数学中考模拟试卷资料

合集下载

2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷+答案解析

2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷+答案解析

2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数0,,,中,最小的数是()A.0B.C.D.2.下列几何体中,三视图的三个视图完全相同的几何体是()A. B. C. D.3.在2023年“五一”期间,仙海旅游景区接待游客102200人次,将102200用科学记数法表示为()A. B. C. D.4.阅读可以丰富知识,拓展视野,在世界读书日月23日当天,某校为了解学生的课外阅读,随机调查了40名学生课外阅读册数的情况,现将调查结果绘制成如图.关于学生的读书册数,下列描述正确的是()A.极差是6B.中位数是5C.众数是6D.平均数是55.中,、、的对边分别为a、b、已知,,,则的值为()A. B. C. D.6.如图,中,,顶点A,C分别在直线m,n上,若,,则的度数为()A.B.C.D.7.若m、n是一元二次方程的两个根,则的值是()A.4B.5C.6D.128.如图,在等腰直角中,,,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.B.C.D.9.如图,二次函数的图象与x轴交于,B两点,对称轴是直线,下列结论中,所有正确结论的序号为()①;②点B的坐标为;③;④对于任意实数m,都有A.①②B.②③C.②③④D.③④10.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、OA为半径的圆弧,N是AB的中点“会圆术”给出的弧长l的近似值计算公式:当,时,则l的值为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.函数的自变量x的取值范围是______.12.若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为______.13.如图,已知直线:和直线:交于点,则关于x,y的二元一次方程组的解是______.14.如图,正八边形和正五边形按如图方式拼接在一起,则的度数为______.15.我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,半径为寸,要做成方形板材,使其厚度达到7寸.则长方形的长是______.16.如图,,半径为2的与角的两边相切,点P是上任意一点,过点P向角的两边作垂线,垂足分别为E,F,设,则t的取值范围是______.三、解答题:本题共10小题,共102分。

中考综合模拟测试《数学试卷》含答案解析

中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

中考仿真模拟测试《数学试卷》含答案解析

中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 0B. -3C. (1)/(3)D. √(3)2. 若一个数的相反数是3,则这个数是()A. -3B. 3C. -(1)/(3)D. (1)/(3)3. 计算(-2x^2)^3的结果是()A. -6x^{5}B. 6x^{5}C. -8x^{6}D. 8x^{6}4. 把不等式组x + 1>0 x - 1≤slant0的解集表示在数轴上,正确的是()A.-2 -1 0 1 2.o-> <-o.B.-2 -1 0 1 2.o-> o->.C.-2 -1 0 1 2.<-o <-o.D.-2 -1 0 1 2.<-o o->.5. 已知点A(x_1,y_1),B(x_2,y_2)在反比例函数y = (k)/(x)(k≠0)的图象上,如果x_1,且y_1,那么k的取值范围是()A. k>0B. k<0C. k≥slant0D. k≤slant06. 一个正多边形的每个内角都是135°,则这个正多边形是()A. 正六边形B. 正七边形C. 正八边形D. 正九边形。

7. 若关于x的一元二次方程x^2-2x + m = 0有两个不相等的实数根,则m的取值范围是()A. m<1B. m>- 1C. m = 1D. m< - 18. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE = 3,则sin∠ BFD的值为()A. (1)/(3)B. (√(2))/(4)C. (√(2))/(3)D. (3)/(5)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,下列结论:abc>0;2a + b = 0;b^2-4ac>0;④a - b + c<0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个。

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

中考仿真模拟考试《数学卷》附答案解析

中考仿真模拟考试《数学卷》附答案解析
【详解】设生产1t甲种药品成本的年平均下降率为x,由题意得:
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)

中招考试数学模拟试卷(附带答案)(满分:120分考试时间:120分钟)一选择题(本大题共10小题共30.0分)1.2022的倒数的相反数为()A. −2022B. 2C. 12022D. −120222.下列运算错误的是()A.a+2a=3aB. (a2)3=a6C. a2⋅a3=a5D. a6÷a3=a23.如图所示的几何体它的俯视图是()A. B. C. D.4.如图AB//CD DA⊥AC垂足为A若∠ADC=35°则∠1的度数为()A. 65°B. 55°C. 45°D. 35°5.小明家1至6月份的用水量统计如图所示关于这组数据下列说法中错误的是()A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是436.如果关于x的分式方程mx−2−2x2−x=1无解那么m的值为()A. 4B. −4C. 2D. −27.用一块圆心角为216°的扇形铁皮做一个高为40cm的圆锥形工件(接缝忽略不计)那么这个扇形铁皮的半径是()cm.A. 30B. 50C. 60D. 808.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量)当x≤−2时y随x的增大而减小且−2≤x≤1时y的最大值为9则a的值为()A.1或−2B. 1C. √2D. −√2或√29. 如图 矩形ABCD 中 E 是AB 的中点 将△BCE 沿CE 翻折 点B落在点F 处 tan∠DCE =43.设AB =x △ABF 的面积为y 则y 与x的函数图象大致为( ) A. B.C. D.10.如图 四边形ABCD 为菱形 AB =BD 点B C D G 四个点在同一个圆⊙O 上 连接BG 并延长交AD 于点F 连接DG 并延长交AB 于点E BD 与CG 交于点H 连接FH 下列结论:①AE =DF ②FH//AB ③△DGH ∽△BGE ④当CG 为⊙O 的直径时 DF =AF .其中正确结论的个数是( )A. 1B. 2C. 3D. 4二 填空题(本大题共8小题 共24.0分)10. 我国推行“一带一路”政策以来 已确定沿线有65个国家加入 共涉及总人口约达46亿人 用科学记数法表示该总人口数为______人.11. 分解因式:2a 2−8b 2=______.12. 在一个口袋中有4个完全相同的小球 它们的标号分别为1 2 3 4 一人从中随机摸出一球记下标号后放回 再从中随机摸出一个小球记下标号 则两次摸出的小球的标号之和大于4的概率是______.13. 已知{x =2y =−3是方程组{ax +by =2bx +ay =3的解 则a 2−b 2=______.14.如图在平面直角坐标系中以O为圆心适当长为半径画弧交x轴于点M交y轴于点N再分别以点M N为圆心大于MN的长为半径画弧两弧在第二象限交于点P若点P的坐标为(a,b)则a 与b的数量关系为______.15.如图△ABC中A B两个顶点在x轴的上方点C的坐标是(−1,0).以点C为位似中心在x轴的下方作△ABC的位似图形△A′B′C并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a则点B的横坐标是______.16.如图在直升机的镜头下观测牡丹园A处的俯角为30°B处的俯角为45°如果此时直升机镜头C处的高度CD为200米点A B D在同一条直线上则A B两点间的距离为______米.(结果保留根号)17.如图直线y=−x+5与双曲线y=kx (x>0)相交于A B两点与x轴相交于C点△BOC的面积是52.若将直线y=−x+5向下平移1个单位则所得直线与双曲线y=kx(x>0)的交点坐标为______ .18.如图放置的△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点A在x轴上点O B1B2B3…都在直线l上则点A2019的坐标是______.三解答题(本大题共7小题共66.0分)19.(1)计算:(−1)20229+(sin30°)−1+(5−√2)0−|3−√18|+82019×(−0.125)2019(2)解方程:2x +1=xx+220.为推进“传统文化进校园”活动某校准备成立“经典诵读”“传统礼仪”“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有______人将条形图补充完整(2)扇形图中m=______n=______(3)根据报名情况学校决定从报名“经典诵读”小组的甲乙丙丁四人中随机安排两人到“地方戏曲”小组甲乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21.如图⊙O是△ABC的外接圆AE平分∠BAC交⊙O于点E交BC于点D∠ABC的平分线BF交AD于点F.(1)求证:BE=EF(2)若DE=4DF=3求AF的长.(x>0)经过△OAB的顶点A和OB的中点C AB//x轴点A的坐标为(2,3).22.如图双曲线y=kx(1)确定k的值(2)若点D(3,m)在双曲线上求直线AD的解析式(3)计算△OAB的面积.23.某商场经营某种品牌的童装购进时的单价是60元.根据市场调查在一段时间内销售单价是80元时销售量是200件而销售单价每降低1元就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式(3)若童装厂规定该品牌童装销售单价不低于76元且商场要完成不少于240件的销售任务则商场销售该品牌童装获得的最大利润是多少?24.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.25.通过类比联想引申拓展研究典型题目可达到解一题知一类的目的.下面是一个案例请补充完整.原题:如图1点E F分别在正方形ABCD的边BC CD上∠EAF=45°连接EF则EF=BE+DF 试说明理由.(1)思路梳理∵AB=AD26.∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∵∠ADC=∠B=90°27.∴∠FDG=180°点F D G共线.根据______易证△AFG≌______得EF=BE+DF.(2)类比引申如图2四边形ABCD中AB=AD∠BAD=90°点E F分别在边BC CD上∠EAF=45°.若∠B ∠D都不是直角则当∠B与∠D满足等量关系______时仍有EF=BE+DF.(3)联想拓展如图3在△ABC中∠BAC=90°AB=AC点D E均在边BC上且∠DAE=45°.猜想BD DE EC应满足的等量关系并写出推理过程.已知:如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点与x轴交于A B两点A点在B点左侧.点B的坐标为(1,0)OC=3BO.(1)求抛物线的解析式(2)若点D是线段AC下方抛物线上的动点求四边形ABCD面积的最大值(3)若点E在x轴上点P在抛物线上.是否存在以A C E P为顶点且以AC为一边的平行四边形?若存在求出点P的坐标若不存在请说明理由.参考答案1.【答案】B的倒数为−3−3的相反数为3.【解析】解:根据相反数和倒数的定义得:−13故选:B.根据相反数的定义只有符号不同的两个数是互为相反数倒数的定义互为倒数的两数乘积为1求出即可.此题主要考查了相反数和倒数的定义正确记忆只有符号不同的两个数是互为相反数若两个数的乘积是1我们就称这两个数互为倒数.2.【答案】D【解析】解:∵a+2a=3a∴选项A不符合题意∵(a2)3=a6∴选项B不符合题意∵a2⋅a3=a5∴选项C不符合题意∵a6÷a3=a3∴选项D符合题意.故选:D.根据同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法逐项判定即可.此题主要考查了同底数幂的除法乘法合并同类项的方法以及幂的乘方与积的乘方的运算方法要熟练掌握.3.【答案】B【解析】解:∵DA⊥AC垂足为A∴∠CAD=90°∵∠ADC=35°∴∠ACD=55°∵AB//CD∴∠1=∠ACD=55°故选:B.利用已知条件易求∠ACD的度数再根据两线平行同位角相等即可求出∠1的度数.本题主要考查了平行线的性质垂直的定义等知识点熟记平行线的性质定理是解题关键.4.【答案】C【解析】解:这组数据的众数为6吨平均数为5吨中位数为5.5吨方差为43吨 2.故选:C.根据众数平均数中位数和方差的定义计算各量然后对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大则平均值的离散程度越大稳定性也越小反之则它与其平均值的离散程度越小稳定性越好.也考查了平均数众数中位数.5.【答案】A【解析】解:{3x<2x+4①3−x3≥2②由①得x<4由②得x≤−3由①②得原不等式组的解集是x≤−3故选:A.解出不等式组的解集即可得到哪个选项是正确的本题得以解决.本题考查解一元一次不等式组在数轴上表示不等式的解集解题的关键是明确解一元一次不等式组的方法.6.【答案】B【解析】【分析】本题考查了圆锥的计算属于基础题.根据题意可得r=35R可得(35R)2+402=R2即可得解.【解答】解:设这个扇形铁皮的半径为Rcm底面圆的半径为rcm根据题意得:2πr=216⋅π⋅R180即r=35R因为r2+402=R2所以(35R)2+402=R2解得R=50即这个扇形铁皮的半径为50cm.故选:B.7.【答案】B【解析】【分析】本题主要考查菱形的判定解题的关键是掌握菱形的定义和各判定及矩形的判定.根据菱形的定义及其判定矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO BO=DO∴四边形ABCD是平行四边形当AB=AD或AC⊥BD时均可判定四边形ABCD是菱形当∠ABO=∠CBO时由AD//BC知∠CBO=∠ADO∴∠ABO=∠ADO∴AB=AD∴四边形ABCD是菱形当AC=BD时可判定四边形ABCD是矩形故选:B.8.【答案】A【解析】解:过点C1作C1N⊥x轴于点N过点A1作A1M⊥x轴于点M 由题意可得:∠C1NO=∠A1MO=90°∠1=∠2=∠3则△A1OM∽△OC1N∵OA=5OC=3∴OA1=5A1M=3∴OM=4∴设NO=3x则NC1=4x OC1=3则(3x)2+(4x)2=9解得:x=±35(负数舍去)则NO=95NC1=125故点C的对应点C1的坐标为:(−95,12 5).故选:A.直接利用相似三角形的判定与性质得出△ONC1三边关系再利用勾股定理得出答案.此题主要考查了矩形的性质以及勾股定理等知识正确得出△A1OM∽△OC1N是解题关键.9.【答案】C【解析】本题主要考查点与圆的位置关系解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.由Rt△APB中AB=2OP知要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值据此求解可得.解:∵PA⊥PB∴∠APB=90°∵AO=BO∴AB=2PO若要使AB取得最小值则PO需取得最小值连接OM交⊙M于点P′当点P位于P′位置时OP′取得最小值过点M作MQ⊥x轴于点Q则OQ=3MQ=4∴OM=5又∵MP′=2∴OP′=3∴AB=2OP′=6故选C.10.【答案】D【解析】解:①∵四边形ABCD是菱形∴AB=BC=DC=AD又∵AB=BD∴△ABD和△BCD是等边三角形∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°又∵B C D G四个点在同一个圆上∴∠DCH=∠DBF∠GDH=∠BCH∴∠ADE=∠ADB−∠GDH=60°−∠EDB∠DCH=∠BCD−∠BCH=60°−∠BCH∴∠ADE=∠DCH∴∠ADE=∠DBF在△ADE和△DBF中{∠EAD=∠FDB AD=DB∠ADE=∠DBF∴△ADE≌△DBF(ASA)∴AE=DF故①正确②由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∵B C D G四个点在同一个圆上∠BDC=60°∠DBC=60°∴∠BGC=∠BDC=60°∠DGC=∠DBC=60°∴∠BGE=180°−∠BGC−∠DGC=180°−60°−60°=60°∴∠FGD=60°∴∠FGH=120°又∵∠ADB=60°∴F G H D四个点在同一个圆上∴∠EDB=∠HFB∴∠FBA=∠HFB∴FH//AB故②正确③∵B C D G四个点在同一个圆上∠DBC=60°∴∠DGH=∠DBC=60°∵∠EGB=60°∴∠DGH=∠EGB由①中证得∠ADE=∠DBF∴∠EDB=∠FBA∴△DGH∽△BGE故③正确④如下图∵CG为⊙O的直径点B C D G四个点在同一个圆⊙O上∴∠GBC=∠GDC=90°∴∠ABF=120°−90°=30°∵∠A=60°∴∠AFB=90°∵AB=BD∴DF=AF故④正确正确的有①②③④故选:D.①由四边形ABCD是菱形AB=BD得出△ABD和△BCD是等边三角形再由B C D G四个点在同一个圆上得出∠ADE=∠DBF由△ADE≌△DBF得出AE=DF②利用内错角相等∠FBA=∠HFB求证FH//AB③利用∠DGH=∠EGB和∠EDB=∠FBA求证△DGH∽△BGE④利用CG为⊙O的直径及B C D G四个点共圆求出∠ABF=120°−90°=30°再利用等腰三角形的性质求得DF=AF.此题综合考查了圆及菱形的性质等边三角形的判定与性质全等三角形的判定和性质运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.11.【答案】4.6×109【解析】解:46亿=4.6×109.故答案为:4.6×109科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数当原数的绝对值<1时n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数表示时关键要正确确定a的值以及n的值.12.【答案】2(a+2b)(a−2b)【解析】【分析】本题主要考查提公因式法分解因式和利用平方差公式分解因式熟记公式是解题的关键难点在于要进行两次分解因式.先提取公因式2再对余下的多项式利用平方差公式继续分解.【解答】解:2a2−8b2=2(a2−4b2)=2(a+2b)(a−2b).故答案为2(a+2b)(a−2b).13.【答案】58【解析】【分析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果 两次摸出的小球的标号之和大于4的有10种情况∴两次摸出的小球的标号之和大于4的概率是:1016=58.故答案为58. 14.【答案】1【解析】解:∵{x =2y =−3是方程组{ax +by =2bx +ay =3的解 ∴{2a −3b =2①2b −3a =3②解得 ①−② 得a −b =−15①+② 得a +b =−5∴a 2−b 2=(a +b)(a −b)=(−5)×(−15)=1 故答案为:1.根据{x =2y =−3是方程组{ax +by =2bx +ay =3的解 可以求得a +b 和a −b 的值 从而可以解答本题. 本题考查二元一次方程组的解 解答本题的关键是明确二元一次方程组的解得意义 巧妙变形 利用平方差公式解答.15.【答案】a +b =0【解析】解:利用作图得点OP 为第二象限的角平分线所以a +b =0.故答案为a +b =0.利用基本作图得OP 为第二象限的角平分线 则点P 到x y 轴的距离相等 从而得到a 与b 互为相反数.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段作一个角等于已知角作已知线段的垂直平分线作已知角的角平分线过一点作已知直线的垂线).也考查了第二象限点的坐标特征.(a+3)16.【答案】−12【解析】解:设点B的横坐标为x则B C间的横坐标的长度为−1−x B′C间的横坐标的长度为a+1∵△ABC放大到原来的2倍得到△A′B′C∴2(−1−x)=a+1(a+3).解得x=−12(a+3).故答案为:−12设点B的横坐标为x然后表示出BC B′C的横坐标的距离再根据位似比列式计算即可得解.本题考查了位似变换坐标与图形的性质根据位似比的定义利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.17.【答案】(200√3−200)【解析】【分析】本题考查了含30°角直角三角形的性质勾股定理平行线性质等内容解决本题的关键是利用CD的长分别在两三角形中求出AD与BD的长.在三角形ACD中利用勾股定理求出AC长在三角形BCD中根据等腰三角形性质得到BD长即可求解.【解答】解:∵EC//AD∴∠A=30°∠CBD=45°CD=200∵CD⊥AB于点D.∴在Rt△ACD中∠CDA=90°AC=2CD=400∴AD=√AC2−CD2=200√3在Rt△BCD中∠CDB=90°∴DB=CD=200∴AB=AD−DB=200√3−200答:A B两点间的距离为(200√3−200)米.故答案为:(200√3−200)18.【答案】(20212,2019√32)【解析】解:∵△OAB1△B1A1B2△B2A2B3…都是边长为1的等边三角形点O B1B2B3…都在直线l上∴点B1的坐标为(12,√32)点B2的坐标为(1,√3)点B3的坐标(32,3√32)…点B n的坐标为(n2,n√32)∴点A n的坐标为(n2+1,n√32)∴点A2019的坐标为(20192+1,2019√32)即A2019的坐标为(20212,2019√32).故答案为:(20212,2019√32).根据等边三角形的性质结合一次函数图象上点的坐标特征可得出点B n的坐标进而可得出点A n的坐标即可求出结论.本题考查了点的规律问题根据点的坐标的变化找出点A n的坐标是解题的关键.19.【答案】解:(1)原式=−1+2+1−3√2+3−1=4−3√2(2)去分母得:2x+4+x2+2x=x2解得:x=−1经检验x=−1是分式方程的解.【解析】(1)原式利用乘方的意义零指数幂负整数指数幂法则绝对值的代数意义以及积的乘方运算法则计算即可求出值(2)分式方程去分母转化为整式方程求出整式方程的解得到x的值经检验即可得到分式方程的解.此题考查了解分式方程以及实数的运算熟练掌握运算法则是解本题的关键.20.【答案】解:(1)100(2)25108(3)树状图分析如下:∵共有12种情况恰好选中甲乙的有2种∴P(选中甲乙)=212=16.【解析】【分析】本题考查了扇形统计图条形统计图及列表与树状图法求概率的知识解题的关键是能够列树状图将所有等可能的结果列举出来难度不大.(1)用地方戏曲的人数除以其所占的百分比即可求得总人数减去其它小组的频数即可求得民族乐器的人数从而补全统计图(2)根据各小组的频数和总数分别求得m和n的值即可(3)列树状图将所有等可能的结果列举出来然后利用概率公式求解即可.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人占13%∴报名参加课外活动小组的学生共有13÷13%=100人参加民族乐器的有100−32−25−13=30人统计图为:故答案为:100(2)∵m%=25100×100%=25%∴m=25n=30100×360°=108°故答案为:25108(3)见答案21.【答案】(1)证明:∵AE平分∠BAC∴∠1=∠4∵∠1=∠5∴∠4=∠5∵BF平分∠ABC∴∠2=∠3∵∠6=∠3+∠4=∠2+∠5即∠6=∠EBF∴EB=EF(2)解:∵DE=4DF=3∴BE=EF=DE+DF=7∵∠5=∠4∠BED=∠AEB∴△EBD∽△EAB∴BEEA =DEBE即7EA=47∴EA=494∴AF=AE−EF=494−7=214.【解析】(1)通过证明∠6=∠EBF得到EB=EF(2)先证明△EBD∽△EAB再利用相似比求出AE然后计算AE−EF即可得到AF的长.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点叫做三角形的外心.也考查了圆周角定理.22.【答案】解:(1)将点A(2,3)代入解析式y=kx得:k=6(2)将D(3,m)代入反比例解析式y=6x得:m=63=2∴点D坐标为(3,2)设直线AD解析式为y=kx+b将A(2,3)与D(3,2)代入得:{2k +b =33k +b =2解得:{k =−1b =5则直线AD 解析式为y =−x +5(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M∵AB//x 轴∴BM ⊥y 轴∴MB//CN//x 轴∵C 为OB 的中点∴N 为OM 的中点∴CN =12BM ON =12OM ∴S △OCN S △OBM =14∵A C 都在双曲线y =6x 上 ∴S △OCN =S △AOM =3由33+S △AOB =14 得:S △AOB =9则△AOB 面积为9.【解析】此题属于反比例函数综合题 涉及的知识有:待定系数法确定函数解析式 坐标与图形性质 三角形中位线定理 以及反比例函数k 的几何意义 熟练掌握待定系数法是解本题的关键.(1)将A 坐标代入反比例解析式求出k 的值即可(2)将D 坐标代入反比例解析式求出m 的值 确定出D 坐标 设直线AD 解析式为y =kx +b 将A 与D 坐标代入求出k 与b 的值 即可确定出直线AD 解析式(3)过点C 作CN ⊥y 轴 垂足为N 延长BA 交y 轴于点M 得到CN 与BM 平行 根据C 为OB 的中点 由三角形中位线定理得出N 为OM 的中点 得到CN =12BM ON =12OM 确定出S △OCN S△OBM =14 利用反比例函数k的几何意义得出S△OCN=S△AOM=3得到33+S△AOB =14求出三角形AOB面积即可.23.【答案】解:(1)根据题意得=−20x+1800所以销售量y件与销售单价x元之间的函数关系式为y=−20x+1800(60≤x≤80)(2)w=(x−60)y=(x−60)(−20x+1800)=−20x2+3000x−108000所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式w=−20x2+3000x−108000(3)根据题意得−20x+1800≥240解得x≤78∴76≤x≤78w=−20x2+3000x−108000对称轴为x=−30002×(−20)=75∵a=−20<0∴抛物线开口向下∴当76≤x≤78时w随x的增大而减小∴x=76时w有最大值最大值=(76−60)(−20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【解析】本题考查了二次函数的应用:根据实际问题列出二次函数关系式然后利用二次函数的性质特别是二次函数的最值问题解决实际中的最大或最小值问题.(1)销售量y件为200件加增加的件数:(80−x)×20(2)利润w等于单件利润×销售量y件即w=(x−60)(−20x+1800)整理即可(3)先利用二次函数的性质得到w=−20x2+3000x−108000的对称轴为x=−30002×(−20)=75而−20x+ 1800≥240得76≤x≤78根据二次函数的性质得到当76≤x≤78时w随x的增大而减小把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.24.【答案】(1)SAS △AFE(2) ∠B +∠D =180°(3)猜想:DE 2=BD 2+EC 2证明:连接DE′ 根据△AEC 绕点A 顺时针旋转90°得到△ABE′∴△AEC≌△ABE′∴BE′=EC AE′=AE∠C =∠ABE′ ∠EAC =∠E′AB在Rt △ABC 中∵AB =AC∴∠ABC =∠ACB =45°∴∠ABC +∠ABE′=90°即∠E′BD =90°∴E′B 2+BD 2=E′D 2又∵∠DAE =45°∴∠BAD +∠EAC =45°∴∠E′AB +∠BAD =45°即∠E′AD =45°在△AE′D 和△AED 中{AE′=AE ∠E′AD =∠DAE AD =AD∴△AE′D≌△AED(SAS)∴DE =DE′∴DE 2=BD 2+EC 2.【解析】解:(1)∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合.∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC=∠B=90°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠EAF=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(2)∠B+∠D=180°时EF=BE+DF∵AB=AD∴把△ABE绕点A逆时针旋转90°至△ADG可使AB与AD重合∴∠BAE=∠DAG∵∠BAD=90°∠EAF=45°∴∠BAE+∠DAF=45°∴∠EAF=∠FAG∵∠ADC+∠B=180°∴∠FDG=180°点F D G共线在△AFE和△AFG中{AE=AG∠FAE=∠FAG AF=AF∴△AFE≌△AFG(SAS)∴EF=FG即:EF=BE+DF.(3)根据△AEC绕点A顺时针旋转90°得到△ABE′根据旋转的性质可知△AEC≌△ABE′得到BE′=EC AE′=AE∠C=∠ABE′∠EAC=∠E′AB根据Rt△ABC中的AB=AC得到∠E′BD=90°所以E′B2+ BD2=E′D2证△AE′D≌△AED利用DE=DE′得到DE2=BD2+EC2此题主要考查了几何变换关键是正确画出图形证明△AFG≌△AEF.此题是一道综合题难度较大题目所给例题的思路为解决此题做了较好的铺垫.25.【答案】解:(1)∵B(1,0)∴OB=1∵OC=3BO∴C(0,−3)∵y=ax2+3ax+c过B(1,0)C(0,−3)∴{c=−3a+3a+c=0解这个方程组得{a=34 c=−3∴抛物线的解析式为:y=34x2+94x−3(2)过点D作DM//y轴分别交线段AC和x轴于点M N在y=34x2+94x−3中令y=0得方程34x2+94x−3=0解这个方程得x1=−4∴A(−4,0)设直线AC的解析式为y=kx+b∴{0=−4k+bb=−3解这个方程组得{k=−34 b=−3∴AC的解析式为:y=−34x−3∵S四边形ABCD=S△ABC+S△ADC=152+12⋅DM ⋅(AN +ON) =152+2⋅DM 设D(x,34x 2+94x −3)当x =−2时 DM 有最大值3此时四边形ABCD 面积有最大值272(3)如图所示①过点C 作CP 1//x 轴交抛物线于点P 1 过点P 1作P 1E 1//AC 交x轴于点E 1 此时四边形ACP 1E 1为平行四边形∵C(0,−3)∴设P 1(x,−3)∴34x 2+94x −3=−3 解得x 1=0∴P 1(−3,−3)②平移直线AC 交x 轴于点E 交x 轴上方的抛物线于点P 当AC =PE 时 四边形ACEP 为平行四边形∵C(0,−3)∴设P(x,3)∴34x 2+94x −3=3 x 2+3x −8=0解得x =−3+√412或x =−3−√412此时存在点P 2(−3+√412,3)和P 3(−3−√412,3) 综上所述存在3个点符合题意 坐标分别是P 1(−3,−3) P 2(−3+√412,3) P 3(−3−√412,3).【解析】(1)已知了B 点坐标 易求得OB OC 的长 进而可将B C 的坐标代入抛物线中 求出待定系数的值 即可得出抛物线的解析式.(2)根据A C 的坐标 易求得直线AC 的解析式.由于AB OC 都是定值 则△ABC 的面积不变 若四边形ABCD 面积最大 则△ADC 的面积最大 可过D 作x 轴的垂线 交AC 于M x 轴于N 易得△ADC 的面积是DM与OA积的一半可设出N点的坐标分别代入直线AC和抛物线的解析式中即可求出DM的长进而可得出四边形ABCD的面积与N点横坐标间的函数关系式根据所得函数的性质即可求出四边形ABCD的最大面积.(3)本题应分情况讨论:①过C作x轴的平行线与抛物线的交点符合P点的要求此时P C的纵坐标相同代入抛物线的解析式中即可求出P点坐标②将AC平移令C点落在x轴(即E点)A点落在抛物线(即P点)上可根据平行四边形的性质得出P点纵坐标(P C纵坐标的绝对值相等)代入抛物线的解析式中即可求得P点坐标.此题考查了二次函数解析式的确定图形面积的求法平行四边形的判定和性质二次函数的应用等知识综合性强难度较大.。

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)

中招考试数学模拟试卷(附带有答案)(满分:120分;考试时间:120分钟)第I卷(选择题共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,不选或选出的答案超过一个均记零分。

)1.关于0,下列说法中正确的是( )A. 0没有倒数B. 0没有绝对值C. 0没有相反数D. 0没有平方根2.下列运算正确的是()A.x6+x6=2x12B. a2•a4-(-a3)2=0C. (x-y)2=x2-2xy-y2D. (a+b)(b-a)=a2+b23.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=34°,则∠2的度数是()A. 68°B. 56°C. 65°D. 43°4.下列各式计算错误的是()A. B.C. D.5.在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A. 点AB. 点BC. 点CD. 点D6.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B. “汽车累积行驶10000km,从未出现故障”是不可能事件C. 襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D. 若两组数据的平均数相同,则方差小的更稳定7.如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为( )A. 4B. 6C. 9D. 128.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.9.如图,某舰艇以28海里小时向东航行.在A处测得灯塔M在北偏东方向,半小时后到B处.又M在北偏东方向,此时灯塔与舰艇的距离MB是.A.海里B. 海里C. 海里D. 14海里10.如图,抛物线与轴交于点,与轴的交点在点与点之间(不包括这两点),对称轴为直线.有下列结论:abc<0;5a+3b+c>0;-< a<-;④若点,在抛物线上,则.其中正确结论的个数是()A. B. C. D.第II卷(非选择题共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.华为公司始终坚持科技创新,她堪称为中国企业的脊梁.华为麒麟990芯片是目前市场运行速度最快的芯片,它采用7纳米制造工艺,已知7纳米=0.000000007米,用科学记数法将0.000000007表示为________.12.分解因式:=___________13.我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了200名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这1万多名学生的抽考成绩的全体是总体;②每个学生是个体;③200名考生是总体的一个样本;④样本容量是200.你认为说法正确的有______ 个.14.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树________棵.15.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k的最小整数是.16.如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为______.三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)17. (本题满分8分)(1)(2)化简:,并从0≤x <5中选取合适的整数代入求值.18. (本题满分8分)电子政务、数字经济、智慧社会…一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,赛后对全体参赛学生成绩按A ,B ,C ,D 四个等级进行整理,得到如图所示的不完整的统计图表.(1)参加此次比赛的学生共有________人,a =________,b =________;(2)请计算扇形统计图中C 等级对应的扇形的圆心角的度数;(3)已知A 等级五名同学中包括来自同一班级的甲、乙两名同学,学校将从这五名同学中随机选出两名参加市级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.19. (本题满分8分)如图,AB 是⊙O 的直径,射线BC 交⊙O 于点D ,E 是劣弧AD 上一点,且,过点E 作EF ⊥BC 于点F ,延长FE 和BA的等级频数 频率 A 5 0.1 B a 0.4 C 15 b D100.2延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6,求△GOE的面积.20.(本题满分8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.21.(本题满分8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(本题满分10分)如图,已知二次函数的图像经过点A(-4,0),顶点为B,一次函数的图像交y轴于点M,P是抛物线上一点,点M关于直线AP的对称点N恰好落在抛物线的对称轴直线BH上(对称轴直线BH与x轴交于点H).(1)求二次函数的表达式;(2)求点P的坐标;(3)若点G是第二象限内抛物线上一点,G关于抛物线的对称轴的对称点是E,连接OG,点F是线段OG上一点,点D是坐标平面内一点,若四边形BDEF是正方形,求点G的坐标.23.(本题满分12分)一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=___°时,DE// AB;当∠AFD=____°时,EF//AB;当∠AFD=____°时,DF//AC;(2)在旋转过程中,DF与AB的交点记为P,如图2,若△BFP有两个内角相等,求∠AFD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.参考答案1.A2.B3.B4.C5.D6.D7.A8.A9.C 10.C11. 7×10-9 12. 13. 14. 2 15. 500 16.317. 18. 2018.519.解:(1)=-1+4+-2-2×=-1+4+-2-=1(2)=[-]•=•=从0≤x<5可取x=1此时原式==120.解:(1)50,20,0.3;(2)由图表可知,C等级的人数占总参赛人数的30%,360°×30%=108°,即扇形统计图中C 等级对应的扇形的圆心角的度数为108°(3)设A等级中甲,乙两名同学以外的其他三位同学分别为A1,A2,A3,树状图如图,则甲、乙两名同学都被选中的概率为.21.解:(1)如图,连接OE∵∴∠1=∠2∵OB=OE∴∠2=∠3∴∠1=∠3∴OE∥BF∵BF⊥GF∴OE⊥GF∴GF是⊙O的切线(2)设OA=OE=r在Rt△GOE中,∵AG=6,GE=6∴由OG2=GE2+OE2可得(6+r)2=(6)2+r2解得:r=3即OE=3则S△GOE=•OE•GE=×3×=922.解:(1)设直线y1=ax+b与y轴交于点D在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2即点D(0,2)把点D(0,2),C(3,0)代入直线y1=ax+b得b=2,3a+b=0,解得,a=-∴直线的关系式为y1=-x+2;把A(m,4),B(6,n)代入y1=-x+2得m=-3,n=-2∴A(-3,4),B(6,-2)∴k=-3×4=-12∴反比例函数的关系式为y2=-因此y1=-x+2,y2=-(2)由S△AOB=S△AOC+S△BOC=×3×4+×3×2=9(3)由图象可知,当x<0时,不等式ax+b>的解集为x<-323解:(1)设每次下降的百分率为a根据题意,得:50(1-a)2=32解得:a=1.8(舍)或a=0.2答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500-20x)=6000整理,得x2-15x+50=0解得:x1=5,x2=10因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.24.解:(1)把x=-4,y=0代入得,解这个方程,得b=2∴二次函数的表达式是(2)∵一次函数的图像交y轴于点M(0,2)∴OM=2∴.∵∴AH=OH=2∴NH=4.∵△APM≌△APN∴PM=PN,则PM2=PN2过点P作PQ⊥BH于Q,交y轴于R.设点①如图1,当点N在AM上方时,N(-2,4)由PM2=PN2得.解得x1=-4(舍去),x2=2∴P1(2,6).②如图2,当点N在AM下方时,N(-2,4)同理可得x1=-4(舍去),.∴(3)如图3,过F作FC⊥BH于C,FT⊥GE于T,FT交x轴于点S.∵四边形BFED是正方形∴△ETF≌△BCF∴FT=FC,ET=BC设FS=CH=m,FC=FT=t,则E(m-t,m+t).∴.化简整理,得m2+2m-2mt=-t2+6t.∵△GTF∽△OSF∴即化简整理,得m2+2m-2mt=t2+2t.∴-t2+6t=t2+2t,解得t1=0(舍去),t2=2.∴m2-2m-8=0,解得m1=-2(舍去),m2=4.∴G(-6,6)25.解:(1)30;60(2),AF平分∠CAB当如图3所示:当时,;如图4所示:当时.如图5所示:当时综上所述,∠APD的度数为或或;(3)∠FMN=∠FNM.理由:如图6所示:∵∠FNM 是△BMN的一个外角∴∠FNM=∠B+∠BMN∵∠B=30°∴∠FNM=∠B+∠BMN=30°+∠BMN∵∠BMF是△AFM的一个外角∴∠BMF=∠MAF+∠AFM即∠BMN+∠FMN=∠MAF+∠AFM又∵∠MAF=30°,∠AFM=2∠BMN∴∠BMN+∠FMN=30°+2∠BMN∴∠FMN=30°+∠BMN∴∠FNM=∠FMN。

中考模拟考试数学试卷及答案解析(共五套)

中考模拟考试数学试卷及答案解析(共五套)
(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).
19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?
20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
【分析】根据扇形统计图中的数据一一分析即可判断.
【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;
B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;
C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;

中考数学模拟考试卷(有答案解析)

中考数学模拟考试卷(有答案解析)

中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。

中考数学模拟考试卷(附带有答案)

中考数学模拟考试卷(附带有答案)

中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。

中考模拟考试 数学试卷 附答案解析

中考模拟考试 数学试卷 附答案解析
C.线段EF的长不变D.线段EF的长不能确定
二、空题(本大题共8个小题,每小题3分,满分24分)
11.点P(a,a-3)在第四象限,则a的取值范围是_____.
12.已知函数y=(m﹣1)x+m2﹣1 正比例函数,则m=_____.
13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
一、选择题.(本大题共10个小题,每小题3分,满分30分)
1.有一直角三角形 两边长分别为3和4,则第三边长是()
A.5B.5或 C. D.
2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33B.-33C.-7D.7
3. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()
根据平行四边形的判定方法逐项判断即可.
【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;
B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;
C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;
D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;
考点:点的平移.
4.函数 中自变量x的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.
【详解】由二次根式中的被开方数非负数的性质可得 ,则 ,故选择B.
【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.
∴线段EF的长不改变.

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。

(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)(满分:120分 ;考试时间:120分钟)第I 卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣15的绝对值是( ) A .5 B .﹣5 C .﹣15 D .152.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 33.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°第3题 第6题 第7题4.若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .14B .12C .34D .15.若点()2,1A a b -+在第二象限,则点()3,2B a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-5,2).若反比例函数y =k x(x >0)的图象经过点A ,则k 的值为( )A .-5B .-10C .5D .10 7.如图,∠O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则∠O 的半径是( ) A .4 B .5 C .6 D .78.如图,在矩形ABCD 中4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .9.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且CE=2BE ,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形现给出下列结论:∠13GE AG = ∠sin 10BOF ∠= ∠5OF = ∠OG BG = 其中正确的结论有( )A .①②③B .②③④C .①②④D .①③④第II 卷(非选择题)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为___.12.因式分解:244ax ax a -+=______.13.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:22 0.075,0.04s s ==甲乙,这两名同学成绩比较稳定的是_______________(填“甲”或“乙”).14.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.第15题 第16题 第17题16.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测得操控者A 和教学楼BC 距离为57米,则教学楼BC 的高度为______米.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 17.如图,在平面直角坐标系xOy 中,A (8,0),∠O 半径为3,B 为∠O 上任意一点,P 是AB 的中点,则OP 的最小值是____.18.如图,在平面直角坐标系中,12OA = 130AOx ∠=︒ 以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒…按此规律进行下去,则2020A 的坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:.2012cos301(2019)2π-⎛⎫-+︒-+- ⎪⎝⎭ (2)解不等式组:.20.(8分)某校对九年级学生进行“综合素质”评价,评价的结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B (良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A (优秀)等级或B (良好)等级的学生共有多少名?21.(8分)如图,在直角坐标系中,直线y 1=ax+b 与双曲线y 2=k x(k≠0)分别相交于第二、四象限内的A (m ,4),B (6,n )两点,与x 轴相交于C 点.已知OC =3,tan∠ACO =23. (1)求y 1,y 2对应的函数表达式;(2)求∠AOB 的面积;(3)直接写出当x <0时,不等式ax+b >k x的解集.22.(8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同. (1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?23.(8分)如图,AB 为∠O 的直径,在AB 的延长线上,C 为∠O 上点,AD ⊥CE 交EC 的延长线于点D ,若AC 平分∠DAB .(1)求证:DE 为∠O 的切线;(2)当BE =2,CE =4时,求AC 的长.24.(10分)如图,已知二次函数2y x bx c =-++的图象经过点()1,0A - ()3,0B 与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请写出点P 的坐标,并说明理由.若不存在,请说明理由.25.(12)分如图,在矩形ABCD 中,6AB cm = 8BC cm = 如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC , BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t=_______s 时,EF =(2)连接EP ,当EPC 的面积为23cm 时,求t 的值(3)若EQP ADC ∽△△,求t 的值参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】C 5.【答案】A6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】D 10.【答案】D11.8210-⨯ 12.()221a x - 13.乙 14.94 15.8π 16.13 17.5218.(0,101013-)19.【答案】(1)原式=+1+1=6. (2)∠可化简为:,,∠;∠可化简为:,∠ ∠ 不等式的解集为. 21.【答案】解:(1)4=4010%, 40-18-8-4=10,; 10100%=25%40⨯ 故答案为:25%;(2)8360=7240⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名);答:评价结果为A等级或B等级的学生共有700名.22.【答案】解:(1)设直线y1=ax+b与y轴交于点D;在Rt∠OCD中,OC=3,tan∠ACO=.∠OD=2,即点D(0,2);把点D(0,2),C(0,3)代入直线y1=ax+b得;b=2,3a+b=0,解得,a=﹣;∠直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2;∠A(﹣3,4),B(6,﹣2);∠k=﹣3×4=﹣12;∠反比例函数的关系式为y2=﹣,因此y1=﹣23x+2,y2=﹣12x;(2)由S∠AOB=S∠AOC+S∠BOC=×3×4+×3×2=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S∠AOB=S∠AOC+S∠BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.23.【答案】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料;根据题意,得100080030x x=+;解得x=120;经检验,x=120是所列方程的解;当x=120时,x+30=150;答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台;根据题意,得150a+120(20﹣a)≥2800;解得a≥40 3;∠a是整数;∠a≥14;答:至少购进A型机器人14台.24.【答案】解:(1)连接OC;∠AC平分∠OAD;∠∠DAC=∠OAC;∠OC=OA;∠∠OAC=∠OCA;∠∠OCA=∠DAC;∠OC∠AD;∠∠ADC=∠OCE;∠AD∠CE;∠∠ADC=90°;∠∠OCE =90°;∠OC∠ED;∠OC 是∠O 的半径;∠DE 是∠O 的切线. (2)设∠O 的半径为r; 在Rt∠OCE 中(r +2)2=r 2+42;∠r =3;∠OC∠AD;∠∠EOC∠∠EAD; ∠OC OE AD AE=; ∠358AD =; ∠AD =245; ∠由勾股定理可知:DE =325; ∠CD =DE ﹣CE =125; 在Rt∠ADC 中;由勾股定理可知:AC =525.【答案】(1)∠二次函数2y x bx c =-++的图象经过点A(-1,0),B(3,0);∠10930b c b c --+=⎧⎨-++=⎩; 解得:23b c =⎧⎨=⎩;∠抛物线的解析式为:2y x 2x 3=-++; (2)存在,理由如下: 当点P 在x 轴下方时;如图,设AP 与y 轴相交于E;令0x =,则3y =; ∠点C 的坐标为(0,3); ∠A(-1,0),B(3,0); ∠OB=OC=3,OA=1; ∠∠ABC=45︒;∠∠PAB=∠ABC=45︒; ∠∠OAE 是等腰直角三角形; ∠OA=OE=1;∠点E 的坐标为(0,-1); 设直线AE 的解析式为1y kx =-; 把A(-1,0)代入得:1k =-; ∠直线AE 的解析式为1y x =--; 解方程组2123y x y x x =--⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=-⎩;∠点P 的坐标为(4,5-); 当点P 在x 轴上方时;如图,设AP 与y 轴相交于D;同理,求得点D 的坐标为(0,1);同理,求得直线AD 的解析式为1y x =+;解方程组2123y x y x x =+⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2223x y =⎧⎨=⎩; ∠点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(4,5-) 25.【答案】解:(1)由题意得:2,,BE t DF t ==矩形ABCD ,,FQ BC ⊥∴ 四边形FQCD 为矩形,83,6,QC DF t EQ t FQ CD ∴===-== 由勾股定理可得:()(222836,t -+=()28336,t ∴-=836t ∴-=或836,t -=- 23t ∴=或14,3t = 04t << 143t ∴=不合题意,舍去,取2.3t s =故答案为:23. (2)由题意知,2BE t = DF t = 82CE t =- CQ t = 在Rt ABC 中,3tan 4AB ACB BC ∠== 在Rt CPQ 中,3tan 4PQ PQ ACB CQ t ∠=== ∠34PQ t = ∠EPC 的面积为23cm ; ∠()113823224EPC S CE PQ t t =⋅=⨯-⨯=△ 2440,t t ∴-+=∠122t t ==,即t 的值为2 (3)∠四边形ABCD 是矩形 ∠//AD BC∠CAD ACB ∠=∠ ∠EQP ADC ∽△△ ∠CAD PEQ ∠=∠ ∠ACB PEQ ∠=∠ ∠EQ CQ =∠2CE CQ =由(2)知CQ t =,82CE t =- ∠822t t -=∠2t =,即t 的值为2。

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

数学试卷中考模拟试题

数学试卷中考模拟试题

数学试卷中考模拟试题由于没有看到具体的中考模拟试题20题内容,以下为您提供一份按照要求生成的示例,您可以根据实际题目内容进行替换修改。

一、题目。

(以一道二次函数综合题为例)在平面直角坐标系中,抛物线y = ax^2+bx +c(a≠0)经过A(-1,0),B(3,0),C(0, - 3)三点。

求抛物线的解析式;点M是线段BC上的点(不与B,C重合),过M作MN∥ y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;在的条件下,连接NB、NC,是否存在点M,使BNC的面积最大?若存在,求m的值;若不存在,说明理由。

二、解析。

1. 求抛物线的解析式。

- 已知抛物线y = ax^2+bx + c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点。

- 把A(-1,0),B(3,0),C(0,-3)分别代入y = ax^2+bx + c得:- a - b + c = 0 9a+3b + c = 0 c=-3- 将c = - 3代入a - b + c = 0和9a + 3b + c = 0,得到a - b-3 = 0 9a+3b - 3 = 0。

- 由a - b-3 = 0可得a=b + 3,将其代入9a+3b - 3 = 0中:- 9(b + 3)+3b-3 = 0- 9b+27+3b - 3 = 0- 12b=-24,解得b=-2。

- 把b = - 2代入a=b + 3,得a=1。

- 所以抛物线的解析式为y=x^2-2x - 3。

2. 用含m的代数式表示MN的长。

- 设直线BC的解析式为y=kx + d。

- 把B(3,0),C(0,-3)代入y = kx + d得3k + d = 0 d=-3。

- 把d = - 3代入3k + d = 0,得3k-3 = 0,解得k = 1。

- 所以直线BC的解析式为y=x - 3。

- 因为点M的横坐标为m,且M在直线BC上,所以M(m,m - 3)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考模拟试卷资料本试卷分卷I 和卷II 两部分.卷I 为选择题,卷II 为非选择题. 本试卷共120分,考试时刻120分钟.卷Ⅰ(选择题,共20分)注意事项:1. 答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试终止,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题:本大题共10小题;每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算中,正确的是…………………………………………………………【 】A .633x x x =⋅B .232523x x x =+ C .532)(x x = D .4222)(y x y x +=+2.下列二次根式中,属于最简二次根式的是……………………………………【 】A .a 4B .4a C .4a D .4a3.若点P (1-m ,m )在第二象限,则下列关系式正确的是…………………【 】A .0<m <1B .m >0C .m >1D .m <04.假设每一位参加宴会的人跟其他与会人员均有相同的握手礼节,在宴会终止时,所有人总共握手28次,则参加宴会的人数为…………………………………【 】A .4B .8C .14D .285.已知梯形的下底长为5cm ,它的中位线长为4cm ,则它的上底长为………【 】A .2.5cmB .3cmC .3.5cmD .4.5cm6.若两圆只有一条公切线,则两圆的位置关系是………………………………【 】A .外离B .相交C .外切D .内切ABCDPEF7.下列图形既是轴对称图形,又是中心对称图形的是………………………【】A .B .C .D .8.、如图,在△ABC 中,AB =BC =AC =3,O 是它的内心,以O为中心,将△ABC 旋转180°得到△C B A ''',则△ABC 与△C B A '''的重叠部分的面积为…………………………【 】 A 、233 B 、433 C 、23 D 、369.如图,在矩形ABCD 中,AB =3,AD =4,P 是AD 上动点, PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 的值为………【 】 A .512 B .2 C .25 D .51310.如图是某蓄水池的横断面示意图,分深水池和浅水池,假如那个蓄水池以固定的流量注水,下面能大致表示 水的最大深度h 与时刻t 之间的关系的图象是【 】卷Ⅱ(非选择题,100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清晰2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直截了当写在试卷上题号 二 三21 22 23 24 25 26 27 28 得分B’ AC’CBOhO htOt O ht O ht A B C Dh二、填空题(本大题共10个小题,每小题2分,共20分)11.=-512.一天的时刻共86400秒,用科学记数法表示为 秒. 13.函数23+=x y 中,自变量x 的取值范畴是 .14.分解因式:1222-+-b b a = .15.写出一个反比例函数的解析式,使它的图象不通过第一、三象限: . 16.已知:如下图,梯形ABCD 中,AD ∥BC ,AB =CD ,对角线AC 与BD 相交于点O ,17.如图,在△ABC 中,EF ∥BC ,交AB 、AC 于点E 、F ,且AE :EB =3:2,则AF :AC = .18.⊙O 的半径长为5cm ,弦AB 长为8cm ,则弦AB 上的弦心距的长为 cm . 19.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A ″B ″C ″ 的位置.设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 通过的路线与直线l 所围成的面积是 .(运算结果不取近似值)20.如图,弦DC 、FE 的延长线交于圆外一点P ,割线P AB通过圆心O ,请你结合现有图形,添加一个适当的条件: ,使∠1=∠2. 三、运算(本大题共8道小题,共80分)21.(本小题满分8分)化简并求值:2121++-a a ,其中2=a .B第16题图 第17题图 第19题图 A B C A ′ C ″ A ″ B ″ lAB C D E FG B22.(本小题满分8分)已知:如图,△ABC 中,AB =AC ,矩形BCDE 的边DE 分别与AB 、AC 交于点F 、G . 求证:EF =DG23. (本小题满分8分)已知:如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC =1,在BC 上取一点O ,以O 为圆心,OC 为半径作半圆与AB 相切于点E .求:⊙O 的半径.24.(本小题满分8分)为了解各年龄段观众对某电视剧的收视率,某校初三(1)班的一个研究性学习小组,调查了部分观众的收视情形并分成A 、B 、C 、D 、E 、F 六组进行整理,其频率分布直方图如图所示,请回答:(1)E 组的频率为 ;若E 组的频数为12,则被调查的观众数为 人; (2)补全频率分布直方图;(3)若某村观众的人数为1200人,估量该村50岁以上的观众有 人.25.(本题满分12分)如图表示一艘轮船与一艘快艇沿相同路线从甲港到乙港行驶过程中路程随时刻变化的图象(分别是正比例函数图象和一次函数图象).依照图象解答下列问题: (1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范畴); (2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少? (3)问快艇动身多长时刻赶上快艇?26(本题满分12分)图1是棱长为a 的小正方体,图2、图3由如此的小正方体摆放而成.按照如此的方法连续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为)s .解答下列问题: (1)按照要求填表:(2)写出当n =10时,s= .(3)依照上表中的数据,把s 作为纵坐标,n 作为横坐标,在平面直角坐标系中描出相应的各点.(4)请你猜一猜上述各点会在某一函数图象上吗?假如在某一函数图象上,求出该函数的解析式;假如不在某一函数图象上,说明理由.27、(本题满分12分)某小型开关厂今年预备投入一定的经费用于现有生产设备的改造以提高经济效益.通过测算:今年开关的年产量y (万只)与投入的改造经费x (万元)之间满足y -3与1+x 成反比例,且当改造经费投入1万元时,今年的年产量是2万只.(1) 求年产量y (万只)与改造经费x (万元)之间的函数解析式.(不要求写出x 的取值范畴)(2) 已知每生产1万只开关所需要的材料费是8万元.除材料费外,今年在生产中,全年还需支付出2万元的固定费用.① 求平均每只开关所需的生产费用为多少元.(用含y 的代数式表示)(生产费用=固定费用+材料费)② 假如将每只开关的销售价定位“平均每只开关的生产费用的1.5倍”与“平均每只开关所占改造费用的一半”之和,那么今年生产的开关正好销完.问今年需投入多少改造经费,才能使今年的销售利润为9.5万元? (销售利润=销售收入-生产费用-改造费用)图1 图2 图3…28(本题满分12分)如图,A 、B 是直线L 上的两点,AB =4厘米,过L 外一点C 作CD ∥L ,射线BC 与L所成的锐角∠1=60°,线段BC =2厘米,动点P 、Q 分别从B 、C 同时动身,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时刻为t (秒),当t >2时,P A 交CD 于E .(1) 用含t 的代数式分别表示CE 和QE 的长. (2) 求△APQ 的面积S 与t 的函数关系式.(3) 当QE 恰好平分△APQ数学参考答案(一)一、选择题(每题2分,共20分) ADCBB DBBAC 二、填空(每题2分,共20分)11.5 12.41084.6⨯ 13.x >-2 14.)1)(1(-++-b a b a 15.xky -= 16.3 17.3:5 18.3 19.231225+ 20.CD =EF 或⌒CD =⌒EF或PC =PE 或PD =PF 三、21.解:原式=)2)(2(2)2)(2(2+--++-+a a a a a a=422-a a………………………………………………………………4分把2=a 代入上式得22224)2(222-=-=-………………………………………………8分 22.证明:∵AB =AC∴∠ABC =∠ACB …………………………………………………………2分 又∵四边形BCDE 是矩形∴BE =DC ,∠E =∠D =∠EBC =∠BCD =90°∴ ∠EBF =∠DCG …………………………………………………………4分 ∴△BEF ≌△CDG …………………………………………………………6分 ∴EF =DG …………………………………………………………………8分23.解:连接OE∵∠C =90°,AC =BC =1∴AB =2,∠B =45°………………………………………………………2分 又∵AC 、AE 是⊙O 的切线∴AC =AE =1,且OE ⊥AB ……………………………………………………4分 ∴OE =BE =12-=-AE AB ………………………………………………7分即⊙O 半径长为12-………………………………………………………8分 24.(1)0.24;50;【4分】(2)图略【8分】(3)432【12分】25、解:(1)设:表示轮船行驶过程的函数解析式为y=kx 则由图象知:当x=8时,y=160 ∴8k=160 ∴k=20∴表示轮船行驶过程的函数解析式为y=20x …………………………………………2分 设:表示快艇行驶过程的函数解析式为y=ax+b 则由图象知:当x=2时,y=0;当x=6时,y=160 ∴⎩⎨⎧+=+=b a b a 616020 ∴⎩⎨⎧-==8040b a∴表示快艇行驶过程的函数解析式为y=40x -80……………………………………4分 (2)由图象知:轮船在8小时内行驶160千米,快艇在4小时内行驶160千米。

故轮船在途中行驶的速度是208160=(千米/时)……………………………………6分 快艇在途中行驶的速度是404160=(千米/时)………………………………………8分 (3)设快艇动身x 小时赶上轮船由图象知:20(x+2)=40x -80 解得:x=2…………………………………11分答: 快艇动身2小时赶上轮船.………………………………………………………12分 26、(1)10……………………………………………………………………………2分 (2)55………………………………………………………………………………4分 (3)略………………………………………………………………………………7分 (4)经观看所描各点,它们在二次函数的图象上。

相关文档
最新文档