水稻雄性不育体系的遗传学,生物化学,分子生物学原理及应用
水稻基因功能和分子育种的研究进展
水稻基因功能和分子育种的研究进展随着人口的不断增长,粮食的需求也在不断上升。
在如何提高粮食产量方面,农业科技的作用一直是不可忽视的。
在水稻栽培中,遗传改良一直是一个重要的研究方向,因为水稻是许多人的主要粮食来源。
基因功能和分子育种的研究,为实现高产优质水稻的目标提供了新的追求。
本文将介绍水稻基因功能以及分子育种的研究进展。
一、基因功能的探究从人类基因组计划开始,基因测序和基因功能的研究已经成为了整个生命科学中必不可少的一个领域。
在20世纪60年代,稻米开始成为基因改良的对象,并成为一些实验室的研究人员的关注点。
当然在那个时候,还不可能进行广泛的基因测序和分析,因为许多必要的技术和工具还未被发明。
因此,在这个时候,探究基因功能的方法主要是基于随机诱变的筛选设计,以及与整合数据库时代相比更为原始的生物学技术。
但在1980年左右,技术进步和计算能力的提高使得基因测序变得越来越容易。
导致研究集中在了单基因疾病的研究中,同时,在水稻的研究方面,也以此为基础。
因此,对非许多基因的功能进行长期研究成为了一种必要的选择。
大多数的研究的结果都是基于遗传改良领域从其他的研究中已经被证实的方案转移到水稻种植中。
随着时间的推移,基因功能研究的技术也不断改进和更新,不断产生更新的重大成果。
遗传变异测序成为一个更加完善的方法和工具,可以进一步帮助我们精细化地了解基因与染色体交互作用,以及它们在实现遗传多样性和发展中的作用。
二、分子育种的应用分子育种的研究是栽培优化的积累了长期的基础,分子育种要比传统的育种方法更准确和可靠。
创造变异体只是育种的第一步,如何确定抗性基因、环境适应性、产量等性状就成了育种的多步骤。
由于分子生物学和基因组学的不断发展,现代育种与传统的育种方法已经大有不同。
与传统育种方法相比,分子育种可以更快,更容易关注种植与植物物质代谢关系的生物过程。
另外,现代分子育种将农业生产和技术处理的素材提供给了第二个生产阶段。
水稻的雄性不育性及其在杂种优势中的利用
水稻是我国主要的粮食作物,我国三分之二以上的人口以水稻为主食。
在过去的40多年里,水稻杂种优势利用为我国的粮食安全作出了重要贡献。
水稻是自花授粉作物,其颖花多且小,无法通过人工去雄的方法生产杂交种。
水稻利用杂种优势唯一可行的途径就是利用雄性不育系做母本与恢复系杂交生产杂交种。
利用雄性不育系可以省去繁杂的人工去雄程序,提高杂交制种的效率和杂交种子的产量。
雄性不育(male sterility)是指植物在有性繁殖过程中雄蕊发育不正常,不能产生正常可育的花粉,正常情况下不能自交受精结实;而雌蕊发育正常,能接受正常可育花粉并受精结实;雄性不育现象在植物中普遍存在,自1763年德国植物学家约瑟夫戈特利布克(JosephDOI:10.16605/ki.1007-7847.2021.08.0202水稻的雄性不育性及其在杂种优势中的利用梁满中,王锋,殷小林,肖翡翠,张聪枝,高琴梅,刘伟浩,胡舒畅,陈良碧*(湖南师范大学生命科学学院作物不育资源创新与利用湖南省重点实验室,中国湖南长沙410081)摘要:雄性不育性是植物界存在的普遍现象,雄性不育系在水稻杂种优势利用中起着重要作用。
我国水稻杂种优势的利用经历了“三系法”“两系法”和“第三代”杂交水稻的发展历程,该历程的实质就是水稻雄性不育系种子生产技术体系的发展。
本文综述了细胞质雄性不育系、两用核不育系和隐性核不育系在我国水稻杂种优势利用中的研究进展,展望了水稻雄性不育系在水稻杂种优势利用的发展前景,以期为我国杂交水稻的创新发展提供参考。
关键词:水稻;雄性不育;细胞质雄性不育;两用核不育;育性;杂种优势中图分类号:Q955文献标识码:A文章编号:1007-7847(2021)05-0377-09Male Sterility of Rice and Its Utilization in HeterosisLIANG Man-zhong,WANG Feng,YIN Xiao-lin,XIAO Fei-cui,ZHANG Cong-zhi,GAO Qin-mei,LIU Wei-hao,HU Shu-chang,CHEN Liang-bi *(Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application ,College of Life Sciences ,Hunan Normal University ,Changsha 410081,Hunan ,China )Abstract:Male sterility is a common phenomenon in plants.Male sterile lines play an important role in the utilization of heterosis in rice.The utilization of rice heterosis in China has experienced the development process of “three-line method ”,“two-line method ”and “third generation ”hybrid rice.The essence of this process is the development of rice male sterile lines seed production technology.This paper reviewed the re-search progress of cytoplasmic male sterile lines,dual-purpose genic male sterile lines and recessive genic male sterile lines in the utilization of heterosis in rice in China.It also described the prospect of male sterile lines in hope of providing a reference for innovative development of hybrid rice in China.Key words:Rice (Oryza sativa L.);male sterility;cytoplasmic male sterile;dual purpose genic male sterile;fertility;heterosis(Life Science Research ,2021,25(5):377~385)收稿日期:2021-08-23;修回日期:2021-10-06基金项目:湖南省重点研发计划项目(2016JC2023);国家科技重大专项资助项目(2016yFD0101107)作者简介:梁满中(1962—),男,湖南溆浦人,湖南师范大学教授,博士,主要从事水稻杂种优势利用研究;*陈良碧(1955—),男,湖南沅陵人,湖南师范大学教授,博士生导师,主要从事植物发育研究与分子生物学研究,E-mail:*******************。
作物雄性不育性在育种中的应用概评
作物雄性不育性在育种中的应用概评秦太辰【摘要】概述总结了作物雄性不育性的类别与遗传特点。
雄性不育性的遗传机理涉及细胞质遗传的现象,目前已初步探明玉米C群不育系的胞质基因可能是atp6-c,芝麻不育胞质基因拟为atpA。
雄性不育化杂交种在实践中主要应用于玉米、水稻和蔬菜中。
尽管现有近交理论、DNA甲基化效用、水稻胞质与核不育系遗传等理论提出,雄性不育化育种的基本理论尚需进一步探讨。
在雄性不育化育种技术上,要逐步解决难点作物,如小麦、荞麦、菜豆等的不育化育种问题。
%This paper summarized the type and genetic characteristics of male sterility. The mechanism of male sterility is involved in cytoplasmic heredity. It has been initially proved that atp6 c and aptA are the cytoplasmic genes of maize sterile line C group and namie male sterile line, respectively. Male sterility hybrids are extensively applied in corp production, shuch as maize, rice and vegetables. Despite some theories were proposed, such as inbreeding theory, DNA methlation and genetics of rice cytoplasm male sterile line, the basic theories of male sterile breeding requests further study. This paper suggested to gradually resolve the difficulties of crop male sterile hybridization breeding in wheat, buckwheat and navy beans.【期刊名称】《生物技术进展》【年(卷),期】2011(001)002【总页数】6页(P84-89)【关键词】雄性不育化;细胞质遗传;不育化制种;DNA甲基化;杂种优势【作者】秦太辰【作者单位】扬州大学农学院杂种优势研究与应用实验室,江苏扬州225009【正文语种】中文【中图分类】S512.1自1902年发现植物雄性不育现象[1],迄今已百余年,直到20世纪20~30年代才应用于生产。
某种水稻雄性不育基因的鉴定
某种水稻雄性不育基因的鉴定我国是一个农业大国,农业是我国经济的重要支柱。
因此,农业科技的发展对我国农业的发展至关重要。
其中,水稻的种植是我国农业的重要部分。
而在水稻的生产过程中,种子的质量直接关系到水稻的产量和质量。
因此,水稻的育种研究非常重要。
其中,水稻雄性不育基因的鉴定是水稻高产和优质的关键。
首先,我们需要了解水稻的繁殖方式。
水稻根据雌雄生殖器官所在的位置,可以分为两种类型:一型水稻和二型水稻。
一型水稻的雄蕊与花柱在同一高度,易受风媒或自交授精。
二型水稻的雄蕊与花柱高度相差一定,几乎都是昆虫传粉。
其中,一型水稻在自然条件下会自我授粉,而百分之九十的二型水稻都需要异花传粉,因此,如何利用异花授粉,又不引入病原体和杂质是雄性不育育种研究的关键。
接下来,我们需要了解什么是雄性不育基因。
雄性不育是指雄蕊不能正常发育或不能正常生产正常粉孢子,又称睾丸不育或花药不育。
在育种中,利用雄性不育基因,可以使水稻在不受人工控制情况下,自然地维持雌雄分离,达到孪生变异或杂种优势,从而实现高产和优质。
目前,雄性不育基因被广泛应用于水稻育种中。
然而,长期以来,雄性不育基因鉴定技术一直处于困境。
雄性不育基因是由基因突变所引起的,突变筛选相对非常困难,需要精密的实验手段和精细的筛选技术。
因此,我们需要开发出一种快速、准确、可靠的雄性不育基因鉴定技术。
近年来,国内外学者们在雄性不育基因鉴定技术方面开展了大量的研究。
他们通过分子生物学、生物化学、生物信息学和细胞遗传学等方法,成功鉴定出多种水稻雄性不育基因。
例如:阿维拉麦受体基因(ABA1)、细胞质保守蛋白基因(CMS)、粗粒双孢菌毒素基因(T、Rf3)、非加工米基因(nap)、膜磷酸二酯酶基因(PT)等。
其中,基于分子生物学的鉴定技术是目前最为先进和准确的方法。
它可以通过PCR扩增与特定基因相关的DNA序列,得到相应的DNA片段,并通过序列比对、酶切分析、核酸杂交、AP-PCR等多种方法进行分析。
备战高考情境:三系法杂交水稻(详细原理含习题)
备战高考情境:三系法杂交水稻我国水稻的六大稻区1973年,在各国普遍认为自花授粉的水稻没有杂种优势的情况下,袁隆平带领研究组成功实现杂交水稻三系配套,育成具有根系发达、穗大粒多等优点的强优势杂交水稻。
世界首次。
1976年,杂交水稻迅速扩大到208万亩,并在全国范围开始大面积应用于生产。
中国成为世界第一个在生产上成功利用水稻杂种优势的国家。
1995年,两系法杂交水稻研究取得突破性进展,大面积推广。
中国独创。
1996年开始实施的中国超级稻育种计划,在基础理论和品种选育方面都取得较大进展。
分别于2000、2004、2011、2014年实现了大面积示范亩产700、800、900、1000公斤的“四连跳”。
随后,超级杂交稻最高单产突破每公顷18吨,再次刷新世界纪录。
2002年,中国水稻(籼稻)基因组“精细图”正式完成,标志着我国水稻基因组研究正式进入世界前列,随后鉴定并克隆出控制水稻农艺性状的一系列关键基因。
近年来,我国育种技术推陈出新,与分子生物学、遗传学融合不断加深。
如2018年,由我国科学家李家洋、韩斌、钱前、王永红、黄学辉为代表的研究团队,历时逾20年合作完成的“水稻高产优质性状形成的分子机理及品种设计”项目荣获2017年度国家自然科学奖一等奖。
这项技术将极大推动作物传统育种向高效、精准、定向的分子设计育种转变。
2019年10月,兼有三系不育系育性稳定和两系不育系配组自由等优点的第三代杂交水稻首次公开测产,亩产达1046.3公斤,表现出株型优良、茎秆粗壮、耐肥抗倒、穗大粒多、籽粒充实饱满、不早衰等特性。
又是世界领先……(一)三系法杂交水稻三系法杂交稻的由来:两个遗传组成不同的亲本杂交产生的杂种F1代优于双亲的现象称为杂种优势。
具体地讲,杂种F1代在生长势、生活力、繁殖率、抗逆性、适应性、产量和品质诸方面比双亲优越。
杂种优势可分为超亲优势、平均优势和竞争优势。
人们常说的杂种优势利用通常是指利用作物的竞争优势。
水稻免疫机制的分子生物学研究
水稻免疫机制的分子生物学研究在人类粮食中占据重要地位的水稻,是世界上最主要的粮食作物之一,但在其生长过程中,极易受到细菌、真菌、病毒等病原微生物的攻击,造成严重的减产问题。
因此,研究水稻免疫机制的分子生物学成为了当今生物学研究的热点之一。
水稻免疫机制主要通过两种方式进行:一种是PTI(PAM-triggered immunity),指的是由细胞膜上PAMPs与PAMP受体发生相互作用而引发的通路;另一种是ETI(Effector-triggered immunity),指的是由病原体的效应蛋白(effector)与水稻细胞中植物保护蛋白(R蛋白)发生相互作用后引发的通路。
在PTI通路中,水稻细胞膜上的PAMPs受体(如LRKs和OsFLS2)可以与外部的PAMPs结合,激活植物内源性激素(如SA、JA),进而刺激水稻细胞产生一系列的抗菌物质,以达到对抗入侵病菌的作用。
在ETI通路中,水稻细胞中的R蛋白则起到了关键的作用。
R蛋白即是感知病原效应蛋白的受体蛋白,其下游的信号转导过程对于水稻抵抗病原微生物的作用至关重要。
根据实验研究,已发现数以千计的水稻R蛋白。
其中,转录因子类R蛋白可以通过改变这些蛋白的转录活性来激活目标基因,使水稻对病原微生物产生抵抗力,而调控性R蛋白(如DEAD-box RNA helicase)则可以负责在水稻免疫病程中的调控。
在水稻的抗病过程中,信号转导过程也是必不可少的。
不同的信号传导路线会对差异性引发反应,因此研究与水稻宿主响应有关的感官因子和信号转导分子是十分必要的。
在水稻抗病的信号转导过程中,除了SA、JA等内源激素的作用外,还有Ca2+、ROS、磷酸烯醇激酶等信号转导分子的参与。
例如,CA2+可以通过其结合的CML类蛋白调节一些酶的活性,而ROS的过多还可以引发水稻的凋亡反应。
近年来,大量的研究证实,cDNA克隆技术、基因工程技术等工具的应用对于水稻免疫机制的研究提供了有力的帮助。
水稻细胞质雄性不育分子生物学研究进展
核基 因组( ul r N ,D A 与其可能有一定 的关 N ca D A nN ) e 系。本文就有关水稻细胞质雄性不育与有关基因组分 子生物学研究进展作一综述 , 并对水稻细胞质雄性不 育分子机理和分子生物学研究进行 了展望。
在 明显 的差异 , 而且叶绿体蛋 白质、 叶绿体超微结构之 间均存在差异 , 因此认为高等植物的细胞质雄性 不育 与 c N 叶绿体蛋 白质及其超微结构之间存在某些 t A、 D
术 的发 展 , 国内外 的学 者对 c N mtN pD A和 t A、 D A、d N D
体育成 的不育系及相应的保持 系、 恢复系 、 不育系/ 恢 复系 F 、 保持系/ 恢复系 F等 1 2份水稻材料的剑叶叶 肉细胞 中的叶绿体超微结构, 结果表明 , 两种类型的质 供体育成的不育系都表现出部分 叶绿体不 同基粒间的 片层排列方 向不一致 , 呈现一定程度 的杂乱, 说明叶绿 体超微结构与细胞质雄性不育存在某些相关性; 当不 育系与恢复系杂交后 , 叶绿体全部从不育系的异 F代 常恢复正常, 而且 叶绿体基粒片层数少的质供体野败 与叶绿体基粒片层数多的核供体珍汕 9 7 B两者的质、 核共处 了2 3代之久 , 不育系的片层数仍与质供体野败 相近, 但与恢复系杂交后 , F 的片层数却大大增加, 说 明育性恢复因子的导入 , 使后代育性恢复的同时, 叶绿 体结构的异常现象也得到 了改善。侯磊等 用 3 2对
联系。郑兢贵等 用电镜 观察 了雄性败育的野生 稻 与雄性育性正常的栽培稻 G m i a和以它们 为质供 ab k a
1 水稻 C MS的分 子基 础
由于植物细胞质遗传物质主要包括叶绿体基因组 (tN 、 粒 体 基 因组 ( tN 、 粒 基 因 组 c A) 线 D mD A) 质 (d N ) pD A 和核基因组( D A , n N ) 人们 自然就将 C S M 与 这些遗传物质联 系起来。近年来 , 随着分子生物学技
水稻雄性不育系
目 录1概况
2水稻杂交不育的原因
3具体介绍
1概况基本特征: 雄性器官发育不正常,花药瘦小、干瘪、不开裂、内含败育花粉或无花粉,自交不能结实,多数情况下,有不同程度的包颈。
三系杂交水稻的利用原理
三系杂交水稻的利用原理三系杂交水稻是利用杂交优势提高水稻的产量和抗逆性的一种育种方法。
其利用原理主要涉及三系杂交水稻的核心技术,阳性核不育系、阴性核不育系和恢复剂的应用。
三系杂交水稻的利用原理可以分为四个步骤:制备阳性核不育系,制备阴性核不育系,制备恢复剂以及配制杂交种子。
首先,制备阳性核不育系。
阳性核不育系是指不具备精子活力的水稻株系。
通过诱导水稻株系发生某种突变或不育基因的介导,可以获得阳性核不育系。
具体而言,一种常见的方法是通过染色体敲除技术或辐射诱导来获得阳性核不育系。
核不育系的特点是有利于杂交种子的采集和保存。
其次,制备阴性核不育系。
阴性核不育系是指具有精子活力但卵子不育的水稻株系。
与阳性核不育系相反,阴性核不育系的不育性主要是由于卵母细胞的不育性引起的。
通过遗传和细胞学的方法,可以将这种阴性核不育基因引入到水稻品种中。
引入该基因后,卵母细胞无法正常发育,导致不育性。
第三,制备恢复剂。
恢复剂是指可以恢复阴性核不育系的育性的水稻品种。
在阴性核不育系配子时,恢复剂提供的基因使得该阴性核不育系的卵子恢复正常发育能力。
恢复剂通常是很多常见水稻品种或其他稻种,其使阴性核不育系的不育性被抑制,从而形成具有正常育性的杂交子代。
最后,配制杂交种子。
利用阳性核不育系作为种子亲本,通过人工授粉,将恢复剂的花粉施加到阳性核不育系的柱头上。
经过授粉后,子代种子就是三系杂交水稻的杂交种子。
三系杂交水稻的利用原理可以总结为利用阳性核不育系、阴性核不育系和恢复剂的互作,实现了水稻的杂交育种。
通过引入不育系制度,杂交种子的制备和保存变得更加方便和高效。
阳性核不育系保证了水稻花粉的不育性,而阴性核不育系则保证了卵母细胞的不育性。
恢复剂的作用是恢复阴性核不育系的卵母细胞的育性,使得杂交种子能够正常发育。
通过这种杂交方式,可以充分利用水稻的杂种优势,提高水稻的产量和抗逆性,推动水稻育种事业的发展。
高考生物遗传——水稻雄性不育专题练习(含答案)
高考生物遗传——水稻雄性不育专题1.杂合体在一种或多种性状上优于两个亲本的现象称为杂种优势。
以下是有关杂交水稻的研究,请回答问题。
(1)水稻是雌雄同株两性花的植物,杂交实验中,为了防止母本须进行人工去雄。
水稻的花非常小,人工操作难以实现。
后来,科学家在自然界发现了雄性不育(雄蕊不能产生可育花粉)的水稻植株,其在杂交时只能做,这就免除了人工去雄的工作,因此作为重要工具用于水稻杂交育种。
(2)不育系的产生是基因突变的结果,在细胞核和细胞质中都含有决定雄蕊是否可育的基因(如右图)。
其中细胞核中的不育基因用r表示,可育基因用R表示,且R对r显性;细胞质中的不育基因用S表示,可育基因用N表示。
上述细胞质与细胞核可组成种基因型的细胞。
四种基因的关系中,R能够抑制S的表达,即基因型为S(RR)的水稻表现为;当细胞质基因为N时,无论细胞核中含有可育基因还是不育基因,植株都表现为雄性可育,所以雄性不育系的基因型为。
(3)现有与育性有关细胞核基因纯合的四个品系水稻:N(R R)、S(R R)、N(r r)和S(r r)。
①上述四个品系的水稻,也携带着某些其他利于增产的优良性状基因,通过杂交可进一步获得具有杂种优势的种子。
请你选出相应的亲本,以遗传图解的形式,提出获得杂交种子用于大田生产的最佳方案。
②由于雄性不育系不能通过自交的方式得以保持(延续),用于之后的杂交育种,请你选出相应的亲本,以遗传图解的形式,提供保持不育系以用于育种的解决方案。
获得杂交种的遗传图解:保持不育系的遗传图解:(4)由于上述育种方案还存在一些不足,比如,有些虽表现出很强的杂种优势,但结实率低。
研究者培育出光温敏型雄性不育系,其育性受一对隐性核基因(ee)控制而与细胞质无关。
该品系水稻在长日照、高于临界温度(23o C)时表现为雄性不育;而在短日照、低于临界温度时表现为雄性可育。
依据以上资料,请提出获得杂交种子用于大田生产和保持雄性不育的合理方案。
水稻雄性不育遗传及分子生物学研究进展
包 括 显 性 核 不 育 和 隐性 核 不 育 。 至 今 较 为 成 功 地 应 用 的 是 隐性 光 ( ) 核 不 育 … 。 温 敏 水稻光 ( ) 雄性 核不 育系 的育性 受 核基 因控 制 , 温 敏
基 因 的 表 达 受 光 周 期 和 温 度 调 节 , 传 的 基 本 规 律 遗 是 [-3 ( ) 稻 光 温 敏 基 因 雄 性 不 育 性 状 是 由 1对 ( 24 :1 水 温 敏 型 ) 2对 ( 温 互 作 型 ) 性 基 因控 制 的性 状 ; 2 基 或 光 隐 () 因 型 决 定 不 育 系 的光 温 反 应 类 型 ;3 遗 传 背 景 决 定 不 育 () 系 的光 温 反 应 范 围 ;4 外 环 境 ( 长 、 度 ) 定 不 育 系 () 光 温 决 的 育 性 表 达 方 向 ( 育 或 可 育 ) ( ) 因 型 和 内外 环 境 共 不 ;5 基
迄 今 已有 7 0多个 水 稻 细 胞 核 雄 性 不 育 基 因 报 导 ,
利 用 , 且 遗 传 研 究 亦 较 深 人 。 目前 生 产 上 常 用 的核 质 并 互 作 雄 性 不 育 系 按 其 恢 保 关 系 分 为 野 败 型 、 T型 和滇 型 。 B
2 1 野 败 型 雄 性 不 育 .
维普资讯
辽 宁农 业科 学
2 0 ( )4 0 8 3 :7~5 0
Li o i u a i n e
文 章 编 号 :0 2—1 2 2 0 0 10 7 8( 0 8) 3—0 4 0 7—0 4
摘 要 : 述 了水 稻雄 性 不 育 的 遗 传 和 分 子 生 物学 研 究 进 展 。光 温 敏 核 不 育 受 1~ 综 2对 隐性 核 基 因 控制 , 性 表 育 达 受 基 因 和 环 境 共 同作 用 , 敏 核 不 育 基 因 被 不 同研 究 者 分 别 定 位 在 不 同 染 色 体 上 ; 质 互 作 型 的 雄 性 不 育 光 核 因 细 胞 质 类 型 不 同 , 制 育 性 的基 因 不 同 ; 败 型 和 B 型 的 主 要 恢 复 基 因 均 被 定 位 于 第 1 控 野 T 0染 色 体 的 长 臂
雄性不育系
雄性不育系:是一种雄性退化(主要是花粉退化)但雌蕊正常的母水稻,由于花粉无力生活,不能自花授粉结实,只有依靠外来花粉才能受精结实。
因此,借助这种母水稻作为遗传工具,通过人工辅助授粉的办法,就能大量生产杂交种子。
保持系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系后,所产生后代,仍然是雄性不育的。
因此,借助保持系,不育系就能一代一代地繁殖下去。
恢复系:是一种正常的水稻品种,它的特殊功能是用它的花粉授给不育系所产生的杂交种雄性恢复正常,能自交结实,如果该杂交种有优势的话,就可用于生产。
三系杂交水稻:是指雄性不育系、保持系和恢复系三系配套育种,不育系为生产大量杂交种子提供了可能性,借助保持系来繁殖不育系,用恢复系给不育系授粉来生产雄性恢复且有优势的杂交稻。
两系杂交稻:一种命名为光温敏不育系的水稻,其育性转换与日照长短和温度高低有密切关系,在长日高温条件下,它表现雄性不育;在短日平温条件下,恢复雄性可育。
利用光温敏不育系发展杂交水稻,在夏季长日照下可用来与恢复系制种,在秋季或在海南春季可以繁殖自身,不再需要借助保持系来繁殖不育系,因此用光温敏不育系配制的杂交稻叫做两系杂交稻。
超级杂交稻:水稻超高产育种,是近20多年来不少国家和研究单位的重点项目。
日本率先于1981年开展了水稻超高产育种,计划在15年内把水稻的产量提高50%。
国际水稻研究所1989年启动了“超级稻”育种计划,要求2000年育成产量比当时最高品种高20%-25%的超级稻。
但他们的计划至今未实现。
我国农业部于1996年立项中国超级稻育种计划,其中一季杂交稻的产量指标为,第一期(1996-2000年)亩产700公斤,第二期(2001-2005年)亩产800公斤。
三系杂交水稻三系杂交水稻是水稻育种和推广的一个巨大成就,所谓三系是:(1)雄性不育系。
雌蕊发育正常,而雄蕊的发育退化或败育,不能自花授粉结实。
(2)保持系。
雌雄蕊发育正常,将其花粉授予雄性不育系的雌蕊,不仅可结成对种子,而且播种后仍可获得雄性不育植株。
高考生物遗传——水稻雄性不育专题练习含答案
高考生物遗传一一水稻雄性不育专题1.杂合体在一种或多种性状上优于两个亲本的现象称为杂种优势.以下是有关杂交水稻的研究,请答复下列问题.〔1〕水稻是雌雄同株两性花的植物,杂交实验中,为了预防母本须进行人工去雄.水稻的花非常小,人工操作难以实现.后来,科学家在自然界发现了雄性不育〔雄蕊不能产生可育花粉〕的水稻植株,其在杂交时只能做,这就免除了人工去雄的工作,因此作为重要工具用于水稻杂交育种.〔2〕不育系的产生是基因突变的结果,在细胞核和细胞质中都含有决定雄蕊是否可育的基因〔如右图〕.其中细胞核中的不育基因用r表示,可育基因用R表示,且R对r 显性;细胞质中的不育基因用S表示,可育基因用N表示.上述细胞质与细胞核可组成种基因型的细胞.四种基因的关系中,R能够抑制S的表达,即基因型为5依心的水稻表现为;当细胞质基由于N时,无论细胞核中含有可育基因还是不育基因,植株都表现为雄性可育,所以雄性不育系的基因型为.〔3〕现有与育性有关细胞核基因纯合的四个品系水稻:N〔R R〕、S〔R R〕、N〔r r〕和S〔r r〕.①上述四个品系的水稻,也携带着某些其他利于增产的优良性状基因,通过杂交可进一步获得具有杂种优势的种子.请你选出相应的亲本,以遗传图解的形式,提出获得杂交种子用于大田生产的最正确方案.②由于雄性不育系不能通过自交的方式得以保持〔延续〕,用于之后的杂交育种,请你选出相应的亲本,以遗传图解的形式,提供保持不育系以用于育种的解决方案.获得杂交种的遗传图解:保持不育系的遗传图解:〔4〕由于上述育种方案还存在一些缺乏,比方,有些虽表现出很强的杂种优势,但结实率低.研究者培育出光温敏型雄性不育系,其育性受一对隐性核基因〔ee〕限制而与细胞质无关.该品系水稻在长日照、高于临界温度〔23<C 〕时表现为雄性不育;而在短日照、低于临界温度时表现为雄性可育.依据以上资料,请提出获得杂交种子用于大田生产和保持雄性不育的合理方案.〔5〕水稻杂交种具有杂种优势,但杂种后代会发生,无法保持其杂种优势,导致每年需要重 新制种.为解决每年制种的繁琐问题,请提出新的设想.〔1〕自交〔自花传粉〕母本〔2〕六 雄性可育 S 〔rr 〕 〔3〕〔4〕秋季〔短日照、低于临界温度〕光温敏型雄性不育系表现为可育,可自交产生不育系.〔夏季〔长日照、 高于临界温度〕光温敏型雄性不育系〔ee 〕与正常可育品系〔〕杂交,获得杂交种用于大田生产〕〔5〕性状别离无融合生殖〔略〕 2.水稻的雄性不育植株是野生型水稻的隐性突变体〔正常基因M 突变为m 〕.雄性不育植株不能产生可育花粉,但能 产生正常雌配子.〔1〕水稻的花为两性花,自花授粉并结种子.在杂交育种时,雄性不育植株的优点是无需进行大大减轻了杂交操作的工作量.〔2〕我国科研人员将紧密连锁不发生交换的三个基因M 、P 和R 〔P 是与花粉代谢有关的基因,R 为红色荧光蛋白基因〕与Ti 质粒连接,构建,通过 法转入雄性不育水稻植株细胞中,获得转基因植株,如下列图所示.〔3〕向雄性不育植株转入乂基因的目的是让转基因植株.转基因植株自交后代中,雄性不育植株为 荧光植株,由无荧光植株和红色荧光植株的性状别离比为 分析,P 基因的功能是雄性不育植株 转入M,P 和R 基因〔基因型mm 〕步转基因植株 |—►无荧光植株〔占50%〕»红色荧光植株〔占50%〕〔4〕雄性不育植株不能通过自交将雄性不育的特性传递给它的子代,而育种工作者构建出的转基因植株的特点是.〔5〕以转基因植株自交产生的雄性不育植株作为母本,以其他水稻品种为父本进行杂交,获得杂交稻.转基因植株中的M、P和R基因不会随着这种杂交稻的花粉扩散,这是由于转基因植株,因此保证了雄性不育植株和杂交稻不含M、P和R基因.28.〔1〕去雄〔2〕重组DNA农杆菌转化〔3〕雄配子可育无 1:1 使带有P基因的花粉败育〔4〕自交后既产生雄性不育植株,用于育种,也可产生转基因植株用于保持该品系〔5〕紧密连锁的M、P和R基因不会发生交换〔即M、R基因不会出现在没有P基因的花粉中〕;而且含有P 基因的花粉是失活的3.水稻是我国主要的农作物之一.两用核不育系水稻〔夏季高温条件下,表现为雄性不育;秋季低温条件下,恢复育性可以自交产生籽粒〕在农业上与正常水稻杂交,用于生产高产杂交水稻.〔1〕现有两个两用核不育系的水稻,其雄性不育的起点温度分别为23. 3c和26℃.在制备高产水稻杂交种子时, 由于大田中环境温度会有波动,应选用雄性不育起点温度为℃,原因是.〔2〕用A与H 〔正常水稻〕获得两用核不育系水稻A和持续培育高产水稻的方法是〔用遗传图解表示并标明适用的温度条件〕〔3〕在两用核不育系大田中偶然发现一株黄叶突变体X.①将突变体X与正常水稻H杂交得[均为绿叶,*自交得F2群体中绿叶、黄叶之比为3:1.由以上可以推测,自然黄叶突变体X的黄叶性状由基因限制,这一对叶色基因的遗传符合基因的定律.②为确定限制黄叶基因的位置,选用某条染色体上的两种分子标记〔RM411和WY146〕,分别对吃的绿色叶群体的10个单株〔10G〕和黄色叶群体10个单株〔10Y〕进行PCR,之后对所获得的DNA进行电泳,电泳结果可反映个体的基因型.M为标准样品,结果如下列图所示.WYI46从上图可以看出,每图中10G 个体中的基因型为 种,其中 (填写“图1〞或“图2〞)的比例与理论比值略有不同,出现不同的最可能原因是.每图中10Y 的表现均一致,说明两个遗传标记与黄叶基因 在染色体上的位置关系是.(4)与普通两用核不育系相比,利用此自然黄叶突变体培育出的黄叶两用核不育系在实际生产中应用的优势是【答案】 (1). 23.3(2).不育起点温度越低,授粉时出现雄性可育的情况越少,不易出现自交和杂交种混P 的xJA P?Ax 5H杂的现象 (3).“俯晶条件|高温条件(4).隐性 (5).别离收薮F1种子[获得AzK 稻)收获A 植株所结种子(即为高产水稻)(6). 2(7).图1(8).待测样本数少 (9).位于同一条染色体上(10).在苗期可筛选出杂交种中混有的自交种4.水稻的育性由一对等位基因M 、m 限制,基因型为阿和Mm 的个体可产生正常的雌、雄配子,基因型为啦的个体 只能产生正常的雌配子,表现为雄性不育,基因M 可使雄性不育个体恢复育性.通过转基因技术将基因M 与雄配子 致死基因A 、蓝色素生成基因D 一起导入基因型为1^的个体中,并使其插入到一条不含m 基因的染色体上,如下列图 所示.基因D 的表达可使种子呈现蓝色,无基因D 的种子呈现白色.该方法可以利用转基因技术大量培育不含转基 因成分的雄性不育个体.请答复下列问题:能出现的因型为 ⑵上图所示的转基因个体自交得到F1,请写出遗传图解.⑶F1中雄性可育〔能产生可育雌、雄配子〕的种子颜色为.⑷F1个体之间随机授粉得到种子,快速区分雄性不育种子和转基因雄性可育种子的方法是 RM41I ⑴基因型为1^的个体在育种过程中作为 母本),该个体与育性正常的非转基因个体杂交,子代可 M H X -IQ G► <1 OY> MIIX ♦WC» t 1 OY挎珞因十体(ADMmm)(父〔I 〕 Mm, nwn 〔2 分〕蓝色〔I寸】1浮X廉整?1分工财净.植㈱所结的种子好育雄性斯育的也有维性不育的I R均为闩华士岩区如浮5.水稻是我国主要的粮食作物之一,它是自花传粉的植物.提升水稻产量的一个重要途径是利用杂交种〔F1〕的杂种优势,即F1的性状优于双亲的现象.〔1〕杂交种虽然具有杂种优势,却只能种植一代,其原因是,进而影响产量.为了获得杂交种,需要对去雄,操作极为繁琐.〔2〕雄性不育水稻突变体S表现为花粉败育.在制种过程中,利用不育水稻可以省略去雄操作,极大地简化了制种程序.①将突变体S与普通水稻杂交,获得的[表现为可育,F2中可育与不育的植株数量比约为3 : 1,说明水稻的育性由等位基因限制,不育性状为性状.②研究人员发现了限制水稻光敏感核不育的基因pms3,该基因并不编码蛋白质.为研究突变体S的pms3基因表达量和花粉育性的关系,得到如下结果〔用花粉可染率代表花粉的可育性〕.表1不同光温条件下突变体S的花粉可染率〔%〕0 ~~1~—1~—1~短日低温短日高温长日低温长口高温图1不同光温条件下突变体S的pms3基因表达量差异该基因的表达量指的是的合成量.根据实验结果可知,pms3基因的表达量和花粉育性关系是.突变体S的育性是可以转换的,在条件下不育,在条件下育性最高,这说明.〔3〕结合以上材料,请设计培育水稻杂交种并保存突变体S的简要流程: .答案:〔18分,除特殊说明外,每空2分〕〔1〕F1自交后代会发生性状别离现象母本〔2〕①1对〔1分〕隐性〔1分〕②RNA花粉育性变化与pms3基因的表达量呈现正相关〔pms3基因的表达量越高,花粉育性越高〕长日高温〔1分〕短日低温〔1分〕表现型是基因与环境共同作用的结果〔3〕在长日高温条件下,以突变体S为母本,与普通水稻杂交,收获S植株上所结的种子即为生产中所用的杂交种.在短日低温条件下,使突变体S自交,收获种子,以备来年使用.〔4分〕6.杂交水稻是我国对当代世界农业的巨大奉献,在实际种植过程中表达了巨大的杂种优势.〔1〕杂交水稻自交后代会产生性状别离,其原因是杂交水稻在减数分裂过程中发生了的别离,导致其品质下降,因此不可直接留种.〔2〕传统的杂交水稻制种过程中,需要选择花粉败育的品种〔不育系〕作为母本,这样可以预防自花受粉.为了解决不育系的获得和保持问题,科研人员做了如下研究:①水稻的雄性可育是由N基因决定的,人工诱变处理野生型水稻,最终获得基因型为99的雄性不育植株.让该植株与野生纯合水稻杂交,得到的F/代〔可育/不可育〕.②为快速筛选可育种子与不育种子,科研人员将基因N、花粉败育基因M 〔只在配子中表达〕、红色荧光蛋白基因 R一起构建重组Ti质粒,可采用法将其导入雄性不育植株〔nn〕细胞中,获得雄性可育杂合体转基因植株〔N-M-R所在区段不发生交叉互换〕.该植株自交得到的种子中红色荧光:无荧岩.选择种子种植自交,可继续获得不育类型.〔3〕科研人员尝试让杂交水稻通过无性繁殖产生种子,解决留种繁殖问题.①研究发现,来自卵细胞中B基因的表达是启动受精卵发育成胚胎的必要条件,机制如下列图所示:据图分析,敲除精子中B基因后,那么受精卵中来自卵细胞的B基因.假设让卵细胞中的B基因表达,该卵细胞可直接发育为植株,因其不可育那么不能留种繁殖.②科研人员发现敲除杂交水稻中限制减数分裂的R、P、O三个关键基因,利用MiMe技术使其卵原细胞以有丝分裂方式产生“卵细胞〞,那么获得的“卵细胞〞与杂交水稻基因型.③基于上述研究,请你设计杂交水稻保持杂种优势适宜留种繁殖的方案:.答案:〔1〕等位基因〔2〕①可育②农杆菌转化〔基因枪〕1:1红色荧光〔3〕①不能表达单倍体②一致③敲除杂交水稻中限制减数分裂的三个关键基因,同时让该水稻卵细胞中B基因表达〔B蛋白〕,以此获得种。
2个水稻三系不育系开花习性和农艺性状的观察与研究
2个水稻三系不育系开花习性和农艺性状的观察与研究1. 引言1.1 研究背景水稻是我国主要的粮食作物之一,具有重要的经济和社会意义。
在水稻生产中,利用不育系育种技术可以提高水稻的产量和品质,是实现粮食生产现代化的重要手段之一。
水稻三系不育系育种技术是目前应用较广泛的一种育种方法,通过利用核基因型和质粒基因型间的相互作用,实现了水稻的杂交育种。
水稻三系不育系具有独特的育种优势,但在实际应用中仍然存在一些问题,如开花习性不稳定、农艺性状不一致等。
对水稻三系不育系的开花习性和农艺性状进行观察和研究,对进一步提高水稻杂交育种效率和品质具有重要意义。
本研究旨在通过对两个水稻三系不育系的开花习性和农艺性状进行系统观察与研究,为进一步解决水稻三系不育系在育种中的问题提供科学依据。
1.2 研究目的研究目的:通过对2个水稻三系不育系的开花习性和农艺性状进行观察与研究,旨在深入了解不同不育系的特点及其对水稻生长发育的影响,为进一步优化育种工作提供科学依据。
具体目的包括:1.探究不同水稻三系不育系的开花时间、花粉数量和质量等开花习性差异,揭示其与不育性的相关性;2.分析不同不育系水稻在生长过程中的生物学特性、产量性状和抗逆性等农艺性状,为选育高产、抗逆水稻品种提供理论支持;3.研究影响不育系水稻农艺性状的因素,探讨遗传、环境等因素对其影响程度;4.探讨解决不育系水稻在育种应用中存在的问题,如精确控制杂交制种、提高育种效率等方面,为提高育种工作效率和水稻产量质量提供技术支持。
通过本研究,旨在为水稻杂交育种提供更准确的理论基硋和技术支持,推动水稻生产方式的转变和提升,助力我国粮食生产的可持续发展。
1.3 研究意义水稻是我国的主要粮食作物之一,对于保障粮食安全具有重要意义。
而水稻三系不育系是利用杂交优势生产杂交水稻的重要工具。
通过观察和研究水稻三系不育系的开花习性和农艺性状,可以更好地了解其遗传特性和生长规律,有助于提高水稻的杂交育种效率和品质。
植物雄性不育研究进展
植物雄性不育研究进展植物雄性不育研究近年来受到广泛关注,因为它涉及到农业产业的发展和粮食安全的保障。
植物雄性不育是指植物的雄蕊不能正常发育或不能产生正常花粉,导致无法与雌蕊结合,从而影响了植物的繁殖。
现在,研究人员针对这一问题进行了多方面的探索和研究并取得了一些进展,下面我们来看看这些进展有哪些。
一、遗传学研究遗传学是研究植物雄性不育问题的重要方法之一。
通过基因工程技术和遗传分析,研究人员发现,植物雄性不育问题主要由于基因突变而导致。
他们分析了这些基因的结构和功能,并利用基因编辑技术对不育基因进行修改,从而恢复了植物的雄性生殖能力。
这项技术的成功应用为植物遗传改良提供了新思路,也为植物育种提供了新的途径。
二、分子生物学研究分子生物学技术的应用,使得研究人员更好地理解了植物雄性不育的发生机理。
此外,这种技术还为研究人员提供了制备基因重组技术的工具,使得植物遗传工程领域的研究更为深入。
研究人员利用分子生物学技术,发现了一些新基因、新蛋白和新RNA,它们与植物雄性不育问题密切相关。
通过研究这些分子材料的功能,并修改它们的表达,研究人员成功地解决了某些植物雄性不育问题,同时也为新品种的培育提供了新的方法。
三、生物化学研究生物化学技术在植物雄性不育研究中也发挥了重要作用。
生物化学技术能够用来分离、纯化和检测植物中的化学成分,从而揭示它们与植物雄性不育的关系。
研究人员运用生物化学技术,深入研究了植物雄性不育问题与氧化应激、能量代谢等方面的关系。
研究人员发现,氧化应激和能量代谢与植物雄性不育密切相关。
通过调控这些过程,研究人员成功地恢复了植物雄性生殖能力。
四、细胞生物学研究细胞生物学技术在植物雄性不育研究中的作用也越来越突出。
通过显微镜观察、分离和培养植物中的细胞,研究人员发现了植物雄性不育发生的基本细胞学特征和分子环节,这为进一步的研究提供了基础。
研究人员借助细胞生物学技术,成功培育出了植物雄性不育的雄花器官替代物和花粉,这为某些农作物及其杂交种的培育提供了全新思路。