微波与射频综合仿真-微波和射频电路设计大作业
微波、射频电路设计1
T形匹配网络
例
设计一个∏形网络,在2.4GHz上使负载阻抗
Z L = (10 j10)
变成
Z in = (20 + j 40)
且具有最小的最大节点品质因数.
Smith图解
匹配网络
传输线匹配网络
从分立元件到传输线 单节短截线匹配网络 双短截线匹配网络
例
设计一个混合匹配网络,在1.5GHz上使负载阻抗
Z L = (30 + j10)
变成
Z in = (60 + j80)
传输线特性阻抗为50欧姆.
Smith图解
例
设计单节短截线匹配网络,使负载阻抗
Z L = (60 j 45)
变成
Z in = (75 + j 90)
传输线特性阻抗为75欧姆.
Smith图解
双短截线匹配网络,匹配禁区
例
6.
例
信号源阻抗: Z S = (50 + j 25) 负载阻抗: Z L = (25 j 50) 设计L形匹配网络,使得负载得到最大功率. 工作频率2GHz
Smith图解
匹配禁区
所有L形网络并不能在任意负载阻抗和源 阻抗之间实现预期的匹配. 对于50欧姆源阻抗,L形网络匹配禁区的 求解
匹配禁区
品质因数
有载品质因数 节点品质因数 最大品质因数 等 Qn 线
QL = f0 BW3dB
Qn =
XS RS
等Qn线
例
设计两个L形网络,在1GHz上使负载阻抗 和50欧姆的源阻抗相匹配.根据Smith圆图确定网络的有载 品质因数,将它们与通过频率响应曲线求出的带宽相比较.
Zபைடு நூலகம்L = (25 + j 20)
Genesys射频微波电路设计与仿真课程设计
Genesys射频微波电路设计与仿真课程设计一、背景随着科技的不断进步和发展,射频微波电路在通信、雷达、天文、电子等领域的应用越来越广泛。
因此,射频微波电路设计与仿真技术得到了广泛关注。
为培养更多能从事射频微波电路设计与仿真工作的专业人才,本文将介绍一门名为“Genesys射频微波电路设计与仿真”的课程设计。
二、设计目标本课程设计的目标是让学生了解射频微波电路的基本概念、设计方法和仿真工具,能够独立设计并仿真射频微波电路,具备一定的实践能力。
三、设计内容本课程设计分为两个部分:理论学习和实践项目。
1. 理论学习在理论学习部分,学生将了解射频微波电路的基本概念、设计流程和方法、以及仿真工具的使用方法。
具体内容如下:•射频微波电路基础知识:介绍射频微波电路的基本概念、分类和应用。
•设计流程和方法:介绍射频微波电路的设计流程和方法,包括需求分析、电路结构设计、元器件选型和布局布线等。
•射频微波电路设计软件:介绍目前常用的射频微波电路仿真软件,包括ADS和Genesys等。
讲解软件的使用方法及仿真流程。
2. 实践项目在实践项目部分,学生将通过具体的设计与仿真任务,检验自己的学习成果,并获得实践能力的提升。
具体内容如下:•变频放大器设计与仿真:学生需要使用Genesys进行变频放大器的设计与仿真。
在此项目中,主要涉及到的设计与仿真内容有:输入输出匹配电路设计、输出功率及效率的调整、干扰与抑制等方面。
•射频滤波器设计与仿真:学生需要使用Genesys进行射频滤波器的设计与仿真。
在此项目中,主要涉及到的设计与仿真内容有:通带、截止频率和带宽的确定、丢失耗损和插入损耗的测量等方面。
四、教学方法本课程设计采取以“实践能力”为重点的教学方法,强调学生学以致用、理论联系实践。
具体方法如下:•理论讲解:老师在讲解理论知识时,将结合实际应用,给学生更好的理解和认识。
•实验设计:老师会设计一些任务,让学生在实践中学会应用理论知识。
射频电路课程设计或者微波电路课程设计报告——波导微带转换电路设计报告
波导到微带转换电路一、技术指标要求:工作频率:26.5~40GHz输入/输出驻波比:<1.2插入损耗:<1.0dB二、理论分析:现在波导到微带的转换电路一般采用E面或H面插入探针的办法实现。
本设计做的是H面探针的模型仿真。
仿真模型如下图1所示:矩形波导的主模是TE模,电场在宽边的中心处达到最大值,所以将微带探针从10宽边中心插入波导,这样波导中的场将在探针上尽可能大的激励起电流。
探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。
由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗。
通过仿真发现对转换电路影响较大的参量有6个,分别是:探针长度L1,探针宽度W1,开口面大小(宽d,高h),高阻抗线长度L2,高阻抗线宽度W2,短路面离探针的距离D。
由于短路面为电壁,所以在短路面的四分之一波长处的电场有最大值,设计时将D取为四分之一波长。
三、设计过程:本设计中心频率取工作的两边界和的一半大约为33GHZ,工作频段为26.5GHz 到40GHz。
确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。
此处采用WR-28标准矩形波导,尺寸为7.112mm*3.556mm,基板材料选用Rogers5880型基片,厚度为0.254mm,相对介电常数为2.2,微带金属条带厚度为0.05mm,通过阻抗软件计算得出50欧姆微带线在33GHZ的宽度为0.75mm。
波导开口面的大小对电路的性能有一定的影响,为了抑制高次模又较好的实现匹配这里取开口面宽边d为1.8mm高h为1mm。
探针的尺寸先设置初始值在通过HFSS仿真优化得出长度L1=1.79mm,宽度W1=0.8mm,厚度取0.05mm。
高阻抗线长度L2=0.5mm,宽度W2=0.3mm,厚度取0.05mm。
短路面至探针的距离经计算得D=2.28mm。
整个波导的长度取为13.28mm。
四、设计结果及存在问题分析:从下图S21的曲线图可以看出在26.5GHZ-40GHZ频段S21的大小都小于0.065Db,信号能很好的传输满足插损要求。
射频和微波工程实践入门、用HFSS仿真微波传输线和元件
用HFSS仿真微波传输线和元件第一章用HFSS仿真微波传输线和元件 01.1 Ansoft HFSS概述 01.1.1 HFSS简介 01.1.2 HFSS的应用领域 (1)1.2 HFSS软件的求解原理 (1)1.3 HFSS的基本操作介绍 (3)1.3.1 HFSS的操作界面和菜单功能介绍 (3)1.3.2 HFSS仿真分析基本步骤 (4)1.3.3 HFSS的建模操作 (5)1.4 HFSS设计实例1——矩形波导的设计 (10)1.4.1 工程设置 (10)1.4.2 建立矩形波导模型 (11)1.4.3 设置边界条件 (12)1.4.4 设置激励源wave port (14)1.4.5 设置求解频率 (15)1.4.6 计算及后处理 (15)1.4.7 添加电抗膜片 (17)1.5 HFSS设计实例2——E-T型波导的设计 (23)1.5.1 初始设置 (23)1.5.2 建立三维模型 (24)1.5.3 分析设置 (27)1.5.4 保存工程 (27)1.5.5 分析 (27)1.5.6 生成报告 (28)1.6 HFSS设计实例3——H-T型波导的设计 (31)1.6.1 创建工程 (31)1.6.2 创建模型 (32)1.6.3 仿真求解设置 (36)1.6.4 比较结果 (37)1.7 HFSS设计实例4——双T型波导的设计 (39)1.7.1 初始设置 (39)1.7.2 建立三维模型 (40)1.7.3 分析设置 (43)1.7.4 保存工程 (44)1.7.5 分析 (44)1.7.6 生成报告 (45)1.8 HFSS设计实例5——魔T型波导的设计 (47)1.8.1 建立匹配膜片与金属杆 (48)1.8.2 分析设置 (48)1.9 HFSS设计实例6——圆波导的设计 (52)1.9.1 初始设置 (52)1.9.2 建立三维模型 (53)1.9.3 分析设置 (55)1.9.4 保存工程 (56)1.9.5 分析 (56)1.9.6 生成报告 (57)1.10 HFSS设计实例7——同轴线的设计 (64)1.10.1 初始设置 (64)1.10.2 建立三维模型 (65)1.10.3 分析设置 (68)1.10.4 保存工程 (69)1.10.5 分析 (69)1.10.6 生成报告 (70)1.11 HFSS设计实例8——微带线的设计 (77)1.11.1 初始设置 (77)1.11.2 建立三维模型 (78)1.11.3 建立波导端口激励 (79)1.11.4 分析设置 (80)1.11.5 保存工程 (80)1.11.6 分析 (81)1.11.7 生成报告 (82)1.11.8 产生场覆盖图 (82)1.12 HFSS设计实例9——单极子天线的设计 (85)1.12.1 创建工程 (85)1.12.2 创建模型 (85)1.12.3 设置变量 (89)1.12.4 设置模型材料和边界参数 (90)1.12.5 设置求解频率和扫描范围 (93)1.12.6 设置辐射场 (93)1.12.7 确认设置并分析 (93)1.12.8 显示结果 (94)1.13 HFSS设计实例10——方形切角圆极化贴片天线的设计 (98)1.13.1 设计原理及基本公式 (99)1.13.2 创建工程和运行环境设定 (99)1.13.3 创建模型 (99)1.13.4 求解设置 (100)1.13.5 有效性验证和仿真 (100)1.13.6 输出结果 (100)1.13.7 设置变量与参数建模 (102)1.13.8 创建参数分析并求解 (102)1.13.9 优化求解 (104)1.13.10 输出优化后的结果 (105)1.14 参考文献 (108)第一章用HFSS仿真微波传输线和元件1.1 Ansoft HFSS概述1.1.1 HFSS简介Ansoft HFSS (全称High Frequency Structure Simulator, 高频结构仿真器)是Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,可以对任意的三维模型进行全波分析求解,先进的材料类型,边界条件及求解技术,使其以无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。
微波与射频综合仿真-微波和射频电路设计大作业
微波和射频电路设计大作业题 目 微波与射频综合模块设计姓 名 学 号 专业班级 指导教师 分 院宁波理工学院一、实验目的1) 熟练掌握微带天线设计的基本流程,掌握矩形微带天线的设计方法。
2) LC 低通滤波器的设计方法及原理。
3) 将天线、滤波器、低噪放三个模块组合成一个模块。
二、实验仿真1. 微带天线天线模块仿真后得出的参数中可以计算需要匹配的微带线的长度。
参数大小可由1/21()22r c W f ε-+=,0.490.49d r L λλε≈=计算得出。
利用史密斯原图进行传输线匹配,从而达到比较好的仿真效果。
图1中可以发现经过圆心时驻波比保持在1左右,效果较好。
图1图2天线原理图图3没有采用单可变仿真的结果如图3所示,在2.4GHz处,S11=-28.007,效果不是很明显。
天线原理图如图2和4。
如果用单可变匹配来优化天线参数。
插入损耗小,且工作频率更加收敛于2.4GHz。
做过双可变的话,就会发现2.4GHz处匹配后的S达不11到-50dB,而是在-20dB左右,所以后来采用了单可变,并通过优化功能进行实现。
图4 天线原理图仿真结果如图5。
图5 单可变匹配结果由图可知,2.4GHz处的S11(插入损耗)为-30.298dB,匹配后效果应该理论上可以达到-50dB,所以不是十分理想的,但是工作频率却十分收敛于2.4GHz。
2.低噪声放大器低噪放位于接收机的最前端,要求其噪声越小越好。
为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,增益不适合过大。
且低噪放一般是与天线直接相连,所以要求它和天线的匹配性要好。
低噪放的原理图如图6。
图6 低噪放原理图仿真结果如图7和图8。
图7观察到最大增益为19.811dB,稳定系数为0.897,小于1,而只有系数大于1时才是稳定,所以不稳定。
使用负反馈可以让系统稳定,在源极添加小电感作为负反馈,如图1.7:图83. 滤波器滤波器采用了6阶的巴特沃斯滤波器图9。
微波射频电路设计及其应用研究
微波射频电路设计及其应用研究微波射频电路是现代电子技术中一种重要的电路类型,涵盖了广泛的应用领域,如通信、雷达、卫星导航等。
微波射频电路设计是实现电子设备中微波器件的重要环节,对于提高微波信号的可靠性、稳定性和性能至关重要。
本文将从微波射频电路设计的基本原理、技术发展以及应用研究等方面进行探讨。
一、微波射频电路设计的基本原理微波射频电路是一种特殊的电路类型,其射频信号的频率在几十兆赫兹到几百千兆赫兹之间,需要具备高频率、宽带、低噪声和低失真的特点。
微波射频电路设计需要在充分理解电子器件的基本原理和射频特性的基础上,开展系统化设计、优化设计和高精度仿真,最终实现微波射频电路的功能需求。
微波射频电路设计需要考虑以下几个方面:1.电路系统的全面认识:设计人员需要从整个电路系统的角度出发,全面认识微波射频电路的功能需求,包括信号源、放大器、滤波器和射频器件等。
2.稳定性分析:由于微波射频电路频率高、信号强度大,需要对电路稳定性进行分析和仿真,以保证电路的可靠性和稳定性。
3.匹配:由于微波射频电路的频率范围宽、波长短,需要进行正确的参量匹配,以实现微波信号的能量传递和转移。
4.噪声和失真分析:由于微波信号在传输过程中易受到干扰,需要对电路的噪声和失真进行分析和优化。
二、微波射频电路设计的技术发展随着微波射频电路设计技术的不断发展,已经涌现出了一众业内知名的设计软件,如ADS、MWO、HFSS等,这些软件的出现使得微波射频电路的设计成功率和精度有了显著的提高。
同时,还出现了微波射频电路集成化设计的新技术,如芯片集成技术、封装技术、系统模组技术等。
集成化设计可以大大减小微波射频电路的体积和重量,降低元器件数量和成本,提高了微波电路的性能和可靠性。
三、微波射频电路应用研究微波射频电路被广泛应用于通讯、雷达、卫星导航、遥控、无线电视等领域。
国内外的通信设备厂商、电视厂商、航空和航天制造商等,在微波射频电路设计和应用方面都有重要的成果。
微波及射频电路设计
本文主要针对通讯产品的一个前沿范畴棗微波级高频电路及其PCB设计方面的理念及其设计原则。
之所以选择微波级高频电路之PCB设计原则,是因为该方面原则具有广泛的指导意义且属当前的高科技热门应用技术。
从微波电路PCB设计理念过渡到高速无线网络(包括各类接入网)工程,也是一脉相通的,因为它们基于同一基本原理棗双传输线理论。
有经验的射频工程师设计的数字电路或相对较低频率电路PCB,一次成功率是非常高的,因为他们的设计理念是以“分布”参数为核心,而分布参数概念在较低频率电路(包括数字电路中)中的破坏作用,常为人们所忽略。
长期以来,许多同行完成的电子产品(主要针对通讯产品)设计,往往问题重重。
一方面固然与电原理设计(包括冗余设计、可靠性设计等方面)的必要环节缺乏有关,但更重要的,是许多这类问题在人们认为已经考虑了各项必要环节下而发生的。
针对这些问题,他们往往将精力花在对程序、电原理、参数冗余等方面的核查上,却极少将精力花在对PCB设计的审核方面,而往往正是由于PCB电路板设计缺陷,导致大量的产品性能问题。
PCB板设计原则涉及到许多方方面面,包括各项基本原则、抗干扰、电磁兼容、安全防护等等。
对于这些方面,特别在高频电路(尤其在微波级高频电路)方面,相关理念的缺乏,往往导致整个研发项目的失败。
许多人还停留在“将电原理用导体连接起来发挥预定作用”基础上,甚至认为“PCB设计属于结构、工艺和提高生产效率等方面的考虑范畴”。
许多专业射频工程师也没有充分认识到该环节在射频设计中,应是整个设计工作的特别重点,而错误地将精力花费在选择高性能的元器件,结果是成本大幅上升,性能的提高却微乎其微。
应特别在此提出的是,数字电路依靠其强的抗干扰、检纠错以及可任意构造各个智能环节来确保电路的正常功能。
一个普通的数字应用电路而高附加地配置各类“确保正常”的环节,显然属于没有产品概念的举措。
但往往在认为“不值得”的环节,却导致产品的系列问题。
射频电路设计大作业
上海电力学院射频电路设计大作业实验报告实验名称:低通滤波器专业:通信工程姓名:班级:学号:一、实验目的1、了解基本低通、带通和高通滤波器的设计方法。
2、利用实验模块进行实际测量,以掌握滤波器的特性。
二、实验内容1、完成低通滤波器P1端口的S11的测量,记录数据;并与示波器观察的结果比较。
2、完成低通滤波器P1、P2端口S21的测量,记录数据;并与示波器观察的结果比较。
三、实验原理1、滤波器的原理滤波器的用途是抑制无用信号,而使有用信号顺利通过。
通过滤波器时不衰减或很小衰减的频带称为通带,衰减超过某一规定值的频带称为阻带,位于通带和阻带之间的频带称为过渡带。
根据通带和阻带所处范围的不同,滤波器可分为低通、高通、带通和带阻四种。
滤波器种类繁多,按构成的元器件,可分为无源滤波器和有源滤波器(含运放)两种;按处理的对象,可分为模拟滤波器和数字滤波器;按滤波器原型的频率响应,可分为巴特沃斯滤波器、切比雪夫滤波器和椭圆型滤波器等。
本实验以较常使用的巴特沃斯滤波器和切比雪夫滤波器为例,说明其设计方法。
2、巴特沃斯和切比雪夫低通滤波器原型的衰减特性(1)、巴特沃斯低通滤波器原型巴特沃斯滤波器又称最大平坦滤波器。
其特性曲线的数学表达式为:210lg[1()]nPA dB ωεω=+(6-1) 式中ε满足关系式10lg(1)P A ε+= (6-2)其中P ω是通带的截止频率,P A 为其对应的衰减;参数n 为滤波器的阶数。
这种衰减特性曲线之所以称为最大平坦曲线,是由于式(6-1)方括号中的量在0ω=处(21n -)阶的导数为零。
大多数场合,最大平坦滤波器的P ω定义为衰减3dB 的通带截止点。
巴特沃斯滤波器的阶数n 取决于阻带的截止频率S ω(S P ωω>)所对应的最小衰减S A ,即:210lg[1()]nS S PA ωεω+≥ (6-3) 联立(6-2)和(6-3)式可得:10101101lg()2101lg()SP A A S Pn ωω-⋅-≥(6-4)3、低通巴特沃斯滤波器的设计方法 步骤一:确定规格。
射频微波电路作业1-7(答案版)(DOC)
第一章射频/微波工程介绍1.简述常用无线电的频段划分和射频的定义。
射频/微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和大1000倍以上2.简述P,L,S,C,X,Ku,K,Ka波段的频段划分方法。
3.简述射频/微波的四种基本特性和相比普通无线电的优点。
四个基本特性:1、似光性;2、穿透性3、非电离性4、信息性优点:(1)(2) 分辨率高。
连续波多普勒雷达的频偏大,成像更清晰,(3) 尺(4)(5)(6) 频谱宽。
频谱不拥挤,不易拥堵,军用设备更可靠。
4. 简述射频铁三角的具体内涵。
由于频率、 阻抗和功率是贯穿射频/微波工程的三大核心指标,故将其称为射频铁三角。
频率功率阻抗振荡器、压控振荡器、频率合成器、分频器、变频器、倍频 器、混频器、滤波器等频率计数器/功率计、频谱分析仪标量/矢量网络分析仪阻抗测量仪、网络分析仪阻抗变换、阻抗匹配、天线等衰减器、功分器、耦合器、 放大器、开关等5. 给出几种分贝的定义:dB, dBm ,dBc ,dBc/Hz ,10 dBm+10 dB=?10dBm+10dB=20dBm第二章 传输线理论1. 解释何为“集肤效应”?集总参数元件的射频特性与低频相比有何特点?在交流状态下,由于交流电流会产生磁场,根据法拉第电磁感应定律,此磁场又会产生电场,与此电场联系的感生电流密度的方向将会与原始电流相反。
这种效应在导线的中心部位(即r=0位置)最强,造成了在r=0附近的电阻显著增加,因而电流将趋向于在导线外表面附近流动,这种现象将随着频率的升高而加剧,这就是通常所说的“集肤效应”。
电阻:在低频率下阻抗即等于电阻R,而随着频率的升高达到 10MHz 以上,电容Ca 的影响开始占优,导致总阻抗降低;当频率达到20GHz 左右时,出现了并联谐振点; 越过谐振点后,引线电感的影响开始表现出来,阻抗又加大并逐渐表现为开路或有限阻抗值。
电容:理想状态下,极板间介质中没有电流。
射频微波通讯电路设计(RF-Microwave Communication Circuits Design )
Sum mode S-parameter analyze: The magnitude of S11,S41(dB) Return Loss = 46.16 dB Isolation = 45.42dB S11 < -20dB 的頻 寬: 4.97GHz ~ 6.62GHz =1650MHz S41 < -20dB 的頻 寬: 4.89GHz ~ 6.71GHz =1820MHz
設計過程:
Coupled-Line Directional Coupler 可以用 microstrip line 和 lump element 來實現,以下
我分兩種情形來做分析討論
1. Microstrip line coupler:
Microstrip line & Substrate analyze:
1
.
射頻微波通訊電路設計
RF/Microwave Communication Circuits Design
RF2003 HW5 參考:E14883032 吳健銘 P48891066 洪健君 E24882305 石益璋(Hybrid-Ring coupler) N26911174 陳俊宏(Coupled line coupler)
Байду номын сангаас
The phase of S12,S42(dB)
由上圖可以得知 Port1 輸出為-90o 的 phase,Port4 的輸出為 90o 的 phase,phase difference = 180o。
3. Conclusion:
Sum Mode Return Loss Isolation Coupling S11 (S22) < -20dB bandwidth & Output power balance > 1dB bandwidth Phase difference Difference Mode
微波与射频电路仿真报告
微波射频仿真实验报告一、实验室名称:微波、毫米波实验室二、实验项目名称:微波与射频电路仿真与设计实验三、实验学时:32学时四、实验原理:应用微波电路仿真软件ADS(Advanced Design System),完成给定的微波电路设计任务。
五、实验目的:掌握微波电路CAD的基本概念;了解现代微波电路CAD的基本组成;掌握ADS软件并进行微波电路的建模,仿真,优化和调试等任务。
六、实验内容:微波电路的基本概念;微波网络基本理论;ADS软件的使用方法。
上机操作:1.完成给定的微波器件设计;2.完成实验报告。
七、实验器材(设备、元器件):台式计算机70台;ADS 2009仿真软件;U盘(学生自备)。
八、实验步骤:Wilkinson功分器的设计本实验是利用εr=4.3,厚度h=0.8mm的介质基板,设计公分比是1:1的Wilkinson功分器,在中心频率处实现功率分配功能。
电路模型和参数均参考冯新宇编写的《ADS2009射频电路与仿真》。
之后进对电路行了优化仿真,并生成版图。
虽然带宽不作要求,但是通过不断优化后设计出来的功分器,其分配损耗、隔离度和输入输出端驻波比在较宽的频带内均有较好的特性。
a.设计指标设计一功分器,在f0=3GHz处实现最佳工作,带宽不作要求,并作出版图仿真。
注:本实验设计的是Wilkinson功分器,指标若用设计出来后的指标既是:通带2.9~3.1 GHz,公分比1:1,带内各端口反射系数S11、S22、S33小于-20dB,两端口隔离度S23小于-25dB,传输损耗S21小于3.1dB。
b.功分器简介在射频/微波电路中,为了将功率按一定比例分成两路或多路,需要使用功率分配器(简称功分器),在近代射频/微波大功率固态发射源的功率放大器中广泛的使用功分器,而且通常功分器是成对使用的,现将功率分成若干份,然后在分别放大,再合成输出。
Wilkinson功分器的结构如图1所示,对于功率平分的情况,输入和输出口间的分支线特性阻抗=Z0,线长为四分之一线上波长,在分支线末端跨接一个电阻R,其值为2。
射频微波电路设计.pdf
射频微波电路设计.pdf射频(Radio Frequency,RF)和微波电路设计是一项专业领域,涉及设计和优化在射频和微波频段工作的电路。
这些频段通常包括无线通信、雷达、卫星通信和其他高频应用。
以下是进行射频微波电路设计的一般步骤:1.需求分析:确定项目需求和规格,包括工作频率、带宽、增益、噪声等方面的要求。
2.电路拓扑设计:选择合适的电路拓扑,如放大器、混频器、滤波器等,以满足规格要求。
3.元件选型:选择适当的被动和主动元件,例如电感、电容、晶体管等。
确保元件的特性符合设计要求。
4.仿真和建模:使用电磁场仿真工具(如HFSS、ADS等)对电路进行仿真,验证设计在预期频率范围内的性能。
5.优化和调整:根据仿真结果对电路进行优化。
调整元件值、几何结构或布局,以实现更好的性能。
6.射频集成电路设计:如果设计的是集成电路(IC),则需要进行射频IC设计,包括电源、布局、传输线等方面的考虑。
7.电源和地网络设计:设计稳定的电源和地网络,确保电路在工作频率下具有足够的功率和抗干扰性。
8.PCB设计:在设计射频电路的同时,考虑PCB布局和设计。
射频PCB设计需要特别注意传输线、电磁屏蔽和地平面等。
9.原型制作:制作电路原型进行实验验证。
在此阶段,可能需要调整元件值或布局。
10.测试和验证:对原型进行测试和验证,确保其在实际工作中达到设计要求。
11.生产和集成:将设计转移到批量生产,如果是部分系统的一部分,则进行集成。
12.系统测试:进行整个系统的测试,确保它在真实环境中的性能达到预期。
在射频微波电路设计中,理论知识、仿真工具的熟练使用以及实验经验都是至关重要的。
设计人员通常需要掌握电磁场理论、微波电路理论、射频系统知识等。
此外,密切关注射频和微波技术的发展也是保持竞争力的关键。
AWR射频微波电路设计与仿真教程实验报告
AWR射频微波电路设计与仿真教程课程实验报告实验名称DBR带通滤波器、功率分配器与耦合器设计i、功率分配器设计一、实验目的设计一个2路等分功率分配器,采用微带电路结构。
输入端特性阻抗Z=50Ω,工作频率f0=3GHz,要求S11、S23<-30dB:基板参数εr=9.8,H=1000um,T=18um。
基本内容:测量特性指标S11、S21、S23(单位dB)与频率(0.5f0~1.5f0)的关系曲线。
调节微带线的尺寸,使功分器的性能达到最佳。
进阶内容:进行版图设计,包括元件封装、布线调节,尤其是 MTRACE2元件的布线扩展内容:利用自动电路提取(ACE)技术,提取电磁模型,进一步缩小版图尺寸。
二、实验仪器硬件:PC;软件:AWR Design Environment 10三、实验步骤⑴初始参数计算根据设计要求,在应用软件进行仿真设计之前,首先需要确定功率分配器的结构,进行电路初值计算。
一个2路等分功率分配器的结构如图4-6所示。
图中,Z0=5092,Za、2o的长度均为o4。
其他参数计算:Zo=Z,Zo=Zos=V2Zo,Za=Zas=Z,R=2Z0将计算结果填入表4-1。
⑵电路图仿真与分析1、创建新工程(命名为Ex4.emp)2、设置单位(GHz、Ohm、um)3、设置工程频率(单位GHz,start为1.5,stop为4.5,step为0.01)4、创建原理图5、版图细调检查MTRACE2元件,对该元件进行布线操作,微调之后得到结果如下:6、版图对比分析得到MTRACE2 X1元件参数值为:DB { 2800,1807.134,2412 }umRB { 270,180,270 }W 406L 10004.739BType 2M 0.6对比图表如下:将布线向左侧版图靠拢,会得到不一样的仿真结果。
⑷电磁提取分析一、A CE分析1、添加提取器(STACKUP元件、EXTRACT模块)2、选择提取原件3、提取4、提取出的电磁结构如下图:进行电磁电路联合仿真,得到如下图所示:5、版图小型化调整结果如下:2D结构:6、提取三维电磁电路模型如下:6、进一步压缩版图尺寸得到的模型和分析结果如下:二、A XIEM分析AXIEM分析过程与ACE相似,只是将Simulator项改成AXIEM,不再赘述。
射频微波电路设计
射频微波电路设计嘿,朋友们!今天咱就来聊聊射频微波电路设计这个超有意思的事儿。
你说这射频微波电路设计啊,就像是搭积木,不过这积木可有点特别。
它不是普通的木头积木,而是超级精细、超级敏感的电子积木。
每一块都得放得恰到好处,不然整个电路就可能“闹脾气”。
想象一下,你在设计一个射频微波电路,就好像在给一个小机器人打造身体和神经系统。
那些电容、电感、电阻啥的,就是机器人的各种器官和零件。
你得让它们协调工作,才能让这个小机器人活力满满地动起来。
在这个过程中,可得小心再小心。
就像走钢丝一样,稍微有点偏差,可能就前功尽弃啦。
比如说,你选的那个电容,要是不合适,那信号可能就变得乱七八糟,就像人说话结结巴巴似的。
而且啊,这射频微波电路设计还特别讲究布局。
可不是随便把那些元件堆在一起就行的。
就跟你收拾房间一样,得把东西都放得井井有条,这样找起来方便,用起来也顺手。
要是乱糟糟的,那可不行。
还有啊,别忘了考虑各种干扰因素。
就像你在安静的图书馆学习,突然有人大声喧哗,那多烦人啊。
在射频微波电路里,也有各种各样的“喧哗者”,得想办法把它们隔绝开,不然电路的性能可就大打折扣了。
那怎么才能做好射频微波电路设计呢?首先,你得有扎实的理论基础,就像盖房子得有牢固的地基一样。
那些公式、定理啥的,都得搞得清清楚楚。
然后呢,就是多实践,多犯错,别怕失败。
每次失败都是一次学习的机会,不是吗?另外,多跟同行交流也很重要。
大家一起分享经验,互相学习,那进步可快了。
就像一群小伙伴一起玩耍,总比一个人闷头玩有意思多了吧。
总之,射频微波电路设计是个既有趣又有挑战性的事儿。
它需要你的耐心、细心和创造力。
当你看到自己设计的电路完美工作的时候,那种成就感,简直没法形容!所以,朋友们,大胆去尝试吧,说不定你就是下一个射频微波电路设计大师呢!。
电子科技中的射频技术与微波电路设计
电子科技中的射频技术与微波电路设计作为现代电子科技中的一个重要领域,射频技术与微波电路设计在许多领域中都扮演着重要的角色。
射频技术及微波电路设计涉及的广泛领域包括通信、雷达、卫星导航系统等,这些领域对于高频率射频电路的设计和制造的要求十分高。
在这篇文章中,我们将介绍射频技术与微波电路设计的基础知识、应用领域和未来发展趋势。
基础知识首先,让我们来了解一下射频技术与微波电路设计的基础知识。
所谓射频(Radio Frequency),是指高于一般电压、频率在3千赫到300吉赫之间的电磁波信号。
而微波(Microwave)则指频率高于1吉赫、波长约为1毫米至1米之间的电磁波信号。
射频技术与微波电路设计主要涉及到一些特定的电路元件和设备。
例如,射频功放器(RFPA)是射频电路中非常常用的设备,用于放大弱信号,使其达到能够被接收器处理和解码的程度。
微波电路设计中还包括一些被广泛应用的电路元件,如微带传输线、滤波器、方向耦合器(Directional Coupler)、功率分配器(Power Divider)等。
应用领域射频技术与微波电路设计的应用领域非常广泛,包括卫星通信、移动通信、雷达系统、医疗设备、无线网络等。
对于这些领域,高频率的射频技术和微波电路设计都是至关重要的,它们能够为这些设备提供稳定、高效的信号传输和处理能力。
其中,卫星通信是射频技术与微波电路设计的一个非常重要的应用领域。
卫星通信系统需要高频率、高精度的射频电路,以实现信号的传输和接收。
在这个领域中,微波电路设计和卫星通信系统的研究已经开始关注对天线和卫星通信系统中其他关键部件的研究和优化,以提高通信系统的性能和稳定性。
无线通信是另一个射频技术与微波电路设计的重要应用领域。
移动通信、蓝牙等无线通信技术中都需要高频率的射频电路和微波电路设计。
这些技术可以用于在不同设备之间传输数据、音频和视频信号。
未来发展趋势随着技术的不断进步,射频技术与微波电路设计领域也在不断发展。
微波电子线路大作业讲解
微波电子线路大作业第一部分1-1 噪声系数定义一、表征单口网络噪声(噪声源)的参数1. 热噪声功率,1928年,尼奎斯特在热力学统计理论分析和实验研究的基础上,导出电阻热噪声电压均方值的表达式kTRB U n 42= (.1-1)式中,k =1.38×9-23(J/K)为玻耳兹曼常数;T 为电阻温度(K);R 为电阻值(Ω);B 为测试设备的通频带(Hz)。
这就是尼奎斯特定理。
2n U 表示在带宽B 内,处于热力学温度T 的电阻R 所产生的热噪声开路电压均方值。
若用等效源表示,可将一个热噪声电阻用等效为一个无噪声电阻R 与一个噪声电压源2n U 串联而成的等效电压源;或等效为一个无噪声电导G 与一个噪声电流源2n I 并联组成的等效电流源,kTGB R U I n n 4/222==。
当几个电阻串联时,采用等效电压源较方便;并联时,采用等效电流源较方便。
当接入负载电阻R L =R 时,温度为T 的电阻R ,在带宽B 内产生的资用噪声功率是kTB R R U N n =⋅=22)2( (.1-2) 热噪声是一种随机过程,通过傅里叶分析知,其频率分量是连续、均匀的频谱分布,称为白噪声。
由式(.1-2)得出资用热噪声功率的谱密度为kT W n = (W/Hz) (.1-3)上式表明,电阻输出的单位带宽资用噪声功率只与热力学温度(K)二、表征双口网络(放大器、混频器等)噪声的参数1. 等效输入噪声温度:一个实际双端口网络(线性或准线性),设网络增益为G ,其输出端产生的总噪声功率N out 应为网络输入端电阻R i 产生的噪声功率N i 和网络内部噪声功率在输出端的贡献之和。
将实际网络用理想网络代替,把网络内部噪声折合到输入端,用等效输入噪声功率N e 和等效输入电阻R e 来表示。
则N e 通过理想网络传输到输出端所贡献的噪声功率,将与网络内部噪声功率在输出端的贡献相等。
如图.1-1所示。
微波仿真课-作业1
微波仿真课(1)北京邮电大学电子工程学院FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02第一次课作业1.了解ADS Schematic的使用和设置2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。
(1)电感分析:由图可知,仿真出来的曲线只分布在Smith圆图的上方,且曲线与最外的圆贴近,而且从短路点到开路点频率是逐渐增大的。
对于理想电感而言,其阻抗值为:jwL,为大于0纯电抗,所以曲线只分布在贴近最大圆的上半部分,又随着频率的升高,电抗值逐渐增大,所以从短路点到开路点频率逐渐增大。
(2)电容分析:由图可知,仿真出来的曲线只分布在Smith圆图的下方,且曲线与最外的圆贴近,而且从短路点到开路点频率是逐渐减小的。
理想电容的阻抗值为-j/wc,为小于0的纯电抗值,所以在Smith圆图上,其仿真曲线分布在贴近最外圆的下半部分,又随着频率的增大,其电抗值在逐渐减小,所以可以看到从短路点到开路点频率在逐渐减小。
3.Linecalc的使用a)计算中心频率1GHz时,FR4基片的50Ω微带线的宽度b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面尺寸(中心信号线宽度与接地板之间的距离)4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分析原因。
分析:由图可知,随着频率的升高,可以看到仿真曲线逐渐向圆心聚拢。
这是由于CPW线为非理想传输线,所以随着频率的变化(电长度的变化,频率越高对应的电长度越大),反射系数幅度会发生变化。
由于四分之一波长的阻抗变换作用,使得原本1GHz的时候的开路点变成了短路点。
当频率为2GHz 时,即为中心频率的两倍时,此时传输线等效的电长度为半波长,由半波长的周期性可知开路点的频率为2GHz(m2)5.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长短路CPW线的性能参数,中心工作频率为1GHz。
微波传输与射频电路的建模仿真分析
微波传输与射频电路的建模仿真分析一、微波传输模型微波传输是指在饱和传输条件下,电磁波的传播。
微波传输模型是微波通信系统中的一个重要部分,因为它可以帮助设计师更好地理解微波信号是如何传输的,有助于预测信号的特性、热噪声、误码率和抗干扰性等指标。
微波传输模型可以通过基本参数建立,包括传输线的长度、宽度、材料以及终端阻抗等。
同时,在传输线模型中,还需要考虑电磁波的传播特性,例如反射、干扰、信号衰减等参数。
此外,由于传输线中通常会有许多连接器和衰减器,因此,在建立微波传输模型时,还需要注意其连接和衰减的影响。
二、射频电路模型随着通讯技术的发展,射频电路也变得越来越重要。
射频电路是在射频信号中处理或放大信号的电路。
射频信号的频率通常在1MHz到100GHz之间,对于射频电路的设计和优化来说,关键的是要减少噪声和提高稳定性。
在射频电路模型的设计中,通常需要考虑很多因素,例如线圈、电容、电感和晶体管等元器件。
为了保证射频电路的高精度和高可靠性,并减少影响,通常会采用计算机模拟流程进行模型构建和仿真分析。
三、传输线和射频电路都属于电磁波领域的应用,它们的模型可以在MATLAB、ADS、CST等计算机仿真软件中建立和模拟。
但射频电路的模型一般相对于传输线较为复杂,因此需要不断改进和优化设计以提高精度。
在模型建立时,需要考虑多种因素,例如微波传输中的传输线阻抗、电阻、导体直径、介质常数等参数,射频电路中则包括线圈、电容、电感、晶体管等元器件和噪声等因素。
因此,建模及仿真既需要学科专业化也需要跨学科知识融合。
在进行微波传输和射频电路仿真时,需要注意模拟的时间和频率跨度。
例如,在进行模拟时,需要根据具体的实际工程应用来设定仿真时间,并根据实际需要进行频段选择。
同时,需要根据模拟的结果来优化传输线和射频电路模型,以使成果更接近实际工程应用场景。
四、小结微波传输和射频电路建模仿真是现代通信领域中的一项重要技术,因为它可以提高通信信号的稳定性和精度,为设计师和工程师提供更好的设计方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波和射频电路设计
大作业
题 目 微波与射频综合模块设计
姓 名 学 号 专业班级 指导教师 分 院
宁波理工学院
一、实验目的
1) 熟练掌握微带天线设计的基本流程,掌握矩形微带天线的设计方法。
2) LC 低通滤波器的设计方法及原理。
3) 将天线、滤波器、低噪放三个模块组合成一个模块。
二、实验仿真
1. 微带天线
天线模块仿真后得出的参数中可以计算需要匹配的微带线的长度。
参数大小可由
1/2
1()22r c W f ε-+=,0.490.49
d r L λλε≈=计算得出。
利用史密斯原图进行传输线匹配,从而达到比较好的仿真效果。
图1中可以发现经过圆心时驻波比保持在1左右,效果较好。
图1
图2天线原理图
图3
没有采用单可变仿真的结果如图3所示,在2.4GHz处,S11=-28.007,效果不是很明显。
天线原理图如图2和4。
如果用单可变匹配来优化天线参数。
插入损耗小,且工作频率更加收敛于2.4GHz。
做过双可变的话,就会发现2.4GHz处匹配后的S
达不
11
到-50dB,而是在-20dB左右,所以后来采用了单可变,并通过优化功能进行实现。
图4 天线原理图
仿真结果如图5。
图5 单可变匹配结果
由图可知,2.4GHz处的S11(插入损耗)为-30.298dB,匹配后效果应该理论上可以达到-50dB,所以不是十分理想的,但是工作频率却十分收敛于2.4GHz。
2.低噪声放大器
低噪放位于接收机的最前端,要求其噪声越小越好。
为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,增益不适合过大。
且低噪放一般是与天线直接相连,所以要求它和天线的匹配性要好。
低噪放的原理图如图6。
图6 低噪放原理图
仿真结果如图7和图8。
图7
观察到最大增益为19.811dB,稳定系数为0.897,小于1,而只有系数大于1时才是稳定,所以不稳定。
使用负反馈可以让系统稳定,在源极添加小电感作为负反馈,如图1.7:
图8
3. 滤波器
滤波器采用了6阶的巴特沃斯滤波器图9。
图9 巴特沃斯滤波器原理图
其实滤波器还是可以看作LC 两种元器件构成,然后通过变化将LC 用微带线
替代。
查表可以得到6阶巴特沃斯滤波器的低通原型参数。
由公式πλ20gC
high Z LR l ∙=可以得出高低阻抗线的长度。
滤波器仿真结果如图10。
图10 巴特沃斯结果
从图中可以发现巴特沃斯还是有些缺陷的。
4. 三个模块综合仿真
先将天线和低噪放联合仿真,仿真原理图如图9。
图9 天线和低噪放联合
仿真结果如图10。
图10 天线和低噪放
暂时不进行匹配了,后面还要加低通滤波器,因此最后再匹配。
从图10中可以看出,天线和低噪放联合仿真后,插入损耗S11的值变大了,这里只有-19.135dB,而之前我们在微带天线仿真时,S11有-30dB左右。
采用6阶巴特沃斯型滤波器,原理图如图11。
仿真结果如图12。
图12加入滤波器的结果
从仿真结果可以发现,频率不在2.4GHz了,有些偏移,这时只需要再进行一下匹配,加入匹配电路,便可实现。
匹配优化后最终的结果如图13。
图13 最后仿真的结果
由图中可知,频率最终还是回到了我们最初设定的2.4GHz,S11参数等于-39.883,符合实际要求,仿真成功。
三、实验体会与总结
几次实验下来,发现自己在ADS2011仿真上还不是很熟练,甚至有时候会被很多步骤卡住,希望在今后的学习中要不断加强自己对新事物的学习能力,不断提高自己的自学能力。
在这次综合实验中,由于比较系统化,在理解的基础上,尽量去做好匹配和优化,以至于完成最后的效果。