SPSS统计分析分析案例学习资料

合集下载

spss案例分析报告报告材料---详细演示

spss案例分析报告报告材料---详细演示

spss案例分析---详细演示1 研究问题石家庄18个县市14个指标因子,具体来说有人均GDP(元/人)、人均全社会固定资产投资额、人均城镇固定资产投资额、人均一般预算性财政收入、第三产业占GDP比重(%)、人均社会消费品零售额、人均实际利用外资额(万美元/人)、人均城乡居民储蓄存款、农民人均纯收入、在岗职工平均工资、人才密度指数、科技支出占财政支出比重(%)、每万人拥有执业医师数量、每千人拥有病床数。

要求根据这14项内容进行因子分析,得到维度较少的几个因子。

2 实现步骤【1】在“Analyze”菜单“Data Reduction”中选择“Factor”命令,如下图所示。

【2】在弹出的下图所示的Factor Analysis对话框中,从对话框左侧的变量列表中选择这14个变量,使之添加到Variables框中。

【3】点击“Descriptives”按钮,弹出“Factor Analysis:Descriptives”对话框,如图所示。

Statistics框用于选择哪些相关的统计量,其中:Univariate descriptives(变量描述):输出变量均值、标准差;Initial solution (初始结果)Correlation Matrix框中提供了几种检验变量是否适合做引子分析的检验方法,其中:Coefficients (相关系数矩阵)Significance leves (显著性水平)Determinant (相关系数矩阵的行列式)Inverse (相关系数矩阵的逆矩阵)Reproduced (再生相关矩阵,原始相关与再生相关的差值)Anti-image (反影像相关矩阵检验)KMO and Bartlett’s test of sphericity (KMO检验和巴特利特球形检验)本例中,选中该对话框中所有选项,单击Continue按钮返回Factor Analysis对话框。

【4】单击“Extraction”按钮,弹出“Factor Analysis:Extraction”对话框,选择因子提取方法,如下图所示:因子提取方法在Method下拉框中选取,SPSS共提供了7种方法:Principle Components Analysis (主成分分析)Unweighted least squares(未加权最小平方法)Generalized least squares (综合最小平方法)Maximum likelihood (最大似然估价法)Principal axis factoring (主轴因子法)Alpha factoring (α因子)Image factoring (影像因子)Analyze框中用于选择提取变量依据,其中:Correlation matrix (相关系数矩阵)Covariance matrix (协方差矩阵)Extract框用于指定因子个数的标准,其中:Eigenvaluse over (大于特征值)Number of factors (因子个数)Display框用于选择输出哪些与因子提取有关的信息,其中:Unrotated factor solution (未经旋转的因子载荷矩阵)Screen plot (特征值排列图)Maximun interations for Convergence框用于指定因子分析收敛的最大迭代次数,系统默认的最大迭代次数为25。

SPSS统计分析实例讲解

SPSS统计分析实例讲解

SPSS统计分析实例讲解引言在社会科学研究和商业分析中,统计分析是一个重要的工具,可以帮助我们理解数据背后的规律和关系。

SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,具有强大的数据处理和分析功能。

本文将通过一个实例,介绍如何使用SPSS进行统计分析。

实例背景假设我们是一家快餐连锁店的运营经理,我们想了解不同分店的顾客满意度与相关因素之间的关系。

为了实现这个目标,我们收集了以下三个变量的数据:1.顾客满意度:用于评估顾客对快餐店的满意程度,以1-10的等级进行评分。

2.服务质量:用于评估不同分店提供的服务质量,以1-5的等级进行评分。

3.价格水平:用于评估不同分店的价格水平,以1-5的等级进行评分。

我们希望通过分析这些数据,了解不同分店的服务质量和价格水平对顾客满意度的影响。

数据分析步骤步骤一:载入数据首先,我们需要将收集到的数据导入SPSS软件进行分析。

打开SPSS软件,点击菜单栏中的文件(File),选择导入(Import),然后选择收集到的数据文件进行导入。

步骤二:数据清洗在进行数据分析之前,我们需要对数据进行清洗,以确保数据的准确性和一致性。

一般来说,数据清洗包括以下几个方面的处理:•去除缺失值:检查数据中是否存在缺失值,如果有,可以删除含有缺失值的观测样本或者使用合适的方法进行填补。

•标准化变量:如果不同变量的测量单位和量级存在差异,可以对变量进行标准化处理,使得它们具有可比性。

•检查异常值:检查数据中是否存在异常值,如果有,可以进行修正或者删除。

•数据转换:对于非正态分布的变量,可以进行对数变换或者其他适当的转换,以满足统计分析的前提条件。

步骤三:描述性统计分析描述性统计分析是对数据的整体情况进行概括和描述的统计方法。

通过描述性统计分析,我们可以了解数据的中心趋势、离散程度和分布形态等。

在SPSS中,可以使用以下方法进行描述性统计分析:•平均值:计算变量的平均值,以反映数据的中心趋势。

SPSS统计分析_实例宝典

SPSS统计分析_实例宝典

SPSS统计分析_实例宝典SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社科、商科、医学等领域的数据分析和统计研究中。

SPSS提供了丰富的统计方法和分析工具,能够对数据进行描述性统计、假设检验、回归分析、方差分析、因子分析等等统计分析。

下面以一个实例宝典来介绍SPSS的使用。

假设我们有一份调查数据,包括了一些样本的年龄、性别、收入等变量。

我们希望利用SPSS对这份数据进行分析,得出一些有关样本特征的结论。

首先,我们需要导入数据。

在SPSS的菜单栏中,选择"File",然后点击"Open",找到我们保存的数据文件,并进行导入。

导入完成后,我们可以在数据视图中看到导入的数据,包括了各个变量的取值。

接下来,我们可以对数据进行描述性统计分析。

在菜单栏中选择"Analyze",然后点击"Descriptive Statistics",再选择"Frequencies"。

在"Frequencies"对话框中,选择我们感兴趣的变量(如年龄、性别、收入),然后点击"OK"。

SPSS将会为我们输出每个变量的频数、均值、标准差等描述性统计结果。

通过这些统计量,我们可以对样本的整体特征进行了解。

接着,我们可以进行一些比较性的分析。

比如,我们可以对不同性别的样本进行回归分析,探究性别对收入是否有显著影响。

在菜单栏中选择"Analyze",然后点击"Regression",再选择"Linear"。

在"Linear Regression"对话框中,选择我们的自变量(性别)和因变量(收入),然后点击"OK"。

SPSS将会为我们输出回归模型的系数、截距、残差等结果,帮助我们了解性别对收入的作用。

大学生spss数据分析案例

大学生spss数据分析案例

大学生spss数据分析案例大学生SPSS数据分析案例。

在大学教育中,数据分析是一个非常重要的环节,尤其是对于社会科学和商业管理专业的学生来说。

SPSS(Statistical Package for the Social Sciences)是一个专业的统计分析软件,广泛应用于学术研究和商业决策中。

本文将以一个大学生SPSS数据分析案例为例,介绍如何使用SPSS进行数据分析。

案例背景:某大学社会科学专业的学生对大学生活满意度进行了调查,并收集了相关数据,包括学生的性别、年级、专业、宿舍类型、课程质量、宿舍环境、社交活动等方面的信息。

现在需要对这些数据进行分析,以了解不同因素对大学生活满意度的影响。

数据准备:首先,需要将调查所得的数据录入SPSS软件中,确保数据的准确性和完整性。

在录入数据时,要注意将不同的变量分别录入不同的列中,以便后续的分析和处理。

数据分析:1. 描述统计分析。

首先,可以对各个变量进行描述统计分析,包括计算均值、标准差、频数分布等。

通过描述统计分析,可以直观地了解各个变量的分布情况,为后续的分析提供基础。

2. 相关性分析。

接下来,可以进行各个变量之间的相关性分析,通过相关系数的计算来了解不同变量之间的关联程度。

例如,可以分析学生的性别、年级、专业与大学生活满意度之间的相关性,以及宿舍类型、课程质量、社交活动等因素对大学生活满意度的影响程度。

3. 方差分析。

针对分类变量,可以进行方差分析,比较不同组别之间的均值差异是否显著。

例如,可以分析不同年级、不同专业的学生对大学生活满意度的差异情况,以及不同宿舍类型对大学生活满意度的影响是否显著。

4. 回归分析。

最后,可以利用回归分析来探讨不同因素对大学生活满意度的影响程度。

通过建立回归模型,可以了解各个自变量对因变量的影响情况,以及它们之间的关系强度和方向。

结论与建议:通过以上的数据分析,可以得出不同因素对大学生活满意度的影响程度,为学校和相关部门提供决策建议。

(可视化整理)spss统计分析-实例分析

(可视化整理)spss统计分析-实例分析

众数(Mode)统计学名词,在统计分布上具有 明显集中趋势点的数值,代表数据的一般水平( 众数可以不存在或多于一个)。 修正定义:是 一组数据中出现次数最多的数值,叫众数,有时 众数在一组数中有好几个。用M表示。 理性理解 :简单的说,就是一组数据中占比例最多的那个 数。
全距也称为极差,是数据的最大值与最小 值之间的绝对差。在相同样本容量情况下 的两组数据,全距大的一组数据要比全距 小的一组数据更为分散。 计算公式:最大值-最小值。
1.2 描述分析
计算基本描述统计量的操作
(1)分析—描述统计—描述 (2)将分析变量选择到变量框中 (3)单击选项按钮指定基本统计量
1.2 描述分析
1.2.2 应用例一
案例1-3:计算人均住房面积的基本描述统计量 ,并对本市户口和外地户口家庭的情况进行比较。 操作步骤:
• 调用命令Analyze\Descriptive Statistics \Descriptives
1.1频数分析
1.1频数分析
输出结果
1.1 频数分析_例1
例1-1 分析住房状况调查数据中户主的从业状况 和目前所住房屋的产权情况 思路:利用频数分布表及图形 条件:都是分类变量,直接分析 步骤:
• 调用命令:
• Analyze\Descriptive Statistics\Frequencies
常用统计量:均值、中位数、众数
1.2 描述分析
刻画离散程度的统计量
离散程度是指一组数据远离其“中心值”的程度。
如果数据都紧密地集中在“中心值”的周围,数据的离 散程度较小,说明这个“中心值”对数据的代表性好; 相反,如果数据仅是比较松散地分布在“中心值”的周 围,数据的离散程度较大,则此“中心值”说明数据特 征是不具有代表性的。

SPSS数据统计分析实例详解教学课件(二)

SPSS数据统计分析实例详解教学课件(二)

SPSS数据统计分析实例详解教学课件(二)1. SPSS简介SPSS是一款由IBM公司开发的统计分析软件,它可以对数据进行描述性统计、推断统计、因子分析、回归分析、聚类分析等多种分析方法。

它的用户群主要是社会科学、商业、医疗等领域的研究人员和分析师。

2. 数据导入在SPSS中,数据可以从多种来源导入,比如Excel、文本文件、数据库等。

导入数据时需要注意数据的格式和编码方式,以免导入后数据出现乱码或格式错误。

3. 描述性统计描述性统计是对数据进行基本的统计分析,包括计算均值、中位数、众数、标准差、方差等指标。

在SPSS中,可以通过菜单或语法来进行描述性统计分析。

4. 推断统计推断统计是对样本数据进行推断性分析,以了解总体的特征和差异。

包括假设检验、置信区间、方差分析、回归分析等方法。

在SPSS中,可以通过菜单或语法来进行推断统计分析。

5. 因子分析因子分析是一种多变量分析方法,用于确定多个变量之间的潜在因素或维度。

在SPSS中,可以通过菜单或语法来进行因子分析,并可以对因子进行旋转和解释。

6. 回归分析回归分析是一种用于建立变量之间关系的方法,包括简单线性回归、多元线性回归、逻辑回归等。

在SPSS中,可以通过菜单或语法来进行回归分析,并可以对结果进行解释和预测。

7. 聚类分析聚类分析是一种用于将数据分成不同组别的方法,以便于对不同组别进行比较和分析。

在SPSS中,可以通过菜单或语法来进行聚类分析,并可以对结果进行解释和可视化。

8. 结论SPSS是一款强大的数据统计分析软件,可以应用于多种领域的研究和分析。

通过学习SPSS的基本操作和分析方法,可以更好地理解和解释数据,并为决策提供支持。

用SPSS进行相关分析的典型案例

用SPSS进行相关分析的典型案例

数据预处理
缺失值处理
对于缺失值,可以采用删除缺失样本、均值插补、多重插补等方法进行处理。在本案例中,由于缺失值较少,采用删 除缺失样本的方法进行处理。
异常值处理
对于异常值,可以采用箱线图、散点图等方法进行识别和处理。在本案例中,通过箱线图发现存在少数极端异常值, 采用删除异常样本的方法进行处理。
数据标准化
06
典型案例三:经济学领域 应用
案例背景介绍
研究目的
探讨某国经济增长与失业率之间的关系 。
VS
数据来源
采用某国统计局发布的年度经济数据,包 括GDP增长率、失业率等指标。
SPSS操作步骤详解
1. 数据导入与整理 将原始数据导入SPSS软件。 对数据进行清洗和整理,确保数据质量和准确性。
SPSS操作步骤详解
显著性检验
观察相关系数旁边的显著性水平 (p值),判断相关关系是否具有 统计显著性。通常情况下,p值小 于0.05被认为具有统计显著性。
结果讨论
结合相关系数和显著性检验结果 ,讨论社会经济地位与心理健康 之间的关系。例如,可以探讨不 同教育水平或职业对心理健康的 影响,以及这种关系在不同人群 中的差异。
关注SPSS输出的显著性检验结果。如 果P值小于设定的显著性水平(如 0.05),则认为药物剂量与症状改善 程度之间的相关性是显著的,即两变 量之间存在统计学意义的关联。
结合专业背景和实际情境,对结果进 行解释和讨论。例如,如果药物剂量 与症状改善程度呈正相关且相关性显 著,可以认为增加药物剂量有助于改 善患者症状。同时,需要注意结果的 局限性和可能的影响因素,以便为医 学实践提供有价值的参考信息。
提出政策建议或未来研究方向,以促进经济增长和降 低失业率。

统计学课SPSS数据分析实战案例

统计学课SPSS数据分析实战案例

统计学课SPSS数据分析实战案例SPSS(统计分析系统)是一款常用的统计软件,被广泛应用于社会科学、商业、医学等领域的数据分析工作中。

通过这个案例,我们将运用SPSS软件进行数据分析,以展示统计学课的实战应用。

案例背景假设你是一位市场研究员,你的公司正在调查消费者对某产品的满意度。

你已经收集了一份随机抽样的数据集,包含了消费者的满意度评分以及他们的一些个人信息。

你的任务是对这些数据进行分析,以了解消费者满意度与个人信息之间是否存在关联。

数据集说明数据集包括了500个消费者的信息,具体变量如下:1. 变量1:满意度评分(连续变量,取值范围从1到10);2. 变量2:性别(分类变量,取值为男性和女性);3. 变量3:年龄(连续变量);4. 变量4:收入水平(分类变量,取值为低、中、高三个层次);5. 变量5:购买次数(连续变量,表示过去一年内购买该产品的次数)。

数据分析步骤以下是对这份数据集进行分析的步骤:1. 数据清洗和准备首先,我们需要检查数据集中是否存在缺失值或异常值,并进行数据清洗。

在SPSS中,我们可以使用数据查看和数据清洗的功能来完成这一步骤。

确保数据集中的每一列都没有缺失值,并且所有的异常值已经得到恰当的处理。

2. 描述性统计分析接下来,我们可以使用SPSS的描述性统计分析功能,对数据集进行描述性统计分析。

我们可以计算满意度评分、年龄和购买次数的平均值、标准差、最小值、最大值,并生成频数分布表和柱状图。

3. 相关性分析为了确定满意度评分与其他个人信息变量之间的关联性,我们可以使用SPSS的相关性分析功能。

通过计算满意度评分与性别、年龄、收入水平和购买次数之间的相关系数,我们可以评估它们之间的相关性。

4. 单因素方差分析我们可以使用SPSS进行单因素方差分析,以了解不同收入水平的消费者在满意度评分上是否存在显著差异。

通过观察方差分析表和显著性水平,我们可以得出初步结论。

5. 多元线性回归分析最后,我们可以使用SPSS的多元线性回归分析功能来建立一个回归模型,以预测满意度评分。

spss数据分析报告案例

spss数据分析报告案例

SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。

通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。

2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。

下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。

•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。

•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。

最小值为5小时,最大值为10小时。

•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。

最早就寝时间为22:00,最晚就寝时间为01:00。

•健康问题:共有45%的大学生存在健康问题。

3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。

利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。

T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。

3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。

使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。

F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。

3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。

利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。

SPSS统计分析案例(我国城镇居民消费结构及趋势的统计分析)

SPSS统计分析案例(我国城镇居民消费结构及趋势的统计分析)

SPSS统计分析案例专业:经济学姓名:000 学号:00000000一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。

本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。

二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。

但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。

第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。

衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。

随着收入的增加,衣着支出比重呈现先上升后下降的走势。

事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。

第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。

第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。

这是因为医疗保健支出作为生活必须支出,不论页脚内容1居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。

spss数据分析案例

spss数据分析案例

spss数据分析案例SPSS数据分析案例。

在实际的数据分析工作中,SPSS(Statistical Product and Service Solutions)是一个非常常用的统计分析软件。

它提供了强大的数据处理和分析功能,可以帮助研究人员快速、准确地进行数据处理和分析。

本文将通过一个实际的案例,介绍如何使用SPSS进行数据分析,并展示分析结果。

案例背景:某公司想要了解员工满意度与工作绩效之间的关系,为了达到这个目的,他们进行了一项调查,收集了员工的满意度评分和绩效评分数据。

现在,他们希望通过这些数据,利用SPSS进行分析,找出员工满意度和工作绩效之间的关系。

数据收集:首先,我们收集了100名员工的满意度评分和绩效评分数据。

满意度评分采用了1-5的五级评分制,绩效评分采用了1-100的百分制评分。

数据导入:将收集到的数据导入SPSS软件中,创建一个新的数据集,并将员工的满意度评分和绩效评分数据分别录入到不同的变量中。

数据描述统计分析:首先,我们对数据进行描述性统计分析,包括计算满意度评分和绩效评分的均值、标准差、最大值、最小值等。

这些统计量可以帮助我们更好地了解数据的分布情况。

相关性分析:接下来,我们使用SPSS进行相关性分析,探索员工满意度评分和绩效评分之间的相关关系。

通过相关性分析,我们可以计算出两个变量之间的相关系数,进而判断它们之间是否存在显著的相关性。

回归分析:在确定了员工满意度评分和绩效评分之间存在相关性的基础上,我们可以进一步进行回归分析,建立员工满意度评分对绩效评分的预测模型。

通过回归分析,我们可以得到员工满意度评分对绩效评分的影响程度,以及其他可能影响绩效评分的因素。

结论:通过SPSS数据分析,我们发现员工满意度评分与绩效评分之间存在显著的正相关关系,即员工满意度评分越高,其绩效评分也越高。

这为公司提高员工绩效提供了重要的参考依据,可以通过提升员工满意度来提高整体绩效水平。

总结:在本案例中,我们利用SPSS软件进行了员工满意度和绩效之间的数据分析。

spss数据分析简单案例

spss数据分析简单案例

spss数据分析简单案例SPSS数据分析简单案例。

在社会科学研究中,SPSS(统计分析软件包)被广泛应用于数据分析。

本文将通过一个简单的案例来介绍如何使用SPSS进行数据分析。

首先,我们收集了一份关于学生学习成绩的数据,包括学生的性别、年龄、每周学习时间和期末考试成绩。

我们的研究问题是探讨性别、年龄和每周学习时间对学习成绩的影响。

我们首先打开SPSS软件,导入我们收集的数据。

然后,我们可以使用SPSS 的数据编辑功能对数据进行清洗和整理,确保数据的准确性和完整性。

接下来,我们可以使用SPSS的描述性统计功能对数据进行分析。

我们可以计算每个变量的均值、标准差、最大值和最小值,从而对数据的分布和特征有一个直观的了解。

然后,我们可以使用SPSS的相关分析功能来探讨不同变量之间的相关性。

我们可以计算不同变量之间的皮尔逊相关系数,从而了解它们之间的线性关系。

在接下来的分析中,我们可以使用SPSS的回归分析功能来探讨性别、年龄和每周学习时间对学习成绩的影响。

我们可以建立一个多元线性回归模型,从而探讨不同变量对学习成绩的预测作用。

最后,我们可以使用SPSS的图表功能来进行数据可视化分析。

我们可以绘制散点图、柱状图和折线图,从而直观地展示不同变量之间的关系和趋势。

通过以上步骤,我们可以利用SPSS对学生学习成绩的数据进行全面的分析,从而回答我们的研究问题。

在实际研究中,我们还可以进一步探讨其他统计分析方法,如方差分析、卡方检验等,以深入挖掘数据的内在规律。

总之,SPSS作为一款功能强大的统计分析软件,为社会科学研究提供了重要的数据分析工具。

通过本文的简单案例,希望读者能够对SPSS的数据分析功能有一个初步的了解,并能够在实际研究中灵活运用,从而为研究工作提供有力的支持。

spss案例分析

spss案例分析

1、某班共有28个学生,其中女生14人,男生14人,下表为某次语文测验的成绩,请用描述统计方法分析女生成绩好,还是男生成绩好。

方法一:频率分析(1) 步骤:分析→描述统计→频率→女生成绩、男生成绩右移→统计量设置→图表(直方图)→确定 (2) 结果:统计量女生成绩男生成绩N有效 1515 缺失73 73 均值 69.9333 67.0000 中值 71.0000 72.0000 众数 76.00a48.00a标准差 8.91601 14.53567 方差 79.495 211.286 全距 30.00 46.00 极小值 54.00 43.00 极大值 84.00 89.00 和1049.001005.00a. 存在多个众数。

显示最小值(3)分析:由统计量表中的均值、标准差及直方图可知,女生成绩比男生成绩好。

方法二:描述统计(1)步骤:分析→描述统计→描述→女生成绩、男生成绩右移→选项设置→确定(2)结果:(3)分析:由描述统计量表中的均值、标准差、方差可知,女生成绩比男生成绩好。

2、某公司经理宣称他的雇员英语水平很高,现从雇员中随机随出11人参加考试,得分如下:80、81、72、60、78、65、56、79、77、87、76,请问该经理的宣称是否可信?(1)方法:单样本T检验H 0:u=u,该经理的宣称可信H 1:u≠u,该经理的宣称不可信(2)步骤:①输入数据:(80,81,…76)②分析→比较均值→单样本T检验→VAR00001右移→检验值(75)→确定(3)结果:单个样本统计量N 均值标准差均值的标准误VAR00001 11 73.73 9.551 2.880(4)分析:由单个样本检验表中数据知t=0.668>0.05,所以接受H,即该经理的宣称是可信的。

3、某医院分别用 A 、B 两种血红蛋白测定仪器检测了16名健康男青年的血红蛋白含量(g/L ),检测结果如下。

问:两种血红蛋白测定仪器的检测结果是否有差别?仪器A :113,125,126,130,150,145,135,105,128,135,100,130,110,115,120 ,155仪器B :140,150,138,120,140,145,135,115,135,130,120,133,147,125,114,165(1)方法:配对样本t 检验H 0:u 1=u 2,两种血红蛋白测定仪器的检测结果无差别 H 1:u 1≠u 2,两种血红蛋白测定仪器的检测结果有差别(2)步骤:①输入两列数据:A 列(113,125,…155);B 列(140,125,…165);②分析→比较均值→配对样本t 检验→仪器A 、仪器B 右移→确定(3)结果:成对样本统计量均值 N标准差 均值的标准误对 1仪器A 126.38 16 15.650 3.912 仪器B134.501613.7703.442(4)分析:由成对样本检验表的Sig 可见t =0.032小于0.05,所以拒绝H 0,即两种血红蛋白测定仪器的检测结果有差别。

SPSS数据统计分析实例详解教学课件(一)

SPSS数据统计分析实例详解教学课件(一)

SPSS数据统计分析实例详解教学课件(一)随着科技的发展和数字化时代的到来,数据统计分析已成为孜孜不息的热点话题,数据分析技能已经成为科学与商业世界的基础。

SPSS 数据统计分析是一个非常有名的统计分析软件,拥有强大的数据分析功能。

本文将详细介绍“SPSS 数据统计分析实例详解教学课件”,帮助读者了解如何使用 SPSS 进行数据分析。

一、SPSS 数据统计分析的基本操作SPSS 数据统计分析软件的主界面分为数据视图、变量视图和输出视图三个页面,分别用于输入、编辑数据、定义变量和显示结果。

在使用SPSS 进行数据分析时,首先需要了解基本操作。

数据视图中,可以输入或编辑数据,也可按条件查询数据。

变量视图中,可以定义变量和其属性,包括名称、标签、类型、值和缺失等信息。

输出视图中,可以查看数据的统计结果、绘制图表和输出报告。

二、SPSS 实例教学课件SPSS 实例教学课件是一种快捷、全面的学习方式,是 SPSS 数据统计分析学习的好帮手。

通过 SPSS 实例教学课件,学生可以快速了解如何使用 SPSS 分析数据,通过练习实例,不断提高 SPSS 的应用水平。

例如,输入数据、检查数据、描述数据、传统假设检验、相关分析、多重线性回归、非参数检验等等,通过实例的讲解与练习,学生可以深入了解到 SPSS 数据统计分析的应用。

三、SPSS 数据统计分析的应用SPSS 数据统计分析是在统计背景下解决业务问题的数据管理和分析过程。

通过 SPSS 数据统计分析,可以为用户提供客观、有效、及时的决策支持。

因此,SPSS 数据统计分析已广泛应用于商业、金融、医疗、科学等领域。

在商业中,SPSS 数据统计分析可以通过分析消费者行为、市场趋势等来帮助企业做出正确的决策;在金融领域,SPSS 数据统计分析可以对经济趋势、产品风险、财政收支等进行分析,在金融风险控制和风险管理方面起到重要的作用;在医疗领域,SPSS 数据统计分析可以研究疾病发病原理、治疗方法等,为医生提供科学决策;在科学领域,SPSS 数据统计分析可以对实验、观察、抽样等数据进行统计分析,为科学家解决问题提供科学依据。

SPSS统计分析分析案例

SPSS统计分析分析案例

SPSS统计分析分析案例案例:影响学生学业成绩的因素分析1.引言学业成绩作为评估学生学习成绩的重要指标,对于学校和家庭来说具有重要意义。

了解影响学生学业成绩的因素,对于制定有效的教学和管理措施具有指导意义。

本研究旨在通过SPSS统计软件对影响学生学业成绩的因素进行分析。

2.方法2.1参与者本研究的参与者为100名来自不同年级和专业的大学生。

2.2变量本研究共选取了以下影响学生学业成绩的因素作为自变量:学习时间、课堂参与度、家庭背景、学习动机、学习方法、自律性等。

学业成绩作为依变量。

2.3测量工具为了获取相关数据,本研究使用了以下测量工具:-学习时间:参与者填写每周学习时间的小时数。

-课堂参与度:参与者填写自己在课堂上的活跃程度,范围从1(非常低)到5(非常高)。

-家庭背景:参与者填写自己的家庭收入水平,范围从1(非常低)到5(非常高)。

-学习动机:参与者填写自己的学习动机程度,范围从1(非常低)到5(非常高)。

-学习方法:参与者选择自己使用的学习方法,包括书本阅读、听讲座、做练习等。

-自律性:参与者填写自己对学习的自律性程度,范围从1(非常低)到5(非常高)。

2.4数据分析为了分析影响学生学业成绩的因素,本研究将使用SPSS统计软件进行多元线性回归分析。

首先,我们将通过描述性统计分析了解参与者的学习时间、课堂参与度、家庭背景、学习动机、学习方法、自律性的情况。

然后,将进行相关分析,以评估各个因素之间的相关性。

最后,通过多元线性回归分析,确定各个因素对学业成绩的影响。

3.结果通过数据分析得到的初步结果显示,学习时间、课堂参与度、学习动机、自律性对学业成绩有显著的正向影响,而家庭背景因素对学业成绩影响较小。

具体来说,多元线性回归分析结果显示,学习时间、课堂参与度、学习动机和自律性对学业成绩的影响是显著的(p<0.05)。

然而,家庭背景对学业成绩的影响不显著(p>0.05)。

此外,学习方法与学业成绩之间的关系也需要进一步研究。

(可视化整理)spss统计分析-实例分析

(可视化整理)spss统计分析-实例分析

a. 户 口 状况 = 外 地 户口
频数分析
例:测量100名健康 成人的血清蛋白总含 量,形成数据serum (克/升),使用频数 分析了解这一数据的 统计特征。
频数分析
SPSS
的 操 作 步 骤
1、菜单中点分析/描述统计/频率,进入频 率对话框
SPSS
的 操 作 步 骤
2、将变量选入变量 窗口,再点击统计 量,进行设置,完 成后点继续返回
常用统计量:全距、方差、标准差
• 标准差(standard deviation--Std Dev):表示某 变量的所有变量值离散程度的统计量。
• SPSS中计算的是样本标准差。
• 方差(variance):标准差的平方。
• SPSS中计算的是样本方差。
• 极差 (range): (maximum)—(minimum)
Valid
10平米以下 10~20平 米 20~30平 米 30平 米 以上 Total System
Missing Total
案例1-2分析结果2
Statistics 人 均 面积 N Percentiles Valid Missing 25 50 75
Statisticsa 人 均 面积 N Percentiles Valid Missing 25 50 75
2993 0 13.6667 19.6250 26.6667
人 均 面积 N Percentiles
Statisticsa Valid Missing 25 50 75
2825 0 13.6667 19.4000 26.6667
168 0 13.4375 21.1250 35.0000
a. 户 口 状况 = 本 市 户口

第一章SPSS概览数据分析实例详解.doc

第一章SPSS概览数据分析实例详解.doc

该窗口上方的名称为 SPSS for Windows Viewer ,即(结果)浏览窗口,整个的 结构和资源管理器类似, 左侧为导航栏, 右侧为具体的输出结果。 结果表格给出 了样本数、 最小值、最大值、均数和标准差这几个常用的统计量。 从中可以看到, 24 个数据总的均数为 1.2846 ,标准差为 0.4687 。 我们以上的做法对吗? 当然有问题 !光看总的描述是不够的, 还应当看看分组的 描述情况。这里要用到文件分割功能, 请切换回数据管理窗口, 选择 Data==>Split File 菜单,系统弹出文件分割对话框如下:
1. 将数据输入 SPSS ,并存盘以防断电。 2. 进行必要的预分析(分布图、均数标准差的描述等),以确定应采 用的检验方法。 3. 按题目要求进行统计分析。 4. 保存和导出分析结果。 下面就按这几步依次讲解。
§1.1 数据的输入和保存
1.1.1 SPSS 的界面
当打开 SPSS 后,展现在我们面前的界面如下:
现在,第一、第二列的名称均为深色显示,表明这两列已经被定义为变量,其余 各列的名称仍为灰色的“ var ”,表示尚未使用。同样地,各行的标号也为灰色,表 明现在还未输入过数据,即该数据集内没有记录。
1.1.3 输入数据
我们先来输入变量 X 的值,请确认一行二列单元格为当前单元格,弃鼠标而用 键盘,输入第一个数据 0.84 ,此时界面显示如图 A 所示:
单击保存类型列表框, 可以看到 SPSS 所支持的各种数据类型, 有 DBF 、FoxPro 、 EXCEL 、ACCESS 等,这里我们仍然将其存为 SPSS 自己的数据格式( *.sav 文件)。在文件名框内键入 Li1_1 并回车,可以看到数据管理窗口左上角由 Untitled 变为了现在的变量名 Li1_1 。

SPSS相关分析案例讲解

SPSS相关分析案例讲解

SPSS相关分析案例讲解在数据分析领域中,SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件。

它提供了丰富的数据处理和统计分析功能,可以帮助研究人员和数据分析师有效地处理和分析数据。

本文将通过一个案例来讲解SPSS中的相关分析方法及其应用。

案例背景:某电子商务公司想要了解他们网站上不同产品类别的销售情况与顾客满意度之间的关系。

为了达到这个目标,他们进行了一项调查,收集了一份包含产品类别、销售额和顾客满意度的数据集。

数据集的字段说明:- 产品类别(Product Category):包括电子产品、家居用品和服装三个类别。

- 销售额(Sales):表示每个产品类别的销售额,以美元为单位。

- 顾客满意度(Customer Satisfaction):以1到5的评分表示顾客对产品类别的满意程度,其中1表示非常不满意,5表示非常满意。

问题陈述:基于以上数据集,我们的目标是分析不同产品类别的销售额与顾客满意度之间的相关关系。

解决方案:为了解决这个问题,我们将使用SPSS中的相关分析方法来计算销售额和顾客满意度之间的相关系数,并进行统计显著性检验。

以下是具体步骤:步骤1:导入数据首先,我们需要将数据导入SPSS软件。

打开SPSS软件,选择"File"菜单中的"Open"选项,并选择包含数据的文件。

确保数据文件的格式是兼容的,并正确地导入数据。

步骤2:描述性统计分析在进行相关分析之前,我们可以先对数据进行描述性统计分析,以了解数据的基本情况。

选择"Analyze"菜单中的"Descriptive Statistics"选项,然后选择"Explore"选项。

将"Sales"和"Customer Satisfaction"字段拖动到"Dependent List"和"Independent List"框中,然后点击"OK"按钮。

SPSS统计分析分析案例学习资料

SPSS统计分析分析案例学习资料

SPSS统计分析分析案例学习资料SPSS(统计分析软件,Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学研究。

它可以对数据进行统计描述、绘制图表和进行假设检验等分析。

以下是一个关于SPSS统计分析的案例学习资料。

案例背景:公司通过一项市场调查,收集到了一些数据,想要使用SPSS进行统计分析,以便更好地了解客户的需求和市场趋势。

数据描述:数据集共包含1000个样本,每个样本包含以下变量:1. 客户编号(CustomerID):以整数形式表示的唯一客户标识符。

2. 年龄(Age):以整数形式表示的客户的年龄。

3. 性别(Gender):以二进制形式表示的客户性别,其中1表示男性,0表示女性。

5. 购买次数(Purchases):以整数形式表示客户的购买次数。

6. 满意度评分(Satisfaction):以整数形式表示的客户对公司产品和服务的满意度评分(1-10)。

问题:分析这些数据并回答以下问题:1.客户的平均年龄是多少?标准差是多少?2.男性和女性客户的平均收入有差异吗?3.客户的购买次数与其年龄是否相关?4.满意度评分与收入之间是否存在线性关系?解决方案:1.打开SPSS软件并导入数据集。

2.进行描述性统计分析:a.在“分析”菜单中选择“描述性统计”并点击“频数”。

b.将“年龄”变量拖动到“变量”区域。

c.点击“统计”按钮并选中“平均值”和“标准差”。

d.点击“确定”按钮进行计算。

3.进行独立样本t检验:a.在“分析”菜单中选择“比较手段”并点击“独立样本t检验”。

b.将“收入”变量拖动到“因子”区域,将“性别”变量拖动到“分组变量”区域。

c.点击“确定”按钮进行计算。

4.进行相关性分析:a.在“分析”菜单中选择“相关”并点击“双变量”。

b.将“购买次数”和“年龄”变量拖动到“变量”区域。

c.点击“统计”按钮并选中“皮尔逊相关系数”和“双尾检验”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S P S S统计分析分析案例SPSS统计分析案例一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。

本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。

二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。

但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。

第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。

衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。

随着收入的增加,衣着支出比重呈现先上升后下降的走势。

事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。

第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。

第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。

这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。

第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。

可以看出,城镇居民的消费状况虽然受价格水平、消费习惯、消费环境、消费心理预期等诸多因素的影响,但归根结底仍取决于居民的收入水平,要提高城镇居民的消费支出,必须增加居民收入。

因此,采取切实有效的措施增加城镇居民的可支配收入,不仅可以提高全国城镇居民的总体消费水平,促进消费结构向着更加健康、合理的方向发展,而且在启动内需,促进我国的经济发展方面有着重大的现实意义。

三、我国居民消费结构的纵向分析进入21世纪以来,随着经济体制改革的深入,国民经济的迅速发展,我国城乡居民的消费水平显著提高,居民的各项支出显著增加。

随着消费水平的提高,我国城乡居民消费从注重量的满足到追求质的提高,从以衣食消费为主的生存型到追求生活质量的享受型、发展型,消费质量和消费结构都发生了明显的变化。

城镇居民在食品、衣着、家庭设备用品三项支出在消费支出中的比重呈现明显的下降趋势,其中食品类支出比重降幅最大;衣着类有所下降;家庭设备用品类下降幅度不是很大。

与此同时,医疗保健、交通通讯、文化娱乐教育服务、居住及杂项商品支出在消费支出中的比例均有上升,富裕阶段的消费特征开始显现。

四、我国城镇居民消费结构及趋势的统计分析下图是出自《中国统计年鉴—2009》这一资料性年刊,它系统收录了全国和各省、自治区、直辖市2008年经济、社会各方面的统计数据,以及近三十年和其他重要历史年份的全国主要统计数据。

此年鉴正文内容分为24个篇章,本文选取其中的第九篇章-人民生活,用以探究我国城镇居民消费结构及其趋势。

表1 《中国统计年鉴—2009》统计表9-5 城镇居民家庭基本情况财产性收入15.60 90.43 128.38 348.53 387.02 转移性收入328.41 725.76 1440.78 3384.6 3928.23 #可支配收入1510.16 4282.95 6279.98 13785.81 15780.76 平均每人消费性支出 (元) 1278.89 3537.57 4998.00 9997.47 11242.85 食品693.77 1771.99 1971.32 3628.03 4259.81衣着170.90 479.20 500.46 1042.00 1165.91居住60.86 283.76 565.29 982.28 1145.41 家庭设备用品及服务108.45 263.36 374.49 601.80 691.83 医疗保健25.67 110.11 318.07 699.09 786.20 交通通信40.51 183.22 426.95 1357.41 1417.12 教育文化娱乐服务112.26 331.01 669.58 1329.16 1358.26 杂项商品与服务66.57 114.92 171.83 357.70 418.31 平均每人消费性支出构成(人均消费性支出=100)食品54.25 50.09 39.44 36.29 37.89衣着13.36 13.55 10.01 10.42 10.37居住 6.98 8.02 11.31 9.83 10.19 家庭设备用品及服务10.14 7.44 7.49 6.02 6.15 医疗保健 2.01 3.11 6.36 6.99 6.99交通通信 1.20 5.18 8.54 13.58 12.60 教育文化娱乐服务11.12 9.36 13.40 13.29 12.08 杂项商品与服务0.94 3.25 3.44 3.58 3.72注:1.本表至9-17表为城镇住户抽样调查资料。

2.从2002年起,城镇住户调查对象由原来的非农业人口改为城市市区和县城关镇住户,本篇章相关资料均按新口径计算,历史数据作了相应调整。

五、SPSS统计分析图一给出了基本的描述性统计图,图中显示各个变量的全部观测量的Mean (均值)、Std.Deviation(标准差)和观测值总数N。

图2给出了相关系数矩阵表,其中显示3个自变量两两间的Pearson相关系数,以及关于相关关系等于零的假设的单尾显著性检验概率。

图1 描述性统计表图2 相关系数矩阵从表中看到因变量家庭设备用品及服务与自变量食品、衣着之间相关关系数依次为0.869、0.684,反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系。

说明食品与衣着对于家庭设备用品及服务条件的好转有显著的作用。

自变量居住于因变量家庭设备用品及服务之间的相关系数为-0.894,它于其他几个自变量之间的相关系数也都为负,说明它们之间的线性关系不显著。

此外,食品与衣着之间的相关系数为0.950,这也说明它们之间存在较为显著的相关关系。

按照常识,它们之间的线性相关关系也是符合事实的。

图3给出了进入模型和被剔除的变量的信息,从表中我们可以看出,所有3个自变量都进入模型,说明我们的解释变量都是显著并且是有解释力的。

图3 变量进入/剔除信息表图4给出了模型整体拟合效果的概述,模型的拟合优度系数为0.982,反映了因变量于自变量之间具有高度显著的线性关系。

表里还显示了R平方以及经调整的R值估计标准误差,另外表中还给出了杜宾-瓦特森检验值DW=2.632,杜宾-瓦特森检验统计量DW是一个用于检验一阶变量自回归形式的序列相关问题的统计量,DW在数值2到4之间的附近说明模型变量无序列相关。

图4 模型概述表图4给出了方差分析表,我们可以看到模型的设定检验F统计量的值为9.229,显著性水平的P值为0.236。

图5 方差分析表图6给出了回归系数表和变量显著性检验的T值,我们发现,变量居住的T值太小,没有达到显著性水平,因此我们要将这个变量剔除,从这里我们也可以看出,模型虽然通过了设定检验,但很有可能不能通过变量的显著性检验。

图6 回归系数表图7给出了残差分析表,表中显示了预测值、残差、标准化预测值、标准化残差的最小值、最大值、均值、标准差及样本容量等,根据概率的3西格玛原则,标准化残差的绝对值最大为1.618,小于3,说明样本数据中没有奇异值。

图7 残差统计表图8给出了模型的直方图,由于我们在模型中始终假设残差服从正态分布,因此我们可以从这张图中直观地看出回归后的实际残差是否符合我们的假设,从回归残差的直方图于附于图上的正态分布曲线相比较,可以认为残差的分布不是明显地服从正态分布。

尽管这样也不能盲目的否定残差服从正态分布的假设,因为我们用了进行分析的样本太小,样本容量仅为5。

图8 残差分布直方图从上面图4的分析结果看,我们的模型需要剔除居住这个变量,用本次实验中的方法和步骤重新令家庭设备用品及服务对食品和衣着回归,得到的主要结果如图9、图10和图11所示,跟上面的分析类似,从中可以看出,剔除居住这个变量后,模型拟合优度为0.964,比原来有所降低;而方差分析的F检验为27.071,新模型与原来的模型相比,各个系数都通过了显著性T检验,因此更加合理,从而我们可以得出结论:剔除居住这个变量后的模型更加合理,因此在做预测过程中要使用剔除不显著变量后的模型。

图9 模型概述图10 方差分析表图11 回归系数表六、我国居民消费变化的趋势特点(1)食品消费质量提高,衣着消费支出比重下降。

食品消费水平由过去简单的吃饱吃好,转变为品种更加丰富,营养更加全面。

一方面由于食品供应的日益充足。

另一方面由于在外饮食的增加,粮食消费比重减小,购买量大幅度下降。

衣着是两项基本生存资料之一,衣着消费向时装化、名牌化、个性化发展的倾向更加明显,成衣化倾向成为主流。

从衣着和食品消费比重的下降可以看出城镇居民满足基本生活的支出并没有随着收入水平的提高而提高,这表明我国城镇居民满足吃、穿为主的生存型消费需求阶段已经结束,逐步向以发展型和享受型消费的阶段过渡。

(2) 居民收入迅速增长,消费水平大幅度提高,消费结构呈现明显的富裕型特征消费是收入的函数,收入的增加是消费水平提高和消费结构变化的前提。

随着我国经济的发展,我国居民的收入水平不断提高,特别是21世纪以来,我国居民的收入水平迅速提高。

伴随着收入水平的提高,城乡居民各项支出全面增加,消费性支出大幅度增长。

今后5—10年以至更长时间,我国经济保持一个较高的增长速度是完全可能的,城乡居民的消费水平将大幅度提高。

(3)消费能级不断提高,消费内容日益丰富,住房与轿车消费同时升温,可望提前成为消费热点在消费水平提高和消费结构改善的同时,城乡居民的消费能级不断提高。

(4)以教育为龙头的娱乐教育文化服务类消费继续攀升随着人们对知识认知程度的提高和自我完善意识的增强,对教育的投入仍会保持增长。

目前从子女教育在人们储蓄目的位居前列的情况看,对教育及教育产品的投入仍是今后一个时期的消费热点。

相关文档
最新文档