材料导论 (21)
材料导论名词解释

材料导论名词解释1.韧性:材料在塑性形变过程中吸收能量的能力。
2.疲劳极限:工具钢的曲线从某一应力开始出现一段水平线,这意味着在该水平应力一下,3.无论应力变化多少周,材料也不会破坏,这一应力称为疲劳极限。
疲劳强度:是维持某一周数而不破坏的应力。
4.蠕变:材料在恒定应力下随时间缓慢塑性形变的过程。
5.硬度:材料抗穿刺能力的度量。
6.热应力:当一种各向同性材料被缓慢均匀地加热时,当材料的尺寸变化受到限制时就会产生的应力。
7.介电质:凡是不传导电流的物质均可称为介电质。
8.介电强度:材料可以经受的最大电压梯度。
9.压电现象:介电体的尺寸受力变化时就会极化而产生一个电压或电场。
10.电致伸缩:材料在电场中因极化而改变尺寸的现象。
11.磁导率:表征在外磁场作用下物质磁化难易的物理量。
12.光电效应:材料表面原子中的电子吸收光量子的能量跃迁到高能级,使它们能在电场中加速,产生导电现象。
13.玻璃化温度:不同相对分子质量的无定形聚合物在不同温度可表现出不同的力学状态,在一个特定的温度下,聚合物分子表现为坚硬的固体。
但这种固体不是结晶形成的,而是无定形分子被冻结形成的,同小分子玻璃一样,称为玻璃态,因此这个特定的温度称为玻璃化转变温度。
14.热塑性弹性体:热塑性与橡胶弹性的结合体。
15.粘结剂:通过表面接触而使材料连接在一起的物质。
16.临界长径比:临界纤维长度与临界纤维直径的比值。
17.玻璃钢:不饱和聚酯与玻璃纤维混合制成的复合材料。
18.孔隙度:孔隙体积占表观体积的百分数。
19.烧结:将型坯加热到很高的温度,一方面脱除型坯中的所有液体,一方面使粉体粒子粘结在一起,形成一个整体的过程。
20.烧结助剂:某些材料的烧结是通过低熔点相的粘结,低熔点组分先熔融并发生流动,充满粒子间的缝隙,不仅将粒子粘结在一起而且可使制品的密度接近100%,这一技术为液相烧结法,低熔点相则为烧结助剂。
21.相转变:指因温度或应力的变化引起晶体结构的变化。
材料专业导论

材料专业导论材料专业是一门研究材料的组成、结构、性质及其应用的学科,它涉及了材料科学、工程学、物理学、化学等多个学科的知识。
材料是制造一切物品的基础,对于现代社会的发展起着至关重要的作用,而材料专业的学习则是培养材料科学与工程领域的专业人才的必经之路。
材料专业的学习内容主要包括材料的分类、制备、性能测试与评价、应用等方面。
首先,材料可以根据其组成和结构的不同进行分类,常见的分类包括金属材料、非金属材料、高分子材料、复合材料等。
每种材料都具有各自独特的性质和特点,因此在制备和应用时需要根据具体要求进行选择。
其次,材料的制备过程是材料专业学习的重要内容之一。
不同材料的制备方法各异,涉及到原料选择、加工工艺、热处理等多个方面。
熟练掌握材料的制备方法可以提高材料的性能和质量。
再次,材料的性能测试与评价是材料专业学习的重要环节。
通过对材料的物理、化学、力学等性能进行测试和评价,可以了解材料的优缺点,并为材料的应用提供依据。
最后,材料的应用是材料专业学习的终极目标。
不同材料具有各自的应用领域,比如金属材料广泛应用于制造业、电子领域;高分子材料被广泛用于塑料制品、橡胶制品等领域;复合材料则在航空航天、汽车等领域有着重要的应用。
材料专业的学习不仅包括理论知识的学习,还需要进行实践操作。
实验室是材料专业学习的重要场所,学生可以通过实验了解材料的制备过程,学习使用各种仪器设备进行性能测试,培养实践操作的能力。
此外,材料专业还注重学生的创新能力和解决问题的能力的培养。
学生需要参与科研项目,进行独立的实验设计和实施,解决实际问题,提高自己的综合能力。
材料专业的就业前景广阔。
随着科技的发展和工业的进步,对新材料的需求越来越大。
材料专业毕业生可以在各种制造业领域就业,如汽车制造、航空航天、电子等;也可以进入科研院所、高校从事科研工作;还可以选择自主创业,开展新材料的研发和应用。
材料专业毕业生的就业前景非常广阔,发展空间也十分可观。
材料导论重点及归纳

1、材料的定义与分类材料是人类用来制造有用的构件、器件或物品的物质。
材料与物质的区别:①对材料而言,可采用“好”或“不好”等字眼加以评价,对物质则不能这样;②材料总是和一定的用途相联系的;③材料可由一种物质或若干种物质构成;④同一种物质,由于制备方法或加工方法的不同,可成为用途各异的不同类型的材料。
按化学组成和结构特点:金属材料、无机非金属材料、高分子材料、复合材料按材料性能:结构材料、功能材料按使用领域:建筑材料、电子材料、耐火材料、医用材料...2、材料的地位和作用材料是人类社会发展的基础和先导,是人类社会进步的里程碑和划时代的标志。
材料、能源、信息被称为人类社会的“三大支柱” 。
纵观人类利用材料的历史,可以清楚地看到,每一种重要新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。
材料科学技术的每一次重大突破都会引起生产技术的重大变革,甚至引起一次世界性的技术革命,大大地加速社会发展的进程,从而把人类物质文明推向前进。
人类文明的发展史就是材料的发展史材料的发展史就是人类文明的发展史石器时代、青铜器时代、铁器时代、? ? ?、半导体时代新材料是高技术发展的基础,是工业革命和产业发展的先导3、材料的性质材料性质:是材料的功能特性和效应的描述,是材料对电.磁.光.热.机械载荷的反应。
材料性质描述:力学性质:强度、硬度、刚度、塑性、韧性材料在力的作用下所表现出的特性即为材料的力学性质。
(1)弹性模量弹性模量是指材料在弹性极限范围内,应力与应变(即与应力相对应的单位变形量)的比值,用E 表示,即:(2)强度在外力作用下,材料抵抗变形和断裂的能力称为强度。
(有多种强度类型)材料在外力作用下发生塑性变形的最小应力叫屈服强度,用 d S表示。
工程上规定,试样产生0.2%塑性变形时的应力值为该材料的条件屈服强度,记为 d 0.2。
抗拉强度是将试样在拉力机上施以静态拉伸负荷,使其破坏(断裂)时的载荷。
大学材料导论知识点总结

大学材料导论知识点总结一、材料的基本概念1、材料的定义:材料是人类使用的各种原始、半成品和成品物质的统称。
它们通常包括金属、陶瓷、高分子材料、复合材料等,并且广泛应用于工业、建筑、医疗、航天航空等领域。
2、材料的分类:可以根据不同的属性将材料划分为金属材料、非金属材料和复合材料三大类。
金属材料包括铁、铜、铝等金属元素及其合金;非金属材料包括陶瓷、高分子材料等;复合材料是由两种或两种以上不同种类的材料组成的混合材料。
3、材料的性能:材料的性能包括力学性能、物理性能、热学性能、电学性能、化学性能等。
在材料导论中,学生将学习如何通过实验或者理论计算等方法来评价和分析材料的各种性能。
二、材料的结构和性质1、金属材料的结构和性质:金属材料通常以金属原子通过金属键连接而成的结晶结构,具有良好的导电、导热、可塑性和韧性等性质。
在材料导论课程中,学生将学习如何通过晶体学和相变等知识来理解和分析金属材料的结构和性质。
2、非金属材料的结构和性质:非金属材料通常以共价键或者离子键连接而成的分子、离子或原子结构,具有较好的绝缘、耐热、耐腐蚀等性质。
学生将学习如何通过结构化学等知识来理解和分析非金属材料的结构和性质。
3、复合材料的结构和性质:复合材料由两种或两种以上不同种类的材料组成,它具有各种不同种类材料的优点,并且能够弥补各种不同种类材料的缺点。
在材料导论中,学生将学习复合材料的组成、制备方法、结构和性质等知识。
三、材料的应用和研究方法1、材料的应用:材料广泛应用于工业、建筑、医疗、航天航空等领域。
在材料导论课程中,学生将学习各种材料的应用领域、特点以及相关的工程实例。
2、材料的研究方法:为了解释和分析材料的结构与性质,学者们提出了许多研究材料性质的方法。
例如,X射线衍射、透射电镜、扫描电镜等方法可以用来研究材料的结构;拉伸实验、冲击实验、硬度实验等方法可以用来研究材料的力学性能。
在材料导论中,学生将学习这些研究方法的原理、应用和操作技巧。
材料科学导论

材料科学导论材料科学导论材料科学是一门研究和应用材料的学科,它涵盖了材料的制备、性能、结构和应用等方面。
材料是现代科技发展的基础,无论是电子设备、汽车、建筑还是生物医学器械,都离不开优质的材料。
因此,材料科学的研究和应用对于社会的进步和发展起着重要的作用。
材料科学研究的内容十分广泛,其中包括金属材料、陶瓷材料、聚合物材料、复合材料等。
每一种材料都有其特殊的性能和应用领域。
例如,金属材料具有良好的导电性和热传导性,适用于电子、汽车等领域。
陶瓷材料具有优异的耐高温性能,可用于航空航天和高温装置中。
聚合物材料则具有良好的可塑性和耐腐蚀性,广泛应用于塑料制品和纤维材料等领域。
复合材料是由两种或多种不同材料组成的,它们的结合会产生比原材料更好的性能,如车辆和飞机上的碳纤维增强复合材料。
材料科学的研究方法主要包括材料制备、表征和性能测试等。
材料制备是指根据不同的要求和应用,选择不同的制备方法,包括熔炼、固相反应、溶液法等。
在材料制备的过程中,需要控制材料的成分、结构和形态,以实现所需的性能。
材料的表征是指使用各种技术手段对材料的成分、组织和性能进行分析和测试。
常用的表征方法有显微观测、X射线衍射、电子显微镜和热分析等。
而材料的性能测试则是对材料的各种特性进行量化和定量的测量,以评价材料的优劣和适用性。
材料科学的应用范围非常广泛。
在电子领域,材料科学的研究大大提升了电子器件的性能和可靠性,推动了信息技术的发展。
在能源领域,材料科学的研究为新能源的开发和利用提供了重要的支持,如太阳能电池、燃料电池等。
在医学领域,材料科学的应用促进了生物医学材料的研发,如人工关节、植入物等,有力地改善了人们的生活质量。
总之,材料科学是一门重要的学科,它对于社会的进步和发展有着不可替代的作用。
通过对不同材料进行研究和应用,能够改善生活品质,促进经济发展,推动科技创新。
因此,加强材料科学的研究和培养相关的专业人才,对于我们国家的可持续发展具有重要意义。
材料导论期末试题及答案

材料导论期末试题及答案第一部分:选择题题目一:材料的基本分类包括哪些?答案:常见的材料分类包括金属材料、非金属材料和复合材料。
题目二:以下哪种材料属于金属材料?A. 玻璃B. 陶瓷C. 铝D. 塑料答案:C. 铝题目三:复合材料的特点是什么?答案:复合材料由两种或两种以上的不同材料组成,具有综合利用不同材料的特点的优势,如高强度、高韧性、轻量化等。
题目四:在材料测试过程中,下列哪种测试方法可以得到材料的硬度值?A. 拉伸试验B. 弯曲试验C. 冲击试验D. 巴氏硬度试验答案:D. 巴氏硬度试验第二部分:非选择题题目五:请简述金属材料的特点及应用领域。
答:金属材料具有高强度、导电、导热等特点,常见的金属材料有铁、铝、铜等。
金属材料广泛应用于机械制造、建筑、电子等领域。
在机械制造领域,金属材料被用于制造强度要求高的零部件,如汽车发动机、飞机结构等。
在建筑领域,金属材料常用于建筑结构中,如钢结构、铝合金窗户等。
在电子领域,金属材料被用于制造电子元器件,如导线、电路板等。
金属材料由于其优良的性能,得到了广泛的应用。
题目六:什么是非金属材料?请列举三种非金属材料并简要介绍其应用。
答:非金属材料是指那些不含金属元素或金属化合物的材料,其特点一般是密度低、导电性能差、导热性能差等。
常见的非金属材料包括陶瓷、塑料和纤维素材料。
陶瓷材料具有高温耐久性和化学稳定性,在航空航天、能源和化工等领域得到广泛运用。
塑料材料具有良好的韧性和可塑性,广泛应用于包装、建筑、电子等行业。
纤维素材料具有较高的强度和较低的密度,常用于纸制品、纺织品等领域。
题目七:什么是复合材料?请说明复合材料的优点并列举两类复合材料。
答:复合材料是由两种或两种以上的不同材料经过一定的工艺和结合方式组合而成的新型材料。
复合材料具有以下优点:1. 综合利用材料的优点,发挥各种材料的优势,例如高强度、高韧性、轻量化等。
2. 具有可调性,通过改变复合材料中各材料的组合比例和结构,可以调节复合材料的性能。
材料导论复习重点(励杭泉版)

简答题1.晶粒细化为什么可以提高金属强度和韧性?晶界是位错运动的障碍,因而晶粒越细小,晶界的总面积越大,位错的运动越困难,材料的强度也就越高,细晶强化是指通过细化晶粒来提高金属的强度。
多晶体的强度高于单晶体,晶粒越细,强度越高。
此外晶粒细化还能使金属的韧性和塑性提高。
晶粒越细,单位体积中晶粒越多,变形时同样是变形量,便可以分散到更多的晶粒中,产生较均匀的变形而不改造成局部应力集中,引起裂纹的过早产生和发展2.具有什么的化合物能够结晶,讨论影响聚合物结晶度的因素?一切结构规整的聚合物分子链在适当条件小都可以结晶,但结晶度的高低则取决于分子链规整的程度以及外部条件。
化学规整性是指链的化学结构和构造的规整性。
从组成的角度看应该为均聚物链,如果是共聚连就不够规整,从几何的角度看应是线性链,有支化就不能算是规整。
立构规整性是指构型的规整性。
全同立构与间同立构的分子链具有规整性。
3.冷等静压成型的特点可以比较方便的提高成型压力,因胚体各向受力均匀,密度高而均匀,烧成缩水小。
所以不易变形,模具制作方便,寿命长,成本低,可以少用或不用粘黏剂。
可生产形状复杂,大件,细长的型胚。
成型质量高。
4.碳纤维与石墨纤维的区别?二者之间的联系?两者没有严格的分界线,区别仅在于碳化程度及石墨化程度的高低。
碳含量在92%~95%之间,模量在344GPA以下的为碳纤维,碳含量在99%以上,模量在344GPA以上的为石墨纤维。
在1300左右热解的为碳纤维,在1900以上热解的为石墨纤维。
特点:碳纤维有优异的扛蠕变和耐疲劳性能,并有突出的热稳定性。
不存在内应力,不需退火。
缺点:抗氧化性较差。
脆性,对应变敏感,耐冲击性差。
5.天然橡胶的优缺点各有哪些?优点:具有良好的综合性能,包括良好的弹性,较高的机械强度,耐屈挠,疲劳性能,多次形变发热低,良好气密性,防水性和可恢复原有弹性。
缺点:因含不饱和双键,所以化学性质活泼,易进行加成、取代、氧化、交联等反应,易老化,发生降解和交联,易老化。
材料导论

1)简述材料环的组成要素。
答:材料是宇宙中可用来制造有用物品的物质。
这些物质以各种形式分布在地球上、地壳中、海洋中甚至大气中。
这些物质不断地被发掘、被提取、被加工、被利用。
在材料的使用过程中有一部分会自动回到最初在大自然中的存在形式,在物品的使用寿命过后大部分材料可以被重新利用。
物质在这一系列过程中,从一种存在形式转化为另一种存在形式,生生不息。
这一过程可以看做是一个循环圈,我们将之称为材料环。
2)简述材料的四大分类及各类材料的组成、特点。
答:一、金属材料金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。
包括纯金属、合金、金属材料金属间化合物和特种金属材料等。
特点:高韧性,延展性好,强度高,导电性好。
二、无机非金属材料无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、硼酸盐等物质组成的材料。
是除有机高分子材料和金属材料以外的所有材料的统称。
特点:高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。
三、高分子材料高分子材料是有相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。
特点:有很高的分子量,质轻,密度小,有优良的力学性能,绝缘性能,隔热性能。
四、复合材料复合材料是由连续相的基体和被基体包容的相增强体组成。
基体材料分为金属和非金属两大类。
增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
特点:具有质量轻,较高的比强度、比模量、较好的延展性、抗腐蚀、隔热、隔音、减震、耐高(低)温等特点。
3)简述热塑性材料与热固性材料的区别。
答:热塑性材料:由线形长链分子组成,加热到某一温度(玻璃化温度或熔点)时发生流动,可以反复进行加工成型。
可以是结晶的也可以时非结晶的。
常见的有聚苯乙烯、聚氯乙烯、聚丙烯、聚乙烯,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Video 10. Thermal Expansion
Here comes the concept of thermal expansion. Everybody believe that material shall expand when heat and contract when cooled. It is called 热胀冷缩。
Here comes the question, how can you measure the ability of a material responding heat in changes of dimensions. You can do an experiment by heating a specimen in bar shape to a certain temperature liked shown in this diagram. You first measure the initial length of this specimen as l0. And record the temperature as T0. You also measure the final length as l f, and final temperature as T f. Then you get the change in temperature as delta t, and change in length as delta L. You get the thermal strain defined as delta L divide l0. You can build a linear relation between the thermal strain with changing temperature, defined as coefficient of linear thermal expansion, which is abbreviated as CTE alfa. Now you get an equation, which is epsilon sub t equals alfa times delta t. The alfa means the linear thermal expansion coefficient. Now you know the thermal expansion coefficient you can know the final change in length. You times epsilon sub t with initial length of L sub 0.
译文:下面是热膨胀的概念。
大家都知道材料受热发生膨胀,遇冷发生收缩。
这称为热胀冷缩。
我的问题是,怎样量化材料受热后发生形变的能力?大家可以通过图中所示的方法,讲一个条形材料的温度升高到某值,测量它的形变。
首先测量材料的初始长度,l0,初始温度,T0.在记录材料的最终长度,Lf,最终温度,Tf.这样就得到了温度变化,deltaT,长度变化,delta l。
通过构建一个形变和温度变化的线性关系,定义一个线性膨胀系数,缩写为alfa CTE。
这样就得到一个方程。
Epsilon t =alfa X delta t. alfa 代表线性膨胀系数。
知道了材料的线性膨胀系数,就可以估计材料在给定温度变化下的形变。
What are the differences of linear thermal expansion coefficients among different materials? You can get a general idea based on this table. From this table, you get that, Metals usually have a CTE value between 10 to 25. For polymers, it can be as high as 200. However, for ceramic materials, their CTE values below 10. You have a roughly idea that ceramics have the lowest thermal expansion coefficient; for polymer, its
CTE is the largest. What is the reason? If you compare the differences among these three types of materials, you know the bonding energy of ceramics is the strongest. But for polymers, the bonding energy is the weakest. It is easy to build a relation between CTE and bonding energy. It is like that. The stronger bonding energy, the lower the CTE. It actually makes sense. When you heat a material, elements inside the material will have higher energy. Then it will have higher vibration behavior. If the bonding energy is strong, then the movement of elements will be highly inhibited. That is the reason why ceramic has the lowest CTE value.
译文:不同材料间线性膨胀系数的区别是什么?你可以在这张表上得到一个大概的概念。
金属的CTE值在10-25之间,聚合物的可以高达200,陶瓷材料则通常小于10. 因此,你可以大概知道陶瓷的热膨胀系数最小。
聚合物的最大。
原因是什么?如果比较材料间的区别,你会发现陶瓷的键能最大,聚合物的键能最小。
因此很容易建立热膨胀的键能之间的关系。
键能越强,热膨胀系数最小。
这个关系很有道理。
当加热一个材料时,材料中的元素得到更高的能量。
它的震动更剧烈。
如果键能很高,元素的震动受限。
这就是陶瓷热膨胀系数最小的原因。
When we know thermal expansion properties, how do engineers take advantage of this property? Here comes one example. For metals, there is a general rule. The thermal expansion coefficient is reversely correlated to the melting point of a certain metal material. So, in that case, if we have two different metals: one have high melting point, the other has low melting point. If we stick these two materials together, then raise temperature. What happens is that. The low melting point metal will have high deformation. For the high melting point metal, the deformation will be lower. Therefore, the two materials will bend. This will cause a cut to a circuit. This property will be used for build temperature-control relays. It is widely applied in manufacture business.
译文:当知道热膨胀性能后,工程师怎么利用这一材料性能呢?这里有一个例子,对金属,有一个规律。
热膨胀系数和金属的熔点成反比。
因此,如果有两种金属材料,一种熔点高,另一种低。
将两种材料粘合。
则受热后,复合物向低熔点金属侧弯折,导致接通或者断开一段电路。
这个性质是建造温控开关的原理。