通信原理实验报告--脉冲编码调制与解调实验

合集下载

云南师范大学通信原理实验-05(脉冲编码调制与调解PCM)

云南师范大学通信原理实验-05(脉冲编码调制与调解PCM)

9
二.实验过程
1、实验现象及结果 ① 按照步骤一的连接好实验实物,如图:
测得 PCM 编码信号(PCMB-OT)的波形如下:
10
与上路帧同步信号对比波形为:
11
两者比较波形如下:
其中上路系带模拟信号(S-IN)与下路 PCM 解调信号(JPCM)波形如下:
12
课后总结及思考: 1、TP3067 PCM 编码器输出的 PCM 码的速率是多少?在本实验中,为什么要给 TP3067 提供 2.048MHz 的时钟? 答:TP3067 PCM 编码器输出的 PCM 码的速率是 64Kb/S,属于国际标准。 由 PCM 帧结构知,l 帧共有 32 路时隙,每路时隙 8bit,每秒有 8000 帧,故 30/32 路 PCM 基群的码率为:8000*32*8=2.048Mb/s,即 TP3067 提供的 PCM 编译码电路的时钟 频率。 2、在脉码调制中,选用折叠二进码为什么比选用自然二进码好? 答:采用折叠二进码可以大为简化编码的过程,而且在传输过程中如果出现误码,对 小信号的影响较小,有利于减小平均量化噪声。 3、脉冲编码调制系统的输出信噪比与哪些因素有关? 答:均匀量化器的输出信号量噪比为 S/Nq=M2。对于 PCM 系统,解码器中具有这个 信号量噪比的信号还要通过低通滤波器。用 N 位二进制码进行编码时,上式可写为 S/Nq=22N。这表明,PCM 系统的输出信号蓐噪比仅和编码位数 N 有关,且随 N 按指数 规律增大。对于一个频带限制在 f 的低通信号,按抽样定理,有 S/Nq=22(B/f) ,即 PCM 系统的输出信号晕噪比随系统的带宽 B 按指数规律增长。
2
低功耗工作电流 30mA,备用状态时只有 100pA 出,与 TTL 电平兼容。 一般商业品工作温度范围为 0-70℃,工业品为-40-+85℃。 实物图如下:

实验四 脉冲编码调制与解调实验(PCM)

实验四 脉冲编码调制与解调实验(PCM)

实验四脉冲编码调制与解调实验(PCM)一、实验目的1、掌握抽样信号的量化原理。

2、掌握脉冲编码调制的基本原理。

3、了解PCM系统中噪声的影响。

二、实验内容1、对模拟信号脉冲编码调制,观测PCM编码。

2、将PCM编码解调还原。

三、实验仪器1、信号源模块一块2、模拟信号数字化模块一块3、20M双踪示波器一台4、带话筒立体声耳机一副四、实验原理PCM原理框图如下图9-1所示。

编码部分译码部分图9-1 PCM原理框图上图中,信号源模块提供音频范围内模拟信号及时钟信号,包括工作时钟2048K、位同步时钟64K、帧同步时钟8K,送模拟信号数字化模块,经抽样保持、量化、编码过程,产生64K码速率的PCM编码信号。

译码部分同样将PCM编码与各时钟信号送入,经译码、低通滤波器,还原出模拟信号。

五、实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、PCM编码(1)信号源模块“2K正弦基波”幅度调节至3V左右。

(2)实验连线如下:信号源模块模拟信号数字化模块(模块左下方PCM编解码)2K正弦基波—————S-IN2048K———————2048K-IN64 K————————CLK-IN8K————————FRAM-IN(3)以“FRAM-IN”信号为内触发源,示波器双踪观测“FRAM-IN”、“PCM-OUT”测试点波形,PCM编码能够稳定观测,且每四帧编码为一个周期。

说明:帧信号对应的4位PCM编码的第一位码,是上一帧8位PCM编码的第8位,可能出现半位为0,半位为1的情况,这是由使用的PCM编译码芯片的工作时序决定。

(4)以“S-IN”信号为内触发源,示波器双踪观测“S-IN”、“PCM-OUT”测试点波形,PCM编码能够稳定观测,每一周期正弦波对应4帧共32位PCM编码,且32位一循环,码速率为64K。

脉冲编码调制与解调实验

脉冲编码调制与解调实验

实验二脉冲编码调制与解调实验—. 实验目的1.加深对PCM编码过程的理解。

2.熟悉PCM编、译码专用集成芯片的功能和使用方法。

3.了解PCM系统的工作过程。

二. 实验电路工作原理(一) PCM基本工作原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。

脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程。

所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。

该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。

它的抽样速率的下限是由抽样定理确定的。

在该实验中,抽样速率采用8Kbit/s。

所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。

所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。

然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。

由此可见,脉冲编码调制方式就是一种传递模拟信号的数字通信方式。

PCM的原理如图2-1所示。

话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz 重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。

对于电话,CCITT 规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。

为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大,如图2—2所示。

在实际中广泛使用的是两种对数形式的压缩特性:A律和 律。

A 律PCM 用于欧洲和我国,μ律用于北美和日本。

调制与解调

调制与解调
模拟 信源 预滤 波器 抽样器 波形编码器 量化、编码
发送端
数字 信道
接收端 重建滤波器 抽样保持、低通 波形 解码器
模拟 终端
4.1、PCM实现的功能 4.1、PCM实现的功能
PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号 转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样 信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成 一个二进制码组输出。国际标准化的PCM码组(电话语音)是用八位码组代表 PCM 一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组 重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始 语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。 在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码。通 常,用信号与量化噪声的功率比,即信噪比S/N来表示。国际电报电话咨询委员 会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或律编码 律。关于抽样、量化及编码的原理请详细参考相关通信教材。
五、实验步骤
5.1、将信号源模块、模拟信号数字化模块、终端模块、频谱分析模块小心 地固定在主机箱中,确保电源接触良好。 5.2、插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的 开关POWER1、POWER2、S2、S3,对应的发光二极管LED001、LED002、D200 、D201、LED600、LED300、LED301发光,按一下信号源模块的复位键,四 个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是 先连线,后打开电源做实验,不要带电连线)。 5.3、将信号源模块的拨码开关SW101、SW102设置为0000000 0000001。 5.4、将信号源模块产生的正弦波信号(频率为2.5KHz,峰-峰值为3V)从 点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、 “8K”“BS”分别与模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMBIN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。将该点输出 的信号送入频谱分析模块,观察该点输出信号的频谱,记录下来。Βιβλιοθήκη 4.7.1、 4.7.1、上电

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验一、 实验目的 1. 了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。

二、 实验仪器双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真度测试仪l 台;PCM 实验箱l 台。

三、 实验原理 PCM 数字终端机的结构示意图如下:PCM 原理图如下:模拟信源 预滤波抽样器 波形编码器 量化、编码 数字信道波形解码器重建滤波器抽样保持、X/sinx 低通模拟终端()x t ()x n ()ˆxn ()ˆxt 发送端接收端PCM 编译码原理为:1.PCM主要包括抽样、量化与编码三个过程。

2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号;3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号;4.编码:将量化后的信号编码形成一个二进制码组输出。

5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用A 律或u 律编码律。

A律13折线和其编码表为:A律13折线图A律13折线编码表段落序号段落码c2 c3 c4段内码c5 c6 c7 c88 111 0000…….11117 110 0000…….11116 101 0000…….11115 100 0000…….11114 011 0000…….11113 010 0000…….11112 001 0000…….11111 000 0000…….1111内为均匀分层量化,即等问隔16 个分层。

系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。

在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。

PCM 编译码系统动态范围样板值图:动态范围测试框图:四、 实验步骤(一)时钟部分:1. 主振频率为4096KHz ;用示波器在测试点(1)观察主振波形,用示波器测量其频率。

脉冲编码调制实验报告

脉冲编码调制实验报告

一、实验目的1. 了解脉冲编码调制(PCM)的工作原理和实现过程;2. 掌握PCM编译码器的组成和功能;3. 验证PCM编译码原理在实际应用中的有效性;4. 分析PCM编译码过程中可能出现的问题及解决方法。

二、实验原理脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的方法。

其基本原理是:首先对模拟信号进行抽样,使其在时间上离散化;然后对抽样值进行量化,使其在幅度上离散化;最后将量化后的信号编码成二进制信号。

PCM编译码器是实现PCM调制和解调的设备。

1. 抽样:抽样是指在一定时间间隔内对模拟信号进行采样,使其在时间上离散化。

抽样定理指出,为了无失真地恢复原信号,抽样频率必须大于信号最高频率的两倍。

2. 量化:量化是指将抽样值进行幅度离散化。

量化方法有均匀量化和非均匀量化。

均匀量化是将输入信号的取值域按等距离分割,而非均匀量化则是根据信号特性对取值域进行不等距离分割。

3. 编码:编码是指将量化后的信号编码成二进制信号。

常用的编码方法有自然二进制编码、格雷码编码等。

三、实验仪器与设备1. 实验箱:包括模拟信号发生器、抽样器、量化器、编码器、译码器等;2. 示波器:用于观察信号波形;3. 数字频率计:用于测量信号频率;4. 计算机软件:用于数据处理和分析。

四、实验步骤1. 模拟信号发生器输出一个连续的模拟信号;2. 通过抽样器对模拟信号进行抽样,得到一系列抽样值;3. 对抽样值进行量化,得到一系列量化值;4. 将量化值进行编码,得到一系列二进制信号;5. 将二进制信号输入译码器,恢复出量化值;6. 将量化值进行反量化,得到一系列反量化值;7. 将反量化值通过重建滤波器,恢复出模拟信号;8. 观察示波器上的信号波形,分析PCM编译码过程。

五、实验结果与分析1. 观察示波器上的信号波形,可以发现,通过PCM编译码过程,模拟信号被成功转换为数字信号,再恢复为模拟信号。

这验证了PCM编译码原理在实际应用中的有效性。

脉冲编码调制与解调实验

脉冲编码调制与解调实验

实验五脉冲编码调制解调实验一、实验目的1.掌握脉冲编码调制与解调的原理。

2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3.了解脉冲编码调制信号的频谱特性。

4.了解大规模集成电路W681512的使用方法。

二、实验内容1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。

2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4.改变位同步时钟,观测脉冲编码调制波形。

三、实验器材1.信号源模块2.模拟信号数字化模块3.终端模块(可选)4.频谱分析模块5.20M双踪示波器一台6.音频信号发生器(可选)一台7.立体声单放机(可选)一台8.立体声耳机一副9.连接线若干四、实验原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图8-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。

图8-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或 律编码律。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM 数字电话终端机的结构示意图1、实验原理和电路说明PCM 编译码系统由定时部分和PCM 编译码器构成,电路原理图附于本章后.◆ PCM 编译码原理为适应语音信号的动态范围,实用的PCM 编译码必须是非线性的.目前,国际上采用的 均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和 15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A 律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的. ◆ PCM 编译码器简介鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067专用大规模集成电路,它 是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器. TP3067的管脚如图4.4所示,内部组成框图如图4.5所示. TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考. (3)VPO- 收端功放的反相输出端. (4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端. (6)VCC +5V 电压输入.(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列. (8)DR 接收部分PCM 码流解码输入端.(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟 可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.混合装置V oice发滤波器波器收滤编码器器码译分路路合发收(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz,1544MHz 或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR 被选择为内部时钟,当 MCLKx 接高电平,该芯片进入低功耗状态.(11)MCLKx 发送部分主时钟,必须为1536MHz,1544MHz 或2048MHz.可以和MCLKR 异步,但 是同步工作时可达到最佳状态.(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端.可以为从64KHz 到2048MHz 的任意 频率,但必须和MCLKx 同步.(13)Dx 发送部分PCM 码流编码输出端.(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列. (15)TSx 漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送 部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连. (17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益. (18)VFxI 发送部分输入放大器的反相输入端。

通信原理-脉冲编码调制与解调实验波形拍摄

通信原理-脉冲编码调制与解调实验波形拍摄

三.实验过程及波形记录1.对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验。

⑴将信号源模块中BCD码分频值(拔码开关SW04、SW05)设置为00000000 00000001,模拟信号数字化模块中拔码开关S1设置为0000,“编码幅度”电位器逆时针旋转到底。

⑵信号源模块产生一频率为2KHz,由“模拟输出”端送入到模拟信号数字化模块的“S-IN”端,再分别连接信号源模块的信号输出端“64K”、“8K”、“BS”与模拟信号数字化模块的信号输入端“CLKB-IN”、“FRAMEB-IN”、“2048K-IN”。

开电,观察“PCMB-OUT”端PCM编码。

⑶断电,分别连接模拟信号数字化模块上编译码时钟信号“CLKB-IN”和“CLK2-IN”,帧同步信号“FRAMEB-IN”和“FRAME2-IN”,PCM编译码信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”。

开电,观察并比较基带模拟信号“S-IN”和解调信号“JPCM”.⑷改变正弦信号的频率,观察解调信号随之的波形变化由实验现象可知,当基带信号超过音频信号频带范围时,解调输出波形消失。

2.用模拟示波器定量观察PCM八位编码实验⑴断电,拆除所有信号连线,将拔码开关S1设置为1111。

⑵开电,观察2KHz基带信号,“S-IN2”、8KHz帧同步信号“FRAMEB-IN”,64KHz编码时钟信号“CLKB-IN”与PCM 编码信号“PCMB-OUT”的波形。

调节编码电位器,分析PCM 八位编码中极性码、段落码与段内码随基带信号幅值大小的变化而变化的情况。

从实验波形图可以看出随着“编码幅度”电位器的调整,编码输出也在变化。

⑶断电,分别连接信号点“CLKB-IN”和”“CLK2-IN”,“FRAMEB-IN”和“FRAME2-IN”,“PCMB-OUT”和“PCM2-IN”。

开电,观察并比较基带模拟信号“S-IN2”和解调信号“JPCM”。

通信原理实验报告--脉冲幅度调制与解调实验

通信原理实验报告--脉冲幅度调制与解调实验

本科实验报告课程名称:通信原理实验项目:脉冲幅度调制与解调实验实验地点:通信原理实验室专业班级:学号:学生姓名:指导教师:2012 年 6 月 16 日一、实验目的和要求:1.理解脉冲幅度调制的原理和特点。

2.了解脉冲幅度调制波形的频谱特性。

二、实验内容:1.观察基带信号、脉冲幅度调制信号、抽样时钟的波形,并注意观察它们之间的相互关系及特点。

2.改变基带信号或抽样时钟的频率,重复观察波形。

3.观察脉冲幅度调制波形的频谱。

三、主要仪器设备:信号源模块、PAM、AM模块、终端模块、频谱分析模块四、实验原理:抽样定理表明:一个频带限制在内的时间联系信号,如果以秒的时间对它进行等间隔抽样,则将被所得到的抽样值完全确定。

假设将信号和周期为T的冲激函数相乘,如图7-1所示。

乘积便是均匀间隔为T秒的的冲激序列,这些冲激序列的强度等于相应瞬时上的值,他表示对函数的抽样。

若用表示此抽样函数,则用:假设、、和的频谱分别为、和。

按照频率卷积定理,的傅里叶变换是和的卷积:因为,所以则该式表明,已抽样信号的频谱是无穷多个间隔为的相迭加而成。

这就意味着中包含的全部信息。

需要注意,若抽样间隔T变得大于,则和的卷积在相邻的周期内存在重叠,因此不能由恢复。

可见,是抽样的最大间隔,它被称为奈奎斯特间隔。

所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的调制方式。

如果脉冲载波是由脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制原理。

但是,实际上理想的冲激串物理实现困难,通常采用窄脉冲串来代替。

本实验模板采用32K或64K或1MHz的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图7-3所示的原理方框图。

如下图所示,被抽样的信号从S201输入,若此信号为音频信号,则它经过TL084构成的电压跟随器隔离之后,被送到模拟开关4066的第一脚。

此时,将抽样脉冲由S202输入,其频率大于或等于输入音频信号频率的2倍即可,但至少应高于3400Hz。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM数字电话终端机的结构示意图1、实验原理和电路说明PCM编译码系统由定时部分和PCM编译码器构成,电路原理图附于本章后.◆PCM编译码原理为适应语音信号的动态范围,实用的PCM编译码必须是非线性的.目前,国际上采用的均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的.◆PCM编译码器简介鉴于我国国内采用的是A律量化特性,因此本实验采用TP3067专用大规模集成电路,它是CMOS工艺制造的单片PCMA律编译器,并且片内带输入输出话路滤波器.TP3067的管脚如图4.4所示,内部组成框图如图4.5所示.TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考.(3)VPO- 收端功放的反相输出端.(4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端.(6)VCC +5V电压输入.(7)FSR接收部分帧同步时隙信号,是一个8KHz脉冲序列.(8)DR接收部分PCM码流解码输入端.(9)BCLKR/CLKSEL位时钟(bitclock),它使PCM码流随着FSr上升沿逐位移入Dr端,位时钟可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.(10)MCLKR/PDN接收部分主时钟,它的频率必须为1536MHz,1544MHz或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR被选择为内部时钟,当MCLKx接高电平,该芯片进入低功耗状态.(11)MCLKx发送部分主时钟,必须为1536MHz,1544MHz或2048MHz.可以和MCLKR异步,但是同步工作时可达到最佳状态.(12)BCLKx发送部分时钟,使PCM码流逐位移入DR端.可以为从64KHz到2048MHz的任意频率,但必须和MCLKx同步.(13)Dx发送部分PCM码流编码输出端.(14)FSx发送部分帧同步时隙信号,为一个8KHz的脉冲序列.(15)TSx漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连.(17)GSx发送部分输入放大器的模拟基础,用于在外部同轴增益.(18)VFxI发送部分输入放大器的反相输入端。

通信编译码实验报告(3篇)

通信编译码实验报告(3篇)

第1篇一、实验目的1. 理解通信编译码的基本原理,包括编码、解码和传输过程中的关键技术。

2. 掌握PCM、HDB3等常用编译码方法的原理和实现方法。

3. 熟悉通信编译码实验设备的使用方法,并能对实验结果进行分析。

二、实验器材1. 双踪示波器一台2. 通信原理型实验箱一台3. M3:PCM与ADPCM编译码模块和M6数字信号源模块4. 麦克风和扬声器一套三、实验原理1. 编码原理:将模拟信号转换为数字信号的过程称为编码。

常见的编码方法有PCM、HDB3等。

(1)PCM编码:PCM(脉冲编码调制)是一种常用的数字编码方法,其原理是将模拟信号进行采样、量化、编码,将连续的模拟信号转换为离散的数字信号。

(2)HDB3编码:HDB3(高密度双极性三电平)编码是一种数字基带信号,它是在AMI(非归零码)编码的基础上,引入破坏性偶极性和倒极性变换,使得信号在传输过程中不会出现连续的零电平,从而提高传输质量。

2. 解码原理:将数字信号恢复为模拟信号的过程称为解码。

解码过程与编码过程相反,主要包括反量化、反采样和低通滤波等步骤。

四、实验步骤1. 连线:根据实验要求,连接双踪示波器、通信原理型实验箱、PCM与ADPCM编译码模块、数字信号源模块、麦克风和扬声器。

2. 设置实验参数:打开实验箱电源,设置PCM与ADPCM编译码模块的参数,包括采样频率、量化位数等。

3. 观察PCM编码输出信号:用示波器观察STA、STB,将其幅度调至2V。

观察PCM编码输出信号,分析其时域和频域特性。

4. 观察HDB3编码输出信号:用示波器观察HDB3编码输出信号,分析其时域和频域特性。

5. 观察解码输出信号:观察解码后的模拟信号,分析其恢复效果。

6. 比较不同编码方法的性能:分析PCM编码和HDB3编码的优缺点,比较它们的性能。

五、实验结果与分析1. 观察到PCM编码输出信号为离散的数字信号,具有较好的抗干扰性能。

2. 观察到HDB3编码输出信号为非归零码,具有较好的传输质量。

PCM编码和FSK调制与解调

PCM编码和FSK调制与解调

实验二 PCM 编码调制和FSK 调制与解调姓名:左立刚 学号:031040522简要说明:本次实验分为两个部分,第一部分包括:PCM 实验原理,实验结果输出波形,问题解答(实验课上老师提出的6个问题)以及心得体会;第二部分包括:FSK 调制解调的原理,实验结果输出波形,心得体会。

一.PCM 编译系统1.1 实验原理:脉冲编码调制(PCM )是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。

脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。

PCM 通信系统的实验方框图如图2-1所示。

图2-1 PCM 通信系统实验方框图在PCM 脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM 脉冲序列,然后将幅度连续的PAM 脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM 脉冲序列将转换成二进制编码序列。

对于电话,CCITT 规定抽样率为8KHz ,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM 编码后的标准数码率是64kB 。

本实验应用的单路PCM 编、译码电路是TP3057芯片(见图2-1模拟 信号 抽 样 量 化34P02 34P04 34P0334P01 编 码 信 道 译 码 低 通滤 波 再 生 工作时钟A/DD/ATP3057P04 收端功放P14 P15中的虚线框)。

此芯片采用A律十三折线编码,它设计应用于PCM 30/32系统中。

它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户各占据一个时隙,另外两个时隙分別用于同步和标志信号传送,系统码元速率为2.048MB。

各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。

若仅有一个用户,在一个PCM 帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。

实验八 脉冲编码调制与解调实验

实验八 脉冲编码调制与解调实验

实验八脉冲编码调制与解调实验实验八脉冲编码调制与解调实验现代通信原理教师参考书实验八脉冲编码调制与解调实验一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌控脉冲编码调制与模拟信号系统的动态范围和频率特性的定义及测量方法。

3、介绍脉冲编码调制信号的频谱特性。

4、了解大规模集成电路tp3067的使用方法。

二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、观察脉冲编码调制信号的频谱。

三、实验仪器1、信号源模块2、模拟信号数字化模块3、终端模块(可以选)4、频谱分析模块(可以选)5、20m双踪示波器一台6、音频信号发生器(可选)一台7、立体声单放机(可选)一台8、立体声耳机(可选)一副9、连接线若干四、实验原理脉冲编码(pcm)调制解调原理框图话音输出话音输入低通滤波器样本定量编码信道低通滤波器模拟信号解码再造本实验采用大规模集成电路tp3067对语音信号进行pcm编、解码。

tp3067在一个芯片内部集成了编码电路和译码电路,就是一个单路编译码器。

其编码速率为2.048mhz,每一帧数据为8十一位,帧同步信号为8khz。

模拟信号在编码电路中,经过样本、定量、编码,最后获得pcm编码信号。

在单路编译码器中,经转换后的pcm码点就是在一个时隙中被传送过来的,在其他的时隙中编译码器就是没输入的,即为对一个单路编译码器来说,它在一个pcm帧(32个时隙)里,只在一个特定的时隙中传送编码信号。

同样,译码电路也只是在一个特定的时隙(此时隙应当与传送时隙相同,否则发送没pcm编码信号)里才从外部发送pcm编码信号,然后展开译码,经过远距滤波器、放大器后输入。

具体内容电路图如下右图。

8-1现代通信原理教师参考书五、实验步骤及注意事项1、将信号源模块、模拟信号数字化模块小心地紧固在主机箱中,保证电源碰触较好。

脉冲编码调制实验报告

脉冲编码调制实验报告

脉冲编码调制实验报告脉冲编码调制实验报告引言:脉冲编码调制(Pulse Code Modulation,PCM)是一种数字信号处理技术,广泛应用于通信领域。

本实验旨在通过实际操作,深入了解脉冲编码调制的原理和应用。

一、实验目的本实验的主要目的是通过实际操作,掌握脉冲编码调制的基本原理和实现方法,并了解其在通信系统中的应用。

二、实验仪器和材料1. 信号发生器2. 示波器3. 电阻、电容、电感等元器件4. 实验板三、实验原理脉冲编码调制是将模拟信号转换为数字信号的一种方法。

它通过对模拟信号进行采样、量化和编码,将连续的模拟信号转换为离散的数字信号。

具体步骤如下:1. 采样:将连续的模拟信号离散化,按照一定的时间间隔对信号进行采样,得到一系列的采样值。

2. 量化:将采样得到的连续信号离散化为一组有限的离散值。

量化的过程中,需要确定量化级别和量化步长。

量化级别决定了离散值的个数,量化步长决定了离散值之间的间隔。

3. 编码:将量化后的离散信号转换为二进制码。

编码的方式有很多种,常用的有自然二进制码、反码和补码等。

四、实验步骤1. 连接实验电路:按照实验指导书上的电路图,连接实验电路。

确保电路连接正确,电源稳定。

2. 设置信号发生器:根据实验要求,设置信号发生器的频率和幅度。

3. 采样:将信号发生器输出的模拟信号输入到采样电路中,通过示波器观察采样结果。

调整采样频率和采样时间,观察采样结果的变化。

4. 量化:将采样得到的模拟信号输入到量化电路中,通过示波器观察量化结果。

调整量化级别和量化步长,观察量化结果的变化。

5. 编码:将量化后的离散信号输入到编码电路中,通过示波器观察编码结果。

调整编码方式,观察编码结果的变化。

五、实验结果与分析通过实验,我们成功实现了脉冲编码调制的过程,并观察到了不同参数下的采样、量化和编码结果。

实验结果表明,采样频率越高,采样结果越接近原始信号;量化级别越高,量化结果越接近原始信号;编码方式的选择对结果的精度和传输效率有重要影响。

PCM脉冲编码调制(通信原理实验报告)

PCM脉冲编码调制(通信原理实验报告)

实验一 PCM 脉冲编码调制信息学院(院、系) 电子信息工程 专业 班 通信原理教程 课s 2、利用Matlab 对模拟信源s=sint (0<t<2π)进行均匀量化,量化间隔为0.2。

3、编制一个函数实现均匀PCM 量化编码,并计算量化噪声比(SQNR )。

function [sqnr,a_quan,code]=upcm(a,n)%均匀PCM 量化编码函数>>x=2*sinc(20*t).*cos(2*pi*%变量sqnr:量化噪声比,向量a_quan:量化后信号序列,向量code:量化后编码矩阵amax=max(abs(a));a_quan=a/amax; %对输入信号序列归一化,这样信号幅度为[-1,1]b_quan=a_quan;d=2/n; %设定d:量化间隔q=d.*[0:n-1]-(n-1)/2*d; %设定q:每个量化区间对应的判决阈值%对归一化后的输入信号序列进行量化for i=1:n;index=find((q(i)-d/2<=a_quan)&(a_quan<=q(i)+d/2));a_quan(index)=q(i)*ones(1,length(index));b_quan(find(a_quan==q(i)))=(i-1).*ones(1,length(find(a_quan==q(i))) );enda_quan=a_quan*amax; %将量化后的信号归一化值恢复nu=ceil(log2(n)); %设定给定量化级数所需比特数%定义一个以输入信号序列中元素个数为行数,量化级数所需比特数为列数的矩阵code=zeros(length(a),nu);%对输入信号序列量化后进行编码for i=1:length(a)for j=nu:-1:0if(fix(b_quan(i)/(2^j))==1)code(i,nu-j)=1;b_quan(i)=b_quan(i)-2^j;endendend%计算量化噪声比:dB为单位sqnr=20*log10(norm(a)./norm(a-a_quan));%脚本文件结束常用函数用法:find(x):是找出矩阵x中非0元素的位置。

试验四脉冲编码调制与解调试验

试验四脉冲编码调制与解调试验

前言《通信原理》课程是通信、电子、信息领域中最重要的专业基础课之一。

通信原理实验课对巩固和加深课堂教学内容,提高学生实践动手操作能力和分析解决通信工程中实际问题的能力具有重要的作用。

本指导书以《通信原理》第6版(樊昌信、曹丽娜编著)的教学内容为基础。

实验内容的安排遵循由浅到深,由易到难的规律,力求讲解的原理清楚,重点突出;实验的内容安排合理、丰富,并具有一定的代表性。

同时,注重理论分析与实际动手相结合,以理论指导实践,以实践来验证基本原理,旨在提高学生分析问题、解决问题的能力及动手能力。

由于编者水平所限,错误及欠缺之处恳请批评指正。

电子信息工程系实验要求1.实验前必须充分预习,完成指定的预习任务。

预习要求如下:(1)认真阅读实验指导书,分析、掌握实验原理。

(2)完成各实验“预习要求”中指定的内容。

(3)熟悉实验任务。

(4)复习实验中所用各仪器的使用方法及注意事项。

(5)撰写实验预习报告。

2.使用仪器和实验箱前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

3.实验时接线要仔细检查,确定无误后才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。

4.实验过程中需要改接线时,应关断电源后才能拆、接线。

5.实验过程中应仔细观察实验现象,认真记录实验结果(数据波形、现象)。

所记录的实验结果经指导教师审阅签字后再拆除实验线路。

6.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理归位。

7.实验后按要求独立完成实验报告。

目录实验一信号源实验 (1)实验二信道模拟实验 (4)实验三FSK调制解调实验 (10)实验四脉冲编码调制与解调实验 (14)实验一信号源实验一、实验目的1、了解频率连续变化的各种波形的产生方法。

2、了解NRZ码、方波、正弦波等各种信号的频谱。

3、理解帧同步信号与位同步信号在整个通信系统中的作用。

4、熟练掌握信号源模块的使用方法。

二、实验内容1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科实验报告课程名称:通信原理实验项目:脉冲编码调制与解调实验实验地点:通信原理实验室专业班级:学号:学生姓名:指导教师:2012年6 月16 日一、实验目的和要求:1.掌握脉冲编码调制与解调的原理。

2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3.了解脉冲编码调制信号的频谱特性。

二、实验内容:1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。

2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4.观察脉冲编码调制信号的频谱。

三、主要仪器设备:信号源模块、PAM、AM模块、终端模块、频谱分析模块四、实验原理:模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码调制的过程如图4-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM码组(电话语音)是八位码组代表一个抽样值。

编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。

图4-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s ,使用A 律或μ律编码律。

下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。

1.量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。

如图4-2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。

k y 常称为重建电平或量化电平。

当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。

这个量化过程可以表达为:{}1(),1,2,3,,k k k y Q x Q x x x y k L+==<≤==L这里k x 称为分层电平或判决阈值。

通常k k kx x -=∆+1称为量化间隔。

图4-2 模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化,我们先讨论均匀量化。

把输入模拟信号的取值域按等距离分割的量化称为均匀量化。

在均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图4-3所示。

其量化间隔(量化台阶)v ∆取决于输入信号的变化范围和量化电平数。

当输入信号的变化范围和量化电平数确定后,量化间隔也被确定。

例如,输入信号的最小值和最大值分用a 和b 表示,量化电平数为M ,那么,均匀量化的量化间隔为:M ab v -=∆图4-3 均匀量化过程示意图量化器输出qm 为:,q i m q = 当1i i m m m -<≤式中i m 为第i 个量化区间的终点,可写成v i a m i ∆+=i q 为第i 个量化区间的量化电平,可表示为1,122i i i m m q i M-+==L 、、、上述均匀量化的主要缺点是,无论抽样值大小如何,量化噪声的均方根值都固定不变。

因此,当信号()m t 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。

通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。

为了克服这个缺点,实际中,往往采用非均匀量化。

非均匀量化是根据信号的不同区间来确定量化间隔的。

对于信号取值小的区间,其量化间隔v ∆也小;反之,量化间隔就大。

它与均匀量化相比,有两个突出的优点。

首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。

因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。

实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。

通常使用的压缩器中,大多采用对数式压缩。

广泛采用的两种对数压缩律是μ压缩律和A 压缩律。

美国采用μ压缩律,我国和欧洲各国均采用A 压缩律,因此,本实验模块采用的PCM 编码方式也是A 压缩律。

所谓A 压缩律也就是压缩器具有如下特性的压缩律:A X A Ax y 10,ln 1≤<+=11,ln 1ln 1<≤++=X A A Ax yA律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。

实际中,往往都采用近似于A律函数规律的13折线(A=87.6)的压扩特性。

这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本实验模块中所用到的PCM编码芯片TP3067正是采用这种压扩特性来进行编码的。

图4-4示出了这种压扩特性。

图4-4 13折线下表列出了13折线时的x值与计算x值的比较。

表中第二行的x 值是根据6.87=A 时计算得到的,第三行的x 值是13折线分段时的值。

可见,13折线各段落的分界点与6.87=A 曲线十分逼近,同时x 按2的幂次分割有利于数字化。

2.编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。

当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。

在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。

通信中一般都采用第二类。

编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。

本实验模块中的编码芯片TP3067采用的是逐次比较型。

在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序。

下面结合13折线的量化来加以说明。

表4-2 段落码表4-3 段内码在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。

若用8位折叠二进制码来表示输入信号的抽样量化值时,其中用第一位表示量化值的极性,其余7位(第二位至第八位)则表示抽样量化值的绝对大小。

具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。

其它4位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。

这样处理的结果,8个段落被划分成27=128个量化级。

段落码和8个段落之间的关系如表4-2所示;段内码与16个量化级之间的关系见表4-3。

可见,上述编码方法是把压缩、量化和编码合为一体的方法。

本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。

TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。

其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。

模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。

在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。

同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。

具体电路图如图4-4所示。

图4-4 PCM编译码电路原理图下面对PCM编译码专用集成电路TP3067芯片做一些简单的介绍。

下为TP3067的内部结构方框图下图是TP3067的管脚排列图。

TP3067管脚的功能(1)VPO+:接收功率放大器的非倒相输出(2)GNDA:模拟地,所有信号均以该引脚为参考点(3)VPO-:接收功率放大器的倒相输出(4)VPI:接收功率放大器的倒相输入(5)VFRO:接收滤波器的模拟输出(6)Vcc:正电源引脚,Vcc=+5V+5%(7)FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。

(8)DR:接收数据帧输入。

PCM数据随着FSR前沿移入DR。

(9)BCLKR/CLKSESL:在FSR的前沿把输入移入DR时位时钟,其频率可以从64KHz至2.048MHz。

另一方面它也可能是一个逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz、1.544MHz或2.048MHz,BCLKR用在发送和接收两个方向。

(10)MCLKR/PDN:接收主时钟,其频率可以为 1.536MHz、1.544MHz或2.048MHz。

它允许与MCLKx异步,但为了取得最佳性能应当与MCLKx同步,当MCLKR连续连在低电位时,CLKx被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。

(11)MCLKx:发送主时钟,其频率可以是1.536MHz、1.544MHz 或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能。

(12)BCLKx:把PCM数据从Dx上移出的位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLKx同步。

(13)Dx:由FSx启动的三态PCM数据输出。

(14)FSx:发送帧同步脉冲输入,它启动BCLKx并使Dx上PCM 数据移出到Dx上。

(15)TS x:开漏输出。

在编码器时隙内为低脉冲。

(16)ANLB:模拟环路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“1”时,发送滤波器和发送前置放大器输出的连接线被断开,而改为和接收功率放大器的VPO+输出连接。

(17)GSx:发送输入放大器的模拟输出,用来在外部调节增益。

(18)VFxI-:发送输入放大器的倒相输入。

(19)VFxI+:发送输入放大器的非倒相输入。

(20)VBB:负电源引脚,VBB=-5V+5%。

五、操作方法与实验步骤:1.将信号源模块、模拟信号数字化模块、终端模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关、再分别按下四个模块中的开关POWER1、POWER2,S2.S3,对应的发光二极管LED001、LED002、D200、D201、L1、L2、LED600、LED300、LED301发光,按一下信号源模块的复位键,四个模块均开始工作。

相关文档
最新文档