《解直角三角形及其应用》综合练习含答案
中考数学复习《解直角三角形及其实际应用》练习题真题含答案
第5节解直角三角形及其实际应用(建议答题时间:45分钟)1. (2017天津)cos60°的值等于()A. 3B. 1C.22 D.122. (2017聊城)在Rt△ABC中,cosA=12,那么sinA的值是()A.22 B.32 C.33 D.123. (2017兰州)如图,一个斜坡长130 m,坡顶离水平地面的距离为50 m,那么这个斜坡与水平地面夹角的正切值等于()A. 513 B.1213 C.512 D.1312第3题图第4题图4. (2017河北)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域.甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A. 北偏东55°B. 北偏西55°C. 北偏东35°D. 北偏西35°5. (2017宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误..的是()A. sinα=cosαB. tan C=2C. sinβ=cosβD. tanα=1第5题图第6题图6. (2017益阳)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.hsinαB.hcosαC.htanαD. h·cosα7. (2017百色)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒A. 20(3+1)B. 20(3-1)C. 200D. 300第7题图第8题图8. (2017深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20 m,DE的长为10 m,则树AB的高度是()A. 20 3 mB. 30 mC. 30 3 mD. 40 m9. (2017重庆育才三模)小强到某水库大坝游玩,他站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,己知斜坡AB的坡度i=3∶1,若大坝的高为12 3 米,则大树CD的高约为()米(结果精确到1米.参考数据:2≈1.414,3≈1.732)A. 13B. 14C. 15D. 16第9题图第10题图10. “星光隧道”是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带.图中线段AB表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度i=1∶2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E 离地面高度EF=700米,则隧道BC段的长度约为()米(结果精确到1米.参考数据:tan12°≈0.2,cos12°≈0.98)A. 2100B. 1600C. 1500D. 154011. (2017重庆西大附中月考)最近央视纪录片《航拍中国》中各地的美景震撼了全国观众,如图是航拍无人机从A点俯拍在坡比为3∶4的斜坡CD上的景点C,此时的俯角为30°,为取得更震撼的拍摄效果,无人机升高200米到达B点,此时的俯角变为45°,已知无人机与斜坡CD的坡底D的水平距离DE为400米,则斜坡CD的长度为()米(结果精确到0.1米.参考数据:2≈1.41,3≈1.73)A. 91.1B. 91.3C. 58.2D. 58.4第11题图第12题图12. (2017重庆九龙坡区适应性考试)如图,小明家附近有一斜坡AB=40米,其坡度i=1∶3,斜坡AB上有一竖直向上的古树EF,小明在山底A处看古树树顶E的仰角为60°,在山顶B处看古树树顶E的仰角为15°,则古树的高约为()米(结果精确到0.1米.参考数据:2≈1.414,3≈1.732)A. 16.9B. 13.7C. 14.6D. 15.213. 如图是一座人行天桥的示意图,天桥的高CB为10米,坡面CA的坡比为1∶ 3.为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD的坡角为18°,问离原坡脚(点A)15米的花坛E,与新坡脚(点D)的距离DE大约为()米(结果精确到0.01米.参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,2≈1.41,3≈1.73)A. 2.05B. 1.50C. 1.05D. 2.50第13题图第14题图14. 如图,我校临江园前河坝横断面迎水坡AB长40 m,坡比是1∶3,BC为坝高.某同学在临江园B处测得江中迎面匀速驶来的小船在M处的俯角为14°,他立刻朝万象楼方向走17 m到D处,并向上到达楼顶E处,共用时60 s,在E 处测得小船在N处的俯角为58°,已知万象楼高DE=25 m,江水深FH=9 m,若小船的航行方向和该同学的行走方向与河坝横断面在同一平面内,则小船的行驶速度为()m/s(结果精确到0.01.参考数据:3≈1.73,sin14°≈0.24,tan14°≈0.25,sin58°≈0.85,tan58°≈1.60)A. 0.24B. 0.64C. 0.65D. 0.7015. (2017烟台)在Rt△ABC中,∠C=90°,AB=2,BC=3,则sin A2=________.16. (2017广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=158,则AB=________.第16题图第17题图17. (2017山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为________米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764) 18. (2017德阳)如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=62米,背水坡CD的坡度i=1∶3 (i为DF与FC的比值),则背水坡CD的坡长为________米.第18题图第19题图19. (2017苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4 km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则v1v2=________.(结果保留根号)20. (2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示.已知AE=4米,∠EAC=130°,求水坝原来的高度BC. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)第20题图21. (2017郴州)如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:3≈1.73)第21题图22. (2017上海)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.第22题图23. (2017鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.第23题图答案1. D2. B3. C4. D【解析】如解图,∵两船等速且不能相撞,∴甲与乙所行路程不能相等,∴△ABC不能是等腰三角形,∴∠CBD≠35°,∴乙的航向不能是北偏西35°.第4题解图5. C 【解析】∵网格中每一个小正方形的边长均为1,则AD =2,BD =2,CD=1,AB =AD 2+BD 2=22,AC =AD 2+CD 2=5,∴sin α=BD AB =22,cosα=AD AB =22,∴sin α=cos α,故A 正确;tanC =AD CD =2,故B 正确;sin β=CD AC =55,cos β=AD AC =255,∴sin β≠cos β,故C 错误;tan α=BD AD =1,故D 正确.6. B 【解析】∵AC ⊥BC ,∴∠ACD +∠DCB =90°,∵CD ⊥AB ,∴∠ACD +∠CAD =90°,∴∠BCD =∠CAD =α,在Rt △BCD 中,∵CD =h ,cos ∠BCD =CD BC ,即cos α=h BC ,∴BC =h cos α. 7. A 【解析】如解图,作BD ⊥AC 于点D ,则BD =200,∠CBD =45°,∠ABD =60°,∴AC =DC +AD =200+2003,∴动车的平均速度是(200+2003)÷10=20+203=20(1+3)米/秒.第7题解图8. B 【解析】∵在Rt △CDE 中,DE =10 m ,CD =20 m ,∴∠DCE =30°,∵矩形AFDE 中,DF ∥AE ,∴∠CDF =∠DCE =30°,又∵∠BDF =30°,∴∠BDC =60°,又∵∠BCA =60°,∴∠BCD =90°,∴BC =3CD =20 3 m ,∵在Rt△ABC 中,∠ACB =60°,∴AB =32BC =30 m .9. C 【解析】如解图,过点D 作DF ⊥AB 于点F ,过点A 作AG ⊥BC 于点G ,在Rt △AGB 中,AG =123米,∵AB 的坡度i =3∶1,∴∠ABG =60°,BG =12,∵∠CBD=60°,∴∠DBA=60°,∵AE∥BC,∴∠EAB=∠ABG=60°,∵∠EAD=15°,∴∠DAB=45°,∵∠CBD=∠ABD=60°,∴DF=DC,设DC=x,在Rt△ADF中,∠DAF=45°,∴AF=DF=x,∵AB=AG2+BG2=24,则BF =24-x,在△BDF中,∵DF=BF·tan60°,∴x=3(24-x),解得,x=36-123,约为15米.第9题解图10. C【解析】在Rt△BEF中,∵∠EBF=45°,∴BF=EF=700 m,∵i=EFAF=CD AC=12,设CD=x m,∴AC=2x m,AF=2EF=1400 m,∴AB=AF+BF=2100m,在Rt△BCD中,∵∠CBD=12°,∴BC=CDtan12°≈x0.2=5x m,∴AB=AC+BC=2x+5x=7x m,则7x=2100,∴x=300 m,BC=5x=1500 m.11. B【解析】如图,过点C作CF⊥DE于F,作CM⊥BE于M. 依题意,设CF=3x, 则DF=4x,∴ME=CF=3x, CM=EF=4x+400.∵∠BCM=45°,∴BM=CM=4x+400,∴AM=BM-AB=4x+400-200=4x+200.∵∠ACM=30°,∴tan∠ACM=AMCM=4x+2004x+400=33,∴x=25(3-1)≈25×0.73=18.25,则CD=(3x)2+(4x)2=5x=18.25×5=91.25≈91.3.第11题解图12. A【解析】如解图,过点B作BD∥AC交AE于点D,过点E作EG⊥AB于点G,延长EF与AC相交于点H,∵tan∠BAC=i=13=33,∴∠BAC=30°,∴∠DBA =∠BAC =30°,∠BAE =∠CAE -∠CAB =30°,∠EFG =∠AFH =60°,∵∠EBD =15°,∴∠EBG =45°,则EG =BG ,设EG =BG =x m ,在Rt △AEG中,AG =EG tan 30°=3x m ,∴AB =AG +BG =(3+1)x m =40 m ,解得,x =(203-20) m ,在Rt △EFG 中,EF =EG sin 60°≈16.9 m .第12题解图13. C 【解析】在Rt △ABC 中,BC =10米,∵坡面AC 的坡比为1∶3,∴∠BAC =30°,∵tan 30°=BC AB ,∴AB =103≈17.3 m ,∴BE =AB +AE ≈17.3+15=32.3 m ,在Rt △BCD 中,∠BDC =18°,BC =10 m ,∵tan 18°=BC BD ,∴BD =BC tan 18°≈31.25 m ,∴DE =BE -BD ≈32.3-31.25=1.05 m . 14. B 【解析】如解图,∵i AB =1∶3,∴∠BAC =30°,∴BC =12AB =20 m ,∵CG =FH =9 m ,∴DK =BG =20-9=11 m ,∴EK =DE +DK =25+11=36 m ,在Rt △EKN 中,∠ENK =58°,∴NK =EK tan 58°≈361.6=22.5m ,在Rt △BGM 中,∠BMG =14°,∴GM =BG tan 14°≈110.25=44 m ,∴MK =KG +GM ≈17+44=61 m ,∴MN =MK -NK ≈61-22.5=38.5 m ,∴小船行驶的速度为38.5÷60≈0.64 m /s .第14题解图15. 12 16. 1717. 15.3 【解析】根据题意得CD =BE =10米,BD =CE =1.5米, ∠ACD =54°,∴AD =CD ·tan 54°=10×tan 54°≈13.8米,∴这棵树的高度AB =AD +BD ≈13.8+1.5=15.3米.18. 12【解析】在Rt△ABE中,∠α=45°,AB=62,则AE=6,DF=AE=6,在Rt△DFC中,DF=6,DF∶FC=1∶3,∴∠C=30°,∴DC=2DF=12. 19. 2【解析】如解图,过C作CD⊥AB于D,在Rt△ACD中,∠CAD=30°,AC=4 km,∴CD=2 km,在Rt△CDB中,∠CBD=45°,CD=2,∴BC=22,∵游船开往A和开往B所用时间相等,设时间为t,则v1=ACt,v2=BCt,∴v1v2=AC BC=422= 2.第19题解图20. 解:设BC=x米,在Rt△ABC中,∠CAB=180°-∠EAC=50°,AB=BCtan50°≈BC1.2=5BC6=56x,在Rt△EBD中,∵i=DB∶EB=1∶1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+56x,解得x=12,即BC=12,答∶水坝原来的高度为12米.21. 解:不会穿越保护区.理由如下:如解图,过点P作PD⊥AC于点D,设BD=x,∵在Rt△BDP中,∠PBD=90°-30°=60°,∴PD=BD·tan∠PBD=3BD=3x,∵在Rt△ADP中,∠P AD=90°-60°=30°,∴AD=PDtan∠PAD=3PD=3x,∵AB=AD-BD=120,∴3x-x=120,解得x=60,∴PD =603≈103.8>100,∴计划修建的这条高速铁路不会穿越保护区.第21题解图22. 解:(1)在Rt △ABD 中,∵BD =DC =9,AD =6, ∴AB =BD 2+AD 2=92+62=313,∴sinB =AD AB =6313=21313. (2)∵EF ∥AD ,BE =2AE ,∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23,∴EF =4,BF =6,∴DF =3,在Rt △DEF 中,DE =EF 2+DF 2=42+32=5.23. 解:(1)∵∠ACB =30°,∠ECD =60°,∴∠ACE =90°,∵AF ∥BD ,∴∠ACB =∠F AC =30°,∴∠EAC =60°,在Rt △ABC 中,AB =2, ∠ACB =30°,∴AC =4,在Rt △ACE 中,∵AC =4,∠EAC =60°,∴AE =8;∵在Rt △AEF 中,∠EAF =30°,AE =8,∴EF=4,∴DE=EF+DF=4+2=6.即树DE的高为6米;(2)如解图,延长NM交DB延长线于点G,在Rt△ABC中,AB=2,∠ACB=30°,∴BC=23,在Rt△ECD中,DE=6,∠ECD=60°,∴CD=DEtan60°=23,∵∠NDB=45°,∴NG=GD=AM+BC+CD=3+23+23=3+43,∴MN=NG-MG=3+43-2=43+1.第23题解图。
人教版九年级数学下册《解直角三角形及其应用》同步检测带答案【优选】
人教版九年级数学下册第二十八章《锐角三角函数——解直角三角形及其应用》同步检测2附答案1. 如图,由D点测塔顶A点和塔基B点仰角分别为60°和30°.已知塔基出地平面20米(即BC为20米)塔身AB的高为 [ ]2.如图,一敌机从一高炮正上方2000米经过,沿水平方向飞行,稍后到达B点,这时仰角为45°,1分钟后,飞机到达A点,仰角30°,则飞机从B到A的速度是[ ]米/分.(精确到米)A.1461B.1462C.1463D.14643. 如图所示,河对岸有水塔CD.今在A处测得塔顶C的仰角为30°,前进20米到达B处,又测得C的仰角为45°,则塔高CD(精确到0.1m)是[ ]m A.25.3 B.26.3 C.27.3 D.28.34. 如图:在200米高的峭壁上,测得一塔的塔顶与塔基的俯角分别为30和60°,那么塔高是 [ ]米5. 如图:从B处测得建筑物上旗杆EC顶点C的仰角是60°,再从B的正上方40米高层上A 处,测得C的仰角是45°,那么旗杆顶点C离地CD的高度是[ ]米.二、填空题1. 如图:已知在一峭壁顶点B测得地面上一点A俯角60°,竖直下降10米至D,测得A点俯角45°,那么峭壁的高是_____________米(精确到0.1米)三、解答题1. 从山顶D测得同一方向的A、B两点,俯角分别为30°,60°,已知AB=140米,求山高(A、B 与山底在同一水平面上).(答案可带根号)2. 从与塔底在同一水平线的测量仪上,测得塔顶的仰角为45°,向塔前进10米,(两次测量在塔的同侧)又测得塔顶的仰角为60°,测量仪高是1.5米,求塔高(精确到0.1米).3. 两山脚B、C相距1500米,在距山脚B500米处A点,测得山BD、CE的山顶D、E仰角分别为45°,30°.求两山的高(精确到1米).4. 如图:山顶上有高为h的塔BC,从塔顶B测得地面上一点A的俯角是a,从塔底C测得A的俯角为b,求山高H.参考答案一、选择题1. C2. D3. C4. B5. C二、填空题23.7三、解答题70米1.32. 25.2米3. 500米,577米4. 解:∵DA=(h+H)ctga, DA=Hctgb则Hctgb=hctga+Hctga即H(ctgb-ctga)=hctga。
九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版
九年级数学下册《第二十八章解直角三角形及其应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.图,在Rt△ABC中△ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F,若BC=4,sin△CEF= 3,则△AEF的面积为()5A.3B.4C.5D.62.小丽在小华北偏东40°的方向,则小华在小丽的()A.南偏西50°B.北偏西50°C.南偏西40°D.北偏西40°3.如图,小明在距离地面30米的P处测得A处的俯角为15︒,B处的心角为60︒,若斜面坡度为,则斜面AB的长是()米.A.B.C.D.4.如图,某渔船正在海上P处捕鱼,先向北偏东30°的方向航行10km到A处.然后右转40°再航行到B处,在点A的正南方向,点P的正东方向的C处有一条船,也计划驶往B处,那么它的航向是()A .北偏东20°B .北偏东30°C .北偏东35°D .北偏东40°5.如图,某建筑物的顶部有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°,已知斜坡AB 的坡角为30°,10AB =米,15AE =米,则宣传牌CD 的高度是( )米A .20-B .20+C .15+D .56.如图,已知正六边形ABCDEF 内接于半径为r 的O ,随机地往O 内投一粒米,落在正六边形内的概率为( )A B C D .以上答案都不对7.如图,小明利用标杆BE 测量建筑物DC 的高度,已知标杆BE 的长为1.2米,测得AB =85米,BC =425米,则楼高CD 是( )A .6.3米B .7.5米C .8米D .68.如图,点E 是⊥ABCD 的边AB 上一点,过点E 作EF ∥BC ,交CD 于F ,点P 为EF 上一点,连接PB 、PD .下列说法不正确的是( )A .若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上B .若AE :EB =2:3,EP :PF =1:2,则S △BEP :S △DFP =3:4C .若S △BEP =S △DFP ,则点P 在AC 上D .若点P 在BD 上,则S △BEP =S △DFP9.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米10.如图,等腰Rt △ABC 中⊥A =90°,AB =AC ,BD 为△ABC 的角平分线,若2CD =,则AB 的长为( )A.3 B .2 C .4 D 2+二、填空题11.在Rt ABC 中90C ∠=︒,有一个锐角为60︒,6AB =若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______.12.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.13.如图,在一次数学实践活动中小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A的仰角为30︒,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.14.如图,在直角坐标系中点A 的坐标为(0,点B 为x 轴的正半轴上一动点,作直线AB ,⊥ABO 与⊥ABC 关于直线AB 对称,点D ,E 分别为AO ,AB 的中点,连接DE 并延长交BC 所在直线于点F ,连接CE ,当⊥CEF 为直角时,则直线AB 的函数表达式为__.15.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.16.在⊥ABC 中AB =6AC =且45B ∠=,则BC =______________.17.如图,大坝横截面的迎水坡AB 的坡比为1:2,(即BC :AC=1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为________米.18.如图,等边ABC 中115,125AOB BOC ∠=︒∠=︒,则以线段,,OA OB OC 为边构成的三角形的各角的度数分别为______________________________.三、解答题19.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?20.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7521.如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B之间的距离. 1.41 1.73≈结果精确到0.1m )参考答案与解析1.C【分析】连接BF ,由已知CE AE BE ==得到A FBA ACE ==∠∠∠,再得出CEF ∠与CBF ∠的关系,由三角函数关系求得CF 、BF 的值,通过BF AF =,用三角形面积公式计算即可.【详解】解:连接BF⊥CE 是斜边AB 上的中线 ⊥12CE AE BE AB ===(直角三角形斜边上的中线等于斜边的一半)⊥A FBA ACE ==∠∠∠又⊥90BCA BEF ==︒∠∠在⊥ABC 中180902CBF ACB A ABF A =︒-∠-∠-∠=︒-∠∠在⊥AEC 中180902CEF AEF A ACE A =︒-∠-∠-∠=︒-∠∠⊥CEF CBF ∠=∠3sin sin 5CBF CEF ∴∠=∠=4BC =,设3,5CF x BF x ==则222BC CF BF +=,即()()222435x x +=解得1x =(负值舍掉)3,5CF BF ∴== ⊥EF 是AB 的垂直平分线, ⊥5BF AF ==11·541022AFB S AF BC ∴==⨯⨯=△ 152AEF ABF S S ∴==△△故选:C .【点睛】本题综合考查了垂直平分线的性质、直角三角形和等腰三角形的性质、勾股定理及三角函数等相关知识,熟练利用相关定理和性质进行计算是解决本题的关键.2.C【分析】画出示意图,确定好小丽和小华的的方向和位置即可.【详解】解:如图所示,当小丽在小华北偏东40°的方向时,则小华在小丽的南偏西40°的方向.故选:C【点睛】本题考查了方位角的知识点,确定好物体的方向和位置是解题的关键.3.B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F斜面坡度为AF tan ABF BF ∠∴=== 30ABF ∠∴=︒在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒3045HPB APB ∠∠∴=︒=︒,60HBP ∠∴=︒9045PBA BAP ∠∠∴=︒=︒,PB AB ∴=303060PH PH m sin PB PB =︒===,解得:)PB m =故AB =故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.4.C【分析】连接BC ,由锐角三角函数定义得AC A = km ,则AC =AB ,再由等腰三角形的性质得⊥ACB =⊥ABC =35°,即可得出结论.【详解】解:如图,连接BC由题意得:⊥ACP =⊥ACD =90°,⊥P AC =30°,P A =10km ,⊥BAE =40°,AB =⊥⊥BAC =180°—⊥P AC —⊥BAE =180°—30°—40°=110°⊥cos⊥P AC =ACPA =cos30°=⊥AC =P A =×10= km⊥AC =AB⊥⊥ACB =⊥ABC =12×(180°—⊥BAC )=12×(180°—110°)=35°即B 处在C 处的北偏东35°方向故选:C .【点睛】本题考查了解直角三角形的应用—方向角问题,等腰三角形的性质,锐角三角函数定义等知识,由锐角三角函数定义求出AC 的长是解题的关键.5.A【分析】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,在Rt ⊥ABG 中由已知可求得BG 、AG 的长,从而可易得EF 及EG 、BF 的长度,由等腰直角三角形的性质可得CF 的长度,在Rt ⊥DAE 中由正切函数关系可求得DE 的长度,从而可求得CD 的长度.【详解】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,如图在Rt ⊥ABG 中⊥BAG =30゜⊥152BG AB ==米,cos3010AG AB =︒==⊥15)EG AG AE =+=米⊥BG ⊥AE ,BF ⊥ED ,AE ⊥ED⊥四边形BGEF 是矩形⊥EF =BG =5米,15)BF EG ==米⊥⊥CBF =45゜,BF ⊥ED⊥⊥BCF =⊥CBF =45゜⊥15)CF BF ==米在Rt ⊥DAE 中⊥DAE =60゜,AE =15米⊥tan DE AE DAE =∠=米)⊥155(20CD CF EF DE =+-=+-=-米故选:A【点睛】本题考查了解直角三角形的实际应用,理解坡角、仰角的含义,构造辅助线得到直角三角形是解题的关键.6.A【分析】连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得⊥OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出⊥OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.【详解】解:如图:连接OB ,过点O 作OH ⊥AB 于点H⊥六边形ABCDEF 是正六边形⊥⊥AOB =60°⊥OA =OB =r⊥⊥OAB 是等边三角形⊥AB =OA =OB =r ,⊥OAB =60°在Rt OAH △中sin OH OA OAB r =⋅∠==⊥21122OAB S AB OH r =⋅==△⊥正六边形的面积226== ⊥⊥O 的面积=πr 2⊥米粒落在正六边形内的概率为:222rπ 故选:A .【点睛】本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出⊥OAB 的面积是解决问题的关键.7.B【分析】先判断出⊥ABE ⊥⊥ACD ,再根据相似三角形对应边成比例解答.【详解】⊥AB =85,BC =425 ⊥AC =AB +BC =10⊥BE ⊥AC ,CD ⊥AC⊥BE ⊥CD⊥AB :AC =BE :CD ⊥85:10=1.2:CD⊥CD =7.5米.故选:B .【点睛】本题只要是把实际问题抽象到相似三角形中利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高度,体现了方程的思想.8.D【分析】根据平行四边形的性质和判定进行判断即可.【详解】解:A 、若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上,说法正确;B 、若AE :EB =2:3,EP :PF =1:2则S △BEP :S △DFP =3:4,说法正确;C 、过点P 作GH AB ∥,分别交AD ,BC 于G ,H⊥GH AB ∥ GA HB ∥⊥四边形ABHG 是平行四边形同理:四边形CDGH 、四边形BHPE ,四边形DGPE 都是平行四边形 ⊥12BEP BHPE S S =△ 12DFP DGPF S S =△又BEP DFP S S =△△⊥BEPH DGPF SS = ⊥ABHG ADFE S S =同理:BCFE CDGH S S =⊥点P 在AC 上,C 说法正确;D 、若点P 在BD 上,不能得出EP =PF ,所以S △BEP 不一定等于S △DFP ,说法错误;故选:D .【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的性质是解题的关键.9.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中4==sin sin 40AP BP ABP ∠︒ 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米) 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.10.D【分析】过点D 作DE ⊥BC 于点E ,设AB =AC =x ,则AD =x -2,根据等腰Rt △ABC 中90,A AB AC ∠=︒= 得到⊥C =45°,根据BD 为△ABC 的角平分线,⊥A =90°,DE ⊥BC ,推出DE =AD =x -2,运用⊥C 的正弦即可求得.【详解】解:过点D 作DE ⊥BC 于点E ,则⊥DEB =⊥DEC =90°设AB =AC =x ,则AD =x -2⊥等腰Rt △ABC 中,⊥A =90°,AB =AC ,⊥⊥C =(180°-⊥A )=45°⊥BD 为△ABC 的角平分线⊥DE =AD =x -2⊥sin sin 452DE C CD ︒===⊥22x -⊥2x ,即2AB =.故选D .【点睛】本题主要考查了等腰直角三角形,角平分线,解直角三角形,熟练掌握等腰直角三角形的性质,角平分线的性质,正弦的定义和45°的正弦值,是解决问题的关键.11.92或9或3 【分析】分⊥ABC =60、⊥ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当⊥ABC =60°时,则⊥BAC =30°⊥132BC AB ==⊥AC ==当点P 在线段AB 上时,如图⊥30PCB ∠=︒⊥⊥BPC =90°,即PC ⊥AB⊥9cos 2AP AC BAC =⋅∠==;当点P 在AB 的延长线上时⊥30PCB ∠=︒,⊥PBC =⊥PCB +⊥CPB⊥⊥CPB =30°⊥⊥CPB =⊥PCB⊥PB =BC =3⊥AP =AB +PB =9;当⊥ABC =30°时,则⊥BAC =60°,如图⊥132AC AB ==⊥30PCB ∠=︒⊥⊥APC =60°⊥⊥ACP =60°⊥⊥APC =⊥P AC =⊥ACP⊥⊥APC 为等边三角形⊥P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3 【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.12.3π【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2 AOB ∠=90°,将扇形AOB 沿OB 方向平移90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形 OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π+【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.13.(20m +【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解. 【详解】解:过D 作DF ⊥BC 于F ,DH ⊥AB 于H⊥DH =BF ,BH =DF⊥斜坡的斜面坡度i =1⊥:DF CF =设DF =x m ,CFm⊥CD 220x ==⊥x =10⊥BH =DF =10m ,CF =⊥DH =BF =(m )⊥⊥ADH =30°⊥AH 10=+m ) ⊥AB =AH +BH =20103(m )故答案为:(20m +【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.14.y【分析】证明⊥ABO ⊥⊥ABC ,于是可知⊥CBA =⊥ABO =30°,得出OB =3即可求出直线AB 的函数表达式.【详解】解:⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ACB =⊥AOB =90°⊥点E 是AB 的中点⊥CE =BE =EA⊥⊥EAC =⊥ECA⊥⊥ECA +⊥ECF =90°,⊥ECF +⊥CFE =90°⊥⊥CFE =⊥BAC而点D ,E 分别为AO ,AB 的中点⊥DF ∥OB⊥⊥CFE =⊥CBO =2⊥CBA =2⊥ABO⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ABO ⊥⊥ABC⊥⊥OAB =⊥CAB =2⊥ABO⊥⊥ABO =30°而点A 的坐标为(0,即OAAB ∴=⊥OB =3即点B 的坐标为(3,0)于是可设直线AB 的函数表达式为y =kx +b ,代入A 、B 两点坐标得30b k b ⎧=⎪⎨+=⎪⎩解得kb故答案为y【点睛】本题考查的是三角形的全等,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.15.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ⊥Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可. 【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E⊥CD ⊥BE⊥四边形ABCO 为平行四边形⊥CB OA ∥ ,即CB DE ∥,OC =AB⊥四边形CDEB 为平行四边形⊥CD ⊥OA⊥四边形CDEB 为矩形⊥CD =BE⊥在Rt △COD 和Rt △BAE 中OC AB CD EB =⎧⎨=⎩⊥Rt △COD ⊥Rt △BAE (HL )⊥S △OCD =S △ABE⊥OC =AC ,CD ⊥OA⊥OD =AD⊥反比例函数1yx=的图象经过点C⊥S△OCD=S△CAD=12⊥S平行四边形OCBA=4S△OCD=2⊥S△OBA=11 2OCBAS=平行四边形⊥S△OBE=S△OBA+S△ABE=13 122 +=⊥3232k=⨯=.故答案为3.【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.16.3或3【分析】画出图形,分⊥ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当⊥ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H⊥⊥B=45°⊥⊥ABH为等腰直角三角形⊥363322ABAH BH在Rt⊥ACH中由勾股定理可知:2236273CH AC AH⊥333BC BH CH.情况二:当⊥ABC为钝角三角形时,如图2所示:由情况一知:363322ABAH BH2236273CH AC AH⊥333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将⊥ABC 分成锐角三角形或钝角三角形分类讨论.17.【分析】根据坡面AB 的坡比以及AC 的值,求出BC ,再利用勾股定理即可求出斜面AB 的长.【详解】解:⊥大坝横截面的迎水坡AB 的坡比为1:2,AC=12米⊥1212BC BC AC == ⊥BC=6⊥AB =故答案为:【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,能根据坡度求出BC 是解题关键. 18.55°,60°,65°.【分析】通过旋转AOB 至CDB △,可得BOD 是等边三角形,将,,OA OB OC 放在一个三角形中进而求出各角大小。
解直角三角形及其应用练习及答案
解直角三角形及其应用练习及答案1.如图K25-1是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB 的长为()图K25-1A.4√3米B.6√5米C.12√5米D.24米2.如图K25-2,要测量小河两岸相对的两点P,A之间的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()图K25-2A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米3.如图K25-3,是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是m.图K25-34.如图K25-4,某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20 m的点B处,用高为0.8 m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为m.(精确到0.1 m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)图K25-45.如图K25-5,某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点D用高1.5米的测角仪DA测得塔顶M的仰角为30°,然后沿DF方向前行40 m到达点E处,在E处测得塔顶M的仰角为60°.请根据他们的测量数据求此塔MF的高.(结果精确到0.1米,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)图K25-56.如图K25-6所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米,参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,√2≈1.41,√3≈1.73)图K25-67.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图K25-7给出了一种机翼的示意图,用含有m,n的式子表示AB的长为.图K25-7参考答案1.B [解析] 在Rt △ABC 中,∵i=BC AC =12,AC=12米, ∴BC=6米.根据勾股定理得AB=√AC 2+BC 2=6√5(米).故选B .2.C3.44.40.05.解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC=60°, ∴∠AMB=30°,∴∠AMB=∠MAB ,∴AB=MB=40.在Rt △BCM 中,∵∠MCB=90°,∠MBC=60°,∴∠BMC=30°.∴BC=12BM=20.∴MC=2-BC 2=20√3≈34.6,∴MF=MC+CF=36.1.∴塔MF 的高约为36.1米.6.解:过点D 作DE ⊥AB 于点E ,在Rt △ADE 中,∠AED=90°,tan ∠1=AE DE ,∠1=30°, ∴AE=DE ×tan ∠1=40×tan30°=40×√33≈40×1.73×13≈23.1. 在Rt △DEB 中,∠DEB=90°,tan ∠2=BE DE ,∠2=10°, ∴BE=DE ×tan ∠2=40×tan10°≈40×0.18=7.2, ∴AB=AE+BE ≈23.1+7.2=30.3(米).7.m+√33n-n。
《解直角三角形及其应用》综合练习(含答案)-
《解直⾓三⾓形及其应⽤》综合练习(含答案)-DCB A 第9题图 AB C解直⾓三⾓形及其应⽤综合练习⼀、选择题:(共12个⼩题,每⼩题3分,共36分)1、在△ABC 中,∠C=90°,如果各边长度都缩⼩2倍,则锐⾓A 的正切值和余切值()A 、都缩⼩2倍B 、都扩⼤2倍C 、都没有变化D 、不能确定 2、在△ABC 中,∠C=90°,如果AB =2,BC =1,那么sinA 的值是() A 、21 B 、55 C 、33 D 、233、在△ABC 中,已知AC =3、BC =4、AB =5,那么下列结论成⽴的是() A 、sinA =45 B 、cosA =53 C 、tanA =43 D 、cotA =544、已知α为锐⾓,tan (90°-α)α的度数为() A .30° B .45° C .60° D .75° 5、ABC Rt ?中,?=∠90C ,若AB=2,3=BC ,则2 tanA的值为() A .23 B .33 C .3 D .32- 6、△ABC 中,21cos =A ,1cot =B ,则△ABC 的形状是() A .锐⾓三⾓形 B .钝⾓三⾓形 C .直⾓三⾓形D .等腰三⾓形 7、若∠A 是锐⾓,且sinA =cosA ,则∠A 的度数是()A .30°B .45°C .60°D .90°8、如图,⼀棵⼤树在⼀次强台风中于离地⾯5⽶处折断倒下,倒下部分与地⾯成30°夹⾓,这棵⼤树在折断前的⾼度为()A 、10⽶B 、15⽶C 、25⽶D 、30⽶第8题图第10题图9、如下图,为了测量河流某⼀段的宽度,在河北岸选了⼀点A ,在河南岸选相距200⽶的B 、C 两点,分别测得∠ABC =600,∠ACB =450,则这段河的宽度为()30°(A )2100 (B )3100 (C ))33(100- (D ))33(100+ 10、如图:在等腰直⾓三⾓形ABC 中,∠C =900,AC =6,D 是AC 上⼀点,若tan ∠DBA =15,则AD 的长为()A 、2B 、2C 、1D 、2211、在离旗杆20⽶处的地⽅,⽤测⾓仪测得旗杆顶的仰⾓为α,如测⾓仪的⾼为1.5⽶,那么旗杆的⾼为()⽶A .20cot αB .20tan αC .1.5+ 20tan αD .1.5+20cot α 12、已知△ABC 中,∠B =60°,AB =6,BC =8,则△ABC 的⾯积是()(A )312 (B )12 (C)324 (D )212⼆、填空题:(共6个⼩题,每⼩题4分,共24分) 13、计算:sin 248°+sin 242°-tan44°·tan45°·tan46°=________. 14、已知等腰三⾓形的周长为20,某⼀内⾓的余弦值为32,那么该等腰三⾓形的腰长等于。
中考数学总复习《解直角三角形及其应用》专项提升练习题(附答案)
中考数学总复习《解直角三角形及其应用》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1.已知△ABC三边AC,BC,AB的长度分别5,12,13,现将每条边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定2.已知平面直角坐标系xOy中第一象限内射线OA与x轴正半轴的夹角为α,点P在射线OA上,如果cosα=,且OP=5,那么点P的坐标是()A.(3,4)B.(4,3)C.(3,5)D.(5,3)3.如图,△ABC在网格(小正方形的边长均为1)中则tan∠BAC的值是()A.B.C.D.4.如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD 的长度是()A.B.C.D.5.如图,在外力的作用下,一个滑块沿坡度为i=1:3的斜坡向上移动了10米.此时滑块上升的高度是()(单位:米)A.B.C.D.106.如图,沿AB方向架桥BD,以桥两端B、D出发,修公路BC和DC,测得∠ABC=150°,BC=1800m,∠BCD=105°,则公路DC的长为()A.900m B.900m C.900m D.1800m7.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,测得AB=60cm,∠B=50°,则点A到BC的距离为()A.60sin50°cm B.60cos50°cmC.D.60tan50°cm8.如图,小明为了测量遵义市湘江河的对岸边上B,C两点间的距离,在河的岸边与BC平行的直线EF上点A处测得∠EAB=37°,∠F AC=60°,已知河宽18米,则B,C两点间的距离为()(参考数据:sin37°,cos37°≈,tan37°≈)A.(18+6)米B.(24+10)米C.(24+6)米D.(24+18)米二.填空题9.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在格点处,则∠ABC的正弦值为.10.某人在大厦一层乘坐观光电梯,看到大厦外一棵树上的鸟巢,仰角为30°,到达大厦的第五层后,再看这个鸟巢,俯角为60°,已知大厦的层高均为4m,则这棵树与大厦的距离为m.11.拦水坝的横断面如图所示,迎水坡AB的坡比是,坝高BC=8m,则坡面AB的长度是m.12.一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是海里.13.如图所示,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为150米,则这栋楼的高度为米.14.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC 与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC =40cm,则支架BC的长为cm.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)三.解答题15.常州天宁寺始建于唐贞观年间,是佛教音乐梵呗的发源地之一,也是常州最大的寺庙.某校数学兴趣小组的同学利用卷尺和自制的测角仪尝试求解天宁寺宝塔的高度.如图所示,平地上一幢建筑物AB与宝塔CD相距56m,在建筑物的顶部分别观测宝塔底部的俯角为45°、宝塔顶部的仰角为60°.求天宁寺宝塔的高度(结果保留根号).16.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE、BD和两楼之间的距离AD,小莉在南楼楼底地面A处测得北楼顶部B的仰角为31°,然后她来到南楼离地面12m 高的C处,此时测得B的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)17.如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为米.(假定点A,B,C,D都在同一平面内.参考数据:,.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?18.如图所示,为了知道楼房CP外墙上一广告屏的高度GH是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作:在A处测得∠GDF=30°,在B处测得∠HEF=50°,点A、B、C共线,AC⊥CP 于点C,DF⊥CP于点F,AB为20米,BC=30米,测角仪的高度(AD、BE)为1.3米,根据测量数据,请求出GH的值.(结果精确到0.1米,参考数据:≈1.73,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°.请根据以上信息,解决下列问题;(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留到1cm).参考数据:≈1.41,≈1.73,≈2.45.20.如图,海面上有A,B两个小岛,A在B的正东方向,有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向.从B处测得渔船在其东北方向,且测得B,P两点之间的距离为30海里.(1)求小岛A,B之间的距离(结果保留根号);(2)渔船在P处发生故障、在原地等待救援,一艘救援船以每小时45海里的速度从A地出发先沿正西方向前往B点去取修理的材料(将材料装配上船的时间忽略不计),再沿射线BP方向以相同的速度前往P点进行救援.救援船从A点出发的同时,一艘补给船从C点出发,以每小时30海里的速度沿射线CP 方向前往P点,已知A、P,C三点在同一直线上,从B测得C在B的北偏西15°方向,请通过计算说明救援船能否在补给船到达P点后的40分钟之内赶到P点.(参考数据: 1.41,≈1.731,≈2.45)参考答案一.选择题1.解:∵将△ABC三边AC,BC,AB的长度分别5,12,13∴AC2+BC2=52+122=169,AB2=132=169∴AC2+BC2=AB2∴△ABC为直角三角形,即∠C=90°∴cos A==现将每条边的长度都扩大为原来的5倍,则=∴cos A的值不变.故选:A.2.解:过点P作PB⊥x轴于点B∵cosα==∴可假设OB=4,则OP=5∴PB==3∴点P的坐标可能是(4,3)故选:B.3.解:过点C作CD⊥AB,垂足为D.AB===5,BC=2,AC==∵S△ABC=BC•3=3,S△ABC=AB•CD=CD∴CD=.在Rt△ACD中AD====.∴tan∠BAC===.故选:B.4.解:过点A作AH⊥BC于H∵△ABC是等边三角形∴AB=AC=BC=6,∠BAC=60°∵AH⊥BC∴∠BAH=∠BAC=30°∴∠BAD+∠DAH=30°∵∠DAE=30°∴∠BAD+∠EAC=30°∴∠DAH=∠EAC∴tan∠DAH=tan∠EAC=∵BH=AB=3∵AH=AB sin60°=6×=3∴=∴DH=∴BD=BH﹣DH=3﹣故选:A.5.解:如图,设AB=10m,过点B作BC⊥AC于点C由i=1:3,得tanα==∴AC=3BC在Rt△ABC中∵AC2+BC2=AB2∴(3BC)2+BC2=102解得BC=∴滑块上升的高度为:h=.故选:A.6.解:如图,过点C作CE⊥BD,垂足为E∵∠ABC=150°∴∠CBE=180°﹣150°=30°,∠BCE=150°﹣90°=60°又∵∠BCD=105°∴∠DCE=105°﹣60°=45°在R△BCE中∠CBE=30°,BC=1800m∴CE=BC=900(m)在Rt△CDE中∠DCE=45°∴CD=CE=900(m)故选:B.7.解:如图,过点A作AD⊥BC于点D在Rt△ABD中∵sin B=∴AD=sin B•AB=60sin50°即点A到BC的距离为60sin50°cm故选:A.8.解:作AD⊥BC于点D,如图∵BC∥EF∴∠DBA=∠EAB,∠DCA=∠CAF∵∠EAB=37°,∠CAF=60°∴∠DBA=37°,∠DCA=60°∵AD=18米,tan∠DBA=,tan∠DCA=∴=,=解得BD=24米,CD=6米∴BC=BD+CD=(24+6)米故选:C.二.填空题9.解:如图,取BC的中点D,连接AD由网格可得,AC=,AB=∴AB=AC∴AD⊥BCRt△ABD中∵AD=∴sin∠ABC=.故答案为:.10.解:如图,根据题意可知:∠BAC=30°,∠DCB=30°,AB=4×4=16(m)∴∠ADC=90°,设CD=x m∴AD=AD=xm,BD=CD=xm∵AD+BD=AB∴x+x=16∴x=4(m).答:这棵树与大厦的距离为4m.故答案为:4.11.解:∵迎水坡AB的坡比是1:,坝高BC=8m∴==解得AC=8则AB==16(m).故答案为:16.12.解:过点C作CH⊥AB于H.∵∠DAC=60°,∠CBE=45°∴∠CAH=90°﹣∠CAD=30°,∠CBH=90°﹣∠CBE=45°∴∠BCH=90°﹣45°=45°=∠CBH∴BH=CH在Rt△ACH中∠CAH=30°,AH=AB+BH=12+CH,tan30°=∴CH=(12+CH)解得CH=6(+1).答:渔船与灯塔C的最短距离是6(+1)海里.故答案为:6+6.13.解:过点A作AD⊥BC,垂足为D由题意得:AD=150米在Rt△ADB中∠BAD=30°∴BD=AD•tan30°=150×=50(米)在Rt△ADC中∠DAC=60°∴CD=AD•tan60°=150(米)∴BC=BD+CD=200(米)∴这栋楼的高度为200米故答案为:200.14.解:如图2,过C作CD⊥MN于D则∠CDB=90°∵∠CAD=60°,AC=40(cm)∴CD=AC•sin∠CAD=40×sin60°=40×=20(cm)∵∠ACB=15°∴∠CBD=∠CAD﹣∠ACB=60°﹣15°=45°∴BC=CD=×20=20≈20×2.449≈49(cm)故答案为49.三.解答题15.解:如图所示,过点A作AE⊥CD于点E,则四边形AEDB是矩形依题意BD=56,∠EAD=45°,∠CAE=60°∴△ADE是等腰直角三角形∴AE=ED则四边形ABDE是正方形∴AE=BD=56在Rt△ACE中∴答:天宁寺宝塔的高度为()米.16.解:过点C作CF⊥BD,垂足为F由题意得:AC=DF=12m,CF=AD设AD=CF=xm在Rt△ABD中∠BAD=31°∴BD=AD•tan31°≈0.6x(m)在Rt△CFB中∠BCF=20°∴BF=CF•tan20°≈0.36x(m)∴BD=BF+DF=(0.36x+12)m∴0.6x=0.36x+12解得:x=50∴AD=50m,BD=30m∴两楼的高度约为30m,两楼之间的距离约为50m.17.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°∵∠DCF=∠FDC=45°∴CF=DF∵四边形BCFE是矩形∴BE=CF=DF在Rt△ADE中∠AED=90°∴tan∠DAE===2+∴BE=30经检验,BE=30是原方程的解∴EF=DH﹣DF=30+15﹣30=15(米)答:此时小区楼房BC的高度为15米.(2)∵DE=15(2+)米∴AE===15(米)过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H在Rt△ABC中∠ABC=90°,AB=45米,BC=15米∴tan∠BAC===在Rt△AGH中GH=DE=15(2+)米AH===(30+45)米∴DG=EH=AH﹣AE=(30+45)﹣15=(30+30)米(30+30)÷5=(6+6)(秒)答:经过(6+6)秒时,无人机刚好离开了操控者的视线.18.解:由题意得:EF=BC=30米,DF=AC=AB+BC=50(米)在Rt△EHF中∠HEF=50°∴HF=EF•tan50°≈30×1.19=35.7(米)在Rt△DFG中∠GDF=30°∴FG=DF•tan30°=50×=(米)∴HG=FH﹣FG=35.7﹣≈6.9(米)∴GH的值约为6.9米.19.解:(1)过F作FH⊥DE于H.∴∠FHC=∠FHD=90°.∵∠FDC=30°,DF=30∴,∵∠FCH=45°∴CH=FH=15∴∵CE:CD=1:3∴∵AB=BC=DE∴;(2)过A作AG⊥ED交ED的延长线于G∵∠ACG=45°∴=20×1.41+20×2.45=77.2≈77(cm)答:拉杆端点A到水平滑杆ED的距离为77cm.20.解:(1)过P作PH⊥AB于H,如图:根据已知得:∠PBH=45°,∠P AH=30°,BP=30海里∴∠PBH=∠BPH=45°∴△BPH是等腰直角三角形∴BH=PH===15(海里)在Rt△APH中tan∠P AH=,即tan30°=∴AH=15(海里)∴AB=BH+AH=15+15≈57.9(海里)∴小岛A,B之间的距离约是57.9海里;(2)过P作PG⊥BC于G,如图:由(1)知AB=57.9海里,BP=30海里∴救援船到达P所需时间为≈1.95(小时)由已知可得∠CBP=60°,∠BPC=∠PBA+∠P AB=75°∴∠GPB=90°﹣∠CBP=30°,∠GPC=∠BPC﹣∠GPB=45°在Rt△BPG中cos∠BPG=,即cos30°=∴PG=15∵∠GPC=45°=∠C∴△GPC是等腰直角三角形∴CP=PG=15≈36.75(海里)∴补给船到达P所需时间为36.75÷30=1.23(小时)∵1.95﹣1.23=0.72(小时),0.72×60=43.2(分)∴救援船不能在补给船到达P点后的40分钟之内赶到P点.。
初中数学解直角三角形及其应用练习及答案4.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是()A.7米B.9米C.12米D.15米试题2:某人沿着坡度i=1:的山坡走了50米,则他离地面米.试题3:酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买地毯至少需要__________元.试题4:如图所示,一辆吊车的吊臂以63°的倾角倾斜于水平面,如果这辆吊车支点A距地面的高度AB为2m,且点A到铅垂线ED的距离为AC=15m,求吊臂的最高点E到地面的高度ED的长(精确到0.1 m).评卷人得分试题5:九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,求旗杆的高度.试题6:某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)试题1答案: D试题2答案: 25试题3答案: .504试题4答案: 31.4m试题5答案: 13.5m试题6答案: (1)1.2米(2)5.0米。
解直角三角形及其应用九年级数学人教版(附答案)
解直角三角形及其应用中考频度:★★★☆☆ 难易程度:★★☆☆☆1.如图,为了测量河岸A ,B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ABC =α,那么AB 等于A .a ·sin αB .a ·cos αC .a ·tan αD .tan a a2.如图,河坝横断面迎水坡AB 的坡比是13∶(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC ,则坡面AB 的长度是A .9 mB .6 mC .63mD .33m3.某水库大坝的横断面是梯形,坝内斜坡的坡度i =1 ∶3,坝外斜坡的坡度i =1∶1,则两个坡角的和为 A .60°B .75°C .90°D .105°4.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .2+3B .23C .3+3D .335.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC =2,则点B 的坐标为A .(2,1)B .(1,2)C .(2+1,1)D .(1,2+1)6.如图,其中A ,B ,C 三地在同一直线上,D 地在A 地北偏东30°方向、在C 地北偏西45°方向.C 地在A 地北偏东75°方向.且BD =BC =30 m ,从A 地到D 地的距离是A .303 mB .205 mC .302 mD .156 m7.某市进行城区规划,工程师需测某楼AB 的高度,工程师在D 处用高2m 的测角仪(CD ),测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为A .()103+2m B .()203+2m C .()53+2mD .()153+2m8.某山的山顶B 处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC 为30°,山高BC 为100米,点E 距山脚D 处150米,在点E 处测得观光塔顶端A 的仰角为60°,则观光塔AB 的高度是A .50米B .100米C .125米D .150米9.如图,在正方形ABCD 外作等腰直角△CDE ,DE =CE ,连接AE ,则sin ∠AED =A .12B .255C .55D .10510.如图是某款篮球架的示意图,已知底座BC =0.60米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF的长为2.50米,篮板顶端F 点到篮框D 的距离FD =1.35米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,则篮框D 到地面的距离约为(精确到0.01米)(参考数据:cos75°≈0.26,sin75°≈0.97,tan75°≈3.73,3≈1.73)A .3.04B .3.05C .3.06D .4.4011.一架直升飞机执行海上搜救任务,在空中A 处发现海面上有一目标B ,仪器显示这时飞机距目标5km ,俯角为30°,这时飞机的飞行高度为________km .学-科网12.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 约为________m .(结果精确到0.1m )13.如图,小明在楼AB顶部的点A处测得楼前一棵树CD的顶端C的俯角为37°,已知楼AB高为18m,楼与树的水平距离BD为8.5m,则树CD的高约为________ m(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.如图,已知小岛B在基地A的南偏东30°方向上,与基地A相距10海里,货轮C在基地A的南偏西60°方向、小岛B的北偏西75°方向上,那么货轮C与小岛B的距离是________ 海里.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长).16.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:2≈1.414,3≈1.732,6≈2.449)17.如图,港口A在观测站O的正东方向,OA=4 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长).18.如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船C的俯角是∠FDC=30°.若小华的眼睛与地面的距离是3米,BG=1.5米,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=10米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长是多少?(结果保留根号)1.【答案】D【解析】根据三角函数可得:tan∠ABC=AC aAB AB=,则AB=tanaα,故选D.2.【答案】B【解析】由图可知,13∶∶BC AC=,1tan3BAC∠=,∴30BAC∠=︒,∴36m1sin302BCAB===︒,故选B.3.【答案】B【解析】通常把坡面的垂直高度h和水平距离l的比叫做坡度,根据定义可知:内斜坡的坡角为30°,外斜坡的坡角为45°,故选B.4.【答案】A【解析】∵AC⊥BC于点C,∴∠C=90°,设AC=x,∵∠ABC=30°,∴AB=2AC=2x,由勾股定理可得BC =3x,∵BD=BA=2x,∴DC=BD+BC=2x +3x,∴tan∠DAC =23DC x xAC x+==2+3,故选A.5.【答案】C【解析】如图,过点B 作BD x ⊥轴于点D ,∵OABC 是菱形, 452,AOC OC ∠=︒=,∴2,O A A B == 45BAD ∠=︒,∴2sin451AD BD ==︒=,∴点B 的坐标为:(211),+,故选C .6.【答案】D【解析】如图,过点D 作DH 垂直于AC ,垂足为H ,由题意可知∠DAC =75°-30°=45°,∵△BCD 是等边三角形,∴∠DBC =60°,BD =BC =CD =30 m ,∴DH =32×30=153,∴AD =2DH =156 m ,故选D .7.【答案】D【解析】如图,在Rt △AFG 中,tan AG AFG FG∠=, ∠AFG =60°, ∴ 3tan 603AG FG AG ︒==.在Rt △ACG 中,tan AGACG CG∠=,∠ACG =30°, ∴3tan30AGCG AG ==︒.又∵CF =CG -FG =30,即33303AG AG -=,解得15 3AG =. ∴15 3 2AB AG GB =+=+.∴这幢教学楼的高度AB 为(15 3 2+)m .故选D. 8.【答案】A【解析】如图,作EF ⊥AC 于F ,EG ⊥DC 于G ,在Rt △DEG 中,EG =12DE =75米,∴BF =BC -CF =BC -CE = 100-75=25(米),EF =tan tan30BF BFBEF =∠︒=253,∵∠AEF =60°,∴∠A =30°,∴AF =253tan 33EF A ==75(米),∴AB =AF -BF =50(米),故观光塔AB 的高度为50米,故选A .9.【答案】C【解析】如图,过A 点作AG ⊥ED ,设正方形ABCD 的边长为a ,∵等腰直角△CDE 中,DE =CE , ∴DE =22a ,∠CDE =45°,∴△AGD 也是等腰直角三角形,∴AG =GD =22a ,∴AE =22AG GE +=102a ,∴sin ∠AED =AG AE =55,故选C .10.【答案】B【解析】如图,延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =ABBC, ∴AB =BC •tan75°≈0.60×3.73=2.238,∴GM =AB =2.238, 在Rt △AGF 中,∵∠FAG =∠FHD =60°,sin ∠FAG =FGAF, ∴sin60°=2.5FG =32,∴FG ≈2.1625,∴DM =FG +GM –DF ≈3.05(米).所以篮框D到地面的距离约是3.05米.故选B.11.【答案】2.5【解析】由题意得,∠B=∠α= 30°,在Rt△ABC中,AC=AB⋅sin B=2.5km,故答案为:2.5.13.【答案】11.6【解析】如图,作CE⊥AB,垂足为E.在Rt△AEC中,AE=CE•tan37º=BD•tan37º≈8.5×0.75=6.375(米);BE=AB–AE≈18–6.375=11.625≈11.6(米).故答案为11.6.14.【答案】102【解析】如图,由题意得,∠BAD=30°,∠CAD=60°,∠CBE=75°,AB=10海里.∵AD ∥BE ,∴∠ABE =∠BAD =30°,∴∠ABC =∠CBE –∠ABE =75°–30°=45°.在△ABC 中,∵∠BAC =∠BAD +∠CAD =30°+60°=90°,∠ABC =45°, ∴△ABC 是等腰直角三角形, ∵AB =10海里,∴AC =10海里, ∴BC =22AB AC =102海里.故答案为:10错误!未找到引用源。
2022年中考数学一轮复习专题61 解直角三角形及其应用(附答案)
2022年中考数学一轮复习专题61 解直角三角形及其应用(附答案)一、单选题1.(2021·泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:√3≈1.732)()A. 136.6米B. 86.7米C. 186.7米D. 86.6米2.(2021九下·庆云月考)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()米A. 4√3B. 6√5C. 12√5D. 243.(2021·成华模拟)如图,D为Rt △ABC的AC边上一点,∠DBC=∠A,AC=4,cosA=45,则BD=()A. 154B. 125C. 94D. 44.(2021·章丘模拟)保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为()米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.18.3米B.19.3米C.20米D.21.2米5.(2021·湖北模拟)如图,我市在建的鄂咸高速太和新城段路基的横断面为梯形ABCD,DC∥AB,斜坡AD 长为8米,坡角α为30°,斜坡BC的坡角β为45°,则斜坡BC的长为()A. 6米B. 6√2米C. 4米D. 4√2米6.(2021·曾都模拟)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为30m,则这栋楼的高度为()A. 40√2mB. 30√2mC. 40√3mD. 30√3m二、填空题7.(2021·武汉)如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12n mile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是n mile(√3≈1.73,结果用四舍五入法精确到0.1).8.(2021·黄冈)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则建筑物BC的高约为m(结果保留小数点后一位).(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)9.(2021·赤峰)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头C处的高度CD为238米,点A,D,B在同一直线上,则通道AB的长度为米.(结果保留整数,参考数据sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)10.(2021·乐山)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C处测得石碑顶A点的仰角为30°,她朝石碑前行5米到达点D处,又测得石顶A点的仰角为60°,那么石碑的高度AB的长=米.(结果保留根号)11.(2021·山西)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯AB的坡度i=5:12(i为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.12.(2021·萧山模拟)如图,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为71.6°,且AC平行与地面OP,则古塔BC的高度为米(精确到1米).(参考数据:sin71.6°≈0.95,cos71.6°≈0.316,tan71.6°≈3)三、解答题13.(2021·娄底)我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点A处时,在P处测得A点的仰角∠DPA为30°且A与P两点的距离为6千米,它沿铅垂线上升75秒后到达B处,此时在P处测得B点的仰角∠DPB为45°,求天舟二号从A处到B处的平均速度.(结果精确到1m/s,取√3=1.732,√2=1.414)14.(2021·河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C 的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)15.(2021·西藏)如图,为了测量某建筑物CD的高度,在地面上取A,B两点,使A、B、D三点在同一条直线上,拉姆同学在点A处测得该建筑物顶部C的仰角为30°,小明同学在点B处测得该建筑物顶部C的仰角为45°,且AB=10m.求建筑物CD的高度.(拉姆和小明同学的身高忽略不计.结果精确到0.1m,√3≈1.732)16.(2021·贺州)如图,一艘轮船离开A港沿着东北方向直线航行60√2海里到达B处,然后改变航向,向正东方向航行20海里到达C处,求AC的距离.17.(2021·铜仁)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠FAM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(√3≈1.73)18.(2021·威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°≈0.51)四、综合题19.(2021·广元)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为15√3米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+√3,tan15°=2−√3.计算结果保留根号)20.(2021·鄂州)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4√2km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之问的距离;(2)求C地与信号发射塔P之问的距离.(计算结果保留根号)21.(2021·岳阳)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥,如图,该河旁有一座小山,山高BC=80m,坡面AB的坡度i=1:0.7(注:从山顶B处测得河岸E 和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)(1)求山脚A到河岸E的距离;(2)若在此处建桥,试求河宽EF的长度.(结果精确到0.1m)22.(2021·凉山)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2√10米到达斜坡上D 点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E,C,H在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).23.(2021·宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D′的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点,当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈094,cos70°≈0.34,tan70°≈2.75)24.(2021·连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈35,cos37°=sin53°≈45,tan37°≈34,sin22°≈38,cos22°≈1516,tan22°≈25)答案解析部分一、单选题1.【答案】A2.【答案】 B3.【答案】A4.【答案】B5.【答案】D6.【答案】C二、填空题7.【答案】10.48.【答案】24.29.【答案】43810.【答案】5√3211.【答案】100 1312.【答案】21三、解答题13.【答案】解:根据在P处测得A点的仰角∠DPA为30°且A与P两点的距离为6千米知;在Rt△ADP中,AP=6,∠DPA=30°,∴AD=12AP=3(千米),∴DP=√AP2−AD2=3√3≈3×1.732=5.196,又由在P处测得B点的仰角∠DPB为45°,∴Rt△BDP为等腰直角三角形,∴BD=DP,∴AB=BD−AD=2.196(千米),∴天舟二号从A处到B处的平均速度为:v̅=st =219675≈29m/s,答:天舟二号从A处到B处的平均速度为29m/s.14.【答案】解:设佛像BD的高度为xm,∵∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=x,∵佛像头部BC为4m,∴CD=x-4,∵∠DAC=37.5°,∴tan∠DAC= CDAD = x−4x≈0.77,解得:x≈17.4,经检验,该方程有意义,且符合题意,因此x≈17.4是该方程的解,∴求佛像BD的高度约为17.4m.15.【答案】解:连接AC、BC,如图所示:由题意得:∠A=30°,∠DBC=45°,AB=10m,在Rt△BDC中,tan∠DBC=CDBD=tan45°=1,∴BD=CD,在Rt△ACD中,tan∠DAC=CDAD =tan30°=√33,∴AD=√3CD,∴AB=AD﹣BD=√3CD﹣CD=10(m),解得:CD=5 √3+5≈13.7(m),答:建筑物CD的高度约为13.7m.16.【答案】解:延长CB交AD于点D,则∠ADB=90°,由题意可知∠DAB=45°,∵AB=60√2,∴AD=BD=ABsin45°=60√2×√22=60,∵BC=20,∴DC=60+20=80,在Rt△ADC中,由勾股定理得AC=√AD2+DC2=√602+802=100(海里)答:AC的距离为100海里.17.【答案】解:设FD=x,则ME=AB-EF-FD=120-40-x=80-x,∵∠EAM=45°,MA⊥CM,∴△EAM为等腰直角三角形,其三边之比为1:1:√2,∴AM=ME=80-x,∵∠FAM=60°,MA⊥MF,∴△AMF为30°,60°,90°直角三角形,∴tan∠FAM=tan60∘=MFAM=√3,∴MF=√3AM=√3(80−x),又MF=MD−DF=AB−DF=120−x,∴√3(80−x)=120−x,解得x=60−20√3≈25.4米,∵每层楼的高度为3米,∴25.4÷3≈8.47>8,答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.18.【答案】解:延长AC交PQ于点E,交MN于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN,设路灯的高度为xm,则MN=PQ= xm,MF=PE=x-1.2,在Rt△AFM中,∠MAF=10°,MF= x-1.2,tan∠MAF=MFFA,∴tan10°=x−1.2FA,∴FA=x−1.2tan10°,∴AE=12AF=12⋅x−1.2tan10°=x−1.22tan10°;∴CE=AE-AC= x−1.22tan10°-10,在Rt△CEP中,∠PCE=27°,CE=x−1.22tan10°-10,tan∠PCE=PECE,∴tan27°=x−1.2x−1.22tan10°−10,解得x≈13.4,∴路灯的高度为13.4m.答:路灯的高度为13.4m.四、综合题19.【答案】(1)解:如图1,过D点作DH⊥AB,垂足为点H,过C点作CE⊥DH,垂足为点E,可知四边形EHBC为矩形,∴EH=CB,CE=HB,∵无人机测得小区楼房BC顶端点C处的俯角为45°,测得操控者A的俯角为75°,DM∥AB,∴∠ECD=45°,∠DAB=75°,∴∠CDE=∠ECD=45°,∴CE=DE,设CE=DE=HB=x,∴AH=45-x,DH=DE+EH=x+ 15√3,在Rt△DAH中,DH=tan75°×AH= (2+√3)(45−x),即x+15√3=(2+√3)(45−x),解得:x=30,∴DH= 15√3+30∴此时无人机的高度为(15√3+30)米;(2)解:如图2所示,当无人机飞行到图中F点处时,操控者开始看不见无人机,此时AF刚好经过点C,过A点作AG⊥DF,垂足为点G,此时,由(1)知,AG= 15√3+30(米),∴DG=AGtan75°√32+√315;∵tan∠CAB=BCAB =15√345=√33,∴∠CAB=30°∵DF∥AB,∴∠DFA=∠CAB=30°,∴GF=GAtan30°=30√3+45,∴DF=GF−DG=30√3+30,因为无人机速度为5米/秒,所以所需时间为30√3+305=6√3+6(秒);所以经过(6√3+6)秒时,无人机刚好离开了操控者的视线.20.【答案】(1)解:依题意知:∠PAB=45°,∠PBG=15°,∠GBC=75°过点B作BD⊥AP于D点,∵∠DAB=45°,AB=4√2∴AD=BD=4∵∠ABD=∠GBD=45°,∠GBP=15°∴∠PBD=60°∵BD=4∴PD=4√3∴PA=(4+4√3)km(2)解:∵∠PBD=60°,BD=4∴PB=8过点P作PE⊥BC于E∵∠PBG=15°,∠GBC=75°∴∠PBE=60°∵PB=8∴BE=4,PE=4√3∵BC=12∴CE=8∴PC=4√7km21.【答案】(1)解:∵BC=80m,坡面AB的坡度i=1:0.7,∴CA=80×0.7=56m,∵∠DBE=45°,∴∠CBE=45°,∴∠CBE=∠BEC=45°,∴CE=CB=80m,∴AE=CE−CA=80−56=24(m),∴山脚A到河岸E的距离为24m(2)解:∵∠DBF=31°,BD//CF,∴∠BFC=31°,∴CF=CBtan31°≈800.6≈133.3(m),∴EF=CF−CE≈133.3−80=53.3(m),∴河宽EF的长度约为53.3m22.【答案】(1)解:过D作DH⊥CE于H,如图所示:在Rt△CDH中,DHCH=13,∴CH=3DH,∵CH2+DH2=CD2,∴(3DH)2+DH2=(2√10)2,解得:DH=2或-2(舍),∴王刚同学从点C到点D的过程中上升的高度为2米(2)解:延长AD交CE于点G,设AB=x米,由题意得,∠AGC=30°,∴GH=DHtan∠AGC=2√33= 2√3,∵CH=3DH=6,∴GC=GH+CH= 2√3+6,在Rt△BAC中,∠ACB=45°,∴AB=BC,∴tan∠AGB= ABBG=ABBC+CG=ABAB+2√3+6=√33,解得:AB= 6+4√3,即大树AB的高度为6+4√3米23.【答案】(1)解:∵B为AD′中点,∴AB=12AD′,∵AD′=40,∴AB=20(cm)(2)解:如图,过点B作BE⊥AD于点E.∵AB=BD,∴AD=2AE.∵AP平分∠BAC,∠BAC=140°,∴∠BAE=12∠BAC=70°.在Rt△ABE中,AB=20,∴AE=AB⋅cos70°≈20×0.34=6.8,∴AD=2AE=13.6.∵AD′=40,∴40−13.6=26.4(cm),∴伞圈D沿着伞柄向下滑动的距离为26.4cm24.【答案】(1)解:过点B作BF⊥CH,垂足为F,延长AD交BF于点E,则AE⊥BF,垂足为E.由cos∠BAE=AEAB ,∴cos22°=AE4.8,∴1516=AE4.8,即AE=4.5,∴DE=AE−AD=4.5−0.4=4.1,由sin∠BAE=BEAB ,∴sin22°=BE4.8,∴38=BE4.8,即BE=1.8,∴BF=BE+EF=1.8+1.2=3.又tan∠BCF=BFCF ,∴tan37°=3CF,∴34=3CF,即CF=4,∴CH=CF+HF=CF+DE=4+4.1=8.1,即C到岸边的距离为8.1m.(2)解:过点B作BN⊥OH,垂足为N,延长AD交BN于点M,则AM⊥BN,垂足为M.由cos∠BAM=AMAB ,∴cos53°=AM4.8,∴35=AM4.8,即AM=2.88,∴DM=AM−AD=2.88−0.4=2.48.由sin∠BAM=BMAB ,∴sin53°=BM4.8,∴45=BM4.8,即BM=3.84,∴BN=BM+MN=3.84+1.2=5.04. ∴ON=√OB2−BN2=√5.462−5.042=√4.41=2.1,∴OH=ON+HN=ON+DM=4.58,即点O到岸边的距离为4.58m.。
人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)
人教版九年级下册28.2 解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.27.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)15.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:≈1.732)16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)参考答案一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.【解答】解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选:C.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.7.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为54.6米.(≈1.73,结果精确到0.1米)【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.615.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车没有超速(填“超速”或“没有超速”)(参考数据:≈1.732)【解答】解:作AD⊥直线l于D,在Rt△ADB中,∠ABD=45°,∴BD=AD=100,在Rt△ADB中,tan∠ACD=,则CD==100≈173.2,∴BC=173.2﹣100=73.2(米),小汽车的速度为:0.0732÷=52.704(千米/小时),∵52.704千米/小时<速60千米/小时,∴小汽车没有超速,故答案为:没有超速.16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为566米.(精确到1米,参考数据:≈1.414,≈1.732)【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)【解答】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)【解答】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m。
【新】人教版九年级数学下册: 解直角三角形及其应用 同步练习 (含答案)
解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,在等腰△ABC中,AB=AC,BD是AC边上的高,cosC=,则△BCD与△ABD的面积比是()A.1:3B.2:7C.2:9D.2:112.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.0.5D.3.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.4.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,延长CA到点D,使AD=AB,连接BD.根据此图形可求得tan15°的值是()A.B.C.D.5.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A到达山顶B缆车需要15分钟,则山的高度BC为()A.600•tan31°B.C.600•sin31°D.6.小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°,则灯顶端O 到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米7.如图所示,小明所住高楼AB高为100米,楼旁有一座坡比为3:1的山坡CE,小明想知道山坡的高度,于是小明来到楼顶B俯视坡底C,测得俯角为45°,仰视坡项E,测得仰角为27°,请根据小明提供的信息,帮小明求出斜坡CE的高度ED的值.(结果均精确到0.1米.参考数据:sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)()A.151.1米B.168.7米C.171.6米D.181.9米8.如图,要测量小河两岸相对的两点P、A之间的距离,可以在小河边PA的垂线PB上取一点C.测得PC=80米,∠PCA=32°,则PA的长为()A.80sin32°米B.80tan32°米C.D.9.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=36°(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)()(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6B.11.4C.13.9D.23.410.如图,在一笔直的海岸线l上有A,B两个测点,AB=4km,从A处测得船C在北偏东45°的方向,从B 处得船C在北偏东22.5°的方向,则船C离海岸线l的距离CD的长为()A.4kmB.(4+2)kmC.(4+)kmD.(4-)km11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米12.诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.5二.填空题(共6小题)13.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了.14.如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B 在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为米.(结果保留根号)15.如图,在Rt△ABC中,∠ACB=90°,AC=2,tanB=0.75,CD平分∠ACB交AB于点D,DE⊥BC,垂足为点E,则DE=.16.如图,渔船在A处看到灯塔C在北偏东60°方向上,渔船向正东方向航行了12km达B处,在B处看到灯塔C在正北方向上,则A处与灯塔C的距离是.17.在△ABC中,∠A=30°,AB=2,AC=6,则BC的长为18.如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是m.(小明的身高忽略不计,结果保留根号).三.解答题(共5小题)19.如图,正在海岛C西南方向20海里作业的海监船A,收到位于其正东方向渔船B发出的遇险求救信号,已知渔船B位于海岛C的南偏东30°方向,海岛C周围13海里内都有暗礁.(参考数据)(1)如果海监船A沿正东方向前去救援是否有触礁的危险?(2)求海监船A与渔船B的距离.(结果精确到0.1海里)20.某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:.21.如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB 的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,22.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,AD=BD=DE=30cm,CE=40cm,车杆AB与BC所成的∠ABC=53°,图1中B、E、C三点共线,图2中的座板DE与地面保持平行.问变形前后两轴心BC的长度有没有发生变化?若不变,请写出BC的长度;若变化,请求出变化量?(参考数据:sin53°)23.如图①是某小区入口实景图,图②是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙(灯罩长度忽略不计),∠AOM=60°.上的O点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据:参考答案1-5:BDBAC 6-10:BDBBB 11-12:BA13、214、)15、16、17、18、19、20、21、22、在Rt△CEN中,∵CE=40cm,∴由勾股定理可得CN=32cm,则BC=18+30+32=80(cm),答:BC的长度发生了改变,增加了4cm23、(1)过点M作MN⊥OA于点N,∵OM长1.2米,∠AOM=60°.∴ON=0.6米,∴BN=OB+ON=3.3+0.6=3.9米.答:点M到地面的距离为3.9米.(2)一辆总宽2.55米,总高3.5米的货车能从该入口安全通过,理由如下:过点A作AE⊥BA,垂足为A,∵设货车高AB=3.5米,则OA=3.5-3.3=0.2∴AE=OAtan60°=≈0.35答:货车离门卫室外墙AB的最小距离为0.35米。
中考数学专题训练:解直角三角形及其应用(附参考答案)
中考数学专题训练:解直角三角形及其应用(附参考答案)1.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是( )A.sin B=ADAB B.sin B=ACBCC.sin B=ADAC D.sin B=CDAC2.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin ∠AEC=( )A.2√55B.√55C.12D.√1043.计算sin 30°·tan 45°的结果是( )A.12B.√32C.√36D.√244.已知在Rt△ABC中,∠C=90°,∠A=60°,则tan B的值为( ) A.√33B.1C.√3D.25.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为( )A.13B.12C.√22D.√326.如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3√2B.3√5C.3√7D.6√27.已知α为锐角,且2sin (α-10°)=√3,则α等于( )A.50°B.60°C.70°D.80°8.如图,在点F处看建筑物顶端D的仰角为32°,向前走了15米到达点E,即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为( )A.15sin 32°B.15tan 64°C.15sin 64°D.15tan 32°9.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,E为BD上一点,使得AE =AC.若BE=3ED,则sin ∠BAE=( )A.12B.15C.35D.3410.如图,河对岸有铁塔AB,C,D,B三点共线,在C处测得塔顶A的仰角为30°,向铁塔方向水平前进14 m到达D处,在D处测得A的仰角为45°,塔高AB为( )A.4(4√3-1)m B.7(√3+1)mC.(16√3+7)m D.(10√3+7)m11.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的塔AB的高度,他从塔底部点B处前行30 m到达斜坡CE的底部点C处,然后沿斜坡CE前行20 m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1∶√3,且点A,B,C,D,E在同一平面内,小明同学测得塔AB的高度是( )A.(10√3+20)m B.(10√3+10)mC.20√3 m D.40 m12.如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是______.13.在△ABC中,∠A=45°,AB=4√2,BC=5,则△ABC的面积为_________.14.如图,在平面直角坐标系中,已知点A(1,0),点B(0,-3),点C在x轴上,,则点C的坐标为______.且点C在点A右方,连接AB,BC.若tan ∠ABC=1315.如图,在杭州西湖风景区游船处,在离水面高度为5 m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13 m,此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,则船向岸边移动了______________m.(假设绳子是直的,结果保留根号)16.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿北偏东45°方向航行,那么“海天”号沿______________方向航行.17.湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离;(结果精确到1米,参考数据:√3≈1.732)(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)18.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan ∠ABG=1,正方形ABCD的边长为8,求BH的长.219.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知AD=BE=10 cm,CD=CE=5 cm,AD⊥CD,BE⊥CE,∠DCE=40°.(结果精确到0.1 cm,参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)(1)连接DE,求线段DE的长;(2)求点A,B之间的距离.参考答案1.C 2.A 3.A 4.A 5.B 6.D 7.C 8.C 9.C 10.B 11.A 12.12,0) 15.(12-√39) 16.北偏西45°13. 2或14 14.(9417.(1)湖岸A与码头C的距离约为1 559米(2)在接到通知后,快艇能在5分钟内将该游客送上救援船,理由略18.BH=1019.(1)DE的长为3.4 cm (2)点A,B之间的距离为22.2 cm。
2022-2023学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)
2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,已知tan A=,BC=a,则AB的长为()A.a B.2a C.a D.a2.如图,四边形ABCD的对角线AC、BD相交于O,∠AOD=60°,AC=BD=2,则这个四边形的面积是()A.B.C.D.3.如图,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.2D.34.如图,在离铁塔200米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+200sinα)米B.(1.5+200cosα)米C.(1.5+200tanα)米D.(1.5+)米5.如图,AB是垂直于水平面的建筑物,沿建筑物底端B沿水平方向向左走8米到达点C,沿坡度i=1:2(坡度i=坡面铅直高度与水平宽度的比)斜坡走到点D,再继续沿水平方向向左走40米到达点E(A、B、C、D、E在同一平面内),在E处测得建筑物顶端A 的仰角为34°,已知建筑物底端B与水平面DE的距离为2米,则建筑物AB的高度约是()(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)A.27.1米B.30.8米C.32.8米D.49.2米6.如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是()A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m 7.如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,tanα=2,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为30°.无人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中MC=100米,则河流的宽度CD为()A.200米B.米C.米D.米8.如图,一条船从灯塔C南偏东42°的A处出发,向正北航行8海里到达B处,此时灯塔C在船的北偏西84°方向,则船与灯塔C距离为()海里.A.4B.8C.16D.24二.填空题9.在△ABC中,sin B=,AC=2,AD是BC边上的高,∠ACD=45°,则BC的长为.10.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则(1)AD=;(2)sin∠BAD=.11.2022年,北京成功举办第24届冬季奥运会后,很多学校都开展了冰雪项目的学习活动.如图,一位同学乘滑雪板沿坡度为i=1:2的斜坡滑行30米,则他下降的高度为米.12.数学课外学习小组利用矩形建筑物ABED测量广场灯塔CF的高,如图所示,在点B处测得灯塔顶端C的仰角为28°,在点D处测得灯塔顶端C的仰角为45°,已知AB=10m,AD=30m.求灯塔CF=m(结果保留整数).(参考数据:tan28°≈0.53,cos28°≈0.88,sin28°≈0.47,)13.一艘轮船位于灯塔P的南偏东60°方向,距离灯塔30海里的A处,它沿北偏东30°方向航行一段时间后,到达位于灯塔P的北偏东67°方向上的B处,此时与灯塔P的距离约为海里.(参考数据:sin37°≈,cos37°≈,tan37°≈)14.公元前240年前后,在希腊的亚历山大城图书馆当馆长的埃拉托色尼通过测得有关数据,求得了地球圆周的长度,他是如何测量的呢?如图所示,由于太阳距离地球很远,太阳射来的光线可以看作平行线,在同时刻,光线与A城和地心的连线OP所夹的锐角记为∠1,光线与B城和地心的连线OQ重合,通过测量A,B两城间的路程(即弧AB)和∠1的度数,利用圆的有关知识,地球圆周的长度就可以大致算出来了.已知弧AB的长度约为800km,若∠1≈7.2°,则地球的周长约为km.15.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以12千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞至村庄C 的正上方A处时,测得∠NAD=60°,该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°,则村庄C、D间的距离为千米.(≈1.732,结果保留一位小数)16.如图1是一台手机支架,图2是其侧面示意图,线段AB,BC可分别绕点A,B转动,已知AB=18cm.当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上;当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,点C到AD的距离为cm.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,)三.解答题17.如图,湖边A、B两点由两段笔直的观景栈道AC和CB相连.为了计算A、B两点之间的距离,经测量得:∠BAC=37°,∠ABC=58°,AC=80米,求A、B两点之间的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)18.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).21.如图,在△ABC中,AB=AC,点D在线段BC上运动,连接AD,以AD为边作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.①若tan∠ABC=2,AB=3,AE=2,求BD长?②若直线DE与直线BC所夹锐角的正切值是,cos∠BAC=,BC=4,求BD的长.22.如图,在苏州工业园区的金鸡湖东岸,有一座世界最大的水上摩天轮“苏州之眼”,其直径为120m,旋转1周用时24min.小明从摩天轮的底部(与地面相距0.5m)出发开始观光.(1)4min后小明离地面多高?(2)摩天轮转动1周,小明在离地面90.5m以上的空中有多长时间?23.如图,在屋顶的斜坡面上安装太阳能热水器,先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,要求AD与水平线的夹角α为48°,且两支架之间的水平距离为150cm.现测量出屋顶斜面BC与水平面的夹角β为30°,支架AB的高度为20cm,求支架CD的高度.(结果精确到1cm.参考数值:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,)24.西山公园要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的坡度为1:3,一楼到地下停车场地面的垂直高度CD=3.2米,一楼到地平线的距离BC=1米.(1)为保证斜坡的坡度为1:3,斜面AD的长度应为多少米?(2)如果给该地下停车场送货的货车高度为2.8米,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:)参考答案一.选择题1.解:在Rt△ABC中,∠C=90°,∵tan A==,BC=a,∴AC=2a,由勾股定理得,AB==a,故选:C.2.解:如图,过B、D分别作BE⊥AC于E,DF⊥AC于F,则∠BEO=∠DFO=90°.在Rt△BOE中,∠BOE=∠AOD=60°,∴BE=OB•sin∠BOE=OB•sin60°=OB,在Rt△DOF中,∠AOD=60°,∴DF=OD•sin∠BOE=OD•sin60°=OD.∵AC=BD=2,∴S四边形ABCD=S△ABC+S△ADC=AC•BE+AC•DF=×2×OB+×2×OD=OB+OD=(OB+OD)=BD=×2=.故选:C.3.解:由网格以及勾股定理可得,AB==2,BC==,AC==,∴AB2+BC2=8+2=10=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴tan∠BAC==,故选:B.4.解:过点A作AE⊥BC,垂足为E,则CE=AD=1.5米,AE=CD=200米,在Rt△ABE中,∠BAE=α,∴BE=AE•tanα=200tanα(米),∴BC=BE+EC=(1.5+200tanα)米,∴铁塔的高BC为(1.5+200tanα)米,故选:C.5.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=8米,DE=40米,BF=CG=2米,在Rt△CDG中,i=1:2,∴DG=4米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=52米,∠E=43°,∴AF=FE•tan34°≈52×0.67=34.84(米),∴AB=AF﹣BF=34.84﹣2≈32.8(米);即建筑物AB的高度约为32.8米.故选:C.6.解:设AD=x米,∵AB=16米,∴BD=AB﹣AD=(16﹣x)米,在Rt△ADC中,∠A=45°,∴CD=AD•tan45°=x(米),在Rt△CDB中,∠B=60°,∴tan60°===,∴x=24﹣8,经检验:x=24﹣8是原方程的根,∴CD=24﹣8=8(3﹣))米,∴这棵树CD的高度是8(3﹣)米,故选:A.7.解:作BE⊥MD于点E,如图所示,由已知可得:∠BAC=α,tanα=2,AB=80米,∠BDE=30°,MC=100米,AM⊥MD,AB∥MD,∴ME=AB=80米,∠ACM=∠BAC=α,AM=BE,∴=2,解得AM=200米,∴BE=200米,∵tan∠BDE=,∴tan30°=,解得DE=200米,∴CD=MD﹣MC=ME+DE﹣MC=80+200﹣100=(200﹣20)米,故选:C.8.解:由题意得,∠BAC=42°,∠BCA=84°﹣42°=42°,AB=8海里,∴∠BAC=∠BCA,∴BC=AB=8海里,即船与灯塔C距离为8海里.故选:B.二.填空题9.解:当点D在线段BC的延长线上时,∵AD是BC边上的高,∠ACD=45°,∴CD=AD.∵AC2=CD2+AD2,AC=2,∴CD=AD=2.∵sin B==,∴AB=2.在Rt△ABD中,BD====4.∴BC=BD﹣CD=4﹣2=2.若点D在线段BC上时,同理可求BD=4,CD=2,∴BC=6,故答案为:2或6.10.解:如图,连接AC,根据题意得:,而,∵AD⊥BC,∴,解得:,∴,设AD=4x,则AB=5x,∴,∴.故答案为:,.11.解:设他下降的高度AC为x米,∵斜坡的坡度为i=1:2,∴这位同学滑行的是水平距离BC为2x米,由勾股定理得:AC2+BC2=AB2,即x2+(2x)2=302,解得:x=±6(负值舍去),∴他下降的高度为6米,故答案为:6.12.解:延长BE交CD于点G,交CF于点H,在Rt△DEG中,∠EDG=45°,∴EG=DE=10m.∠EGD=45°,设CH=xm,在Rt△CGH中,∠CGH=∠EGD=45°,∴GH=CH=xm,在Rt△CBH中,∠CBH=28°,∴tan∠CBH=,即:=0.53,解得:x≈45.1,∴灯塔的高CF=45.1+10=55.1≈55(m).答:灯塔的高为55米.13.解:如图所示标注字母,根据题意得,∠CAP=∠EP A=60°,∠CAB=30°,P A=30海里,∴∠P AB=90°,∠APB=180°﹣67°﹣60°=53°,∴∠B=180°﹣90°﹣53°=37°,在Rt△P AB中,sin37°=≈,解得PB≈50,∴此时与灯塔P的距离约为50海里.故答案为:50.14.解:∵太阳射来的光线可以看作平行线,∴∠AOB=∠1≈7.2°.设地球的半径为R千米,由题意得=800,解得R=,∴地球的周长约为2π×=40000(千米).故答案为:40000.15.解:如图,过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=12×=8(千米),∴AE=4(千米).BE=4(千米),∴DE=BE=4(千米),∴AD=(4+4)(千米),∵∠C=90,∠CAD=30°,∴CD=AD=2+2≈5.5(千米).故答案为:5.5.16.解:当AB转动到∠BAD=30°,BC转动到与AD垂直时,点C恰好落在AD上,如图:在Rt△ABC中,BC=AB=×18=9(cm),当AB转动到∠BAD=60°,BC转动到∠ABC=50°时,如图:过点B作BF⊥AD,垂足为F,过点C作CG⊥BF,垂足为G,过点C作CE⊥AD,垂足为E,则FG=CE,∠BGC=90°,在Rt△ABF中,AB=18cm,∠BAD=60°,∴BF=AB•sin60°=18×=9(cm),∠ABF=90°﹣∠BAD=30°,∵∠ABC=50°,∴∠CBG=∠ABC﹣∠ABF=20°,∴∠BCG=90°﹣∠CBG=70°,在Rt△BCG中,BC=9cm,∴BG=BC•sin70°≈9×0.94=8.46(cm),∴CE=FG=BF﹣BG=9﹣8.46≈7.1(cm),∴点C到AD的距离为7.1cm,故答案为:7.1.三.解答题17.解:如图,过点C作CD⊥AB,垂足为点D,在Rt△ACD中,∵∠DAC=37°,AC=80米,∴sin∠DAC=,cos∠DAC=,∴CD=AC•sin37°≈80×0.60=48(米),AD=AC•cos37°≈80×0.80=64(米),在Rt△BCD中,∵∠CBD=58°,CD=48米,∴tan∠CBD=,∴BD=≈=30(米),∴AB=AD+BD=64+30=94(米).答:A、B两点之间的距离约为94米.18.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.21.解:①如图1中,作DF⊥AB于F.∵tan∠B=2=,设BF=k,DF=2k,则AF=3﹣k,在Rt△ADF中,AD=AE=2,∴(2)2=(2k)2+(3﹣k)2,∴k=或,∵BD=k,∴BD=1或5.②如图②中,作DF⊥AB于F,BH⊥AC于H,∵∠AED=∠ACD,∴∠EDC=∠CAE=∠BAD,在Rt△ABH中,∵cos∠BAH==,设AH=m,AB=3m,则CH=2m,BH=2m,在Rt△BCH中,(2m)2+(2m)2=16,解得m=,∴AB=2,∵tan∠BAD==,设DF=n,AF=3n,易知tan B==,∴BF=n,∵AF+BF=AB=2,∴4n=2,∴n=,∴BD=n=.22.解:(1)过点C作CE⊥OA,垂足为E,作CD⊥AM,垂足为D.∵旋转1周用时24min,∴4min后∠AOC的度数为:360°×=60°,在Rt△OCE中,OC=60m,∠AOC=60°,∵cos∠AOC=,∴OE=120×cos60°=30m.∴AE=OA﹣OE=60.5﹣30=30.5(m).∵四边形AECD是矩形,∴CD=AE=30.5m.即4min后小明离地面30.5m.(2)延长AO交圆上点G,过OG的中点H作PQ⊥AG,连接PO、PQ.∵OB=60m,AB=0.5m,OH=30m,∴AH=90.5m.∴PQ上的点都距离地面90.5m,弧PGQ上的点都大于90.5m.在Rt△OPH中,∵OP=60m,OH=30m,∴∠P=30°.∴∠POH=60°.同理∠QOH=60°.∴∠POQ=120°.∵摩天轮旋转1周用时24min,∴摩天轮旋转120°用时:24×=8(min).即摩天轮转动1周,小明有8min在离地面90.5m以上的空中.23.解:过点A作AF⊥DC于点F,过点B作BE⊥DC于点E,∵矩形ABEF中,AF=BE=150cm,AB=EF=20cm.Rt△DAF中,∠DAF=48°,DF=AF•tan48°≈150×1.11≈166.5(cm),Rt△CBE中,∠CBE=30°,CE=BE°tan30°=150×≈86.5(cm),∴DE=DF+EF=166.5+20=186.5(cm),DC=DE﹣CE=186.5﹣86.5=100(cm),答:支架CD的高约为100cm.24.解:(1)∵斜坡的坡度为1:3,∴=,∵BD=CD﹣CB=2.2(米),在Rt△ABD中,AB=3BD=6.6(米),故AD==≈7.04(米),答:斜面AD的长度应约为7.04米.(2)过C作CE⊥AD,垂足为E,∴∠DCE+∠CDE=90°,∵∠BAD+∠ADB=90°,∴∠DCE=∠BAD,∴tan∠BAD=tan∠DCE==,设DE=x米,则EC=3x米,在Rt△CDE中,3.22=x2+(3x)2,解得:x≈1.012,则3x=3.036,∵3.036>2.8,∴货车能进入地下停车场.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
B A 第9题图 A
B C
解直角三角形及其应用综合练习
一、选择题:(共12个小题,每小题3分,共36分)
1、在△ABC 中,∠C=90°,如果各边长度都缩小2倍,则锐角A 的正切值和余切值( )
A 、都缩小2倍
B 、都扩大2倍
C 、都没有变化
D 、不能确定 2、在△ABC 中,∠C=90°,如果AB =2,BC =1,那么sinA 的值是( ) A 、
21 B 、5
5 C 、
3
3 D 、23
3、在△ABC 中,已知AC =3、BC =
4、AB =5,那么下列结论成立的是( ) A 、sinA =
45 B 、cosA =53 C 、tanA =43 D 、cotA =5
4
4、已知α为锐角,tan (90°-α)
) A .30° B .45° C .60° D .75° 5、ABC Rt ∆中,︒=∠90C ,若AB=2,3=
BC ,则2
tan
A
的值为( ) A .
23 B .3
3 C .3 D .32- 6、△ABC 中,2
1
cos =
A ,1cot =
B ,则△AB
C 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形
D .等腰三角形 7、若∠A 是锐角,且sinA =cosA ,则∠A 的度数是( )
A .30°
B .45°
C .60°
D .90°
8、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )
A 、10米
B 、15米
C 、25米
D 、30米
第8题图 第10题图
9、如下图,为了测量河流某一段的宽度,在河北岸选了一点A ,在河南岸选相距200米的
B 、
C 两点,分别测得∠ABC =600,∠ACB =450
,则这段河的宽度为( )
30°
(A )2100 (B )3100 (C ))33(100- (D ))33(100+ 10、如图:在等腰直角三角形ABC 中,∠C =900
,AC =6,D 是AC 上一点,若tan ∠DBA =
1
5
,则AD 的长为( )
A 、2
B 、2
C 、1
D 、22
11、在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为( )米
A .20cot α
B .20tan α
C .1.5+ 20tan α
D .1.5+20cot α 12、已知△ABC 中,∠B =60°,AB =6,BC =8,则△ABC 的面积是( ) (A )312 (B )12 (C )324 (D )212
二、填空题:(共6个小题,每小题4分,共24分) 13、计算:sin 248°+sin 2
42°-tan44°·tan45°·tan46°=________. 14、已知等腰三角形的周长为20,某一内角的余弦值为
3
2,那么该等腰三角形的腰长等于 。
15、升旗时某同学站在离旗杆底部21米处行注目礼,当国旗升到旗杆顶端时,该同学看
国旗的仰角是300
,若其双眼离地面1.60m ,则旗杆高度为_________米(结果保留根号). 16、如图,某车间的人字屋架为等腰三角形,跨度AB =14米,CD 为中柱,则上弦AC 的长是 米(用∠A 的三角函数表示).
17、如图:在高为2米,水平距离为3米楼梯的表面铺地毯,地毯的长度至少需_____米. 18、在倾斜角为30°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么,相邻两棵树间的斜坡距离为 米。
第16题图 第17题图 第18题图
三、解答题:(共6个小题,共40分) 19、计算60cos 4)
2
1(2
--°2005(1)+-.
20、为美化环境,计划在某小区内用30平方米的草皮铺设一块边长为10米的等腰三角形
A B
C
A
B
C
D
E
F
绿地,请你求出这个等腰三角形绿地的另两边长。
21、某片绿地的形状如图所示,其中0
60=∠A ,AB ⊥BC,AD ⊥CD,AB=200m ,CD =100m ,求AD,BC 的长。
(精确到1m ,732.13≈)
A
B
C
D
22、小刚和小强两位同学参加放风筝比赛。
当他俩把风筝线的一端固定在同一水平的地面时,测得一些数据如下表:
假设风筝线是拉直的,试比较他俩谁放的风筝较高?高多少米?(精确到0.1米)
2.2361≈≈≈)。
23、如图,天空中有一个静止的广告气球C ,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°.已知AB =20 m ,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度(结果保留根号).
24、下图是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为︒45.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为︒30,若新坡角下需留3
A B 45° C 60°
米的人行道,问离原坡角10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732 )
参考答案
1—12、CAB ABAB B C BCA
13、0;14、6或6212-15、376.1+;16、;17、;18
、19、原式2
1
2412
=-⨯
-421=--1= 20、解:分三种情况计算,不妨设AB =10米,过点C 作CD ⊥AB 于D ,则:
ABC S ∆=
CD AB ⋅2
1
,∴CD =6米 (1)当AB 为底边时,AD =DB =5(米)(如图1)AC =BC =2
256+=61(米)
第24题图
1 D
C
B A
第24题图
2 D C
B
A D C
B
A
(2)当AB 为腰且三角形为锐角三角形时(如图2)
AB =AC =10(米) AD =
22CD AC -=8(米)
,BD =2(米) BC =2
2
26+=102(米)
(3)当AB 为腰且三角形为钝角三角形时(如图3) AB =BC =10(米) AC =2
2
186+=106(米) 21、解法一:如图,延长AD ,交BC 的延长线于点E .
在Rt △ABE 中,由200AB =m ,∠60A =°,
得tan BE AB A =⋅=,0
400cos60AB
AE =
=m .
在Rt △CDE 中,由100CD =m ,∠009030CED A =-∠=,得
2200CE CD ==m
,cot DE CD CED =⋅∠=.
∴400227AD AE DE =-=-≈m ,
200146BC BE CE =-=≈m .
解法二:过点D 作矩形ABEF .设AD =x , 在Rt △ADF 中,∠DAF =90°-60°=30°, ∴11
22
DF AD x =
=
,AF =, 在Rt △CDE 中,∠CDE =30°,
则1
502
CE CD ==
m,DE ==∵DE DF AB +=,
A
B
C
D
∴ 1
2002
x =,得400x =-,即227AD ≈m. ∵BC CE AF +=,
∴ 50BC x =
-40050=--200146=≈m . 22、解:设小刚、小强的风筝分别为12,h h 。
由题意,得:
1250sin 45h =250125 1.4142176.78=≈⨯=(米)。
2200sin 60h =,200100 1.7321==≈⨯(米)。
12176.78173.21 3.57 3.6h h -=-=≈(米)。
∴小刚放的风筝比小强放的风筝高约3.6米。
23、作CD⊥AB,垂足为D .设气球离地面的高度是xm . 在Rt△ACD 中,∠CAD=45° ∴AD=CD=x.
在Rt△CBD 中,∠CBD=60° ∴cot60°=BD/CD ∴BD=3 X/3 ∵ AB=AD—BD ,∴20=X -3 X/3.∴ X=30+103 答:气球离地面的高度是(30+103 )m .
24、解:在Rt ABC ∆中,∵10=BC ,︒=∠45CAB ,∴AB=︒45cot 10=10(米)
在Rt DBC ∆中,∵︒=∠30CDB ∴︒=30cot 10DB =310米 则DA =DA DB -= 10310-≈10×1.73210-= 7.32米. ∵3 + DA 10>,所以离原坡角10米的建筑物应拆除. 答:离原坡角10米的建筑物应拆除.。