4到20mA模拟恒流环路信号发生器制作

合集下载

自制具有4(0)-20mA电流信号输出功能的数字万用表

自制具有4(0)-20mA电流信号输出功能的数字万用表

142Ma i nte nance技术/维护维修1技术背景通用的数字万用表和4(0)-20mA 信号发生器是电气工程技术人员在现场电气设备的安装、调试、检修维护过程中,最常用的电气测量仪表。

但市场上专用的4(0)-20mA 信号发生器价格昂贵,而且现场携带多台测量仪表,携带十分不便。

为此,我们对普通的数字万用表进行改造,在表内部增加DC24v 升压电路、4(0)-20mA 信号发生模块及充电电池,使普通万用表具有4(0)-20mA 输出功能。

这样,既可作为通用数字万用表,又可作为4(0)-20mA 信号发生器,且可显示输出量读数。

“一表两用”,方便电气技术人员在现场的携带与使用,而且,价格低廉,经济型好。

2改造过程2.1组成部件该仪表主要由功能完好的普通数字万用表(利用其DC 200mA测试功能)、DC3.7v 充电电池、DC3.7v 转换DC24v 电源模块、工业用DC 4(0)-20mA 信号发生模块、精密多圈电位器及相应的控制电路等部件组成。

2.2部件作用DC3.7v 充电电池和转换DC24v 电源模块的主要作用是:输入3.7v ,输出24v 30mA DC 电源升压模块;工业用DC 4(0)-20mA 信号发生模块的主要作用是:输入0-5(10)v DC ,输出标准的DC 4(0)-20mA 信号。

自制具有4(0)-20m A电流信号输出功能的数字万用表张光利(乌兰察布中联水泥有限公司,内蒙古乌兰察布市012400)中图分类号:TM933.1文献标识码:B文章编号:1007-6344(2014)06-0142-02143 Ma i nte nance维护维修/技术2.3技术原理DC升压电源模块将3.7v电压升高到24v,为DC4(0)-20mA信号发生模块提供大于20mA的电源。

通过调节多圈精密电位器,平滑的改变信号发生模块的输入电压,在其输出端可得到DC4(0)-20mA信号源。

此信号经切换电路切换,通过万用表的DC200m A档测量并输出,并读取信号的数值。

STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路为工业场合开发的设备通常情况下都会具有4-20mA输出接口,在以往没有DAC模块的单片机系统,需要外加一主片DAC实现模拟量的控制,或者采用PWM来摸拟DA,但也带来温漂和长期稳定性问题。

在以STM32为中心的设备中,使用它自带的DAC即可非常方便的实现4-20mA的输出接口,具有精度高、稳定性好、漂移小以及编程方便等特点。

在STM32单片机系统中,100脚以下没有外接出VREF引脚,但这样使得DAC的参考端和VCC共用,带来较大误码差,为解决这一问题,可以使用廉价的TL431来解决供电问题,TL431典型温漂为30ppm,所以在一般应用中已非常足够。

选用两只低温漂电阻,调整输出使TL431的输出电压在3V-3.6V之间,它的并联稳压电流可达到30mA,正好能满足一般STM32核心的功耗需求。

利用TL431解决了供电问题,余下的就是4-20mA的转换电路,如下图:上图即为非常精确的转换电路,OPA333是一颗非常优异的单电源轨至轨运算放大器,其工作电压为2.7-5.5V,其失调电压仅为10uV,实测最低输出为30uV,最高输出可达VCC-30uV。

电路组成压控恒流源,其关键在于OPA333这颗芯片的优异性能,使得以上电路获得了极高的精度和稳定性。

DACOUT来自于STM32的DAC1或者DAC2输出,由C25进行数字噪场滤波之后进入运算,进行1:1缓冲,后经过Q2进行电流放大,在R7上形成检测电压,C17进行去抖动处理。

4-20mA信号由AN_OUT+/AN_OUT-之间输出。

上图中,负载中的电流在R7上形成压降,经运放反馈后得到Vdacout=Vr7=I*R7,所以:I=Vdacout/R7,当Vdacout在400mV到2000mV之间变化时,可得到4-20mA的输出。

改变R7的大小,便可改变DACOUT的需求范围。

电路中,R2的基射极之间将有0.7V左右的偏压,所以Vb[MAX]=2V+0.7V=2.7V,这正好在OPA333的输出范围之内。

4-20ma信号发生器电路

4-20ma信号发生器电路

4-20ma信号发生器电路制作要求:以精度0.5级为例,二线制4~20mA模拟恒环路信号发生器执行标准:GB/T13850-1998;(1)基准要稳,4mA是对应的输入零位基准,基准不稳,谈何精度线性度,冷开机3分锺内4mA的零位漂移变化不超过4.000mA0.5%以内;(即3.98-4.02mA),负载250Ω上的压降为0.995-1.005V,国外IC心片多用昂贵的能隙基准,温漂系数每度变化10ppm;(2)内电路总计消耗电流<4mA,加整定后等于4.000mA,而且有源整流滤波放大恒流电路不因原边输入变化而消耗电流也随之变化,国外IC心片采用恒流供电;(3)当工作电压24.000V时,满量程20.000mA时,满量程20.000mA的读数不会因负载0-700Ω变化而变化;变化不超过20.000mA0.5%以内;(4)当满量程20.000mA时,负载250Ω时,满量程20.000mA的读数不会因工作电压15.000V-30.000V变化而变化;变化不超过20.000mA0.5%以内;(5)当原边过载时,输出电流不超过25.000mA+10%以内,否则PLC/DCS内供变送器用的24V工作电源和A/D输入箝位电路因功耗过大而损坏,另外变送器内的射随输出亦因功耗过大而损坏,无A/D输入箝位电路的更遭殃;(6)当工作电压24V接反时不得损坏变送器,必须有极性保护;(7)当两线之间因感应雷及感应浪涌电压超过24V时要箝位,不得损坏变送器;一般在两线之间并联1-2只TVS瞬态保护二极管 1.5KE可抑制每20秒间隔一次的20毫秒脉宽的正反脉冲的冲击,瞬态承受冲击功率1.5KW-3KW;(8)产品标示的线性度0.5%是绝对误差还是相对误差,可以按以下方法来辨别方可一目了然:符合下述指标是真的线性度0.5%.原边输入为零时输出4mA正负0.5%(3.98-4.02mA),负载250Ω上的压降为0.995-1.005V原边输入10%时输出5.6mA正负0.5%(5.572-5.628mA)负载250欧姆上的压降为1.393-1.407V原边输入25%时输出8mA正负0.5%(7.96-8.04mA)负载250Ω上的压降为1.990-2.010V原边输入50%时输出12mA正负0.5%(11.94-12.06mA)负载250Ω上的压降为2.985-3.015V原边输入75%时输出16mA正负0.5%(15.92-16.08mA)负载250Ω上的压降为3.980-4.020V原边输入100%时输出20mA正负0.5%(19.90-20.10mA)负载250Ω上的压降为4.975-5.025V(9)原边输入过载时必须限流:原边输入过载大于125%时输出过流限制25mA+10%(25.00-27.50mA)负载250Ω上的压降为6.250-6.875V;(10)感应浪涌电压超过24V时有无箝位的辨别:在两线输出端口并一个交流50V 指针式表头,用交流30-35V接两根线去瞬间碰一下两线输出端口,看有无箝位,箝位多少伏可一目了然啦;(11)有无极性保护的辨别:用指针式万用表Ω乘10K档正反测量两线输出端口,总有一次Ω阻值无限大,就有极性保护;(12)有无极输出电流长时间短路保护:原边输入100%时或过载大于125%-200%时,将负载250Ω短路,测量短路保护限制是否在25mA+10%;(13)工业级别和民用商用级别的辨别:工业级别工作温度范围是-25度到+70度,温漂系数是每度变化100ppm,即温度每度变化1度,精度变化为万分之一;民用商用级别工作温度范围是0度(或-10度)到+70度(或+50度),温漂系数是每度变化250ppm,即温度每度变化1度,精度变化为万分之二点五。

单片机直流4~20mA电流信号发生器

单片机直流4~20mA电流信号发生器

辽宁工业大学单片机及接口技术课程设计(论文)题目:直流4~20mA电流信号发生器院(系):电子与信息工程学院专业班级:通信091班学号: 090405031学生姓名:张晓妲指导教师:李宁教师职称:讲师起止时间:2012.07.05—2012.07.13课程设计(论文)任务及评语目录第1章设计方案论证 (1)1.1设计的应用意义 (1)1.2 设计方案选择 (1)1.3总体设计方案框图及分析 (2)第2章硬件电路设计 (3)2.1电源电路设计 (3)2.2时钟复位电路设计 (3)2.3 8051单片机设计与D/A接口电路设计 (4)2.4 偏移电路设计 (5)2.5 放大电路电路设计 (5)2.6按键、显示电路设计 (6)第3章程序设计 (8)3.1程序流程图 (8)3.2源程序清单 (8)第4章设计总结 (11)参考文献 (12)附录1 (13)附录2 (14)第1章设计方案论证1.1设计的应用意义信号发生器在科技领域和生产实践中有着非常广泛的应用。

单片机的信号发生器抗干扰性强、功耗低、成本低、易实现,具有很高的使用价值。

随着大规模集成电路的迅速发展,多功能信号发生器已被制作成专用集成电路。

发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机测试时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器,因而广泛应于通信、雷达、导航、宇航等领域。

在MCS-51单片机的应用过程中,经常需要设计可调直流电流信号。

而在单片机控制应用中对实时性和计算精度的要求非常高,因此,非常有必要研究有效的可调方法。

1.2设计方案选择信号发生器的设计任务就是产生三路信号,并且提供和主机通讯的软硬件接口。

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计

二线制模拟电流4-20mA 信号变送电路设计模拟工控网上用的4-20 mA 标准电流信号是工业上最常用的信号传输方法之一。

本文将介绍二线制方式的标准电流输出为4-20mA 的变送电路。

通过对集成电路AM462(电压电流转换变送电路)的应用举例,介绍了如何实现工业上常用的二线制变送接口电路,而它可以为程控机PLC 等直接传输信息。

针对不同的控制设备,介绍了相应的电路元器件的计算方法。

注意:下面的介绍对于AMG 公司生产的所有电压电流转换集成电路(AM400, AM402,AM422, AM442, AM460)原则上都是适用的[1]。

模拟电路接口工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。

那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。

电压信号传输比如0-5(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。

原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。

由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。

如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。

要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。

如果用运算放大器OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于<1MΩ。

原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。

所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。

电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号0-5(10)V 的。

电流信号传输比如0(4)-20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。

4-20ma电流信号发生器

4-20ma电流信号发生器

二线制交流电流变送器的设计步骤作者信继华二线制交流电流变送器的设计步骤已知大电流电流互感器均将不同的电流转换成0~5A 的交流电流进行现场显示。

而进行远距离传送时,必须将该电流转换成标准直流电流信号4~20mA,才能进行传送。

市场上此类交流电流变送器大都采用“四线制”的方法:即交流电源线二根,直流电流信号线二根。

而我们设计的是“二线制交流电流变送器”则只采用二根电线:即在给变送器内的电路提供直流电源的同时,将根据0~5A 交流电流变化的变送输出标准直流电流信号4~20mA远传至控制室显示或进入计算机内处理后在显示器画面上显示。

设计思路1,选择低功耗元器件,在满足功能要求的前提下,尽量简化电路,满足二线制仪表的要求。

2,采取有效措施,提高系统的抗干扰能力,减小温度飘移。

3,完善系统保护措施,增加仪表的可靠性。

一,互感器的选择电流互感器是一种交流电流/电流变换器,当初级流过交流电流时,次级线圈则对应其变比产生交流电流。

再通过负载电阻转换成交流电压信号。

合理选择互感器的变比十分重要。

在选择变比之前,首先要确定通过互感器产生的负载电压是否满足变送电路需要的输入信号电压。

通常我们将输入信号电压的最大值选择在2~3V/AC 左右。

同时选择互感器负载电阻为标准系列电阻。

选RL=1KΩ。

(见图一)例如:输入信号电压选2.5V。

I=V/R=2.5V/1000Ω=0.0025A=2.5mA已知:交流电流输入为0~5A,则变比为: 5A/0.0025A=2000即1:2000所以,当电流互感器初级电流为0~5A 变化时,次级负载电阻两端的电压为0~2.5V。

选择5A/2.5mA的互感器。

如果要求输入信号电压的最大值选择在3V时,只需要将负载电阻选择为RL=1.2KΩ即可。

V=I×R=0.0025A×1.2KΩ=3V仍然选择5A/2.5mA的互感器。

二,整流电路的选择如果输入的信号非常微弱时,需要首先对信号进行放大后再进行整流。

自制带电流指示的4~20mA电流信号发生器

自制带电流指示的4~20mA电流信号发生器

自制带电流指示的4~20mA电流信号发生器
调试现场取得电流信号的方法有很多,如由24V或10V电源串接限流电阻来取得,但毕竟有不便之处,如果有一款便携式可调并带电流值指示的电流发生器,则能生色不少。

网购了91C4型30mA指针式表头,和WS-1型300Ω0.5W可调电位器,找出一只51Ω普通电阻,准备了9V电源和电池插座,去超市选了一款肥皂盒,测试引线采用现成的万用表表笔。

东西齐了,开始动手制作。

因功耗小,LM317无须加散热片。

试验效果不错。

电流信号输入端负载电阻为250Ω或小于此值时,最好。

若负载电阻偏大,为保证最大电流输出能力,建议提高供电电压,如采用12V或24V供电电源(9V电池两节串联也是好方法)。

特点:
1、电路元件小,制作简单;
2、袖珍型,便于携带;
3、有电流指示,调整方便。

4、不用时无能量消耗,电池使用寿命长;
5、尚有功能扩展余地,暂时保密。

使用方法:
1、先将测试线短接,调电位器旋钮,观察电流表指示,应在4-20mA以内变化,此为检测仪测试;
2、将测试线接入电流信号输入端,调节旋钮,送出调试设备所需电流信号。

1步骤可略,直接进入2步骤。

用途:
1、用于测验仪表或变频器等电器设备的的相关信号输入电路的好坏;
2、用于安装或维修设备的调试。

4-20ma电流信号发生器

4-20ma电流信号发生器

二线制交流电流变送器的设计步骤作者信继华前言根据广大网友的要求,特别是刚走出学校门的大学生们,在进行电路设计时,面对新的项目,无法下手,不知道具体的设计思路从何处怎样开展,到处求人提供资料,而大部分都不能实用。

本人经常收到网友的求助,要求提供设计思路。

但本人的答复仅对某个项目提出一点建议,而针对广大网友来讲,起不到启发作用!原因是,很多网友不希望本人公开答复,一是担心提出的问题太低级,招来某些“闲人”的热潮冷讽。

二是存在人们固有的保守思想的影响,不想让别人知道他的“秘密项目”。

用现在比较时髦的话来讲,称“保护知识产权”。

知识产权是有时效性的!过分强调保护知识产权,对于整个社会的发展是有害而无益的!比如本人在网上转载多年前公开发行的专业书籍,就引来不少非议。

而提出非议的并不是作者本人!我想,作者写书的目的并非纯粹为了经济利益吧?在这里提醒大家一下,任何项目,从设计到实施完成,都是一个系统工程,并非是某一个专业能够独立完成的。

它需要不同专业的密切配合,齐心协力,共同攻关,最终的成功必定是一个集体智慧的结晶!为了向大家提供一个具体的设计思路,这里将本人十年前设计的一个小项目的具体步骤公开出来,希望能够给大家今后进行设计项目时起到一点引导作用。

同时也希望专家学者给本人提出批评指导意见。

二线制交流电流变送器的设计步骤已知大电流电流互感器均将不同的电流转换成0~5A 的交流电流进行现场显示。

而进行远距离传送时,必须将该电流转换成标准直流电流信号4~20mA,才能进行传送。

市场上此类交流电流变送器大都采用“四线制”的方法:即交流电源线二根,直流电流信号线二根。

而我们设计的是“二线制交流电流变送器”则只采用二根电线:即在给变送器内的电路提供直流电源的同时,将根据0~5A 交流电流变化的变送输出标准直流电流信号4~20mA远传至控制室显示或进入计算机内处理后在显示器画面上显示。

设计思路1,选择低功耗元器件,在满足功能要求的前提下,尽量简化电路,满足二线制仪表的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4到20mA模拟恒流环路信号发生器制作一。

DH4-20的原理与测试:①静态零电平4mA调节范围测试条件:VCC=24V UIN=0V(静态)步骤:改变RP1使UIN=0V,改变RP2观察IOUT的最大值和最小值。

IOUT实测值(mA)RP2↓最小值3mA±0.3mA 2.790RP2↑最大值5mA±0.3mA 4.838②UIN-IOUT线性测试测试条件:VCC=24V RL=700Ω步骤:1.将RP1调至UIN=0V2将RP2调至IOUT=4.000mA3.改变RP1从0~5V的UIN电位UIN(V)IOUT(mA)实测值(mA)0 4.000 4.0021.2508.0007.9972.50012.000 11.9983.75016.000 16.0035.000 20.000 20.008③RL-VCC最大负载电阻与工作电压之间的关系测试条件:在上述②的测试条件UIN=5V,IOUT=20mA恒定状态下步骤:改变以下RL与VCC的对应关系,观察IOUT=20mA恒定状态RL(KΩ)VCC(V)实测值(mA)0 1020.0030.11220.0030.21420.0050.31620.0050.41820.0050.52020.0050.62220.0050.72420.0050.82620.0100.92820.0101.03020.0101.13220.010④满值20mA的恒流测试测试条件:VCC=24V IOUT=20.000mA步骤:在上述条件下,改变RL从0~0.7KΩ,观察满值20的恒定状态RL(KΩ)IOUT实测值(mA)0 20.0210.120.0200.220.0190.320.0170.420.0160.520.0150.620.0140.720.013二。

二线制4~20mA模拟恒流环路信号发生器制作三。

二线制4~20mA模拟恒流环路信号发生器制作指标要求以精度0.5级为例,二线制4~20mA模拟恒环路信号发生器执行标准:GB/T13850-1998;(1)基准要稳,4mA是对应的输入零位基准,基准不稳,谈何精度线性度,冷开机3分锺内4mA 的零位漂移变化不超过4.000mA0.5%以内;(即3.98-4.02mA),负载250Ω上的压降为0.995-1.005V,国外IC心片多用昂贵的能隙基准,温漂系数每度变化10ppm;(2)内电路总计消耗电流<4mA,加整定后等于4.000mA,而且有源整流滤波放大恒流电路不因原边输入变化而消耗电流也随之变化,国外IC心片采用恒流供电;(3)当工作电压24.000V时,满量程20.000mA时,满量程20.000mA的读数不会因负载0-700Ω变化而变化;变化不超过20.000mA0.5%以内;(4)当满量程20.000mA时,负载250Ω时,满量程20.000mA的读数不会因工作电压15.000V-30.000V变化而变化;变化不超过20.000mA0.5%以内;(5)当原边过载时,输出电流不超过25.000mA+10%以内,否则PLC/DCS内供变送器用的24V工作电源和A/D输入箝位电路因功耗过大而损坏,另外变送器内的射随输出亦因功耗过大而损坏,无A/D输入箝位电路的更遭殃;(6)当工作电压24V接反时不得损坏变送器,必须有极性保护;(7)当两线之间因感应雷及感应浪涌电压超过24V时要箝位,不得损坏变送器;一般在两线之间并联1-2只TVS瞬态保护二极管 1.5KE可抑制每20秒间隔一次的20毫秒脉宽的正反脉冲的冲击,瞬态承受冲击功率1.5KW-3KW;(8)产品标示的线性度0.5%是绝对误差还是相对误差,可以按以下方法来辨别方可一目了然:符合下述指标是真的线性度0.5%.原边输入为零时输出4mA正负0.5%(3.98-4.02mA),负载250Ω上的压降为0.995-1.005V原边输入10%时输出5.6mA正负0.5%(5.572-5.628mA)负载250欧姆上的压降为1.393-1.407V原边输入25%时输出8mA正负0.5%(7.96-8.04mA)负载250Ω上的压降为1.990-2.010V原边输入50%时输出12mA正负0.5%(11.94-12.06mA)负载250Ω上的压降为2.985-3.015V原边输入75%时输出16mA正负0.5%(15.92-16.08mA)负载250Ω上的压降为3.980-4.020V原边输100%时输出20mA正负0.5%(19.90-20.10mA)负载250Ω上的压降为4.975-5.025V(9)原边输入过载时必须限流:原边输入过载大于125%时输出过流限制25mA+10%(25.00-27.50mA)负载250Ω上的压降为6.250-6.875V;(10)感应浪涌电压超过24V时有无箝位的辨别:在两线输出端口并一个交流50V指针式表头,用交流30-35V接两根线去瞬间碰一下两线输出端口,看有无箝位,箝位多少伏可一目了然啦;(11)有无极性保护的辨别:用指针式万用表Ω乘10K档正反测量两线输出端口,总有一次Ω阻值无限大,就有极性保护;(12)有无极输出电流长时间短路保护:原边输入100%时或过载大于125%-200%时,将负载250Ω短路,测量短路保护限制是否在25mA+10%;(13)工业级别和民用商用级别的辨别:工业级别工作温度范围是-25度到+70度,温漂系数是每度变化100ppm,即温度每度变化1度,精度变化为万分之一;民用商用级别工作温度范围是0度(或-10度)到+70度(或+50度),温漂系数是每度变化250ppm,即温度每度变化1度,精度变化为万分之二点五;DH4~20mA模拟串口模块及其变送器电路设计中国科学院半导体所方舟公司李德辉摘要:二线制4~20mA模拟串口环路作为电流遥测技术标准,以其众多优点得到广泛应用,本文介绍的DH4~20型DH4~20mA模拟串口模块与无源交流隔离传感器的组合,不但解决了交流电流电压信号的二线制4~20mA环路遥测问题,而且成本低,性价比高。

本文简要介绍了这种模块的应用与测试,供读者选用参考。

关键词:4~20m恒流环路测试电路二线制变送器典型应用电路穿孔穿芯一体化交流电流变送器(两线制4-20mA输出)一。

概述:标准化的模拟信号电流值为4~20mA的环路在发送数据以及控制那些易于以这一标准接受指令的某些执行器的过程中有广泛的应用。

在国际上已做为模拟信号中的电流遥测技术标准。

在利用两根导线的电流遥测电路中,工作电源与示读装置,包括传感器和发送导线的任何其他电阻都是相串联在环路内。

其优点:1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;3、电容性干扰会导致接收器电阻有关误差,对于4~20mA环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等造成精度的差异;5、将4mA用于零电平,使判断开路或传感器损坏十分方便(0mA状态);6,在两线输出口容易增设防浪涌,防雷器件,有利于安全防爆。

DH4~20mA模拟串口模块是是中科方舟公司采用意法半导体(ST)ASIC芯片为实现无源交流隔离传感器(互感原理)的二线制电流遥测技术手段而定型生产的单片模块产品。

无源交流隔离传感器输入的电流信号经整流滤波和I/V转换后输出一个随I1线性变化的直流电压信号U2,U2作为浮地压控信号控制该模块输出4~20mA的电流环路(如图1所示)。

该模块实现了无源交流隔离传感器信号变换为两根连接线路发送的呈比例的环路电流,接受器通过测量已知电阻RL两端的压降对环路电流进行检测(如图2所示)二。

主要技术指标:(1)额定环路电流:DC4-20mA(静态、满程可调节)(2)额定控制端电压:DC0-5V±10%(静态、满程可调节)(3)额定工作电压:+24V±20%(4)控制端输入电流:≤100uA(5)电源功耗:静态4mA,动态时相等与环路电流20mA(6)非线性失真:0.1%FS(7)输出电流温漂:≤50ppm/℃(8)静态零电平:(4mA)调节范围:4mA±25%(3mA-5mA)(10)最小工作电压:15V(11)极限工作电压:≤35V(12)输出电流保护:内部限制(TVS能力:24A,20us)(13)接入保护:电源反接保护(需外接1N4007二极管)(14)工作温度: -40℃-80℃(15)贮存温度: -50℃-100℃三。

外形照片:四。

最大负载电阻与工作电压之间的关系:为使电路正常工作,最大负载电阻RLmax即二根导线铜阻加RL(通常为了取得1~5V取样电压,选择250Ω/0.5W电阻)不能超过下式:RLmax≤(VCC-10V)/20mA五。

典型电路试验:①I/V转换电阻R*计算:已知U2=0.9I2R*=0.9(I2/N2)R* R*=U2/0.9I2例:已知CT的I2=0.1A R*=(6-7V)/0.9I2=66-77Ω电阻消耗约0.6~0.7W,选功耗大于4倍,为2~3W功率的电阻。

②电路调试:当I1为零时,调RP2使I OUT等于4.000mA,当I1为满值时,调RP1使I OUT为20.000mA。

六。

DH4-20测试电路:①静态零电平4mA调节范围测试条件:VCC=24V UIN=0V(静态)步骤:改变RP1使UIN=0V,改变RP2观察IOUT的最大值和最小值。

IOUT 实测值(mA)RP2↓最小值3mA±0.3mA 2.790RP2↑最大值5mA±0.3mA 4.838② UIN-IOUT线性测试测试条件:VCC=24V RL=700Ω步骤:1.将RP1调至UIN=0V2将RP2调至IOUT=4.000mA3.改变RP1从0~5V的UIN电位UIN (V) IOUT(mA)实测值(mA)0 4.000 4.0021.250 8.000 7.9972.500 12.000 11.9983.750 16.000 16.0035.000 20.000 20.008③RL-VCC最大负载电阻与工作电压之间的关系测试条件:在上述②的测试条件UIN=5V,IOUT=20mA恒定状态下步骤:改变以下RL与VCC的对应关系,观察IOUT=20mA恒定状态 RL(KΩ) VCC(V)实测值(mA) 0 10 20.0030.1 12 20.0030.2 14 20.0050.3 16 20.0050.4 18 20.0050.5 20 20.0050.6 22 20.0050.7 24 20.0050.8 26 20.0100.9 28 20.0101.0 30 20.0101.1 32 20.010④满值20mA的恒流测试测试条件:VCC=24V IOUT=20.000mA步骤:在上述条件下,改变RL从0~0.7KΩ,观察满值20的恒定状态 RL(KΩ) IOUT实测值(mA)0 20.0210.1 20.0200.2 20.0190.3 20.0170.4 20.0160.5 20.0150.6 20.0140.7 20.013七。

相关文档
最新文档