第三章统计整理习题答案
统计学第三章课后作业参考答案
统计学第三章课后作业参考答案1、统计整理在统计研究中的地位如何?答:统计整理在统计研究中的地位:统计整理实现了从个别单位标志值向说明总体数量特征的指标过度,是人们对社会经济现象从感性认识上升到理性认识的过度阶段,为统计分析提供基础,因而,它在统计研究中起了承前启后的作用。
2、什么是统计分组?为会么说统计分组的关键在于分组标志的选择?答:1)统计分组是根据统计研究任务的要求和现象总体的内在特点,把统计总体按照某一标志划分为若干性质不同而又有联系的几个部分。
2)因为分组标志作为现象总体划分为各处不同性质的给的标准或根据,选择得正确与否,关系到能否正确地反映总体的性质特征、实现统计研究的目的的任务。
分组标志一经选取定,必然突出了现象总体在此标志下的性质差异,而掩盖了总体在其它标志下差异。
缺乏科学根据的分组不但无法显示现象的根本特征,甚至会把不同性质的事物混淆在一起,歪曲了社会经济的实际情况。
所以统计分组的关键在于分组的标志选取择。
3、统计分组可以进行哪些分类?答:统计分组可以进行以下分类1)按其任务和作用的不同分为:类型分组、结构分组、分析分组2)按分组标志的多少分为:简单分组、复合分组3)按分组标志性质分为:品质分组、变量分组5单项式分组和组距式分组分别在什么条件下运用?答:单项式分组运用条件:变量值变动范围小的离散变量可采取单项式分组组距式分组运用条件:变量值变动很大、变量值的项数又多的离散变量和连续变量可采取组距式分组8、什么是统计分布?它包括哪两个要素?答:1)在分组的基础上把总体的所有单位按组归并排列,形成总体中各个单位在各组分布,称为统计分布,是统计整理结果的重要表现形式。
2)统计分布的要素:一、是总体按某一标志分的组,二、是各组所占有的单位数——次数10、频数和频率在分配数列中的作用如何?答:频数和频率的大小表示相应的标志值对总体的作用程度,即频数或频率越大则该组标志值对全体标志水平所起作用越大,反之,频数或频率越小则该组标志值对全体标志水平所起作用越小11、社会经济现象次数分布有哪些主要类型?分布特征?答:1) 社会经济现象次数分布有以下四种主要类型:钟型、U 型 、J 型、洛伦茨分布 2)分布特征如下:钟型分布:正态分布,两头小,中间大U 型分布:两头大,中间小J 型分布:次数随变量值增大而增多;倒J 型分布:次数随变量值增大而减少 洛伦茨分布:各组标志比重随着各组单位数比重(频率)增加而增加;17、有27个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3 试编制分配数列18、某车间同工种40名工人完成个人生产定额百分数如下 :97 88 123 115 119 158 112 146 117 108 105 110 107 137 120 136 125 127 142 118 103 87115 114 117 124 129 138 100 103 92 95 113 126 107 108 105 119 127 104根据上述资料,试编制分配数列错例:下面解法几个地方错?19、1993年某出口创汇大户出口实绩(万美元)列举如下:1011 1052 865 721 2032 1218 1046 721 546 623 2495 1015 1113 1104 1084 707 878 678 2564 620 575 943 828 2035 2375 4342 751 505 798 728 1103 1285 2856 3200 518第九章时间序列分析一、单项选择题二、多项选择题三、判断题四、填空题1、时间序列 指标数值2、总量指标时间数列 相对指标时间数列 平均指标时间数列 总量指标时间数列3、简单 na a ∑=间断 连续 间隔相等 间隔不等4、逐期 累计 报告期水平–基期水平 逐期 累计5、环比 定基基期水平报告期水平环比 定基 环比6、水平法 累计法 水平 nx x ∏=或nna a x 0= 累计 032a a x x x x n∑=++++7、26 26 8、79、)-(y y ˆ∑ = 0)-(y y ˆ∑2为最小 10、季节比率 1200% 400% 五、简答题(略) 六、计算题1、4月份平均库存 = 3053008370122505320⨯+⨯+⨯+⨯= 302(辆)2、第一季度平均人数917301024927217270302751026424258++++⨯+⨯+⨯+⨯+⨯=(人)3、第一季度平均库存额142434405408240012221-+++=-+++=n a a a a n = 410(万元) 同理,第二季度平均库存额1424184384262434-+++= 430(万元)上半年平均库存额1724184384264344054082400-++++++= 420(万元)或 2430410+= 420(万元)4、年平均增加的人数 =516291678172617931656++++= 1696.4(万人)5、某酿酒厂成品库1998年的平均库存量12111232121222---+++++++++=n n n n f f f f a a f a a f a a a=121124084122233533012330326+++⨯+++⨯++⨯+=124620= 385(箱)6、列计算表如下:该柴油机厂全年的平均计划完成程度指标为.346004.47747==∑∑b bc c = 138.0% 7、列计算表如下:该企业第一季度生产工人数占全部职工人数比重232003100320023000225602356249622250++++++==b a c = 77.2% 8、①填写表中空格:②第一季度平均职工人数 =3= 268. 33(人)③第一季度工业总产值 = + + = 83.475(万元) 第一季度平均每月工业总产值 =3475.83=27.825(万元) ④第一季度劳动生产率 =33.268834750=3110.91(元/人)第一季度平均月劳动生产率 =33.26891.3110=1036.97(元/人)或 =33.268278250=1036.97(元/人)9、煤产量动态指标计算表:第①、②与③的要求,计算结果直接在表中; ④平均增长量=552.2=(万吨) ⑤水平法计算的平均发展速度=554065.120.672.8== 107.06% 平均增长速度= 107.06%-100%=7.06% 10、以1991年为基期的总平均发展速度为 62306.105.103.1⨯⨯= 104.16% 11、每年应递增:535.2=118.64%以后3年中平均每年应递增:355.135.2=114.88% 12、计算并填入表中空缺数字如下:(阴影部分为原数据)平均增长量为:3266.39÷6 = 544.40(万台) 平均发展速度为:66556.3= 124.12% 平均增长速度为:124.12%-1=%13、设在80亿元的基础上,按8 %的速度递增,n 年后可达200亿元,即n80200= 108% → n 1 → n = 08.1log 5.2log按8 %的速度递增,约经过年该市的国民收入额可达到200亿元。
统计学 第三章练习题答案及解析
3%1%2%5.1++453025453025++++统计学第三章出题优课后习题答案原多项选择第三题D 选项解释有误,现在已经重新更改。
一、单项选择题1. 某商场某月商品销售额为1200万元,月末商品库存额为400万元,这两个总量指标( )。
A. 是时期指标B. 前者是时期指标,后者是时点指标C. 是时点指标2. 国民总收入与国内生产总值之间相差一个( )。
A. 出口与进口的差额B. 固定资产折旧C. 来自国外的要素收入净额3. 有三批产品,废品率分别为1.5%、2%、1%,相应的废品数量为25件、30件、45件,则这三批产品平均废品率的计算式应为( )。
A. B.C. D.4. 下列各项中,超额完成计划的有( )。
A. 利润计划完成百分数103.5%B. 单位成本计划完成百分数103.5%C. 建筑预算成本计划完成百分数103.5%5. 某厂某种产品生产量1月刚好完成计划,2月超额完成2%,3月超额完成4%,则该厂该年一季度各月平均超额完成计划的计算方法是( )。
A. 2%+4%=6%B. (2%+4%)÷2=3%C. (2%+4%)÷3=2%453025%1%2%5.1++++3%1%2%5.1⨯⨯6. 甲、乙两组工人的平均日产量分别为18件和15件。
若甲乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量( )。
A. 上升B. 下降C. 不变D.可能上升,也可能下降7. 当各个变量值的频数相等时,该变量的()。
A. 众数不存在B. 众数等于均值C. 众数等于中位数8. 如果你的业务是提供足球运动鞋的号码,那么哪一种平均指标对你更有用?( )A. 算术平均数B. 几何平均数9. 某年年末某地区城市和乡村平均每人居住面积分别为30.3和33.5平方米,标准差分别12.8和13.1平方米,则居住面积的差异程度( )。
A. 城市大B. 乡村大10. 下列数列的平均数都是50,在平均数附近散布程度最小的数列是( )。
统计调查与整理(调查部分)课后练习及其答案
统计调查与整理习题及其答案一、填空题1.常用的统计调查方式主要有、、、、等。
2.典型调查有两类:一是;二是。
3.统计调查按调查对象包括的范围不同可分为、。
4.确定调查对象时,还必须确定两种单位,即和。
5.重点调查是在调查对象中选择一部分进行调查的一种调查。
6.询问调查具体包括、、、等。
7.访问调查的方式有、。
8.邮寄调查的问卷发放方式有、、三种。
9.根据观察者是否使用科学的观察仪器,观察可分为和。
10.调查表一般由、和三部分组成。
11.就一般的统计数据而言,其质量评价标准为、、、、、。
二、单项选择题1.某地区为了掌握该地区水泥生产的质量情况,拟对占该地区水泥总产量的80%的五个大型水泥厂的生产情况进行调查,这种调查方式是( )。
A普查B典型调查C抽样调查D重点调查2.某灯泡厂为了掌握该厂的产品质量,拟进行一次全厂的质量大检查,这种检查应选择( )。
A统计报表B重点调查C全面调查D抽样调查3.人口普查规定统一的标准时间是为了( )。
A避免登记的重复与遗漏B确定调查的范围C确定调查的单位D登记的方便4.以下哪种场合宜采用标准式访问( )。
A居民入户调查B座谈会C当事人或知情者个别采访D观察法5.某地进行国有商业企业经营情况调查,则调查对象是( )。
A该地所有商业企业B该地所有国有商业企业C该地每一国有商业企业D该地每一商业企业6.以下哪种调查的报告单位与调查单位是一致的( )。
A 工业普查B工业设备调查C职工调查D未安装设备调查7.统计调查所搜集的可以是原始资料,也可以是次级资料,原始资料与次级资料的关系是( )。
A原始资料来源于基层单位,次级资料来源于上级单位B次级资料是由原始资料加工整理而成C原始资料与次级资料之间无必然联系D原始资料与次级资料没有区别8.调查项目通常以表的形式表示,称作调查表,一般可分为( )。
A单一表和复合表B单一表和一览表C简单表和复合表D简单表和一览表9.通过调查大庆、胜利、辽河等油田,了解我国石油生产的基本情况。
统计学课后练习题。部分题目有答案。
第三章统计数据的整理和显示习题二、单项选择题1.统计分组的关键问题是( A >A确定分组标志和划分各组界限 B确定组距和组数C确定组距和组中值 D确定全距和组距4.某连续变量数列,其末组为开口组,下限为200,又知其邻组的组中值为170,则末组组中值为(C >b5E2RGbCAP每个组上限与下限的中点值称为组中值,对于开口组的组限是按相邻组的组距来计算的,所以末组开口组的组中值=末组下限+邻组组限/2=200+<200-170)=230p1EanqFDPwA260 B 215 C 230 D 1855.下列分组中按品质标志分组的是( B >品质标志是说明事物的性质或属性特征的,它反映的是总体单位在性质上的差异,它不能用数值来表现。
A人口按年龄分组 B产品按质量优劣分组C企业按固定资产原值分组 D乡镇按工业产值分组6.对企业先按经济类型分组,再按企业规模分组,这样的分组,属于( C >A简单分组 B平行分组 C复合分组 D再分组7.用组中值代表各组内的一般水平的假定条件是( D > A各组的次数均相等 B各组的组距均相等C各组的变量值均相等 D各组次数在本组内呈均匀分布9.对某地区的全部商业企业按实现的销售额多少进行分组,这种分组属于( A >A变量分组 B属性分组 C分组体系 D复合分组10.在频数分布中,频率是指( C >A各组频数之比 B各组频率之比 C各组频数与总频数之比 D 各组频数与各组次数之比11.频数分布用来表明( A >A总体单位在各组的分布状况 B各组变量值构成情况C各组标志值分布情况 D各组变量值的变动程度12.在分组时,若有某单位的变量值正好等于相邻组的下限时,一般应将其归在( B >A上限所在组 B下限所在组C任意一组均可 D另设新组13.在编制组距数列时,当全距不变的情况下,组距与组数的关系是( B >A正例关系 B反比例关系 C乘积关系 D毫无关系14.统计表的宾词是用来说明总体特征的( C >A标志 B总体单位 C统计指标 D统计对象15.统计表的主词是统计表所要说明的对象,一般排在统计表的( A >A左方 B上端中部 C右方 D下方三、多项选择题1.统计分组的作用在于( BCD >A区分现象的类型 B反映现象总体的内部结构变化C比较现象间的一般水平 D分析现象的变化关系 E研究现象之间数量的依存关系2.指出下表表示的分布数列所属的类型(ABC >A品质数列 B变量数列 C分组数列 D异距数列 E等距数列3.指出下列分组哪些是品质分组( ABCD >A人口按性别分组 B企业按产值多少分组C家庭按收入水平分组 D在业人口按文化程度分组E宾馆按星级分组6.从形式上看,统计表由哪些部分构成(CDE>A总标题 B主词 C纵栏标题 D横行标题 E宾词7.按主词是否分组,统计表可分为( AC >A单一表 B简单表 C分组表 D复合表 E综合表9.统计数据整理的内容一般有( BCE >A对原始数据进行预处理 B对统计数据进行分组C 对统计数据进行汇总 D对统计数据进行分析E编制统计表、绘制统计图11.某单位100名职工按工资额分为300以下、300-400、400-600、600-800、800以上等五个组。
概率论与数理统计第三章课后习题及参考答案
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
2017年中级统计基础知识《统计整理》章节练习题及答案含答案
2017年中级统计基础知识《统计整理》章节练习题及答案含答案第三章统计整理一、单项选择题1.统计分组是统计资料整理中常用的统计方法,它能够区分( D )。
A.总体中性质相同的单位B.总体标志C.一总体与它总体D.总体中性质相异的单位2.统计分组的关键在于确定( D )。
A.组中值B.组距C.组数D.分组标志和分组界限3.按照反映事物属性差异的品质标志进行分组称为按品质标志分组。
下述分组中属于这一类的是( B )。
A.人口按年龄分组B.在校学生按性别分组C.职工按工资水平分组D.企业按职工人数规模分组4.按数量标志分组的关键是确定( D )。
A.变量值的大小B.组数C.组中值D.组距5.全国总人口按年龄分为5组,这种分组方法属于( A )。
A.简单分组B.复合分组C.按品质标志分组D.平行分组6.对某校学生先按年级分组,在此基础上再按年龄分组,这种分组方法是( B )。
A.简单分组B.复合分组C.再分组D.平行分组7.对某校学生分别按年级和年龄分组,由此形成的分组体系是( A )。
A.平行分组体系B.复合分组体系C.二者兼而有之D.二者都不是8.组距数列中的上限一般是指( A )。
A.本组变量的最大值B.本组变量的最小值C.总体内变量的最大值D.总体内变量的最小值9.组距和组数是组距数列中的一对基本要素,当变量的全距一定时,组距和组数( D )。
A.没有关系B.关系不确定C.有正向关系D.有反向关系10.等距数列和异距数列是组距数列的两种形式,其中等距数列是指( C )。
A.各组次数相等的数列B.各组次数不等的数列C.各组组距相等的数列D.各组组距不等的数列11.用离散变量作分组标志时,相邻组的上下限应( B )。
A.重合B.间断C.不相等D.相等12.某企业职工月工资收入最高者为4260元,最低者为2700元,据此分为六个组,形成闭口式等距数列,则组距应为(B) 。
(4260-2700)/6=260A.710B.260C.1560D.348013.在组距数列中,对各组的上限与下限进行简单平均,得到的是( A )。
统计学原理第三章(统计资料整理)习题答案
第三章统计资料整理一.填空题部分(将正确答案的序号填在括号内,共12小题,每小题2分,共24分)1:统计整理实现了个别单位的()向说明总体数量特征的()过渡。
答案:标志值指标值2:分析分组的分组标志称为(),与其对应的标志称为()。
答案:原因标志结果标志3:统计分组按分组标志的多少不同,可分为()和()两种。
答案:品质分组变量分组4:社会劳动力资源按学历程度不同分组,属于(),按劳动生产率水平分组属于()。
答案:品质分组变量分组5:统计分组按分组标志的多少不同,可分为()和()两种。
答案:简单分组复合分组6:离散变量分组中,变量值变动幅度比较小时,应采取(),如变量值变动很大,项数很多时则采取()。
答案:单项式分组组距式分组7:统计分布主要包括()和()两个要素。
答案:统计分组各组单位数8:根据分组标志的不同,分配数列可分为()和()。
答案:品质分配数列变量数列9:变量数列中各组标志值出现的次数称(),各组单位数占单位总数的比重称()。
答案:頻数頻率10:累计()和累计()可以更简便地概括总体各单位的分布特征。
答案:頻数頻率11:任何一个统计分布都必须满足()和()两个条件。
答案:各组頻率大于零各组頻率之和等于1(或100%)12:统计表中宾词配置可有()和()两种。
答案:平行配置层叠配置二.单项选择题部分(将正确答案的序号填在括号内,共10小题,每小题2分,共40分)1:统计整理的关键在( B )。
A、对调查资料进行审核B、对调查资料进行统计分组C、对调查资料进行汇总D、编制统计表2:在组距分组时,对于连续型变量,相邻两组的组限( A )。
A、必须是重叠的B、必须是间断的C、可以是重叠的,也可以是间断的D、必须取整数3:下列分组中属于按品质标志分组的是( B )。
A、学生按考试分数分组B、产品按品种分组C、企业按计划完成程度分组D、家庭按年收入分组4:有一个学生考试成绩为70分,在统计分组中,这个变量值应归入( B )。
《统计学》-第三章-统计整理
第三章统计整理(一)填空题1、统计整理是统计工作的第三阶段。
在这一阶段,通过对原始资料进行科学的加工,可以得出反映事物总体特征的资料。
2、统计整理在统计分析中起着承前启后的作用,它既是统计调查的必然继续,又是统计分析的基础和前提条件。
3、统计分组实质上是在统计总体内部进行的一种定性分类。
4、对原始资料审核的重点是真实性。
5、区分现象质的差别是统计分组的根本作用。
6、标志是统计分组的依据,是划分组别的标准。
7、根据分组标志的特征不同,统计总体可以按品质分组,也可以按数量分组.8、对所研究的总体按两个或两个以上的标志结合进行的分组,称为复合分组.9、次数分布数列根据分组标志特征的不同,可以分为品质分布数列和数量分布数列两种。
10、变量数列是单项变量分组、组距式分组所形成的次数分布数列。
11、按品质标志分组的结果,形成品质分布数列。
12、组限是组距变量数列中表示各组数量界限的变量值,其中下限是指最小值的变量值,上限是指最大值的变量值.13、组距变量数列的组距大小与组数的多少成反比。
与全距的大小成正比。
14、组距变量数列的分布可以用次数分布曲线图表示。
15、划分连续变量的组限时,相邻组的组限必须重叠;划分离散型变量的组限时,相邻组的组限可以重叠,也可以不重叠。
16、统计资料的整理方法主要有统计分组和统计汇总两种。
17、钟形分布、U形分布和J形分布是次数分布的三种主要类型.18、统计分组体系有品质标志分组和数量标志分组两种.19、统计表按主词是否分组和分组的程度可分为简单表、简单分组表和复合分组表三种。
20、统计表从内容结构上看,是由主词和宾词两部分构成。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、统计分组的结果表现为( A )A. 组内同质性,组间差异性B. 组内差异性,组间同质性C。
组内同质性,组间同质性 D。
组内差异性,组间差异性2、统计分组的依据是( A )A、标志B、指标C、标志值D、变量值3、下面属于按品质标志分组的有( C )A. 企业按职工人数分组 B。
统计学第三章习题答案
统计学第三章习题答案1. 描述性统计量:在描述一组数据时,我们通常使用均值、中位数、众数、方差和标准差等统计量。
例如,如果一组数据为 {2, 4, 4, 4, 5, 5, 7, 9},其均值为 (2+4+4+4+5+5+7+9)/8 = 5,中位数为4.5(因为数据是偶数个,所以取中间两个数的平均值),众数为4(出现次数最多),方差为 (1/8) * [(2-5)^2 + ... + (9-5)^2] = 8.5,标准差为方差的平方根,即√8.5。
2. 频率分布表:将数据分组并计算每个组的频数或频率。
例如,如果数据是年龄分布,可以创建如下的频率分布表:| 年龄区间 | 频数 | 频率 || | - | - || 20-25 | 10 | 0.2 || 26-30 | 15 | 0.3 || ... | ... | ... |3. 直方图和箱线图:直方图用于显示数据的分布情况,箱线图则提供了数据的最小值、第一四分位数、中位数、第三四分位数和最大值的快速视图。
例如,对于上述年龄数据,可以绘制相应的直方图和箱线图来观察数据的分布和集中趋势。
4. 概率分布:在统计学中,我们经常使用正态分布来描述数据的分布。
正态分布的数学表达式为N(μ, σ^2),其中μ是均值,σ^2是方差。
例如,如果一个随机变量X服从正态分布N(50, 25),那么X的均值是50,方差是25。
5. 中心极限定理:无论原始数据的分布如何,当样本量足够大时,样本均值的分布将趋近于正态分布。
这个定理是推断统计的基础之一。
6. 假设检验:假设检验是统计推断的一部分,用于确定一个统计假设是否成立。
例如,如果我们要检验一个样本均值是否显著不同于总体均值,可以使用t检验。
具体步骤包括提出原假设和备择假设,选择适当的检验统计量,确定显著性水平,计算p值,并作出结论。
7. 置信区间:置信区间提供了一个范围,我们可以在这个范围内估计总体参数的值。
例如,如果我们有一个样本均值和样本标准差,我们可以计算95%置信区间来估计总体均值的范围。
统计学章第3习题答
第三章统计整理二.单项选择题:1.统计分组的关键问题是( A )。
A.确定分组标志和划分各组界限B.确定组距和组数C.确定组距和组中值D.确定全距和组距2.统计分组对总体而言是( B )。
A.将总体区分为性质相同的若干部分B.将总体区分为性质相异的若干部分C.将总体单位区分为性质相同的若干部分D.将不同总体区分为性质相异的若干部分3.按某一标志分组的结果就表现为(C )。
A.组内差异性.组间同质性B.组内同质性.组间同质性C.组内同质性.组间差异性D.组内差异性.组间差异性4.某连续变量数列,其末组为开口组,下限为200,又知其邻组的组中值为170,则末组的组中值为(C)。
A.260B.215C.230D.1855.下列分组中,按品质标志分组的是(B )。
A. 人口按年龄分组B.产品按质量优劣分组C. 企业按固定资产原值分组D.乡镇按工业产值分组6.对企业先按经济类型分组,再按企业规模分组,这样的分组属于(C )。
A.简单分组B.平行分组C.复合分组D.再分组7.用组中值代表各组内的一般水平的假定条件是(D )。
A.各组的次数均相等B.各组的组距均相等C.各组的变量值均相等D.各组次数在本组内呈均匀分布8.在频数分布中,频率是指(C )。
A.各组频数之比B.各组频率之比C.各组频数与总频数之比D.各组频数与各组次数之比9.在分组时,若有某单位的变量值正好等于相邻组的下限时,一般应将其归在(B )。
A.上限所在的组B.下限所在的组C.任意一组均可D.另设新组10.在编制组距数列时,当全距不变的情况下,组距与组数的关系是(B )。
A.正比例关系B.反比例关系C.乘积关系D.没有关系11.变量数列中各组的频率总和应(C )。
A.小于100%B.大于100%C.等于100%D.不等于100%12.在编制分配数列时,连续型变量的相邻组的组限必须(C )。
A.交叉B.不等C.重叠D.间断三.多项选择题:1.统计分组的作用在于(ABE)。
第三章 统计整理习题(1)
第三章统计整理习题(1)第三章统计整理习题(一)一、单选题1.统计分组的关键在于确定()。
A.组中值B.组距C.组数D.分组标志和分组界限2.按照反映事物属性差异的品质标志进行分组称为按品质标志分组。
下述分组中属于这一类的是()。
A.人口按年龄分组B.在校学生按性别分组C.职工按工资水平分组D.企业按职工人数规模分组3.按数量标志分组的关键是确定()。
A.变量值的大小B.组数C.组中值D.组距4.对某校学生先按年级分组,在此基础上再按年龄分组,这种分组方法是()。
A.简单分组B.复合分组C.再分组D.平行分组5.全国总人口按年龄分为5组,这种分组方法属于()。
A.简单分组B.复合分组C.按品质标志分组D.以二都不对6.组距数列中的上限一般是指()。
A.本组变量的最大值B.本组变量的最小值C.总体内变量的最大值D.总体内变量的最小值7.等距数列和异距数列是组距数列的两种形式,其中等距数列是指()。
A.各组次数相等的数列B.各组次数不等的数列C.各组组距相等的数列D.各组组距不等的数列8.某企业职工月工资收入最高者为4260元,最低者为2700元,据此分为六个组,形成闭口式等距数列,则组距应为()。
A.7108 .B260 C.1560 D.34809.在组距数列中,对各组的上限与下限进行简单平均,得到的是()。
A.组中值B.组平均数C.组距D.组数10.在分组时,如遇到某单位的标志值刚好等于相邻两组上下限数值时,一般是()。
A.将此标志值单一组B.将此值归入作为上限的那一组C.将此值归入作为下限的那一组D.将此值归人作为上限的组或下限的组均可11.企业按资产总额分组()。
A.只能使用单项式分组B.只能使用组距式分组C.可以单项式分组,也可以组距式分组D.无法分组12.某连续变量数列,其末组为开Vl组,下限为200,又知其邻组的组中值为170,则末组组中值为()。
A.2608B.215C.230D.28513.统计整理主要是整理()。
第三章统计数据整理习题参考答案
第三章统计数据整理习题参考答案一、名词解释统计数据整理:统计数据整理是根据统计研究的任务,对统计调查阶段所搜集到的大量原始资料进行加工汇总,使其系统化、条理化、科学化,以得出反映事物总体综合数量特征的资料的工作过程。
数据的预处理:数据的预处理是统计数据整理的第一步,是在对数据进行分类或分组之前所做的必要处理,包括数据的审核、订正、排序等。
统计分组:统计分组是根据客观现象的特点和统计研究的目的和任务,按照一定的标志把总体划分为若干性质不同的组或类型,使组和组之间的差异尽可能大,同组内的差异尽可能小。
分配数列:在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体中各个单位在各组间的分布,称为次数分布或分配数列。
构成分配数列的要素有两个,即分组标志序列(或分组)和与各组对应的分布次数。
组距式数列:用变量值变动的一定范围(或距离)代表一个组而编制的变量数列称为组距数列。
单变量数列: 以一个变量值作为一组的分组标志值所编制的变量数列称为单项数列。
组距: 组距是指每组所包含变量值的变动范围,实际上组距就是每组上限、下限之间的距离,即组距=上限—下限。
组限: 组限是指各组的数量界限,即数列中每个组两端表示各组界限的变量值。
分为上限和下限。
每个组较小的组限称为下限,较大的组限称为上限。
组中值: 组中值是组距数列中各组所有变量值的代表值,实际上就是各组上限与下限之间的中点值。
统计表: 统计表是统计用数字说话的一种最常用的形式。
把搜集到的数字资料,经过汇总整理后,得出一些系统化的统计资料,将其按一定顺序填列在一定的表格内,这个表格就是统计表。
二、单项选择1~5: B C B A A 6~10: A A A C B三、判断题(正确的打“√”,错误的打“×”)1~5:√√×√√ 6~10:××√××四、简答题1、什么是统计数据整理?统计数据整理要遵循哪些基本原则?主要内容有哪些?答:统计数据整理是根据统计研究的任务,对统计调查阶段所搜集到的大量原始资料进行加工汇总,使其系统化、条理化、科学化,以得出反映事物总体综合数量特征的资料的工作过程。
统计学第三章习题答案
7:30
4
8:00
4
8:30
7
9:00
2
总计
20
(2)
第三章
7
第三章
7、 (1)、
(2)
8
第三章
8、 (1)
(2)
(3)
9
第三章
9、 (1)
接收 29 39 49 59 69 79 89
合计
(2)
频率% 10 16 12 16 20 12 4 100
累积 % 10.00 26.00 38.00 64.00 84.00 96.00 100.00 -
多少,其宽度(表示类别)则是固定的;直方图是用面积表示各组频数的多少,矩形的
高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。
其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开
排列。最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。
Stem width: 10.00
Each leaf:
1 case(s)
5、
(1) VAR00003 Stem-and-Leaf Plot
Frequency Stem & Leaf
1.00 2.00 1.00 2.00 2.00
11 . 6 12 . 02 12 . 8 13 . 04 13 . 56
Frequency Stem & Leaf
2.00 6.00 8.00 11.00 9.00 7.00 4.00 2.00 1.00
6. 7. 8. 9. 10 . 11 . 12 . 13 . 14 .
89 233566 01123456 12224556788 002466678 2355899 4678 24 1
统计调查与整理(调查部分)课后练习及其答案
统计调查与整理习题及其答案一、填空题1.常用的统计调查方式主要有、、、、等。
2.典型调查有两类:一是;二是。
3.统计调查按调查对象包括的范围不同可分为、。
4.确定调查对象时,还必须确定两种单位,即和。
5.重点调查是在调查对象中选择一部分进行调查的一种调查。
6.询问调查具体包括、、、等。
7.访问调查的方式有、。
8.邮寄调查的问卷发放方式有、、三种。
9.根据观察者是否使用科学的观察仪器,观察可分为和。
10.调查表一般由、和三部分组成。
11.就一般的统计数据而言,其质量评价标准为、、、、、。
二、单项选择题1.某地区为了掌握该地区水泥生产的质量情况,拟对占该地区水泥总产量的80%的五个大型水泥厂的生产情况进行调查,这种调查方式是( )。
A普查B典型调查C抽样调查D重点调查2.某灯泡厂为了掌握该厂的产品质量,拟进行一次全厂的质量大检查,这种检查应选择( )。
A统计报表B重点调查C全面调查D抽样调查3.人口普查规定统一的标准时间是为了( )。
A避免登记的重复与遗漏B确定调查的范围C确定调查的单位D登记的方便4.以下哪种场合宜采用标准式访问( )。
A居民入户调查B座谈会C当事人或知情者个别采访D观察法5.某地进行国有商业企业经营情况调查,则调查对象是( )。
A该地所有商业企业B该地所有国有商业企业C该地每一国有商业企业D该地每一商业企业6.以下哪种调查的报告单位与调查单位是一致的( )。
A 工业普查B工业设备调查C职工调查D未安装设备调查7.统计调查所搜集的可以是原始资料,也可以是次级资料,原始资料与次级资料的关系是( )。
A原始资料来源于基层单位,次级资料来源于上级单位B次级资料是由原始资料加工整理而成C原始资料与次级资料之间无必然联系D原始资料与次级资料没有区别8.调查项目通常以表的形式表示,称作调查表,一般可分为( )。
A单一表和复合表B单一表和一览表C简单表和复合表D简单表和一览表9.通过调查大庆、胜利、辽河等油田,了解我国石油生产的基本情况。
《统计学概论》第三章课后练习题答案
《统计学概论》第三章课后练习题答案一、思考题1.什么是统计整理,统计整理的对象是什么?P612.什么是统计分组,它可以分为哪几种形式?P633.简述编制变量数列的一般步骤。
P70-754.统计表分为哪几种?P785.什么是统计分布,它包括哪两个要素?P686.单项式分组和组距公式分组分别在什么情况下运用?P667.如何正确选择分组标志?P658.为什么要进行统计分组?其主要作用是什么?P63(2009.01)二、判断题1.统计整理只能对统计调查所得到的原始资料进行加工整理。
(×)P61【解析】统计整理分为两情况:一种是对原始资料进行整理,另一种是对次级资料即已加工过的现成资料进行在整理。
2.对一个既定总体而言,合理的分组标志只有一个。
(×)P67【解析】复合分组就是对同一总体选择两个或两个以上标志进行的分组。
3.在异距数列中,计算次数密度主要是为了消除组距因素对次数分布的影响。
(√)P74 4.组中值是指各组上限和下限之中点数值,故在任何情况下它都能代表各组的一般水平。
(×)P72【解析】当组内标志值分布均匀时,组中值能代表各组的一般水平(平均水平),当组内标志值分布不均匀时,组中值不能代表各组的一般水平(平均水平)。
5.在变量数列中,组数等于全距除以组距。
(×)(2010.01)P71【解析】变量数列的分组可分为等距分组和异距分组,只有在等距分组的情况下,组数等于全距除以组距。
6.统计分组的关键问题是确定组数和组距。
(×)(2009.10)P65【解析】统计分组的关键问题是选择恰当的分组标志。
7.按数量标志分组的目的,就是要区分各组在数量上的差别。
(×)P66【解析】按数量标志分组的目的,并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质。
8.连续型变量可以作单项式分组或组距式分组,而离散型变量只能作组距式分组。
统计学第三章课后题及答案解析
第三章一、单项选择题1.统计整理的中心工作是()A.对原始资料进行审核 B.编制统计表C.统计汇总问题 D.汇总资料的再审核2.统计汇总要求资料具有()A.及时性 B.正确性C.全面性 D.系统性3.某连续变量分为五组:第一组为40—50,第二组为50—60,第三组为60—70,第四组为70—80,第五组为80以上,依习惯上规定()A.50在第一组,70在第四组 B.60在第二组,80在第五组C.70在第四组,80在第五组 D.80在第四组,50在第二组4.若数量标志的取值有限,且是为数不多的等差数值,宜编制()A.等距式分布数列 B.单项式分布数列C.开口式数列 D.异距式数列5.组距式分布数列多适用于()A.随机变量 B.确定型变量C.连续型变量 D.离散型变量6.向上累计次数表示截止到某一组为止()A.上限以下的累计次数 B.下限以上的累计次数C.各组分布的次数 D.各组分布的频率7.次数分布有朝数量大的一边偏尾,曲线高峰偏向数量小的方向,该分布曲线属于()A.正态分布曲线 B.J型分布曲线C.右偏分布曲线 D.左偏分布曲线8.划分连续变量的组限时,相临组的组限一般要()A.交叉 B.不等C.重叠 D.间断二、多项选择题1.统计整理的基本内容主要包括()A.统计分组 B.逻辑检查C.数据录入 D.统计汇总E.制表打印2.影响组距数列分布的要素有()A.组类 B.组限C.组距 D.组中值E.组数据3.常见的频率分布类型主要有()A.钟型分布 B.χ型分布C.U型分布 D.J型分布E.F型分布4.根据分组标志不同,分组数列可以分为()A.组距数列 B.品质数列C.单项数列 D.变量数列E.开口数列5.下列变量一般是钟型分布的有()A.粮食平均产量的分布 B.零件公差的分布C.大学生身高的分布 D.商品市场价格的分布E.学生成绩的分布6.下列变量呈J型分布的有()A.投资额按利润率的分布 B.60岁以上人口按年龄分组的分布C.经济学中的供给曲线 D.不同年龄人口的死亡率分布E.经济学中的需求曲线三、填空题1.分布在各组的_______叫次数(频数)。
03章 统计整理习题及答案
第三章 统计整理(一)判断题1、 在等距数列中,组距的大小与组数的多少成反比。
( )2、 两个简单分组并列起来就是复合分组。
( )3、 在确定组限时,最小组的下限应高于最小变量值。
( )4、 组中值是各组的实际平均数的近似代表值,因此,用组中值来计算总平均数,只是一个近似值。
( )5、 分区简单分组与复合分组的根据是分组对象的复杂程度。
( )(二) 单项选择题1、 某连续变量,其末组为开口组,下限为500,又知其邻组的组中值为480,则其末组的组中值为( )。
4905005105202、 对总体进行分组时,采用等距数列还是异距数列,决定于( )次数的多少变量的大小组数的多少现象的性质和研究的目的3、 频数密度是( )。
组距 / 次数单位组距内分布的次数平均每组组内分布的次数平均每组组内分布的频率4、区分简单分组与复合分组的根据是( )。
分组对象的复杂程度不同分组数目的多少不同采用分组标志的多少不同研究目的和对象不同5、选择简单分组与复合分组的根据是( )。
分组对象的复杂程度不同分组数目的多少不同采用分组标志的多少不同研究目的和对象不同6、 并列分组与复合分组的主要区别在于( )。
分组标志的多少不一样分组数目的多少不相同分组的方式不一样研究目的和对象不相同7、 主词按某一标志进行分组的统计表称为( )。
简单表分组表复合表调查表8、主词按时间顺序排列的统计表称为()。
简单表分组表复合表调查表(三)多项选择题1、正确的统计分组应做到()。
组间有差异各组应等距组内属同质组限不应重叠不应出现开口组2、计算某组标准组距次数应具备的已知条件为()。
某组实际次数标准组距某组的组中值某组组距累计次数分布3、影响次数分布的要素有()。
组距组数组限分组标志次数4、统计分组的关键在于()。
划分数量标志与品质标志选择分组标志设立统计分组体系尽可能采用复合分组划分各组界限5、在对全部企业按所有制分组的基础上,再按职工人数分组,这属于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学》习题三参考答案
一、单项选择题:
1、按某一标志分组的结果,表现出(①)。
①组内同质性和组间差异性②组内差异性和组间差异性
③组内同质性和组间同质性④组内差异性和组间同质性
2、统计分组就是根据统计研究的目的,按照一个或几个分组标志(②)。
①将总体分成性质相同的若干部分②将总体分成性质不同的若干部分
③将总体划分成数量相同的若干部分④将总体划分成数量不同的若干部分
3、某连续变量数列,其末组为开口组,下限为500,又知其邻
AHA12GAGGAGAGGAFFFFAFAF
组组中值为480,则末组组中值为(④)。
① 490 ② 500 ③ 510 ④ 520
4、某同学考试成绩为80分,在统计分组时应将其计入(③)。
①成绩为80分以下人数中②成绩为70~80分的人数中
③成绩为80~90分的人数中④根据具体情况来具体确定
5、分布数列是说明(①)
①总体单位总数在各组的分配情况②总体标志总量在各组的分配情况
③分组的组限④各组的分配规律
6、按变量的性质和数据的多少划分,变量数列可以分为
(②)。
AHA12GAGGAGAGGAFFFFAFAF
①等距数列与异距数列②单项数列和组距数列
③开口组数列和闭口组数列④等差数列和等比数列
7、将统计表分为总标题、横行标题、纵栏标题和指标数值四部分是(①)。
①从表式结构看②从内容上看③从作用上看④从性质上看
二、多项选择题:
1、统计分组的作用主要有(③④⑤)。
①反映总体的规模②说明总体单位的特征③区分社会经济现象的不同类型
④研究总体的内部结构⑤分析现象间的依存关系
2、下列分组中,属于按品质标志分组的有(②③④⑤)。
AHA12GAGGAGAGGAFFFFAFAF
①职工按工龄分组②学生按健康状况分组③企业按经济类型分组
④工人按技术等级分组⑤人口按居住地分组
3、组距数列中,在组数一定的情况下,组距大小与(②
⑤)。
AHA12GAGGAGAGGAFFFFAFAF
①组数的多少成正比②组数的多少成反比③总体单位数多少成反比
④全距的大小成反比⑤全距的大小成正比
4、在分布数列中,次数(①④⑤)。
①是指各组的总体单位数②只有在变量数列中才存在
③只有在品质数列中才存在④又称权数⑤又称频数
5、统计表从构成形式上看,一般包括(①②③④)这几个部分。
①总标题②横行标题③纵栏标题④指标数值⑤调查单位
三、填空题:
1、统计整理是统计工作的(中间环节),在整个统计工作过程
AHA12GAGGAGAGGAFFFFAFAF
中起(承上启下)作用。
2、统计表按说明内容不同,可以分为(主词)和(宾词)两大部分。
3、统计分组的关键在于(选择分组标志)和(划分各组界限)。
4、分布数列的两个构成要素是(各组名称或变量值)和(各组的次数)。
5、组距数列按各个组的组距是否相等分为(等距数列)和(异距数列)。
四、简答题:
1、统计资料整理的步骤是什么?
统计整理的步骤主要有:第一,设计统计整理方案;第二,对数据进行审核、筛选、排序;第三,对数据进行处理(分组和汇总);
第四,要用适当的形式(统计图、表)显示数据;第五,进行数
AHA12GAGGAGAGGAFFFFAFAF
据积累和保管。
2、什么是分组标志?如何选择分组标志?
答:分组标志是在统计分组时所采用的标志,是统计分组的标准
和依据。
选择分组标志的要求有:第一,必须根据统计研究目的
选择分组标志;第二,必须选择能够反映现象本质特征的标志;
第三,要结合现象所处的具体历史条件选择分组标志。
五、实务题:
某班学生上学期《统计学》考试成绩资料如下:
65 69 80 59 75 84 75 95 90 77 66 50 78
82 83 78 75 77 80 81 80 64 73 88 92 60
71 96 91 86 79 87 64 72 80
70 72 79 82
AHA12GAGGAGAGGAFFFFAFAF
81 78 80 70 68 72 68 79 85 86 81 70 69
要求:按60分以下,60~70,70~80,80~90,90以上分组,
编制分布数列。
答:某班统计学考试成绩分组表
AHA12GAGGAGAGGAFFFFAFAF
如有侵权请联系告知删除,感谢你们的配合!
39387 99DB 駛23397 5B65 孥4 29926 74E6 瓦{29564 737C 獼33944 8498 蒘35815 8BE7 诧27778 6C82 沂38771 9773 靳24652 604C 恌25992 6588 斈
AHA12GAGGAGAGGAFFFFAFAF。