布局。

5. 进行磁路和电路的仿真和优化:使用电磁仿真软件,对变压器的磁路和电路进行仿真和优化,以改善变压器的性能。

6. 进行变压器的制造和组装:根据设计要求,制造和组装变压器,包括绕线、绝缘、封装等步骤。

同时,对制造过程进行严格的控制和测试,以保证变压器的质量和性能。

7. 进行变压器的测试和调试:对制造好的变压器进行测试和调试,包括输出电压和功率的测试,以及变压器的效率和稳定性等性能的评估。

总之,设计高频变压器需要综合考虑磁性材料、线圈和绕组、磁路结构、电路仿真和优化等多个因素,以满足设计要求并提高变压器的性能。

高频变压器培训教材ppt课件

高频变压器培训教材ppt课件

4
二、高频变压器特性及用途
一.变压器的种类与用途: 1.电源变压器:主要用于电压变换,通常为降压变压器,以适应电 子设备低压电源的要求,依铁芯形状的不同分: 1.1迭片式变压器:工艺简单,价格便宜,用于电视机.收录机…. 1.2卷绕式变压器:工艺复杂,价格高,用于要求较高的电子设备中. 2.脉冲变压器:主要用于工作电流,电压的的非正脉冲状态,铁芯 须用高频整体磁芯,若用钢片铁芯,则易形成涡流而无法正常 工作. 3.低频变压器:结构与电源变压器相类似,主要用于阻抗变换,工 作于音频范围(30HZ~20KHZ) 4.中频和高频变压器:中频与高频变压器在频率上没有明显的 区分界限,而从结构与外形及用途上有如下特征. 中频变压器:一般固定在金属屏蔽壳内,避免外界电磁干扰,主 要用于阻抗变换和调频的作用.
3
变压器之工作原理
3.两种性能的变压器及兩绕组之间的关系:
变压器兩组线圈圈數分别为N1和N2,N1为初级,N2 为次级.在初级线圈上加一交流电压,在次级线圈兩端就 会产生感应电动势.当N2>N1时,其感应电动势要比初级 所加的电压还要高,这种变压器称为升压变压器:当 N2<N1时,其感应电动势低于初级电压,这种变压器称为 降压变压器.初级次级电压和线圈圈數间具有下列关系: V2 N2 --- = --- = n V1 N1 式中n称为电压比(圈數比).当n<1时,则N1>N2, V1>V2,该变压器为降压变压器.反之则为升压变压器.变 压器的表示图如下:
8.1特性: 价格低 电流大 损耗小 8.2用途: 扼流线圈EMI/RFI虑波,广泛应用于各类开辟电源,控制电路及电子 设备等.
10
高频变压器特性及用途
9.工字型电感:
9.1特性: 储能高 损耗小 价格低 9.2用途: 隔波清除,RF虑波,输出扼流圈,EMI/RFI虑波,广泛应用于计算器,显 示器,彩电及各种电子设备等.

高频变压器设计

高频变压器设计

高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。

在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

高频变压器的设计haoPPT精品文档30页

高频变压器的设计haoPPT精品文档30页
1)双极性:电路为半桥、全桥、推挽等。变压器一次绕组里正负 半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通 变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中 的直流分量基本抵消。
2)单极性:电路为单端正激、单端反激等,变压器一次绕组在1个 周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器 磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化, 这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高 △B,降低匝数,减小铜耗。
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/4/24
1
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。
其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。
2020/4/24
10
磁芯结构 E cores
Planar E Cores
EFD Cores ETD Cores ER Cores U Cores RM Cores EP Cores P Cores Ring Cores
变换器电路类型
反激式 正激式
推挽式
+
+
0
-
+
0
-
+
+
0
+
+
0
+
+
+
0
0

高频变压器简介PPT76页

高频变压器简介PPT76页
高频变压器简介
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

高频变压器应用技术优秀PPT完整PPT

高频变压器应用技术优秀PPT完整PPT
高频变压器应用技 术
第一章 磁学基础
磁学基本物理量

电磁基本定律

变压器基本模型


磁路及气隙
小结。
1.1 磁的基本现象
气隙断面间的磁场B基本上是均匀的, 法拉第定律和楞次定律总称为电磁感应定律。
下有引能磁的如自相性物果然互的质将界吸过称两中引程为个有磁,称磁一这为介极类种磁质靠物性化。近质质,,,我能磁如们够极铁称被间,他磁会钴们化产,具或生镍有能作等磁被用,性磁力在性,。一物使磁定质他极情所们之况吸具间 气磁磁3电通 气自,注材以对 (HΦ3气((方磁气BH气法的=的隙滞化磁过隙然能意料环于3降隙13向路隙隙拉磁磁0) ) )CC,断 回 曲 力 共断 界 够 : 的 形 N为 填 的 的 短 填 第学学GG由匝矫初B面线线F同 面中被磁线零充任计路充定的的S某S=于,线顽次单单间:达的 间有磁导圈而材意算。材律0基基点磁电开圈磁级位位的铁到磁 的一化率为B料闭满料和本本的芯流始,力线:不:磁磁接通 磁类或相例的合足的楞物物磁μI磁其圈H高,为麦场性近耦 场物能对:放回基放次理理不和场c化总具斯零克物水合 质被于置路尔置定BB量量是磁强基基的磁有(,斯质平的 ,磁真对的霍对律无感度本本曲通电G这韦在时线如性空于磁夫于总限应大s上上线阻种(反,圈 铁物磁保势基保称ψ)大强小是是,=。BM复不, ,质导持的本持为,度,N均均称x的磁再构 钴所率磁代定磁电存B并φ)匀匀为三改化随成 ,吸的芯数律芯磁在称不的的初者变过外了 镍引比在和。在感一为代,,始是落程磁简 等的值结等结应定磁表磁正后中场单 ,物称构于构定电链该化交于的增的 在质为上磁上律感点曲关H大变 一称相的压的。B量磁-线系的而压 定为对平降平H,场。关,改明器 情磁磁衡的衡即的系符变显。 况介导是代是激强(合的增下质率很数很磁弱在左现大能。关和关μ电,r+手象。所相键。键感代H定称对互的的m。表则为应吸。。和磁。磁的引-场H滞,Bm强值。这弱间。种的,性是近质磁似我感对们应称称强于他度原们B点,具的磁有闭场磁合强性曲度,线H使)应他。当们是具外有加磁的性磁的化过强程度称。为磁化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2. 计算AP
(用Excel表格来计算AP值)
4 P * 1 0 4 T A P 0 . 7 8 3 c m B * f * 1 0 0 0 ** JK m s u
式中:
J电流密度,通常取395A/cm2; Ku是铜窗有效使用系数,根据安规要求和输出路数决定,一般 取0.2~0.4。在此计算取0.4
2019/3/24
17
设计变压器主要有很两种方法:面积积AP法 积Ae与线圈有效窗口面积Aw的乘积。
AP:磁芯截面
PT-变压器的计算功率 Ae-磁芯有效截面积 Aw-磁芯窗口面积 Ko-磁芯窗口利用系数,典型值为0.4 Kf-波形系数,方波为4,正弦波为4.44 Bw-磁芯的工作磁感强度
Fs-开关工作频率
2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如
必要,还要经过变压器温升校核后进行必要的调整。
2019/3/24
8
4.线圈参数:
一般用的绕组排列方式:原绕组靠近磁芯,副绕组反
馈绕组逐渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可
以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在
不高,磁致伸缩大,对温度变化比较敏感。选择哪一类
软磁铁氧体材料更能全面满足高频变压器的设计要求,
进行认真考虑,才可以使设计出来的变压器达到比较理
想的性能价格比。
2019/3/24
3
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需
2019/3/24 13
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类: 1)双极性:电路为半桥、全桥、推挽等。变压器一次绕组里正负 半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通 变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中 的直流分量基本抵消。 2)单极性:电路为单端正激、单端反激等,变压器一次绕组在1个 周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器 磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化, 这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高 △B,降低匝数,减小铜耗。
Kj-电流密度系数,取395A/cm2 X-磁芯结构系数,P107表3-8
2019/3/24 18
按照功率变压器的设计方法,用面积积AP法 设计变压器的一般步骤: 1 .选择磁芯材料,计算变压器的视在功率; 2. 确定磁芯截面尺寸AP,根据AP值选择磁芯 尺寸; 3. 计算原副边电感量及匝数; 4. 计算空气隙的长度; 5. 根据电流密度和原副边有效值电流求线径; 6. 求铜损和铁损是否满足要求(比如:允许 损耗和温升)
2019/3/24 25
次级线径:
I 0 d 1 . 1 3 * 1 . 0 m m w p J
用4根直径为0.25mm(AWG #31)的线并绕。 电流趋肤深度的计算
7 6 .5 * fs * 1 0 0 0 0 .3 1 m m d * 2 * 0 .9 0 .5 5 8 m m W H
2019/3/24
21
根据上图,选择大于计算AP值的磁芯 EE3528,相关参数是:
Ae:84.8mm2
Wa:158mm2
2019/3/24
AP:1.3398cm4
AL:2600nH/H2
22
反为了适应突变的负载电流,把电源设计在临界模式: 临界电流I0B=0.8×I0=2.4A 3. 计算原、副边电感量及匝数
2019/3/24 14
变压器或者电感根据在拓扑结构中的工作方式分为三大类: 1、 直流滤波电感工作状态,电感磁芯只工作在一个象限。属于这 类工作状态的电感有Boost电感、Buck电感、Buck/boost电感、
正激以及所有推挽拓扑变换器输出滤波电感、单端反激变换器
变压器; 2、正激变换器中的变压器,磁芯也只工作在一个象限, 但变压器要进行磁复位。 3、 推挽拓扑中的变压器,磁芯是双向交变磁化,属于这
模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面
积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
2019/3/24 6
2019/3/24
7
4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式, 绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取 J为
可能要用气隙磁通边缘效应校正匝数
பைடு நூலகம்5.原、副边及辅助绕组的线径
有两种方法:1、求裸线面积; 2、求导线直径 (J电流密度取 4A/mm2)
I * 0 . 7 7 3 2 r m s A 0 . 7 3 1 * 1 0 c m x p J
I p r m s d 1 . 1 3 * 0 . 3 4 6 m m w p J 用两根直径为0.18mm线并绕,或者用AWG #28单股线

2019/3/24 1
●高频变压器设计程序:
1.磁芯材料 2.磁芯结构 3.磁芯参数
4.线圈参数
5.组装结构
6.温升校核
2019/3/24
2
1.磁芯材料
软磁铁氧体由于自身的特点在开关电源中应用很广泛。
其优点是电阻率高、交流涡流损耗小,价格便宜,易加
工成各种形状的磁芯。缺点是工作磁通密度低,磁导率
2019/3/24 19
电源的基本参数如右: 选择反激拓扑。
1. 选择磁芯材料,确定变压器的视在功率PT; 考虑成本因数在此选择PC40材质,查PC40资料得 Bs=0.39T Br=0.06T
B B B 0 . 3 9 T 0 . 0 6 T 0 . 3 3 T m a x s r
类的变换器有推挽变换器、半桥和全桥变换器、交流滤波电感
等。
2019/3/24
15
(2)在高频下具有较低的功率损耗 铁氧体的功率损耗,不仅影响电源输出效率,同时会导致磁心发 热,波形畸变等不良后果。 变压器的发热问题,在实际应用中极为普遍,它主要是由变压器 的铜损和磁心损耗引起的。如果在设计变压器时,Bm选择过低, 绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁 心发热。反之,若磁心发热为主体,也会导致绕组发热。 选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关 系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而 温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将 使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁 氧体时,必须解决磁性材料本身功率损耗负温度系数问题,这也是 电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的 R2KB等材料均能满足这一要求。
变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
最外层的绕组排列形式,这样有利于原绕组对磁芯的
绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕
组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2019/3/24 9
5.组装结构: 高频电源变压器组装结构分为卧式和立式两种。如果 选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
2019/3/24
23
原、副边峰值电流
原、副边及辅助绕 组的匝数
2019/3/24
24
为了避免磁芯饱和,在磁回路中加入一个适当的气隙,计 算如下: l
g

2 8 0 .4 *N 1 0 p *A e*
L p
2 0 .4 * 3 .1 4 1 5 6 * 1 0 6 * 8 4 .8 0 .8 3 m m 1 4 3 4 * 0 .0 0 1
2019/3/24
16
(3)适中的磁导率 相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率 来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以 下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段 的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。 (4)较高的居里温度 居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温 度在200℃以上,但是变压器的实际工作温度不应高于80℃,这是 因为在100℃以上时,其饱和磁通密度Bs已跌至常温时的70%。因 此过高的工作温度会使磁心的饱和磁通密度跌落的更严重。再者, 当高于100℃时,其功耗已经呈正温度系数,会导致恶性循环。对 于R2KB2材料,其允许功耗对应的温度已经达到110℃,居里温度 高达240℃,满足高温使用要求。
要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2019/3/24
4
2019/3/24
5
3.磁芯参数:
磁芯参数设计中,要特别注意工作磁通密度不只是
受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工
作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作
相关文档
最新文档