反比例函数知识点总复习
反比例函数知识点总结
反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。
1.y随着x的增加而减小,或随着x的减小而增加。
2.当x=0时,函数y无定义。
3.曲线y=k/x在第一象限中,以坐标轴为渐近线。
二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。
第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。
三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。
2.反比例函数的图像关于y轴对称。
3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。
4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。
六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。
2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。
3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。
4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。
总结:反比例函数是一类常见的函数关系,具有重要的应用价值。
对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。
同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。
在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。
反比例函数知识点总结
反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。
反比例函数知识点复习
反比例函数知识点(一)反比例函数的概念1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象无限接近x 轴、y 轴但永不相交.例题1.下列函数中,y 是x 的反比例函数的是 ( ) A.()12x y -= B.12y x =- C.21y x = D.17y x=- 2.若函数()221ny n x -=-是反比例函数,则n 的值是 ( )A. ±1B. -1C. 1D. 23. 已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为__________.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x 的取值不能为0,且x 应对称取点(关于原点对称).图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(由小到大的顺序) ③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
例题1、 已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________. ②若y 随x 的增大而减小,那么k=___________.2、已知函数和(k≠0),它们在同一坐标系内的图象大致是( ).3、若P (2,2)和Q (m ,)是反比例函数图象上的两点,则一次函数y=kx+m 的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限(三)反比例函数及其图象的性质(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上.(4)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.例题:(1)在反比例函数的图象上有两点,,且,则的值为( ).A .正数B .负数C .非正数 D.非负数 (2)在函数(a 为常数)的图象上有三个点,,,则函数值、、的大小关系是( ). A .<<B .<<C .<<D .<<(3)反比例函数2y x =-的图象关于x 轴对称的反比例函数为4.在同一直角坐标平面内,如果直线x k y 1=与双曲线x k y 2=没有交点,那么1k 和2k 的关系一定是( )A. 1k +2k =0B. 1k ·2k <0C. 1k ·2k >0D.1k =2k(四).k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA⊥x 轴于A 点,PB⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).例题:1.A 、C 是函数1y x=的图象上任意两点,过A 作x 轴的垂线交x 轴于B ,过C 作y 轴的垂线交y 轴于D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( ) A.S 1<S 2 B.S 1>S 2C.S 1=S 2D.S 1和S 2的大小关系不能确定2.A 、B 是函数1y x=的图象上关于原点对称的任意两点,AC ∥y 轴,交x 轴于点C ,BD ∥y 轴,交x 轴于点D ,设四边形ADBC 的面积为S ,则( ) A.S =1 B.S =2 C.1<S <2 D.S >23.如图,已知反比例函数ky x=的图象经过点()A b ,过点A 足为B ,△AOB求k 和b 的值;(2)若一次函数1y ax =+的图象经过点A ,且与x 轴交于点C ,求△AOC 的面积.4、如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线x my =在第一象限的交点,且2=∆AOB S ,则m 的值是_____.图(五)实际问题与反比例函数(1)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克. 请根据题中所提供的信息解答下列问题: ①药物燃烧时y 关于x 的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y 关于x 的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;(六)充分利用数形结合的思想解决问题(1)如图,一次函数的图象与反比例函数的图象交于第一象限C 、D两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点). ① 利用图中条件,求反比例函数的解析式和m 的值;② 双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.2、已知,如图,动点P 在函数1(0)2y x x=>的图象上运动,PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,线段PM 、PN 分别与直线:1AB y x =-+ 相交于点E ,F ,则AF ·BE 的值是( )A .4B .2C .1D 3.已知:如图,一次函数y x b =+()0b ≠的图象与两坐标轴交于A 、B 两点,与函数2y x=的图象交于C 、D 两点,由点C 向x 轴做垂线,垂足为E .(1)若△AOB 的面积是△OCD 的面积的一半,求C 点的坐标; (2)证明:不论b 取任何不为零的实数,AC •BC 为定值; (3)延长CO 交函数2y x=的图象于M 点,试判断△CDM 的形状.4、在平面直角坐标系中,直线y 1=kx-4k 与x 轴、y 轴分别交于点A 、B ,与直线y 2=4x 交于点C 。
反比例函数知识点汇总
反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。
反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。
2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。
(b)值域:排除0,即y不能为0。
当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
(c)对称中心:该函数关于原点(0,0)对称。
(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。
(e)单调性:反比例函数在定义域内是单调递减的。
(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。
(g)零点:当x与y相等时,即x=y≠0。
3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。
4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。
例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。
(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。
当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。
(c)投资与收益率:投资的利润与投资金额成反比例关系。
当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。
(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。
总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。
反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。
确定反比例函数的常数k可以通过已知点进行求解。
反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。
反比例函数知识点总结,比例系数k的几何意义和七大常考模型
反比例函数知识点总结,比例系数k的几何意义和七大常考模型一.反比例函数的概念1.概念:一般地,函数y=k/x(k是常数,k≠0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。
注意:(1)比例系数k≠0是反比例函数的定义的重要部分;(2)在反比例函数的解析式中,k,x,y均不等于0;(3)反比例函数中的两个变量一定成反比例关系,反之,则不一定成立例 1 给出的六个关系式:①x(y+1); ②y=2/(x+2); ③y=1/x²;④y=1/2x; ⑤y=x/2 ; ⑥y=-3/x.其中y是x的反比例函数的是 ( )A.①②③④⑥B.③⑤⑥C.①②④D.④⑥例2 若函数是y关于x的反比例函数,则m= .例3 关于正比例函数y=-x/3和反比例函数y=-1/3x的说法正确的是 ( )A.自变量x的指数相同B.比例系数相同C.自变量x的取值范围相同D.函数y的取值范围相同2.易错点解析漏掉k≠0这一条件解答与反比例函数有关的问题时,要注意系数k≠0是反比例函数定义中必不可少的一部分,不能漏掉这一条件.例4已知函数为反比例函数,则k= .二.反比例函数的图像和性质1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的性质注意:y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件。
例5 关于反比例函数y=3/x的图象,下列说法正确的是 ( )A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小例6.当x<0时,下列表示函数y=-1/x的图象的是 ( ) 例7.下列反比例函数中,图象位于第二、四象限的是( )A.y=2/x B.y=0.2/x C.y=√2/x D.y=-2/5x 例8.对于反比例函数y=(k-√10)/x,在每个象限内,y随x的增大而增大,则满足条件的非负整数k有 ( )A.1个B.2个C.3个D.4个三.反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
反比例函数最全知识点
反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。
本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。
一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。
该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。
二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。
因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。
2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。
3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。
当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。
图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。
三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。
2.值域:反比例函数的值域为除去0以外的实数集合。
3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。
4.单调性:反比例函数在定义域上是单调递减的。
5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。
四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。
具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。
若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。
2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。
若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。
反比例函数整章知识点复习
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。
反比例函数知识点总结
反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\))的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是函数,k 称为比例系数。
例如,当速度 v 一定时,路程 s 与时间 t 的关系可以表示为\(s =vt\),如果时间 t 与路程 s 成反比例关系,那么可以表示为\(t =\frac{s}{v}\)(其中 v 是常数),此时 t 就是 s 的反比例函数。
需要注意的是,反比例函数中自变量 x 的取值范围是\(x ≠ 0\),因为在分式中分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\)),这是反比例函数的基本形式。
2、\(y = kx^{-1}\)(k 为常数,\(k ≠ 0\)),将\(\frac{k}{x}\)变形可得。
3、\(xy = k\)(k 为常数,\(k ≠ 0\)),通过\(y =\frac{k}{x}\)两边同时乘以 x 得到。
三、反比例函数的图像反比例函数的图像是双曲线。
当\(k > 0\)时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;当\(k < 0\)时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
例如,函数\(y =\frac{2}{x}\),因为\(k = 2 > 0\),所以图像在第一、三象限,且在每个象限内,y 随 x 的增大而减小。
绘制反比例函数图像的一般步骤:1、列表:在自变量取值范围内选取一些值,算出对应的函数值,列成表格。
2、描点:以表中对应值为坐标,在平面直角坐标系中描出相应的点。
3、连线:按照自变量由小到大的顺序,用平滑的曲线将所描的点依次连接起来。
四、反比例函数的性质1、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
反比例函数常用知识点总结
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
关于反比例函数的知识点
关于反比例函数的知识点反比例函数是数学中常见的一种函数形式,也称为倒数函数。
在反比例函数中,当自变量的值增大时,因变量的值会相应地减小,反之亦然。
本文将介绍反比例函数的基本概念、特点、图像和应用。
一、基本概念反比例函数是一种特殊的函数,可以用以下形式表示:f(x) = k / x其中,f(x)表示因变量的值,x表示自变量的值,k表示常数。
在反比例函数中,自变量和因变量之间呈现出反比例的关系,即当自变量x的值增加时,因变量f(x)的值减小;而当自变量x的值减小时,因变量f(x)的值增大。
二、特点1. 零点:反比例函数的图像除了原点(0, 0)外,没有其他交点。
2. 定义域:反比例函数的定义域为除了x=0的所有实数。
3. 值域:反比例函数的值域为除了f(x)=0以外的所有实数。
4. 对称轴:反比例函数的图像关于y轴对称,即对于每一个点(x, f(x)),如同点(-x, f(-x))也在图像上。
三、图像反比例函数的图像通常呈现出以下特点:1. 斜渐进线:当x的取值趋近于正无穷大或负无穷大时,f(x)趋近于0。
这意味着反比例函数的图像有两条与坐标轴都平行的渐进线。
2. 反比例曲线:除了渐进线以外,反比例函数的图像是一条经过原点的弧线,呈现出“倒U”字型的形状。
四、应用反比例函数在实际生活中有很多应用。
以下是几个常见的应用场景:1. 电阻和电流关系:欧姆定律中的电阻和电流的关系可以用反比例函数来表示。
根据欧姆定律,电阻R等于电压U与电流I的比值,即R = U / I。
2. 货币兑换:在外汇市场中,货币兑换的汇率通常也遵循反比例的关系。
汇率就是两种货币之间的比值,较低的汇率意味着兑换一单位的本国货币可以获得更多的外币。
3. 速度和时间关系:当物体的速度恒定时,物体在一段时间内所走的距离与时间成反比。
即物体走的距离等于速度乘以时间,d = v / t。
总结:反比例函数是数学中常见的一种函数形式,具有许多特点和应用。
反比例函数知识点总结
反比例函数知识点总结一、反比例函数定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、图象特征1. 反比例函数的图象是一组双曲线。
2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。
3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。
4. 双曲线的对称轴是 y 轴。
三、性质1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。
2. 反比例函数的值域为全体实数 R。
3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。
4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。
5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。
四、运算法则1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。
2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。
3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。
4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /y2 = (k1 / k2) * (x2 / x1)。
五、实际应用反比例函数在物理学、经济学、生物学等领域有广泛的应用。
例如,在电路分析中,电流与电阻的关系可以由欧姆定律表示为 I = V/R,其中 V 为电压,I 为电流,R 为电阻,这可以看作是反比例函数的一个特例。
六、常见问题及解析1. 问题:如何确定反比例函数的定义域和值域?解析:反比例函数的定义域为除去 0 的所有实数,即 (-∞, 0) ∪ (0, +∞)。
反比例函数知识点总结
反比例函数知识点总结反比例函数知识点归纳知识点1 反比例函数的定义反比例函数是指形如 y = k/x(k为常数,k≠0)的函数。
其中,自变量x的取值范围为x≠的一切实数,而函数值y的取值范围为y≠0.知识点2 用待定系数法求反比例函数的解析式由于反比例函数只有一个待定系数k,因此只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限,与原点对称。
由于自变量x≠,函数值y≠,所以它的图像与x轴、y轴都没有交点。
画反比例函数的图像应该先列表,再描点,最后用光滑的曲线连接。
知识点4 反比例函数的性质反比例函数的图像位置与函数值的增减情况与k的符号有关。
当k>0时,函数图像的两个分支分别在一、三象限,在每个象限内,y随着x的增大而减小;当k<0时,函数图像的两个分支分别在二、四象限,在每个象限内,y随着x的增大而增大。
反比例函数的图像位置和函数的增减性由反比例函数系数k的符号决定。
在每个象限内,当k>0时,y随x的增大而减小;当k0.反比例函数y=k/x中,k的几何意义可以通过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,得到矩形OEPF的面积S=k=xy=x*y=PF*PE。
在反比例函数y=k/x中,k越大,双曲线y=k/x越小,离坐标原点越远;k越小,双曲线y=k/x越大,离坐标原点越近。
双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。
练题:1、反比例函数是y=k/x,其中k≠0.2、函数y1=kx和y2=1/2x的图象如下所示,自变量x的取值范围相同的是第四象限。
3、函数y=m/x和y=mx-m(m≠0)在同一平面直角坐标系中的图像可能是第一象限和第三象限。
4、反比例函数y=k/x的图象的两个分支分别位于第一象限和第三象限。
初中反比例函数知识点总结大全
初中反比例函数知识点总结大全反比例函数知识点总结1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/xxy=ky=k·x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
数学反比例函数知识点归纳y=k/x(k≠0)的图象叫做双曲线.当k0时,双曲线在一、三象限(在每一象限内,从左向右降);当k0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。
九年级数学反比例函数知识点归纳总结
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
反比例函数知识点归纳重点
反比例函数知识点归纳重点1.定义和性质:反比例函数是由自变量与其函数值的乘积为常数所表示的函数。
它的图像是一个双曲线。
当自变量x趋近于0时,函数值趋近于正无穷大;当自变量x趋近于正无穷大或负无穷大时,函数值趋近于0。
反比例函数的反比例因子k可以用来确定函数的特征。
2.图像与参数的关系:反比例函数的图像是一个双曲线,其具体形状与参数k有关。
当k为正数时,双曲线位于第一象限和第三象限;当k为负数时,双曲线位于第二象限和第四象限。
参数k的绝对值越大,双曲线的曲率越大。
3.变形形式:反比例函数除了常见的y=k/x形式外,还可以有其他的变形形式。
例如,y=k/(x-a)+b表示平移后的反比例函数,参数a和b分别表示水平和垂直方向上的位移。
4.变量关系:反比例函数中的自变量和因变量之间是一个反比例关系,即一个数的大小与另一个数的大小呈反比例关系。
如果自变量增大,那么函数值会减小,反之亦然。
这种关系在实际问题中经常出现,例如牛顿第二定律中的力和加速度的关系。
5.应用问题:反比例函数在许多实际问题中都有应用。
例如,速度与时间的关系、电阻与电流的关系、密度与体积的关系等都可以用反比例函数来描述。
因为反比例函数在自变量过小或者过大时函数值会变得非常大或者非常小,所以它在处理极限问题时也经常被使用。
总之,反比例函数是一种常见的函数形式,在数学的各个领域中都有广泛的应用。
理解反比例函数的定义、图像与参数的关系、变形形式、变量关系以及应用问题,可以帮助我们更好地理解数学和解决实际问题。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反比例函数最全知识点
反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点总复习一、选择题1.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.2.如图, 在同一坐标系中(水平方向是x 轴),函数k y x=和3y kx =+的图象大致是( )A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.已知反比例函数2yx-=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2【解析】【分析】【详解】A 选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B 选项:因为-2<0,图象在第二、四象限,故本选项正确;C 选项:当x <0,且k <0,y 随x 的增大而增大,故本选项正确;D 选项:当x >0时,y <0,故本选项错误.故选D .4.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4【答案】B【解析】【分析】 此题可根据反比例函数图象的对称性得到A 、B 两点关于原点对称,再由S △ABM =2S △AOM 并结合反比例函数系数k 的几何意义得到k 的值.【详解】根据双曲线的对称性可得:OA=OB,则S △ABM =2S △AOM =2,S △AOM =12|k |=1, 则k =±2.又由于反比例函数图象位于一三象限,k >0,所以k =2.故选B .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1【答案】A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.6.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】 分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x =的图象的一支在第二象限 ∴k<0, ∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE=1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.7.如图,在平面直角坐标系中,将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,若反比例函数y=k x的图象经过点A 的对应点A′,则k 的值为( )A .6B .﹣3C .3D .6【答案】C【解析】【分析】 直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,反比例函数y=k x的图象经过点A 的对应点A′, ∴A ′(3,1), 则把A′代入y=k x , 解得:k=3.故选C .【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.8.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上,∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°=3a ∴点A 的坐标是(3a ,a ) 同理可得 点B 的坐标是(3a ,-3a )∴k 1=3a×a=3a 2 , k 2=3a×(-3a )=-33a∴213333k a k a-==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【答案】B【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案. 【详解】 把x=1代入1y x =得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2, 12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2) ∴AC=k-1,BD=k 2-12, ∴S △OAC =12(k-1)×1, S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B.【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .2CD .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的 值,本题得以解决.【详解】等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,OA OB ∴==,AC =,∴点C 的坐标为2⎛ ⎝,点C 在函数()0k y x x=>的图象上,12k ∴==, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.12.直线y =ax (a >0)与双曲线y =3x 交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( )A .-3aB .-3C .3aD .3【答案】B【解析】【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x =得出11x y 、22x y 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可.【详解】解:1(A x ,1)y 、2(B x ,2)y 在反比例函数3y x =的图象上, 11223x y x y ∴==,直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称, 12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B .【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==,12x x =-,12y y =-是解答此题的关键.13.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】解:(0)k y k x =<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.14.反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .【答案】D【解析】【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb >0,∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.15.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ), 在mn y x =中,令2y n =,解得:2m x =, ∵1CDE S =, ∴111,12222m m n m n -=⨯=即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.16.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x =-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2 【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x=-的图象上,∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.17.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.18.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.19.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12k|.【详解】由题意得:S1=S2=12|k|=12.故选:C.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.20.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.。