初一数学有关三角形旋转的题
初一数学下学期培优训练小专题06 三角形折叠中的角度问题

初一数学下学期培优训练小专题06 三角形折叠中的角度问题 【例题讲解】【原题再现】有这样一道题:如图1,将ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内点A '的位置.试探索A ∠与12∠+∠之间的数量关系,并说明理由.(1)小明提出一种正确的解题思路:连接AA ',则么1∠、2∠分别为AEA '∆、ADA '∆的外角,…… 请你按照小明的思路解决上述问题.(2)【变式探究】如图2,若将原题中“点A 落在四边形BCDE 内点A '的位置”变为“点A 落在四边形BCDE 外点A '的位置”,试猜想此时A ∠与1∠、2∠之间的数量关系,并说明理由.(3)【结论运用】将四边形纸片(90ABCD C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若1110∠=︒,240∠=︒,直接写出ABC ∠的度数.解:(1)图1中,结论:2∠BAC =∠1+∠2, 理由是:连接AA ′. ∵沿DE 折叠A 和A ′重合,∴∠DAE =∠DA ′E ,∠EA ′A =∠EAA ′,∠DA ′A =∠DAA ′, ∵∠1=∠EA ′A +∠EAA ′,∠2=∠DA ′A +∠DAA ′, ∴∠1+∠2=∠EA ′A +∠EAA ′+∠DA ′A +∠DAA ′=2∠BAC ; (2)如图2,结论:2∠A =∠1-∠2. 理由:设EA ′交AC 于J .∵∠1=∠EJA +∠A ,∠EJA =∠A ′+∠2, ∴∠1=∠A ′+∠A +∠2=2∠A +∠2, ∴2∠A =∠1-∠2; (2)如图,根据折叠知:∠AEF =∠A EF ',∠EFD =∠'EFD ,AEA'=∠AEF=180°-110°=70°,∵∠1=110°,∴∠2∴∠AEF=35°,∵∠2=40°,∴2∠EFD=180°+∠2=220°,∴∠EFD=110°,∴∠A+∠D=360°-(∠AEF+∠EFD)= 215°,∴∠B=360°-(∠A+∠D)-∠C = 55°.【综合演练】1.如图,在△ABC中,点D是BC上的点,将△ABD沿着AD翻折得到△AED,若∠B=∠BAE=50°,则∠CDE的度数是()A.25°B.30°C.35°D.40°2.如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B 的度数为()A.57°B.60°C.63°D.70°3.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2的度数等于()A.10°B.15°C.20°D.25°4.如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCDE的外部时,测量得∠1=70°,∠2=152°,则∠A 为( )A .40°B .42°C .30°D .52°第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(共0分)5.如图,三角形纸片ABC 中,70A ∠=︒,75B ∠=︒.将三角形纸片的一角折叠,使点C 落在ABC 内,那么12∠+∠=_____________︒.6.在△ABC 中,点E 、F 分别为边AB 、AC 上的点,把△ABC 沿EF 翻折,翻折后的图形如图所示.若1+2110∠∠=︒,则A ∠的度数为___________.7.如图,把一张长方形纸片ABCD 沿EF 折叠,∠1=55°,则∠2=________°.8.将△ABC 纸片沿DE 按如图的方式折叠.若∠C =50°,∠1=85°,则∠2等于______.三、解答题(共0分)9.如图,将ABC纸片沿DE折叠,使点A落在四边形BCDE内点'A的位置,∠+∠之间的数量关系,并说明理由.(1)探索A∠与12(2)如果点A落在四边形BCDE外点''A的位置,A∠与1∠之间的数量关系有何变化,请说明理由.∠、210.在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P=_______;(2)【问题推广】如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP 于点H,若∠ACB=80°,求∠PBH的度数.(3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=100°,则∠BPC=_______;(4)【拓展提升】在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF 的角平分线交于点Q ,若∠EBF =α,∠DCF =β,直接写出∠Q 和α,β之间的数量关系. 11.如图,将一张三角形纸片ABC 的一角折叠,使得点A 落在四边形BCDE 的外部A '的位置且A '与点C 在直线AB 的异侧,折痕为DE ,已知90C ∠=︒,30A ∠=︒.(1)求12∠-∠的度数;(2)若保持A DE '的一边与BC 平行,求ADE ∠的度数.12.将ABC 纸片的一角CAB ∠折叠,使点A 落在点P 的位置,折痕为DE . (1)如图1,点A 落在ABC 内的点P 的位置.①若//PE AC ,那么PD 与AB 有怎样的位置关系,请说明理由; ②如图2,1∠、2∠与A ∠之间有怎样的数量关系?并说明理由;③连接CP 、BP ,已知CP 、BP 恰好分别平分ACB ∠、ABC ∠(如图3),1∠、2∠与CPB ∠之间有怎样的数量关系,并说明理由;(2)如图4,点A 落在ABC 外的点P 的位置.连接CP 、BP ,如果CP 、BP 恰好分别平分ABC 的两个外角MCB ∠,NBC ∠,那么1∠、2∠与CPB ∠之间的数量关系是______.(请直接写出结果)13.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ; (2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .14.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)(1)如图①,当AE ⊥BC 时,求证:DE ∥AC . (2)若10C B ∠-∠=︒,∠BAD =x° . ①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 15.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 16.如图1,将△ABC 纸片沿DE 折叠,使点C 落在四边形ABDE 内点C ’的位置, (1)①若00120,250∠=∠=,则C ∠= ; ②若042C ∠=,则12∠+∠= ;③探索C ∠ 、1∠与2∠之间的数量关系,并说明理由; (2)直接按照所得结论,填空:①如图中,将△ABC 纸片再沿FG 、MN 折叠,使点A 、B 分别落在△ABC 内点A ’、B ’的位置,则123456∠+∠+∠+∠+∠+∠= ;②如图中,将四边形ABCD 按照上面方式折叠,则128∠+∠++∠= ; ③若将n 边形123n A A A A 也按照上面方式折叠,则122n ∠+∠++∠= ;(3)如图,将△ABC 纸片沿DE 折叠,使点C 落在△ABC 边AC 上方点'C 的位置, 探索C ∠、1∠与2∠之间的数量关系,并说明理由.17.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,连接AB, (1)如图,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,①点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.②如图,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,记作点C′,则∠ABO = °;如图,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,记作点C′′,则∠ABO = °.(2)如图,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.答案与解析【例题讲解】【原题再现】有这样一道题:如图1,将ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内点A '的位置.试探索A ∠与12∠+∠之间的数量关系,并说明理由.(1)小明提出一种正确的解题思路:连接AA ',则么1∠、2∠分别为AEA '∆、ADA '∆的外角,…… 请你按照小明的思路解决上述问题.(2)【变式探究】如图2,若将原题中“点A 落在四边形BCDE 内点A '的位置”变为“点A 落在四边形BCDE 外点A '的位置”,试猜想此时A ∠与1∠、2∠之间的数量关系,并说明理由.(3)【结论运用】将四边形纸片(90ABCD C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若1110∠=︒,240∠=︒,直接写出ABC ∠的度数.解:(1)图1中,结论:2∠BAC =∠1+∠2, 理由是:连接AA ′. ∵沿DE 折叠A 和A ′重合,∴∠DAE =∠DA ′E ,∠EA ′A =∠EAA ′,∠DA ′A =∠DAA ′, ∵∠1=∠EA ′A +∠EAA ′,∠2=∠DA ′A +∠DAA ′, ∴∠1+∠2=∠EA ′A +∠EAA ′+∠DA ′A +∠DAA ′=2∠BAC ; (2)如图2,结论:2∠A =∠1-∠2. 理由:设EA ′交AC 于J .∵∠1=∠EJA +∠A ,∠EJA =∠A ′+∠2, ∴∠1=∠A ′+∠A +∠2=2∠A +∠2, ∴2∠A =∠1-∠2; (2)如图,根据折叠知:∠AEF =∠A EF ',∠EFD =∠'EFD ,AEA'=∠AEF=180°-110°=70°,∵∠1=110°,∴∠2∴∠AEF=35°,∵∠2=40°,∴2∠EFD=180°+∠2=220°,∴∠EFD=110°,∴∠A+∠D=360°-(∠AEF+∠EFD)= 215°,∴∠B=360°-(∠A+∠D)-∠C = 55°.【综合演练】1.如图,在△ABC中,点D是BC上的点,将△ABD沿着AD翻折得到△AED,若∠B=∠BAE=50°,则∠CDE的度数是()A.25°B.30°C.35°D.40°【答案】B【分析】根据翻折的性质得到∠BAD=∠EAD=25°,∠E=∠B=50°,根据三角形内角和定理推出∠ADE=∠ADB=105°,进一步计算即可解答.【解析】解:∵∠B=∠BAE=50°,将△ABD沿着AD翻折得到△AED,∴∠BAD=∠EAD=25°,∠E=∠B=50°,∴∠ADE=∠ADB=180°-50°-25°=105°,∴∠ADC=180°-∠ADB=75°,∴∠CDE=105°-75°=30°,故选:B.【点评】此题考查翻折的性质,三角形内角和定理,关键是掌握翻折的性质.2.如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B 的度数为()A .57°B .60°C .63°D .70°【答案】C【分析】根据折叠的性质可知:∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC ,根据三角形外角性质可得:∠DBA =∠BDC ﹣∠A =82°﹣40°=42°,进一步可求出∠ABE =∠A 'BE =21°,∠ABC =3×21°=63°,即原三角形的∠B =63°.【解析】解:由折叠性质可得,∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC , ∵∠BDC 是△BDA 的外角,∴∠DBA =∠BDC ﹣∠A =82°﹣40°=42°, ∴∠ABE =∠A 'BE =21°,∴∠ABC =3×21°=63°,即原三角形的∠B =63°, 故选:C .【点评】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC 是解答此题的关键.3.将△ABC 纸片沿DE 按如图的方式折叠.若∠C =50°,∠1=85°,则∠2的度数等于( )A .10°B .15°C .20°D .25°【答案】B【分析】由四边形的内角和及三角形内角和即可求得. 【解析】∵180A B C ∠+∠+∠=︒,且∠C =50゜ ∴180130A B C ∠+∠=︒-∠=︒同理,在△CDE 中,180130CDE CED C ∠+∠=︒-∠=︒ 由折叠性质得:A A ∠'=∠,B B '∠=∠ ∴130A B ''∠+∠=︒在四边形A B ED ''中,360A B A DE DEB ''''∠+∠+∠+∠=︒ ∴12360A B CDE CED ''∠+∠+∠+∠+∠+∠=︒ ∴130851302360︒+︒+︒+∠=︒ ∴∠2=15゜ 故选:B .【点评】本题考查了折叠的性质,多边形的内角和定理等知识,掌握多边形内角和定理及折叠的性质是关键.4.如图,将三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 的外部时,测量得∠1=70°,∠2=152°,则∠A 为( )A .40°B .42°C .30°D .52°【答案】B【分析】利用四边形的内角和定理求出B C ∠+∠,再利用三角形的内角和定理可得结果. 【解析】解:∵1=70∠︒,2=152∠︒,∴3601236070152138B C ∠+∠=︒-∠-∠=︒-︒-︒=︒, ∴180()18013842A B C ∠=︒-∠+∠=︒-︒=︒, 故选:B .【点评】此题考查了多边形内角与外角、三角形内角和定理,熟练掌握相关知识是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明5.如图,三角形纸片ABC 中,70A ∠=︒,75B ∠=︒.将三角形纸片的一角折叠,使点C 落在ABC 内,那么12∠+∠=_____________︒.【答案】70【分析】延长AF、BE交于点D,根据∠A=70°,∠B=75°,可得∠D=35°,由将纸片的一角折叠,使点C落在△ABC内,可得∠DFC+∠DEC=290°,即可得答案.【解析】解:延长AF、BE交于点D,∵∠A=70°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=35°,∴∠DFE+∠DEF=180°﹣∠D=145°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=290°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣290°=70°,故答案为:70.【点评】本题考查三角形中的折叠问题,解题的根据是掌握折叠的性质,灵活应用三角形内角和定理.6.在△ABC中,点E、F分别为边AB、AC上的点,把△ABC沿EF翻折,翻折后的图形如图所示.若∠的度数为___________.1+2110∠∠=︒,则A【答案】55︒【分析】如图,延长B′E交C′F的延长线于点A′,连接AA′.证明∠1+∠2=2∠EAF,可得结论.【解析】解:如图,延长B′E交C′F的延长线于点A′,连接AA′.∵∠1=∠EAA′+∠EA′A,∠2=∠F AA′+∠F A′A,∴∠1+∠2=∠EAF+∠EA′F,∵∠EAF=∠EA′F,∴∠1+∠2=2∠EAF=110°,∴∠A=55°.故答案为:55°.【点评】本题考查三角形内角和定理,翻折变换等知识,解题的关键是证明∠1+∠2=2∠EAF.7.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=________°.【答案】70【分析】根据长方形的对边平行知AD∥BC,得∠DEF=∠1=55°,再根据折叠的性质知∠GEF=∠DEF =55°,继而由∠AEG=180°−∠DEF−∠GEF可得答案.【解析】解:由题意知AD∥BC,∠1=55°,∴∠DEF=∠1=55°,根据折叠的性质知∠GEF=∠DEF=55°,则∠AEG=180°−∠DEF−∠GEF=180°-55°-55°=70°,∴∠2=70°,故答案为:70.【点评】本题考查了平行线的性质和折叠的性质,解题的关键是掌握两直线平行内错角相等的性质、折叠的性质.8.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.【答案】15︒【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【解析】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒, 在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒, 由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ , 四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°, 215∴∠=︒,故答案为:15︒.【点评】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.9.如图,将ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内点'A 的位置,(1)探索A ∠与12∠+∠之间的数量关系,并说明理由.(2)如果点A 落在四边形BCDE 外点''A 的位置,A ∠与1∠、2∠之间的数量关系有何变化,请说明理由. 【答案】(1)2∠A =∠1+∠2,理由见解析 (2)∠A =12(∠2-∠1),理由见解析【分析】(1)根据折叠性质得出∠AED=∠A′ED,∠ADE=∠A′DE,根据三角形内角和定理得出∠AED+∠ADE=180°-∠A,代入∠1+∠2=180°+180°-2(∠AED+∠ADE)求出即可;(2)先根据翻折的性质表示出∠1、∠2,再根据四边形的内角和定理列式整理即可得解.(1)2∠A=∠1+∠2,理由是:∵沿DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°-∠A,∠1+∠2=180°+180°-2(∠AED+∠ADE),∴∠1+∠2=360°-2(180°-∠A)=2∠A.(2)∵沿DE折叠A和A'′重合,∴∠AED=∠A′'ED,∠ADE=∠A′'DE,又∵∠1=∠A'ED-∠BED=∠AED-(180°-∠AED)=2∠AED-180°,∠2=180°-2∠ADE,∠AED+∠ADE=180°-∠A,∴12∠1+90°+90°-12∠2=180°-∠A,即∠A=12(∠2-∠1).【点评】本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.10.在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P=_______;(2)【问题推广】如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP 于点H,若∠ACB=80°,求∠PBH的度数.(3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=100°,则∠BPC=_______;(4)【拓展提升】在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF的角平分线交于点Q,若∠EBF=α,∠DCF=β,直接写出∠Q和α,β之间的数量关系.当F 在D 、E 之间时,如图4-2所示:同理可得112222FBQ EBF QCF DCF αβ∠=∠===,∠∠,180180FBC FCB DCF EBF αβ∠+∠=︒-∠-=︒--∠,∴1801802Q QBC QCB QBF FBC FCB QCF αβ+=︒--=︒----=∠∠∠∠∠∠∠;当点F 在D 点右侧时,如图4-3所示:同理可得1801802Q QBC QCB QBF FBC DCB QCD αβ-=︒--=︒----=∠∠∠∠∠∠∠; 综上所述,F 在E 左侧2Q βα-∠=;F 在ED 中间2Q αβ+∠=;F 在D 右侧2Q αβ-∠=.【点评】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质,平行线的性质,垂线的定义,熟知相关知识是解题的关键.11.如图,将一张三角形纸片ABC 的一角折叠,使得点A 落在四边形BCDE 的外部A '的位置且A '与点C 在直线AB 的异侧,折痕为DE ,已知90C ∠=︒,30A ∠=︒.(1)求12∠-∠的度数;(2)若保持A DE '的一边与BC 平行,求ADE ∠的度数. 【答案】(1)60°;(2)45°或30°【分析】(1)先求出∠B 的度数,在根据四边形内角和求出∠1+∠BFD 的度数,由∠BFD =∠A ′FE 和∠A ′的度数可求出答案.(2)分EA '∥BC 和DA '∥BC 两种情况讨论.当DA '∥BC 时,先求出∠A ′DA =90°,再根据折叠可得出∠ADE =45°;当EA '∥BC 时,根据平行线的性质求出∠2=∠ABC =60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE 的度数.【解析】解:(1)由折叠可知,30A A '∠=∠=︒在A EF '△中,2180A A FE ''∠+∠+∠=︒2180150A AFE A FE ''∴∠=︒-∠-∠=︒-∠在ABC 中,18060B C A ∠=︒-∠-∠=︒在四边形BCDF 中,1360C B BFD ∠+∠+∠+∠=︒1360210C B BFD BFD ∴∠=︒-∠-∠-∠=︒-∠因为BFD A FE '∠=∠1221015060∴∠-∠=︒-︒=︒(2)①当//DA BC '时,90ADA ACB '∠=∠=︒ADE 沿DE 折叠A DE '1452ADE A DE ADA ''∴∠=∠=∠=︒②当//EA BC '时,260ABC ∠=∠=︒由(1)知,1260∠-∠=︒,1260120∴∠=∠+︒=︒,ADE 沿DE 折叠A DE '()11801302ADE A DE ADA ''∴∠=∠=∠=︒-∠=︒综上,∠ADE 的度数为:45°或30°.【点评】本题考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,平行线的性质,属于综合题,但难度不大.熟记性质准确识图是解题的关键.12.将ABC 纸片的一角CAB ∠折叠,使点A 落在点P 的位置,折痕为DE .(1)如图1,点A 落在ABC 内的点P 的位置.①若//PE AC ,那么PD 与AB 有怎样的位置关系,请说明理由;②如图2,1∠、2∠与A ∠之间有怎样的数量关系?并说明理由;③连接CP 、BP ,已知CP 、BP 恰好分别平分ACB ∠、ABC ∠(如图3),1∠、2∠与CPB ∠之间有怎样的数量关系,并说明理由;(2)如图4,点A 落在ABC 外的点P 的位置.连接CP 、BP ,如果CP 、BP 恰好分别平分ABC 的两个外角MCB ∠,NBC ∠,那么1∠、2∠与CPB ∠之间的数量关系是______.(请直接写出结果)【答案】(1)①//PD AB ,理由见解析;②122A ∠+∠=∠,理由见解析;③123604CPB ∠+∠+︒=∠,理由见解析;(2)124360CPB ∠+∠+∠=︒,理由见解析【分析】(1)①若//PE AC ,则可推出ADE DEP ∠=∠,然后根据翻折的性质可推出PDE DEA ∠=∠,从而得出结论即可;②根据翻折的性质推出()123602ADE AED ∠+∠=︒-∠+∠,然后结合三角形的内角和推出180A ADE AED ︒-∠=∠+∠,从而代入替换得出结论即可;③根据CP 、BP 恰好分别平分ACB ∠、ABC ∠,可推出()12PCB PBC ACB ABC ∠+∠=∠+∠,然后结合②的结论进行变形整理即可; (2)根据题意可推出()12ACB ABC CPB ∠+∠=∠,然后结合三角形的内角和以及(1)中②的结论,综合整理求解即可.【解析】(1)//PD AB ,理由如下:∵//PE AC ,∴ADE DEP ∠=∠,由翻折的性质可得:ADE PDE ∠=∠,AED PED ∠=∠,∴PDE DEA ∠=∠,∴//PD AB ;②122A ∠+∠=∠,理由如下:由翻折的性质可得:ADE PDE ∠=∠,AED PED ∠=∠,∴11802ADE ∠=︒-∠,21802AED ∠=︒-∠,∴()123602ADE AED ∠+∠=︒-∠+∠,在ADE 中,180A ADE AED ︒-∠=∠+∠,∴()1236021802A A ∠+∠=︒-︒-∠=∠,在ABC 中,由②可知,∠ACB ∠+∠在PBC 中,180CPB ︒-∠12∠+∠+2)1∠+∠CP 、BP 恰好分别平分ABC 的两个外角)ACB ,PBC ∠∴在PBC 中,180PBC ∠=(11801802ABC ︒-∠︒-∠整理得:(12ACB ∠在ABC 中,∠由②可知,∠ACB ∠+∠1118022⎡︒-⎢⎣13.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠.(1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 . 【答案】(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式;(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【解析】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点评】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.14.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若10C B ∠-∠=︒,∠BAD =x°. ①如图②,当DE ⊥BC 时,求x 的值; ②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.【答案】(1)见解析;(2)①5x =,②存在,15x =或30.【分析】(1)根据折叠的性质得到∠B=∠E ,根据平行线的判定定理证明;(2)①根据三角形内角和定理分别求出∠C=60°,∠B=30°,根据折叠的性质计算即可;②分∠EDF=∠DFE 、∠DFE=∠E 、∠EDF=∠E 三种情况,列方程解答即可.【解析】(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC(2)①∵∠B+∠C=90°,10C B ∠-∠=︒∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=50°∵∠DFE=B BAF ∠+∠∴24050x +=∴5x =②由题意可得,∠ADC=40x +, ∠ABD=140x - ,∠EDF=140(40)1002x x x --+=-∠DFE=402x +(ⅰ)若∠EDF=∠DFE ,可得100-2402x x =+,解得15x =(ⅱ)若∠EDF=∠E ,可得100-240x =解得30x =(ⅲ)若∠DFE =∠E ,可得40240x +=解得0x =(舍去)综上可得15x =或30.【点评】本题考查了三角形折叠中的角度问题,熟知折叠的性质,平行的判定定理是解题的关键.15.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 【答案】(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角; (2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【解析】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点评】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.16.如图1,将△ABC 纸片沿DE 折叠,使点C 落在四边形ABDE 内点C ’的位置,(1)①若00120,250∠=∠=,则C ∠= ;②若042C ∠=,则12∠+∠= ;③探索C ∠ 、1∠与2∠之间的数量关系,并说明理由;(2)直接按照所得结论,填空:①如图中,将△ABC 纸片再沿FG 、MN 折叠,使点A 、B 分别落在△ABC 内点A ’、B ’的位置,则123456∠+∠+∠+∠+∠+∠= ;②如图中,将四边形ABCD 按照上面方式折叠,则128∠+∠++∠= ; ③若将n 边形123n A A A A 也按照上面方式折叠,则122n ∠+∠++∠= ;(3)如图,将△ABC 纸片沿DE 折叠,使点C 落在△ABC 边AC 上方点'C 的位置, 探索C ∠、1∠与2∠之间的数量关系,并说明理由.【答案】(1)①35︒;②84︒;③212C=+∠∠∠;(2)①360︒;②720︒;③3602(n )︒-;(3)221C=∠∠-∠【分析】(1)①由邻补角的定义可知∠CEC′=160°,∠CDC′=130°,根据折叠的性质可求出∠CED=80°,∠CDE=65°,然后根据三角形内角和定理求解即可;②由三角形内角和可求出∠CED+∠CDE=138°,再由折叠的性质可知∠CEC′+∠CDC′=276°,然后根据邻补角的定义可求出12∠+∠=84°;③由邻补角定义可知1+'=180CEC ∠∠︒,从而2+'=180CDC ∠∠︒,所以,∠1+ ∠CEC′+ ∠2+ ∠CDC′=360 °,结合+'+'+'=360C CEC C CDC ∠∠∠∠︒,可求出2=1+2C ∠∠∠;(2)① 由(1)得12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,从而123456∠+∠+∠+∠+∠+∠=2(∠A+∠B +∠C),结合三角形内角和求解即可;②由①可知,128∠+∠++∠= 2(∠A+∠B +∠C+∠D),结合四边形内角和求解即可;③由①可知,()()122218023602n n n ∠+∠++∠=⨯︒⨯-=︒⨯- ;(3)由外角的性质可知∠2=∠3+∠C ,∠3=∠1+∠C ,整理可得2=21C ∠∠-∠.【解析】解:(1)①∵00120,250∠=∠=,∴∠CEC′=160°,∠CDC′=130°,∵ ∠CED=80°,∠CDE=65°,∴∠C= 180°-80°-65°=35°;②∵042C ∠=,∴ ∠CED+∠CDE=180°-42°=138°,∴∠CEC′+∠CDC′=276°,∴12∠+∠=360°-276°=84°;③2=1+2C ∠∠∠,因为1+'=180CEC ∠∠︒,2+'=180CDC ∠∠︒,所以1+'+2+'=360CEC CDC ∠∠∠∠︒,因为在四边形'CEC D 中,+'+'+'=360C CEC C CDC ∠∠∠∠︒,所以1+2=+'C C ∠∠∠∠,因为='C C ∠∠,所以2=1+2C ∠∠∠.(2)① 由①得12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,∴123456∠+∠+∠+∠+∠+∠=2(∠A+∠B +∠C)=360°; ②∵12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,78∠+∠=2∠D ,∴128∠+∠++∠= 2(∠A+∠B +∠C+∠D)=2×360°=720°; ③∵n 边形内角和是()1802n ︒⨯-,∴()()122218023602n n n ∠+∠++∠=⨯︒⨯-=︒⨯- ;(3)2=21C ∠∠-∠.∵∠2=∠3+∠C ,∠3=∠1+∠'C =∠1+∠C ,∴∠2=∠1+∠C +∠C=∠1+2∠C ,∴2=21C ∠∠-∠.【点评】本题考查了折叠性质,三角形内角和定理,多边形的内角和定理,三角形外角的性质及图形类的规律与探究.熟练掌握折叠的性质和三角形内角和定理是解(1)的关键,利用(1)中规律是解(2)的关键,熟练掌握三角形外角的性质是解(3)的关键.17.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,连接AB,(1)如图,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,①点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.②如图,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,记作点C′,则∠ABO = °;如图,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,记作点C′′,则∠ABO = °.(2)如图,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.【答案】(1)①∠ACB 的大小不变,∠ACB=45°;②30°,60°;(2)∠ABO 为60°或72°.【分析】(1)①由直线MN 与直线PQ 垂直相交于O ,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB ,∠ABC=12∠ABM ,于是得到结论; ②由于将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,得到∠CAB=∠BAQ ,由角平分线的定义得到∠PAC=∠CAB ,根据三角形的内角和即可得到结论;根据将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,得到∠ABC=∠ABN ,由于BC 平分∠ABM ,得到∠ABC=∠MBC ,于是得到结论;(2)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO=12∠BAO ,∠EOQ=12∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一。
七年级下册数学三角形全等动点问题

初一数学全等三角形之动点问题专题(B类)一、考点、热点回顾动点型问题是近年来中考的一个热点问题。
动态几何问题就是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等,对运动变化过程伴随的数量关系和图形的位置关系等进行探究。
动点型问题集几何与代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,综合分析能力。
《等边三角形中的动点问题》是首先从三角形一边上的单动点运动,引起三角形的边与角的变化,判断三角形的形状变化;其次探讨三角形两边上的双动点运动,引起三角形的角与边的变化,再从在三角边上运动到三角形的边的延长线上运动,由三角形的形状探究到三角形的面积的探究等。
本设计是以等边三角形为主线,点的运动引起边、角的变化,三角形的形状的判断及三角形面积的大小,抓住图形中“变”和“不变”,以“不变的”来解决“变”,以达到“以静制动”,变“动态问题”为“静态问题”来解。
对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用。
本节课的教学设计,注意到了问题的层次性,由浅入深,由简单到复杂,从给定结论到结论开放,以等边三角形为载体,动点在三角形的边、延长线上运动等问题串的形式,层层递进,环环相扣,让不同的学生都有收收获,有所成功,还体现出了分类讨论、等积变换、三角函数等思想方法。
二、典型例题1、单动点问题引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动. 设点P 的运动时间为(s ),那么t=____时,△PBC 是直角 三角形?2、双动点问题引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形?巩固练习,拓展思维已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形?变式练习:1、已知,如图△ABC 是边长3cm 的等边三角形.动点P 从点A 出发,沿AB 向点BBCPA CQBPA QDBCPAA运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC.请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等?变式练习:2、已知等边三角形△ABC ,(1)动点P 从点A 出发,沿线段AB 向点B 运动,动点Q 从点B 出发,沿线段BC 向点C 运动,连接CP 、AQ 交于M ,如果动点P 、Q 都以相同的速度同时出发,则∠AMP=___度。
初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下面有4个汽车标志图案,其中是轴对称图形的有( )A.1个B.2个C.3个D.4个【答案】C.【解析】由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.【考点】轴对称图形.2.如图,将三角形ABC绕点O旋转得到三角形A/B/C/,且∠AOB=300,∠AOB/=200,则(1)点B的对应点是________________;(2)线段OB的对应线段是____________;(3)∠AOB的对应角是________________;(4)三角形ABC旋转的角度是__________;【答案】B′,OB′,∠A′OB′,50°.【解析】△ABC经过旋转得到△A′B′C′,旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,旋转角∠BOB′=∠AOB+∠AOB′.试题解析:依题意,△ABC经过旋转得到△A′B′C′,可知:旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,∠BOB′=∠AOB+∠AOB′=30°+20°=50°.【考点】旋转的性质.3.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质4.(本题4分)如图,在方格纸中,△ABC的三个顶点和点M都在小方格的顶点上.按要求作图,使△ABC的顶点在方格的顶点上.(1)过点M做直线AC的平行线;(2)将△ABC平移,使点M落在平移后的三角形内部.【答案】作图见解析.【解析】(1)根据直线AC经过的网格得出过点M作直线AC的平行线.(2)再将△ABC向下平移1个单位向右平移5个单位得出即可.试题解析:(1)如图所示:(2)如图所示:【考点】作图—基本作图和平移变换.5.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.6.在正方形网格中,每个小正方形的边长均为1个单位长度,△的三个顶点的位置如图所示,现将△平移,使点对应点,点分别对应点.(1) 画出平移后的△.(2) △的面积是_ ;(3) 连接,则这两条线段之间的关系是__ __.【答案】(1)作图见解析;(2)3.5;(3)平行且相等.【解析】(1)由图可得将△ABC先向左平移了3个单位长度,又向下平移了1个单位长度,则可画出图形;(2)△A′B′C′的面积等于边长为3的正方形的面积减去直角边长为2,1的直角三角形的面积,减去边长为1,3的直角三角形面积,减去直角边长为3,2的直角三角形的面积;(3)根据平移前后对应点的连线平行且相等判断即可.试题解析::(1)如图:=3×3-×1×2-×1×3-×2×3=3.5;(2)S△A′B′C′(3)平行且相等.【考点】作图—平移变换.7.如图的图形中只能用其中一部分平移可以得到的是()【答案】B.【解析】A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.【考点】利用平移设计图案.8.将长度为5cm的线段向上平移10cm,则所得线段的长度为()A.5cm B.10cm C.15cm D.无法确定【答案】A.【解析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得:线段长度不变,还是5cm.故选A.【考点】平移的性质.9.把图形(1)进行平移,能得到的图形是()【答案】C【解析】观察图形可知图形进行平移,能得到的图形C,故选C.【考点】生活中的平移现象.10.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。
七上数学动角问题解题技巧和方法

七上数学动角问题解题技巧和方法
七上数学动角问题解题技巧和方法包括:
1. 熟悉基本概念:理解平移、旋转和轴对称等图形运动的概念,明确它们的性质以及相互关系。
2. 掌握基本图形特征:注意各种运动中角的特殊形态,如90°的直角三角形、63°和75°的三角形等,这些角度在解决相关问题时具有重要的意义。
3. 培养观察与联想的习惯:根据题目的具体特征,灵活运用平移、旋转和轴对称等手段进行联想,从而将原问题转化为一个较为简单的问题进行处理。
4. 加强训练:通过大量的练习来熟悉不同的题型及其变化,不断提高自己的解题能力和方法。
5. 注意总结规律:对于动角问题中的一些特殊情形,例如只涉及到一个顶点绕某点旋转一定角度的问题,可以总结出一般性的规律,并记忆下来。
6. 利用三角函数或几何定理判断结论成立与否:在进行探索性思考时,要注意利用相关的几何定理或者用到相应的三角函数值来判断思考的方向是否正确。
总之,要解决七上的动角问题,需要多加练习并善于总结规律,同时也要注重观察、联想和验证。
旋转的特征

E
作直角, 即延长CB
┖
于是延长CB到F,并取
F
B
C
BF=DE,连结AF,得到 若连结FE,则△AEF
△ABF为旋转后的图形. 的形状有何特征?
练习:如图,△ACD、△AEB都是等腰直角三角形, ∠CAD =∠EAB=90°,画出△ACE以点A为旋转中 心,逆时针旋转90°后的三角形 。
E
A
DБайду номын сангаас
C B
2.香港特别行政区区旗中央的紫荆花图 案由5个相同的花瓣组成,它能够由其
中一瓣经过 4 次旋转 而得到, 每次旋转的 角度分别是 72°, 144°
216°, 288°
3.如图,它能够看作是由一个菱形绕某一点旋转 一个角度后,顺次按这个角度同向旋转而得的.
①请你在图中用字母O标出旋转中心;
②每次旋转了__6_0_°_度;
旋转后得△ABF,连结EF. 问:
A
D
(1)旋转中心是哪一点?
┖
(2)旋转角是多少度?
E
(3)△AEF是什么三角形?
┖
F
B
C
2、 如图,△ABC是等边三角形,点O是三条中线 的交点,△ABC以点O为旋转中心,旋转多少度后 能与原来的图形重合?
A
B
C
例3:已知Rt△ABC中,∠ACB=90°,∠A=35°
初一数学
⑴旋转的概念: 在平面内,将一个图形绕着 一个定点沿某个方向转动一个角度的运动 叫做图形的旋转,简称旋转.
⑵旋转的要素: 旋转中心、旋转方向、和旋转角. ⑶旋转的特征: 旋转不改变图形形状和大小,
只改变图形的位置.
1.如图,利用杠杆撬起重物,杠杆的旋转中心 在哪里?旋转角是哪个角?
初一数学三角形典型题

初一数学三角形典型题
三角形是初中数学中的重要内容之一,也是数学中的基础知识。
在初一数学中,我们经常遇到一些与三角形相关的典型题目。
这些题目既可以考察我们对三角形性质的理解,也可以锻炼我们的计算能力和逻辑思维能力。
一类常见的三角形典型题目是关于三角形的边长和角度的关系。
例如,给定一个三角形的两边长和夹角,我们需要计算第三边的长度。
这种题目要求我们运用三角函数和三角恒等式进行计算,考察我们对三角函数的掌握程度和运用能力。
另一类常见的三角形典型题目是关于三角形的面积和周长的关系。
例如,给定一个三角形的三边长,我们需要计算三角形的面积和周长。
这种题目要求我们掌握三角形面积公式和周长公式,并能熟练运用。
还有一类常见的三角形典型题目是关于三角形的相似性的问题。
例如,给定两个相似三角形的一些已知条件,我们需要计算另一些未知量。
这种题目要求我们理解相似三角形的性质,掌握相似三角形的比例关系,并能灵活运用。
除了以上几种典型题目,还有一些其他类型的三角形题目,如勾股定理的应用、正弦定理和余弦定理的运用等等。
这些题目不仅要求我们
掌握基本的三角函数和三角恒等式,还需要我们善于将所学知识应用到实际问题中,培养我们的解决问题的能力。
总之,初一数学中的三角形典型题目是我们学习三角形知识的重要组成部分,通过解决这些题目,我们能够提高我们的计算能力、逻辑思维能力和问题解决能力。
因此,我们需要认真学习三角形的基本知识,加强对三角形性质的理解,并积极解决各种类型的三角形题目,以提高自己的数学水平。
初一数学下册半角模型学生版使用练习题

半角模型例一:旋转变换是全等变换的一种形式,我们在解题实践中经常用旋转变换的方法来构造全等三角形来解决问题.(1)方法探究:如图①,在△ABC中,∠BAC=90°,AB=AC,点D、E在边BC上,∠DAE=45°试探究线段BD、CE、DE可以组成什么样的三角形.我们可以过点B作BF⊥BC,使BF =EC,连接AF、DF,易得∠AFB=45°进而得到△AFB≌△AEC,相当于把△AEC绕点A顺时针旋转90°到△AFB,请接着完成下面的推理过程:∵△AFB≌△AEC∴∠BAF=,AF=AE∵∠BAC=90°,∠DAE=45°∴∠BAD+∠CAE=∴∠BAF+∠BAD=45°∴∠DAF=45°=在△DAF与△DAE中AF=AE∠DAF=∠DAEAD=AD∴△DAF≌△DAE∴DF=∵BD、BF、DF组成直角三角形∴BD、CE、DE组成直角三角形(2)方法运用①如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,点E在边BC上,点F在边CD上,∠EAF=45°试判断线段BE、DF、EF之间的数量关系,并说明理由.②如图③,在①的基础上若点E、F分别在BC和CD的延长线,其他条件不变,①中的关系在图③中是否仍然成立?若成立请说明理由;若不成立请写出新的关系,并说明理由.例二:(1)如图1,四边形ABCD中,∠BAD=∠ADC=∠CBA=90°,AB=AD,点E、F 分别在四边形ABCD的边BC、CD上,∠EAF=45°,点G在CD的延长线上,BE=DG,连接AG,求证:EF=BE+FD.(2)如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠BAD=2∠EAF时,仍有EF=BE+FD成立吗?说明理由.(3)如图3,四边形ABCD中,∠BAD≠90°,AB=AD,AC平分∠BCD,AE⊥BC于E,AF⊥CD交CD延长线于F,若BC=9,CD=4,则CE=.(不需证明)例三:如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.例四:如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120度.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.(1)求证:MN=BM+NC;(2)求△AMN的周长为多少?例五:如图所示,△ABC是边长为1的正三角形,△BDC是顶角为120°的等腰三角形,以D为顶点做一个60°的∠MDN,点M、N分别在AB、AC上,求△AMN的周长.课后练习1、【感知】如图①,点M是正方形ABCD的边BC上一点,点N是CD延长线上一点,且MA⊥AN,易证△ABM≌△ADN,进而证得BM=DN(不要求证明)【应用】如图②,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.求证:BE+DF=EF.【拓展】如图③,在四边形ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边BC、CD上,且∠EAF=45°,若BD=3,EF=1.7,则四边形BEFD 的周长为.2、如图.在正方形ABCD中,点E,F分别为DC,CB延长线上的点.且满足∠EAF=45°,∠BAF=15°,连接EF,求证:DE﹣BF=EF.3、已知△ABC为等腰三角形,∠ACB=90°,M、N是AB上的点,∠MCN=45°,求证:AM2+BN2=MN2.【练】在(3)中,若M在BA延长线上,N在AB上,其余条件不变,试探究AM、BN、NM之间的关系.。
初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题1.在正方形网格中,每个小正方形的边长均为1个单位长度.三个顶点的位置如图所示,将点平移到,点平移到,点C平移到.(1)请画出平移后的,并写出点B经过怎样的平移得到?(2) 的面积是____________.(3)连接则这两条线段的数量关系是 __________.【答案】(1)画图见解析,把点B先向下平移4个单位长度,再向左平移4个单位长度即得到. (2)4;(3)相等.【解析】(1)利用A点平移规律得出对应点位置即可;(2)利用三角形面积公式求出即可;(3)利用平移规律得出两条线段之间的关系是平行且相等试题解析:(1)画图如下把点B先向下平移4个单位长度,再向左平移4个单位长度即得到.(2).(3)相等.【考点】平移的性质.2.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′,(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积.【答案】(1)(2)图形见解析;(3)△ABC的面积为8.【解析】(1)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据三角形的高线的定义作出即可;(3)根据扇形的面积公式列式计算即可得解.试题解析:(1)△A′B′C′如图所示;(2)△A′B′C′的高C′D′如图所示;(3)△ABC的面积=×4×4=8..【考点】作图-平移变换.3.如图,将边长为的等边△ABC沿边向右平移2cm得到△,则四边形ABFD的周长为.【答案】16.【解析】∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴BE=AD=2,EF=BC=4,DF=AC=4,∴四边形ABFD的周长=AD+AB+BE+EF+FD=2+4+2+4+4=16.故答案是16.【考点】1.平移的性质2.等边三角形的性质.4.下列图形是由其图中的一部分平移得到的是()A.B.C.D.【答案】D【解析】根据平移的性质,对选项进行一一分析,排除错误答案.解:A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的翻折得到的,故本选项错误;D、是利用图形的平移得到的,故本选项正确.故选D.点评:此题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折,以致选错.5.粗圆体的汉字“王、中、田”等都是轴对称图形,请再写出三个这样的汉字。
七年级(下)数学 第19讲 压轴综合题

初一数学春季班(教师版)压轴综合题内容分析本章主要针对图形在运动过程中存在的不变性进行推理论证,找出特殊的三角形的隐含条件作为辅助,解决相关角度不变性及比值和面积的相关问题,对于复杂的综合题,需添加辅助线,常见的辅助线有倍长中线构造全等,做高等,视具体题目而定.知识结构模块一:角度的不变性知识精讲本节主要运用三角形的内外角之间的关系进行换算和求解在动点下产生不变角的问题,特别是外角定理的运用在本节中非常重要.2/ 31【例1】 如图,已知∠MON =90°,点A 、B 分别在射线OM 、ON 上,∠OAB 的内角平分线与∠OBA 的外角平分线所在的直线交于点C . (1) 试说明∠C 与∠O 的关系;(2) 当点A 、B 分别在射线OM 、ON 上移动时,试问∠C 的大小是否发生变化,若保 持不变,求出∠C 的大小;若发生变化,求出其变化范围.【答案】(1)2∠C =∠O ;(2)不变,为45°. 【解析】∠ACB 的大小不变.理由:∵AC 平分∠OAB (已知),∴∠BAC =12∠OAB (角平分线的定义),∵BD 平分∠ABN (已知),∴∠ABD =12∠ABN (角平分线定义),∵∠ABN =∠MON +∠OAB (三角形的外角性质),∠ABD =∠ACB +∠BAC (三角形的外角性质),∴∠ACB =∠ABD -∠BAC =12(∠MON +∠OAB )-12∠OAB =12∠MON =12×90°=45°. 【总结】本题主要考察了三角形外角和定理,结合角平分线的性质.例题解析AB CDMN O4 / 31【例2】 如图,在平面直角坐标系中,△ABO 是直角三角形,∠AOB =90°,斜边AB与y轴交于点C .(1) 若∠A =∠AOC ,求证:∠B =∠BOC ;(2) 延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB =∠EOB ,∠OAE =∠OEA , 求∠A 的度数;(3) 如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P ,当△AOB 绕O 点旋转时(斜边AB 与y 轴正半轴始终交于点C ),在(2)的条件下,试问∠P 的度数是否发生变化?若不变,请求出其度数;若改变,请说明理由 【答案】(1)略;(2)∠A =30°;(3)不变,25°.【解析】(1)∵△AOB 是直角三角形∴∠A +∠B =90°,∠AOC +∠BOC =90° ∵∠A =∠AOC ,∴∠B =∠BOC .(2)∵∠A +∠ABO =90°,∠DOB +∠ABO =90° ∴∠A =∠DOB ,即∠DOB =∠EOB =∠OAE =∠OEA ∵∠DOB +∠EOB +∠OEA =90° ∴∠A =30°. (3)∠P 的度数不变,∠P =25°∵∠AOM =90°-∠AOC ,∠BCO =∠A +∠AOC 又OF 平分∠AOM ,CP 平分∠BCO∴∠FOM =45°-12∠AOC ,∠PCO =12∠A +12∠AOC∴∠P =180°-(∠PCO +∠FOM +90°)=45°-12∠A =25°. 【总结】本题主要考察了三角形内角和与外角和定理,融入结合角平分线的性质,综合性较强.ABCD ExyOA BCPMFxy O【例3】 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB ABCD S S ∆=四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①+DCP BOP CPO ∠∠∠的值不变,②+DCP CPOBOP ∠∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.42),=8ABCDS ;(2)P 1(0,4),P 2(0,-4);(3)①不变.【解析】(1)依题意知,将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,故C 、D 两点点y 值为2.所以点C ,D 的坐标分别为C (0,2),D (4,2),ABCDS= CO ×AB =2×4=8.(2)理由如下:设点P 到AB 的距离为h ,PAB S ∆=12×AB ×h =2h , 由PAB ABCD S S ∆=,得2h = 8,解得h = 4,∴P (0,4)或(0,-4). (3)①是正确的结论,过点P 作PQ ∥CD ,因为AB ∥CD ,所以PQ ∥AB ∥CD (平行公理的推论)∴∠DCP =∠CPQ ,∵∠BOP =∠OPQ (两直线平行,内错角相等), ∴∠DCP +∠BOP =∠CPQ +∠OPQ =∠CPO ,所以==1.【解析】本题考察了在平面直角坐标系中的数形结合问题,与平行线性质解决角的问题.ABCD Oy-1 A BCDOxyOABCD Px y3-136 / 31【例4】 如图,在平面直角坐标系中,∠ABO =2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE . (1) 求∠BAO 的度数;(2) 求证:∠C =15°+12∠OAP ;(3) P 在运动中,∠C +∠D 的值是否发生变化,若发生变化,说明理由,若不变,求 出其值.【答案】(1)∠BAO =30°;(2)详见解析; (3)不变化,105°.【解析】(1)∵∠ABO +∠BAO +∠AOB =180°,而∠AOB =90°,∠ABO =2∠BAO , ∴2∠BAO +∠BAO +90°=180°,∴∠BAO =30°;(2)∵∠CBP =12∠ABO ,∠ABO =2∠BAO ,∠BAO =30°,∴∠CBP =30°.由三角形外角定理,有:∠CPF =∠C +∠CBP ,∠APF =∠OAP +∠AOP ,而∠CPF =12∠APF ,∴∠C +∠CBP =12(∠OAP +∠AOP ),显然有:∠AOP =90°, ∴∠C +30°=12(∠OAP +90°)=12∠OAP +45°, ∴∠C =15°+12∠OAP ; (3)∵∠D +∠DOP +∠OPD =180°,而∠DOP =12∠EOF =1290°=45°,∴∠D +45°+∠OPD =180°,又∠OPD =∠C +∠CBP , ∴∠D +45°+∠C +∠CBP =180°,结合证得的∠CBP =30°, 得:∠D +∠C =180°-45°-∠CBP =135°-30°=105°. 即:点P 在运动时,∠D +∠C 的值保持不变,且∠D +∠C =105°. 【总结】本题主要考察了三角形内角和定理及外角和定理,结合角平分线的性质.ABCDEFP G O xy旋转问题是七年级几何证明中的一个难点,在旋转的过程中,找出隐含的边角之间的关系是解决旋转类问题的关键;本节的另一个难点是考察空间想象力,找出旋转之后的图形位置.【例5】 如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE +CF =AB . 【答案】详见解析【解析】∵ABCD 是正方形,∴OB =OC ,∠BAO =∠BCO =45°,由题意可得,∠EOB =∠COF =90°-∠BOF , ∴△EOB ≌△FOC , ∴CF =BE ,∴AB =AE +BE =AE +CF .【总结】本题主要考察了正方形的性质,利用三角形全等的性质证明线段之间的关系.模块二:旋转问题知识精讲例题解析ABCDEFGHKO8 / 31【例6】 如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90°,(1)在图1中,AC 与BD 相等吗,有怎样的位置关系?请说明理由.(2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗,为什么?【答案】(1)AC = BD ;(2)相等.【解析】(1)AC =BD∵△ABO 、△CDO 均为等腰直角三角形, ∴AO = BO ,CO = DO ∴AC = BD .(2)在图2中,∠AOB =∠COD =90°,∵∠DOB =∠COD -∠COB ,∠COA =∠AOB -∠COB , ∴∠DOB =∠COA ,在△DOB 和△COA 中,OD =OC ,∠DOB =∠COA ,OB =OA , ∴△DOB ≌△COA (SAS ), ∴BD = AC .【总结】本题主要考察了旋转运动的特点,相对简单.A B图1 DOB图2ADCOC【例7】 如图1,在梯形ABCD 中,AD ∥BC ,90C ∠=︒,点E 为CD 的中点,点F 在底边BC 上,且FAE DAE ∠=∠.(1)请你通过观察、测量、猜想,得出AEF ∠的度数;(2)若梯形ABCD 中,AD ∥BC ,C ∠不是直角,点F 在底边BC 或其延长线上,如图2、图3,其他条件不变,你在(1)中得出的结论是否仍然成立,若都成立,请在图2、图3中选择其中一图进行证明;若不都成立,请说明理由.【答案】(1)∠AEF =90°;(2)都成立,详见解析. 【解析】(1)∠AEF 的度数是90°.(2)都成立.以图2为例证明.证明:如图①,延长AE 交BC 的延长线于点G , ∵AD ∥BC ,∴∠D =∠ECG ,∠DAE =∠G , ∵E 为DC 的中点,∴DE =EC , ∴△ADE ≌△GCE (AAS ),∴AE =GE , ∵∠F AE =∠DAE ,∴∠F AE =∠G ,∴F A =FG , ∴EF ⊥AE ,∴∠AEF =90°.【总结】本题主要考察了旋转运动的特点,运动后边相等即相等的角,相对简单.ABCDE F ABCD EF ABC DEF图1图2图310 / 31【例8】 如图,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE ,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ). A . B .2对C .3对D .4对【答案】C【解析】试题分析:根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判 定方法(SSS 、SAS 、ASA 、AAS ),全等三角形的性质,再结合旋转的性质即可得到结 果.△EBC ≌△ACD ,△GCE ≌△FCD ,△BCG ≌△ACF .理由如下: BC =AC ,EC =CD ,∠ACB =∠ECD ,∠ACE 是共同角⇒△EBC ≌△ACD . CD =EC ,∠FCD =ECG ,∠GEC =∠CDF ⇒△GCE ≌△FCD .BC =AC ,∠GBC =∠FAC ,∠FCA =∠GCB ⇒△BCG ≌△ACF .故选C .【总结】本题主要考察了特殊三角形的性质,根据边和角之间的关系,证明三角形全等,得出相应的结论.【例9】 已知:如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:CF 平分∠AFB .(备注:直角边和斜边对应相等的两个直角三角形全等) 【答案】详见解析【解析】过C 点分别作CP ⊥AN ,交AN 于点P ,CQ ⊥BM 交BM 于点Q . 在△CAN 与△BCM 中,60?+AC CM CN BC ACN MCB MCN =⎧⎪=⎨⎪∠=∠=∠⎩,所以△CAN ≌△CMB , 所以BM =AN ,ACNBCMS S=, 因为12ACNSAN CP =,12BCMS BM CQ =,所以CP =CQ ; 易得△CPF ≌△CQF ,所以∠PFC =∠QFC ,所以CF 平分∠AFB .【总结】本题主要考察了特殊三角形的性质,根据边和角之间的关系,证明三角形全等,得出相应的结论.A B CD E FGKA BC D EFM N【例10】 如图1,E 、F 分别在正方形ABCD 的边BC 、CD 上,且∠EAF =45°.(1)请猜测线段EF 、BE 、DF 之间的等量关系并证明.(2)变式:如图2,E 、F 分别在四边形ABCD 的边BC 、CD 上,∠B +∠D =180°,AB =AD ,∠EAF =12∠BAD ,则线段BE 、EF 、FD 的等量关系又如何?请加以证明.【答案】(1)EF =BE +DF ;证明详见解析;(2)成立,详见解析. 【解析】(1)延长CB 到G ,使BG =FD ,∵∠ABG =∠D =90°,AB =AD ,∴△ABG ≌△ADF ,∴∠BAG =∠DAF ,AG =AF ,∵∠EAF =12∠BAD ,∴∠DAF +∠BAE =∠EAF ,∴∠EAF =∠GAE ,∴△AEF ≌△AEG ,∴EF =EG =EB +BG =EB +DF ,故答案为:EF =BE +FD .(2)结论成立,应为EF =BE +DF ,在CD 上截取DG =BE ,(如图) ∵BE =DG ,AB =AD ,∠B =∠ADG =90°,∴△ABE ≌△ADG , ∴∠BAE =∠DAG ,AG =AE ,∵∠EAF =12∠BAD ,∴∠EAF =∠F AG ,AF =AF ,AE =AG ,∴△AEF ≌△AFG (SAS ), ∴EF =FG =DF +DG =EB +DF .【总结】本题主要考察了利用旋转思想做辅助线构造全等的三角形,利用全等三角形的性质解决边的关系.ABCDE F 图1ABCD EF图2【例11】请阅读下列材料:已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究以线段BD、DE、EC三条线段的为边构成的三角形是什么三角形.小智的思路是:把△AEC绕点A顺时针旋转90°,得到△ABF,连结FD,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想以线段BD、DE、EC三条线段的为边构成的三角形是什么三角形,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.【答案】(1)直角三角形;(2)不变.【解析】(1)将△AEC绕点C逆时针旋转90°,使AC与AB重合,E至点E’,连接E’D,∵△AEC≌△AE’B,∴∠ABE’ =∠C=45°=∠CBA,∴△E’BD是直角三角形,∵A E’=AE,AD=AD,∠E’AB+∠BAD=∠CAE+∠BAD=45°=∠DAE,∴△A E’D≌△AED,∴E’D=ED,∴以线段BD、DE、EC三条线段的为边构成的三角形是直角三角形.(2)结论:仍然成立证明:作∠F AD=∠BAD,且截取AF=AB,连接DF,连接FE,∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°,∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴以线段BD、DE、EC三条线段的为边构成的三角形是直角三角形.【总结】本题主要考察了旋转的特点找出边角关系,构造全等三角形解决边的关系.12/ 31ABCDEMH【例12】 如图,在ABC ∆形外作等腰Rt ABD ∆和等腰Rt ACE ∆,使90BAD ∠=︒,90CAE ∠=︒,作AH BC ⊥于H ,延长HA ,交DE 于M ,求证:DM = ME .【答案】略【解析】作DG ∥AE 交AM 的延长线于点G∵90BAD CAE ∠=∠=, ∴+180DAE BAC ∠∠= 又∵+180DAE GDA ∠∠= ∴∠GDA =∠BAC ∵DG ∥AE ∴∠DGA =∠EAM , 又∵AH ⊥BC ,∴∠EAM +∠CAH =90°=∠CAH +∠ACB ∴∠DGA =∠ACB . ∵AD =AB , ∴△DGA ≌△ACB , ∴DG =AC =AE , ∴△DGM ≌△EAM , ∴DM =ME .【总结】本题综合性较强,考查的知识点比较多,包含等腰直角三角形的性质、两直线平 行内错角相等,及同角的余角相等,说理时要认真分析,找到其中的联系.ABCDEMHG14 / 31【例13】 在等边三角形ABC 的两边AB 、AC 所在直线上分别由两点M ,N ,D 为ABC ∆外一点,且60,120MDN BDC ∠=︒∠=︒,BD =CD .探究:当点M ,N 分别在直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.(1)如图(1),当点M 、N 在边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量关系是_________;此时_______QL =.(2)如图(2),当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明.(3)如图(3),当点M 、N 分别在边AB 、CA 的延长线上时,若AN x =,则Q =______(用含x 、L 的式子表示) .【答案】(1)BM +NC =MN ;23Q L =;(2)成立,详见解析;(3)Q =2x +23x . 【解析】(1)如图,BM 、NC 、MN 之间的数量关系BM +NC =MN .此时23Q L =. (2)猜想:结论仍然成立.证明:延长AC 至E ,使CE =BM ,连接DE . ∵BD =CD ,且∠BDC =120°,∴∠DBC =∠DCB =30°.又△ABC 是等边三角形, ∴∠MBD =∠NCD =90°.在△MBD 与△ECD 中:BM =CE ,∠MBD =∠ECD ,BD =DC , ∴△MBD ≌△ECD (SAS ). ∴DM =DE ,∠BDM =∠CDE . ∴∠EDN =∠BDC ﹣∠MDN =60°.在△MDN 与△EDN 中:DM =DE ,∠MDN =∠EDN ,DN =DN ,ABCD (1)M NABCD (2)MNCD (3)AB NM图1图2∴△MDN ≌△EDN (SAS ).∴MN =NE =NC +BM . ∴AMN 的周长Q =AM +AN +MN =AM +AN +(NC +BM ) =(AM +BM )+(AN +NC )=AB +AC =2AB . 而等边△ABC 的周长L =3AB . ∴23Q L =; (3)如图,当M 、N 分别在AB 、CA 的延长线上时,若AN =x ,则Q =2x +23L (用x 、L 表示).【总结】本题主要考察了利用旋转思想做辅助线构造全等的三角形,利用全等三角形的性质解决边的关系.【例14】 如图1,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分BAC ∠,交BD 于点F . (1)求证:12EF AC AB +=; (2)点1C 从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点1A 从点A 出发,沿着BA 的延长线运动,点1C 与1A 的运动速度相同,当动点1C 停止运动时,另一动点1A 也随之停止运动.如图2,11A F 平分11BAC ∠,交BD 于点1F ,过点1F 作1111F E AC ⊥,垂足为1E ,请猜想11E F ,1112A C 与AB 三者之间的数量关系,并证明你的猜想.【答案】(1)略;(2)E 1F 1+12A 1C 1=AB .16 / 31【解析】(1)如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E ,∴AE =12AC ,∠ABD =∠CBD =45°∵AF 平分∠BAC ,∴EF =MF ; 又∵AF =AF ,∴△AMF ≌△AEF , ∴AE =AM ,∵∠MFB =∠ABF =45°,∴MF =MB ,∴MB =EF ,∴EF +12AC =MB +AE =MB +AM =AB .(2)三者之间的数量关系:E 1F 1+12A 1C 1=AB 如图2,连接F 1C 1,过点F 1 作F 1P ⊥A 1B 于点P 1F Q BC ⊥于点Q∵11A F 平分∠11BAC ∴11E F PF = 同理111111QF PF E F PF QF ===∴又∵1111A F A F =∴11111Rt A E F Rt A PF △≌△∴111A E A P = 同理1111111111Rt QFC Rt E FC C Q C E AA CC ==≌∴由题意 ∴11112A B BC AB AA BC CC AB BC +=++-=+=AB 1111111111++++++2BP PF QF QBA B BC A P BP QB C Q A P C Q E F =====∴111111*********222+=2AB A E C E E F AC E F E F AC AB=++=+∴∴ 【总结】本题主要考察了旋转后的图形的位置和角度之间的关系,构造全等的三角形,利用全等三角形的性质解决边的关系.【例15】 如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE =∠ACB =90°,且BE 在AB边上,取AE 的中点F ,CD 的中点G ,连结GF . (1)FG 与DC 的位置关系是,FG 与DC 的数量关系是;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG ⊥CD ,FG =12CD ;(2)成立;详见解析. 【解析】(1)延长ED 交AC 的延长线于M ,连接FC 、FD 、FM∴四边形 BCMD 是矩形,∴CM=BD .又△ABC 和△BDE 都是等腰直角三角形,∴ED=BD=CM , ∵∠E =∠A =45°,∴△AEM 是等腰直角三角形.又F 是AE 的中点,∴MF ⊥AE ,EF=MF ,∠E =∠FMC =45º. ∴△EFD ≌△MFC . ∴FD=FC ,∠EFD =∠MFC . 又∠EFD +∠DFM =90°∴∠MFC +∠DFM =90°,即△CDF 是等腰直角三角形.又G 是CD 的中点,∴FG =12CD ,FG ⊥CD .(2)如图,证明方法同上; 先证明,△EFD ≌△MFC ,即可得到△CDF 是等腰直角三角形,得证.【总结】旋转类问题,利用等腰三角形的性质找出边和角的关系,通过全等三角形的性质解决边的关系.AB C DE FGMABC DEFGMABCDE FGACB18 / 31本节主要针对常规图形,添加合适的辅助线,如截长补短、倍长中线,添加平行线等构造全等的三角形,该类型题目综合性较强,考察同学们全等三角形判定和性质的综合运用能力.【例16】 数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC的中点.∠AEF =90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】(1)成立,详见解析;(2)成立,详见解析.模块三:构造全等类知识精讲例题解析A BC DE 图2FGABCDE 图1F GA BC 图3DE FG【解析】解:(1)成立.证明:在AB 上取一点M ,使AM =EC ,连接ME . ∴BM =BE ,∴∠BME =45°,∴∠AME =135°,∵CF 是外角平分线,∴∠DCF =45°,∴∠ECF =135°, ∴∠AME =∠ECF ,∵∠AEB +∠BAE =90°,∠AEB +∠CEF =90°, ∴∠BAE =∠CEF , ∴△AME ≌△ECF (ASA ), ∴AE =EF .(2)正确.证明:在BA 的延长线上取一点N .使AN =CE ,连接NE . ∴BN =BE ,∴∠N =∠NEC =45°,∵CF 平分∠DCG ,∴∠FCE =45°,∴∠N =∠ECF , ∵四边形ABCD 是正方形,∴AD ∥BE ,∴∠DAE =∠BEA , 即∠DAE +90°=∠BEA +90°,∴∠NAE =∠CEF , ∴△ANE ≌△ECF (ASA )∴AE =EF .【总结】本题主要考察了利用截长补短做辅助线构造全等的三角形,利用全等三角形的性质解决边的关系.MN20 / 31【例17】 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等边△ADF ,且DE ∥AF ,EF ∥AD ,连接CF .(1)如图1,当点D 在边BC 上时,求证:①BD =CF ;②AC =CF +CD ;(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC =CF +CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系.【答案】(1)详见解析;(2)AC =CF -CD ,详见解析;(3)AC = CD -CF .【解析】解:(1)证明:由题意得,AF =AD .∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =60°=∠DAF . ∠BAC ﹣∠DAC =∠DAF ﹣∠DAC ,即∠BAD =∠CAF .∵在△BAD 和△CAF 中,AB =AC ,∠BAD =∠CAF ,AD =AF ,∴△BAD ≌△CAF (SAS ). ∴CF =BD .∴CF +CD =BD +CD =BC =AC .即①BD =CF ,②AC =CF +CD . (2)AC =CF +CD 不成立,AC 、CF 、CD 之间存在的数量关系是AC =CF ﹣CD .理由如下:由(1)知:AB =AC =BC ,AD =AF ,∠BAC =∠DAF =60°, ∴∠BAC +∠DAC =∠DAF +∠DAC ,即∠BAD =∠CAF . ∵在△BAD 和△CAF 中,AB =AC ,∠BAD =∠CAF ,AD =AF , ∴△BAD ≌△CAF (SAS ).∴BD =CF .∴CF ﹣CD =BD ﹣CD =BC =AC ,即AC =CF ﹣CD . (3)补全图形如右:AC 、CF 、CD 之间存在的数量关系为AC =CD ﹣CF .【总结】本题主要考察了特殊三角形的性质,根据性质找出全等的三角形,再利用全等三角形的性质解决边的关系,综合性较强.A BCD 图1EFABC 图2D FECDAB图3【例18】已知如图1,在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AP与AB所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【答案】(1)AP=AB,AP⊥BQ;(2)AP=BQ,且AP与BQ垂直;(3)成立.【解析】(1)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,(2)AP=BQ,且AP与BQ垂直;理由如下:延长BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,∴∠PQC=45°=∠QPC,∴CQ=CP,在△BCQ和△ACP中,BC=AC,∠BCQ=∠ACP,CQ=CP∴△BCQ≌△ACP(SAS),∴AP=BQ,∠CBQ=∠P AC,∵∠ACB=90°,∴∠CBQ+∠BQC=90°,∵∠CQB=∠AQG,∴∠AQG+∠P AC=90°,∴∠AGQ=180°-90°=90°,∴AP⊥BQ,(3)成立,理由如下:①如图,∵∠EPF=45°,∴∠CPQ=45°,又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP,在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP,CQ=CP,∴Rt△BCQ≌Rt△ACP(SAS),∴BQ=AP,②如图3,延长QB交AP于点N,则∠PBN=∠CBQ,∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC,在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴QB⊥AP.【总结】本题主要考察了等腰三角形再平移的问题,通过全等三角形的性质解决边的关系,题目较复杂.22/ 31321【例19】直线CD 经过∠BCA 的顶点C ,CA =CB .E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =∠α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上,请解决下面两个问题: ①图1,若∠BCA =90°,∠α=90°,则EF __________|BE -AF |(填“>”,“<”或“=”号); ②如图2,若0°<∠BCA <180°,若使①中的结论仍然成立,则∠α与∠BCA 应满足的关系是__________;(2)如图3,若直线CD 经过∠BCA 的外部,∠BCA =∠α,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.【答案】(1)①=;②∠α+∠BCA =180°;(2)EF =BE +AF . 【解析】解:(1)①=;②所填的条件是:∠α+∠BCA =180°,证明:在△BCE 中,∠CBE +∠BCE =180°-∠BEC =180°-∠α, ∵∠BCA =180°-∠α,∴∠CBE +∠BCE =∠BCA , ∵∠ACF +∠BCE =∠BCA , ∴∠CBE =∠ACF又∵BC =CA ,∠BEC =∠CF A , ∴△BCE ≌△CAF (AAS ) ∴BE =CF ,CE =AF ,又∵EF =CF -CE ,∴EF =|BE -AF |; (2)EF =BE +AF .∵∠1+∠2+∠BCA =180°,∠2+∠3+∠CF A =180° ∵∠BCA =∠α=∠CF A ,∴∠1=∠3;又∵∠BEC =∠CF A =∠α,CB =CA ,∴△BEC ≌△CF A (AAS ), ∴BE =CF ,EC =F A ,∴EF =EC +CF =BE +AF .【总结】本题主要考察了通过角度的转换,找出等量关系,构造全等三角形,通过全等的性质解决边的关系,题目较复杂.A BCDEFA B CDE F ABC DEF 图1图2图324 / 31【习题1】 在五边形ABCDE 中,已知AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,连接AD .求证:AD 平分∠CDE . 【答案】详见解析.【解析】证明:∵AB =AE ,∠ABC +∠AED =180°.∴把△ABC 旋转∠BAE 的度数后BC 和EC ′重合, 且∠ABC =∠AEC ′,BC =EC ′ ∴△ABC ≌△AEC ',∴AC =AC ′, 又BC +DE =CD ,BC =EC ′,∴CD =DC ′,在△ACD 和△ADC ′中,AC =AC ,,AD =AD ,CD =CD ,, ∴△ACD ≌△ADC ′, ∴∠CDA =∠ADC ′, ∴AD 平分∠CDE .【总结】本题主要考察了全等三角形判定的条件,添加合适的辅线,证明相关问题.【习题2】 用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD .把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB ,AC 重合.将三角尺绕点A 按逆时针方向旋转.(1) 当三角尺的两边分别与菱形的两边BC ,CD 相交于点E ,F 时,(如图1),通过 观察或测量BE ,CF 的长度,你能得出什么结论?并证明你的结论;(2) 当三角尺的两边分别与菱形的两边BC ,CD 的延长线相交于点E ,F 时(如图2), 你在(1)中得到的结论还成立吗?简要说明理由. 【答案】(1)BE =CF ;(2)成立,详见解析.随堂检测AB CDEAB CDEF ABF EC D图1图2【解析】(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(2)BE=CF仍然成立.证明:在△ACE和△ADF中,∵∠CAE+∠EAD=∠F AD+∠DAE=60°,∴∠CAE=∠DAF,∵∠BCA=∠ACD=60°,∴∠FCE=60°,∴∠ACE=120°,∵∠ADC=60°,∴∠ADF=120°,在△ACE和△ADF中,FAD CAEAC ADADF ACE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACE≌△ADF,∴CE=DF,∴BE=CF.【总结】本题主要考察了图形的旋转问题,结合特殊的三角形的性质,通过证明全等三角形解决边的关系.26 / 31G【习题3】如图17(1),正方形ABCD ,E 、F 分别为BC 、CD 边上一点. ①若∠EAF =45°,求证:EF =BE +DF ;②若△AEF 绕A 点旋转,保持∠EAF =45º,问△CEF 的周长是否△AEF 位置的变化而变化? (2)如图17(2),已知正方形ABCD 的边长为1, BC 、CD 上各有一点E 、F ,如果△CEF 的周长为2,求∠EAF 的度数.(3)如图17(2),已知正方形ABCD ,F 为BC 中点,E 为CD 边上一点,且满足 ∠BAF =∠F AE ,求证:AE =BC +CE . 【答案】(1)不变,周长为定值是2倍边长; (2)∠EAF =45°;(3)详见解析. 【解析】(1)证明:延长CB 到G ,使GB =DF , 连接AG (如图)∵AB =AD ,∠ABG =∠D =90°,GB =DF , ∴△ABG ≌△ADF (SAS ), ∴∠3=∠2,AG =AF ,∵∠BAD =90°,∠EAF =45°,∴∠1+∠2=45°,∴∠GAE =∠1+∠3=45°=∠EAF , ∵AE =AE ,∠GAE =∠EAF ,AG =AF ,∴△AGE ≌△AFE (SAS ),∴GB +BE =EF ,∴DF +BE =EF . (2)辅助线如上图所示:∵△CEF 的周长为2,∴EF =BE +CF =BE +BG =EG ,在△AGE 和△AFE 中EF EGAE AE AG AF =⎧⎪=⎨⎪=⎩,∴△AGE ≌△AFE (SSS ),∴∠1+∠3=∠EAF ,又∵∠1+∠2+∠EAF =90°,∠3=∠2,∴∠EAF =45°. (3)过F 点作FG ⊥AE 交AE 于点G ,在△ABF 和△AFG 中,∠BAF =∠F AE ,AF=AF ,∠ABF =∠AGF =90°, ∴△ABF ≌△AFG ,∴AF=FG=FC , 又∵FE=FE ,∠FGE =∠FCE =90°, ∴△FGE ≌△FCE ,∴CE =EG , ∴AE =AG +GE =AB +EC .【总结】根据角平分线作垂线,构造全等的三角形,结合全等三角形的性质解决边的关系.【习题4】 已知:如图,MN ⊥PQ ,垂足为O ,点A 、B 分别在射线上OM 、OP 上,直线图17(2)FEDCBAFE DCBA图17(1)BE 平分∠PBA 与∠BAO 的平分线相交于点C . (1)若∠BAO =45°,求∠ACB ;(2)若点A 、B 分别在射线上OM 、OP 上移动,试问∠ACB 的大小是否会发生变化?如果保持不变,请说明理由;如果随点A 、B 的移动发生变化,请求出变化的范围.【答案】(1)∠ACB =45°;(2)不变,详见解析. 【解析】(1)∵MN ⊥PQ ,∴∠BOA =90°,在△ABO 中,∠PBA =∠BAO +∠BOA =45°+90°=135°, ∵∠PBA 与∠BAO 的平分线相交于点C ,∴∠BAC =12∠BAO =12×45°=22.5°,∠FBA =12∠PBA =12×135°=67.5° 在△ABC 中,∠ACB =∠FBA ﹣∠BAC =67.5°﹣22.5°=45°;(2)∵MN ⊥PQ ,∴∠BOA =90°,在△ABO 中,∠PBA =∠BAO +∠BOA =∠BAO +90°, ∴∠PBA 与∠BAO 的平分线相交于点C , ∵∠BAC =12∠BAO ,∠FBA =12∠PBA =12(∠BAO +90°)=12∠BAO +45°,在△ABC 中,∠ACB =∠FBA ﹣∠BAC =12∠BAO +45 °﹣12∠BAO =45°. 【总结】本题主要考察了不变的角的一般求解过程,结合角平分线的性质,通过内角及外角的定理计算角度的相关问题.ABCP E FMNO Q28 / 31【作业1】 等边△ABD 和等边△CBD 的边长均为1,E 是AD 上异于A 、D 的任意一点,BE ⊥AD ,F 是CD 上一点,满足AE +CF =1,当E 、F 移动时,试判断△BEF 的形状. 【答案】等边三角形.【解析】在△ABE 与△DBF 中,∠A =∠BDF =60°,AB =BD ,AE =1-CF =DF , ∴△ABE ≌△DBF (ASA )∴BE =BF∴△BEF 为等腰三角形,其中BE ,BF 为腰,EF 为底, 又∵∠EBF =60°,∴△BEF 是等边三角形.【总结】本题主要考察了特殊的三角形的性质,通过证明全等三角形特殊角判定特殊的三角形.【作业2】 复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB =AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,则BQ =CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ =CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ =CP ”仍然成立,请你就图②给出证明.【答案】详见解析. 【解析】∵∠QAP =∠BAC ,∴∠QAP +∠P AB =∠P AB +∠BAC , ∴∠QAB =∠P AC , 在△ABQ 和△ACP 中,AQ =AP ,∠QAB =∠P AC ,AB =AC ,∴△ABQ ≌△ACP ,∴BQ =CP .【总结】本题主要考察了特殊的三角形的性质,通过证明全等三角形解决边的关系.课后作业ABCDEFA BCPQ P QA BC【作业3】 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足331a b b =-+--,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)在y 轴上是否存在一点M (0,m ),连接MA ,MB ,使MABS>ABDC S 四边形?若存在这样一点,求出点求m 的取值范围;若不存在,试说明理由.(2)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B 、D 重合)+DCP BOPCPO ∠∠∠的值是否发生变化,并说明理由.(3)若点P 是线段AB 上的动点,+APCDPBABCD S SS 与的面积之间有什么关系?写出分析过程.【答案】(1)44m m ><-或;(2)1;(3)1+2APC DPBABCD S SS =. 【解析】(1)由题意得133a b b +=-+-,则103013a b a b +=-==-=,,,,则A (-1,0),B (3,0),C (0,2),D (4,2), AB =4,M (0,m ),OM =|m |,11422||22ABM S AB OM OM OM m =⋅=⨯==,428ABCD S AB OC =⋅=⨯=,则2|m |>8,m >4或m <-4;(2)不变过P 作PQ ∥AB 交y 轴于点Q ,则∠OPQ =∠BOP , 又∵PQ ∥CD ,∴∠CPQ =∠DCP , ∴∠DCP +∠BOP =∠OPQ +∠CPQ =∠CPQ , ∴+DCP BOP CPO ∠∠∠=1;MQ30 / 31(3)1+2APC DPBABCD S SS = 1111+()2222APCDPBSSAP OC BP OC OC BP AP OC AB =⋅+⋅=+=⋅ABCDS OC AB =⋅,∴1+2APC DPBABCD S SS =【总结】本题主要考察了图形中的动点问题,结合平面直角坐标系,问题综合性较强,难度不大.【作业4】 如图1,△ABC 是正三角形,△BDC 是等腰三角形,BD =CD ,∠BDC =1200,以D 为顶点作一个600角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN . (1)探究BM 、MN 、NC 之间的关系,并说明理由. (2)若△ABC 的边长为2,求△AMN 的周长.(3)若点M 、N 分别是射线AB 、CA 上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.【答案】(1)BM +CN =MN ;(2)AMN C ∆=4;(3)MN =BM +CN . 【解析】解:(1)BM +CN =MN如图,延长AC 至P ,使CP =BM ,连结DP ,在Rt △BDM ≌Rt △CDP∴∠PDN =∠MDN =60° ∴△MDN ≌△PDN ∴MN =NP =NC +CP =NC +MB (2)利用(1)中的结论得出:△AMN 的周长=AM +MN +AN =(AM +BM )+(NC +AN )=2+2=4 (3)CN -BM =MN证明:如图,在CN 上截取,使CP =BM ,连结DP ∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°∴∠DBM =∠DCM 1=90° ∵BD =CD ,∴Rt △BDM ≌Rt △CDP ∴∠MDB =∠PDC ,DM =DP∵∠BDM +∠BDN =60° ∴∠CDP +∠BDN =60°ABC DM NPAB CD P MNP∴∠NDP=∠BDC-(∠PDC+∠BDN)=120°-60°=60°∴∠PDN=∠MDN∵AD=AD∴△MDN≌△PDN∴MN=NP=NC-CP=NC-MB【总结】本题主要考察了全等三角形的判定条件,通过添加相应的辅助线构造全等三角形解决边的关系。
初一数学三角形试题

初一数学三角形试题1.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【答案】C.【解析】∵∠EAC=∠BAD,∴∠EAC+∠BAE=∠BAD+∠BAE,即∠BAC=∠EAD,当AB=AE时,在△ABC和△AED中,,∴△ABC≌△AED(SAS);当BC=ED时,不能判断△ABC≌△AED.当∠C=∠D时,在△ABC和△AED中,,∴△ABC≌△AED(ASA);当∠B=∠D,而AC=AD,所以∠B与∠D不是对应角,所以不能判断△ABC≌△AED.故选C.【考点】全等三角形的判定.2.一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形【答案】B【解析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形.【考点】平面镶嵌(密铺)3.如图,四边形ABCD中,∠A=∠C=900,平分∠A BC交CD于E,DF平分∠A DC交AB于F(1)若∠ABC=600,则∠ADC= °, ∠ADF= °;(2)BE与DF平行吗?试说明理由.【答案】(1)1200,600;(2)BE∥DF.证明见解析.【解析】根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.(1)根据四边形内角和是3600,可以得出∠ADC=(2)BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠CBE=∠BED=∠ABC,∠ADF=∠FDE=∠ADC(角平分线的定义).∴∠DFB+∠FDE=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠CBE+∠CEB=90°(三角形的内角和等于180°),∴∠FDE=∠CEB(等量代换).∴BE∥DF(同位角相等,两直线平行).【考点】1.四边形内角和2.平行线的判定.4.如图,△ABC中BC边上的高为h1,AB边上的高为h2,△DEF中DE边上的高为h3,下列结论正确的是()A.h1=h2B.h2=h3C.h1=h3D.无法确定【答案】B【解析】△ABC中BC边上的高为h1,AB边上的高为h2,根据三角函数,,△DEF中DE边上的高为h3,根据三角函数得;又因为AC=3.6,EF=3.6,所以,因此【考点】三角函数点评:本题考查三角函数,本题要求掌握三角函数的定义,根据三角函数的定义来正确解答本题5.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.则AB=DE.请说明理由.(填空)解:∵AF=DC(已知)∴AF+=DC+即在△ABC和△DEF中∴△ABC≌△DEF()∴则AB=DE【答案】FC,FC,AC=DF,已知,EFD,BCA,AC=DF,SAS【解析】由AF=DC可得AC=DF,再结合∠EFD=∠BCA,BC=EF可证得△ABC≌△DEF,问题得证.∵AF=DC(已知)∴AF+FC=DC+FC即AC=DF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴则AB=DE.【考点】全等三角形的判定和性质点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数.【答案】∠BAE为50°,∠EAD为10°。
初一数学上册综合算式旋转变换练习题应用旋转变换求解问题

初一数学上册综合算式旋转变换练习题应用旋转变换求解问题旋转变换在数学中是一种重要的几何变换方法,它可以通过将图形绕着某个中心点旋转一定角度,从而改变图形的位置和形状。
在初一数学上册中,我们学习了综合算式的旋转变换,并通过练习题来应用这种变换方法解决实际问题。
本文将以综合算式旋转变换练习题为例,探讨如何应用旋转变换求解问题。
1. 题目一有一个正方形ABCD,其边长为5cm。
现将该正方形绕点O逆时针旋转60度,求旋转后正方形各顶点的坐标。
解析:首先确定旋转中心点O所在的坐标轴,设O点的坐标为(0,0)。
由于正方形边长为5cm,所以各顶点的坐标为A(2.5,2.5),B(-2.5,2.5),C(-2.5,-2.5),D(2.5,-2.5)。
接下来,我们需要将这个正方形绕点O逆时针旋转60度,根据旋转变换的公式,我们可以得到旋转后各顶点的坐标:A'(-1.25,4.33),B'(-4.33,-1.25),C'(1.25,-4.33),D'(4.33,1.25)。
2. 题目二已知三角形ABC,其中AB=6cm,BC=8cm,CA=10cm。
现将该三角形绕点O逆时针旋转45度,求旋转后三角形各顶点的坐标。
解析:同样地,首先确定旋转中心点O所在的坐标轴,设O点的坐标为(0,0)。
由于三角形AB=6cm,BC=8cm,CA=10cm,所以各顶点的坐标为A(0,0),B(6,0),C(6,8)。
对于三角形旋转变换,我们需要将旋转中心点O所在的坐标轴作为新的坐标系,将A、B、C三个点的坐标表示为相对于O点的坐标。
根据旋转变换的公式,我们可以得到旋转后各顶点的坐标:A'(0,0),B'(4.24,4.24),C'(-1.41,9.9)。
3. 题目三已知一个长方形ABCD,其中AB=6cm,BC=8cm。
现将该长方形绕点O逆时针旋转90度,求旋转后长方形各顶点的坐标。
初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题1.如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是__________.【答案】45°.【解析】∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.故答案是45°.【考点】旋转的性质.2.在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的个数有个.【答案】7.【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.试题解析:在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的有线段,角、圆、等边三角形、正方形、正五边形、正六边形,有7个.【考点】轴对称图形.3.如图是一个图案的一半,其中虚线是这个图案的对称轴,请你画出这个图案的另一半.【答案】作图见解析.【解析】利用轴对称图形的性质得出对应点位置,进而得出答案.试题解析:如图所示:【考点】利用轴对称设计图案.4.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船平移后的图形。
(4分)【答案】作图见解析.【解析】将小船的各点沿箭头方向平移8格,得到对应点,顺次连接成新图即可.所作图形如下:【考点】作图-平移变换.5.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.【考点】1.中心对称图形;2.轴对称图形.6.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为______.【答案】(1)作图见解析;(2)作图见解析;(3)(,0).【解析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.试题解析:(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【考点】1.作图-旋转变换;2.轴对称-最短路线问题;3.作图-平移变换.7.如图梯形ABCD中,AD∥BC,AD=6cm,BC=10cm,高为7cm,若将梯形ABCD向右平移4cm得到梯形A′B′C′D′,则平移前后两梯形重叠部分的面积为cm2.【答案】28【解析】由平移的性质可得线段AA′=BB′=4,则A′D=2,B′C=6,根据梯形的面积公式即可求出两梯形重叠部分即梯形A′B′CD的面积.解:∵将梯形ABCD向右平移4cm得到梯形A′B′C′D′,∴AA′=BB′=4,∵AD=6,BC=10,∴A′D=2,B′C=6,∴梯形A′B′CD的面积=(2+6)×7=28,即平移前后两梯形重叠部分的面积为28cm2.故答案为28.点评:本题综合考查了平移的性质和梯形的面积公式,根据平移的性质可得线段AA′=BB′=4是解题的关键.8.如图中的剪纸作品有几条对称轴?A.1条B.2条C.3条D.4条【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就叫这个图形的对称轴.由图可得图中的剪纸作品有4条对称轴,故选D.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.9.观察下图中各组图形,其中成轴对称的为(只写序号)【答案】①②④【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得成轴对称的为①②④.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.10.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A, C的坐标分别为( -4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC关于轴对称的△A′B′C′;⑶写出点B′的坐标.【答案】【解析】(1)依题意知,C的坐标(-1,3),故以C点起始向右移动一个单位,向下移动3个单位可得原点O。
人教版初一数学上册几何图形1含答案

几何图形一、选择题1.如图所示的几何体,从左面看到的是()ABDC2.将如图所示的直角三角形ABC绕直角边AB旋转一周,所得几何体从正面看为()ABCB C D3.若一个圆柱体的高为8,底面半径为2,则截面面积最大为()A. 16B. 32C. 48D. 20|4.下列图形中,恰好能与左图拼成一个长方形的是()A B C D5.有一个几何体,是由若干同样的正方体垒成,从正面观察,从上面观察,从左面观察得到的平面图形都一样,如图所示,请问垒成这个几何体用了()块小正方体6.一个几何体从正面看和从左面看都是三角形,则这个几何体是()A. 三棱柱B. 圆柱C. 圆锥D. 球7.汽车的雨刷把玻璃上的雨水刷干净,是属于________的实际应用. ()?A. 点动成线B. 线动成面C. 面动成体D. 以上答案都不对8. 直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形9.下列图形中,不能经过折叠围成正方体的是()A B C D10. 在下列几何体中,从正面看是圆的是()A B C D11.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()…A. 从正面看面积最大B. 从左面看面积最大C. 从上面看面积最大D. 三个视图的面积一样大12.观察下列几何体,从正面看、从左面看、从上面看都是长方形的是()CA B D13.如图,有一辆小汽车,小红从空中往下看这辆汽车,小红看到的形状是下图中的()C D!14.某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5 B.6 C.7 D.815.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个16.如图绕虚线旋转得到的几何体是()(A.B. C. D.17.如图所示的立体图形可以看作直角三角形ABC()A.绕AC旋转一周得到B.绕AB旋转一周得到C.绕BC旋转一周得到D.绕CD旋转一周得到18.如图所示的是一座房子的平面图,组成这幅图的几何图形有()?A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形19.长方形剪去一个角后所得的图形一定不是()A.长方形B.梯形C.五边形D.三角形二、填空题*1. 对于棱柱和圆柱:面有曲面的是__________;有平面的是;线有曲线的是__________;只有直线的是__________.2. 如图所示,是一个正方体的展开图,图中f表示正方体的前面,r表示右面,b表示下面,那么a表示正方体的__________,d表示__________,c表示__________.ab c df r3. 用一个平面去截一个正方体,把正方体分成__________部分;用两个平面最多可以把正方体分成__________部分.4. 圆锥是__________个面围成的,其中__________个平面,__________个曲面.5. 一个7棱柱共有__________个面,__________条棱,__________个顶点,其中有__________个面的形状和面积完全相同.6. 如图,正方形ABCD边长为2,以直线AB为轴,将正方形旋转一周,所得圆柱从正面看所得图形的周长是__________.7. 表面展开成如图所示图形的几何体是__________.}8. 用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是__________.9. 如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.(6题)(7题)(9题)10.在圆、正方形、圆锥、长方体、线段、球、三棱柱、直角三角形中,是立体图形的有个.11.如图共有不同的四边形.|12.如图,正方形ABCD的边长为3,以直线AB为轴,将正方形旋转一周,从正面看所得图形的周长是.13.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有个.AB CD|三.解答题1.一个长方形纸片长为3,宽为4,将纸片绕它的一边旋转,求所形成的几何体的体积(结果保留π)!2.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).3.如果一个棱柱(棱锥)有n条侧棱,那么就称其为n棱柱(棱锥).(1)图①所示的几何体是一个三棱柱,它有个顶点,条棱、个面;(2)图②所示的几何体是,它有个顶点,条侧棱、个侧面、个底面;(3)如果一个棱锥由7个面围成,那么这个棱锥是棱锥,它共有条棱;(4)如果将图③的四棱锥从上到下一刀切成两个棱柱,且其中一个是三棱柱,那么另一个是棱柱.4.如图,长方体的长为4cm,宽为3cm,高为5cm.(1)求此长方体所有棱长的和;(2)若它是一个无盖的精致包装盒,制作这种包装盒的每平方厘米是元,则制作10个这样的包装盒共需多少元(不考虑接缝之间的材料)。
初三 数学旋转等边三角形题

以下是一道初三数学旋转等边三角形的题目:在等边三角形ABC中,D、E分别为AB、BC上的点,且BD = CE。
若F为AC上的一个动点,当三角形DEF的周长最小时,求角DFE的度数。
解题思路:由于三角形ABC是等边三角形,所以AB = BC = AC,且角A = 角B = 角C = 60度。
因为BD = CE,所以可以通过旋转构造一个与三角形BDE全等的三角形。
具体地,将三角形BDE绕点B顺时针旋转60度,使得BD 与BC重合,记旋转后的点为D'和E'。
连接D'E',则三角形BDD'和三角形CEE'都是等边三角形,所以BD = DD',CE = EE',且角BDD' = 角CEE' = 60度。
由于三角形BDD'和三角形CEE'全等,所以角BD'D = 角CE'E。
又因为角A = 60度,所以角BD'D + 角ADE' = 120度,即角D'E'F + 角ADE' = 120度。
当F为AC上的一个动点时,为了使三角形DEF的周长最小,需要使EF + FD最小。
由于D'和E'是固定点,所以EF + FD的最小值就是D'E'的长度。
当F点位于AC上使得EF与E'D'重合时,EF + FD取得最小值,此时三角形DEF的周长也最小。
在这个情况下,角DFE = 角D'E'F。
由于角D'E'F + 角ADE' = 120度,且角ADE' = 60度(因为它是等边三角形的一个内角),所以角DFE = 120度- 60度= 60度。
(完整word版)北师大版七年级数学下册三角形难题全解

来源:2011-2012学年广东省汕头市潮南区中考模拟考试数学卷(解析版)考点:三角形如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90o-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO,由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90o,∴AE⊥BF.(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF来源:2012-2013学年吉林省八年级上期中考试数学试卷(解析版)考点:四边形如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF 的位置;(2)线段BE与DF有什么关系?证明你的结论.【答案】(1)绕点A旋转90°;(2)BE=DF,BE⊥DF.【解析】本题考查的是旋转的性质,全等三角形的判断和性质(1)根据旋转的概念得出;(2)根据旋转的性质得出△ABE≌△ADF,从而得出BE=DF,再根据正方形的性质得出BE⊥DF.(1)图中是通过绕点A旋转90°,使△ABE变到△ADF的位置.(2)BE=DF,BE⊥DF;延长BE交DF于G;由△ABE≌△ADF,得BE=DF,∠ABE=∠ADF;又∠AEB=∠DEG;∴∠DGB=∠DAB=90°;∴BE⊥DF.来源:2012年江苏省东台市七年级下学期期中考试数学试卷(解析版)如图,在△a bc中,已知∠abc=30°,点d在bc上,点e在ac上,∠bad=∠ebc,ad交be于f.1.求的度数;2.若eg∥ad交bc于g,eh⊥be交bc于h,求∠heg的度数.【答案】1.∠BFD=∠ABF+∠BAD (三角形外角等于两内角之和)∵∠BAD=∠EBC,∴∠BFD=∠ABF+∠EBC,∴∠BFD=∠ABC=30°;2.∵EG∥AD,∴∠BFD=∠BEG=30°(同位角相等)∵EH⊥BE,∴∠HEB=90°,∴∠HEG=∠HEB-∠BEG=90°-30°=60°.【解析】1.∠BFD的度数可以利用角的等效替换转化为∠ABC的大小,2.在直角三角形中,有平行线,利用同位角即可求解.三角形强化训练和深化☣1、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是_________°.解析:由题意可知折叠前,由BC//AD得:∠BFE=∠DEF=25°将纸带沿EF折叠成图b后,∠GEF=∠DEF=25°所以图b中,∠DGF=∠GEF+∠BFE=25°+25°=50°又在四边形CDGF中,∠C=∠D=90°则由:∠DGF+∠GFC=180°所以:∠GFC=180°-50°=130°将纸带再沿BF第二次折叠成图C后∠GFC角度值保持不变且此时:∠GFC=∠EFG+∠CFE所以:∠CFE=∠GFC-∠EFG=130°-25°=1052、在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.解法1:【解析】证明:∵∠BAC=900AD⊥BC∴∠1=∠B∵CE是角平分线∴∠2=∠3∵∠5=∠1+∠2∠4=∠3+∠B∴∠4=∠5∴AE=AF过F作FM⊥AC并延长MF交BC于N∴MN//AB∵FG//BD∴四边形GBDF为平行四边形∴GB=FN∵AD⊥BC,CE为角平分线∴FD=FM在Rt△AMF和RtNDF中∴△AMF≌△NDF∴AF=FN∴AE=BG解法2:解:作EH⊥BC于H,如图,∵E是角平分线上的点,EH⊥BC,EA⊥CA,∴EA=EH,∵AD为△ABC的高,EC平分∠ACD,∴∠ADC=90°,∠ACE=∠ECB,∴∠B=∠DAC,∵∠AEC=∠B+∠ECB,∴∠AEC=∠DAC+∠ECA=∠AFE,∴AE=AF,∴EG=AF,∵FG∥BC,∴∠AGF=∠B,∵在△AFG和△EHB中,∠GAF=∠BEH∠AGF=∠BAF=EH,∴△AFG≌△EHB(AAS)∴AG=EB,即AE+EG=BG+GE,∴AE=BG.3、如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.解:作CF⊥AB于F,交AD于G ,如图,∵△ABC为等腰直角三角形,∴∠ACF=∠BCF=45°,即∠ACG=45°,∠B=45°,∵CE⊥AD,∴∠1+∠ACE=∠2+∠ACE=90°,∴∠1=∠2,在△AGC和△CEB中∠1=∠2AC=CB∠ACG=∠CBE,∴△AGC≌△CEB(ASA),∴CG=BE,∵AD为腰CB上的中线,∴CD=BD,在△CGD和△BED中CG=BE∠GCD=∠BCD=BD,∴△CGD≌△BED(SAS),∴∠CDA=∠EDB.4、如图,已知AD和BC相交于点O ,且均为等边三角形,以平行四边形ODEB,连结AC,AE和CE。
初一数学有关三角形旋转的题

一、在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N,1、如图1,顺次连接P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论;证明时依据的定理或定义有:(1);(2)。
2、若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2):①判断此时四边形PQMN的形状为,并说明理由②当AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)3、在图2的基础上,将△BCE绕着点E旋转任意一个角度,在旋转过程中,四边形PQMN的内角∠MNP的大小是否发生变化若发生变化,请说明理由;若不发生变化,请直接写出∠MNP的度数。
¥?二、如图①,将两个有公共直角顶点A的不全等的等腰直角三角板叠放在一起,点B在AD上,点C在AE上.(1)在图①中,你发现线段BD,CE的数量关系是,直线BD,CE相交成度的角.(2)将图①中的△ABC绕点A逆时针旋转一个锐角得到图②,这时(1)中的两个结论是否成立作出判断并说明理由.若△ABC绕点A继续旋转更大的角时,结论仍然成立吗作出判断,不必说明理由.(3)如图③若将“两个有公共直角顶点A的不全等的等腰直角三角板”改为“两个有公共顶角为锐角∠A的不全等等腰三角形”,△ABC绕点A逆时针旋转任意一个角度,这时(1)中的两个结论仍然成立吗作出判断,不必说明理由.<}三、(2014山西百校联考)如图,在△ABC中,AB=AC,∠CAB的角度记为α.(1)操作与证明:如图①,点D为边BC上一个动点,连接AD,将线段AD绕点A 逆时针旋转角度α至AE位置,连接CE.求证:BD=CE;(2)探究与发现:如图②,在(1)中若α=90°,点D变为BC延长线上一动点.可以发现:①线段BD和CE的数量关系是________;②线段BD和CE的位置关系是________;(3)思考与判断:如图③,在(1)中若α=90°,AB2=BD·BC,判断四边形ADCE的形状,并说明理由.>)四、如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是线段OC上一点,过点A 作BE的垂线,交线段OB于点G,垂足为点F,"(1)求证:OG=OE;(2)如图2,若点E在AC的延长线上,过点A作BE的垂线,交OB的延长线于点G,垂足为点F,求证OG=OE.(3)如图3,将图1 中的“正方形ABCD”改为“菱形ABCD”,且∠ABC=60度,其余条件不变,试求OG:OE的值。
初一数学三角形压轴大题

几何压轴题大全1.(2008•延庆县二模)(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?即:FG=______(AB+BC+AC)(直接写出结果即可)(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是______.2..(2011•如东县模拟)路边有一根电线杆AB和一块正方形广告牌.有一天,小明突然发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的上边中点G处,而正方形广告牌的影子刚好落在地面上E点(如图),已知BC=5米,正方形边长为3米,DE=4米.(1)求电线杆落在广告牌上的影长.(2)求电线杆的高度(精确到0.1米).3.(2009•哈尔滨)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是______;(3)在(2)的条件下,若AG=5 ,求线段PQ的长.14.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D 以1cm/s的速度移动,点Q从点C出发沿边CB向点B以2cm/s的速度移动,若P、Q同时出发,且有一点运动端点时,另一点也随之停止.(1)经过几秒后四边形PQCD为平行四边形;(2)在P、Q的运动过程中,是否存在某一时刻使四边形PQCD成为等腰梯形?如果存在,求经过几秒后;如果不存在,请说明理由.5.(2013•长沙)如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.6..将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图),这时BD与MN相交于点O.(1)求∠DOM的度数;(2)在图中,求D、N两点间的距离;(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.27.(2012•南宁)如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长.8.(2012•鄂尔多斯)已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.9.(2012•东营)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.310.(2011•衢州)△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______;(3)求第10次剪取后,余下的所有小三角形的面积之和.11.(2012•崇左)如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB 长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.12.(2011•齐齐哈尔)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.413.(2011•鞍山)已知如图,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF.求证:DE=DF.14.(2010•遵义)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.15.(2010•湘潭)Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB 与DE重合.(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)516.(2010•沈阳)如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN 还成立吗?不必说明理由.17.(2010•淄博)已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.19.(2010•仙桃)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立���写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.620.(2010•潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.21.(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN 仍然成立.(直接写出答案,不需要证明)22.(2010•盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.22.(2010•青岛)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.723.(2010•乐山)在△ABC中,D为BC的中点,O为AD的中点,直线l过点O.过A、B、C三点分别做直线l 的垂线,垂足分别是G、E、F,设AG=h1,BE=h2,CF=h3.(1)如图所示,当直线l⊥AD时(此时点G与点O重合).求证:h2+h3=2h1;(2)将直线l绕点O旋转,使得l与AD不垂直.①如图所示,当点B、C在直线l的同侧时,猜想(1)中的结论是否成立,请说明你的理由;②如图所示,当点B、C在直线l的异侧时,猜想h1、h2、h3满足什么关系.(只需写出关系,不要求说明理由)6.(2010•宁夏)在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.(1)判断四边形AEMF的形状,并给予证明;(2)若BD=1,CD=2,试求四边形AEMF的面积.7.(2010•绍兴)(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,则GH=______;②如图4,矩形ABCD由n个全等的正方形组成,则GH=______(用n的代数式表示).88.(2010•吉林)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.10.(2010•密云县)(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.91.(2008•桂林)正方形ABCD的边长为4,BE∥AC交DC的延长线于E.(1)如图1,连接AE,求△AED的面积.(2)如图2,设P为BE上(异于B、E两点)的一动点,连接AP、CP,请判断四边形APCD的面积与正方形ABCD 的面积有怎样的大小关系?并说明理由.(3)如图3,在点P的运动过程中,过P作PF⊥BC交AC于F,将正方形ABCD折叠,使点D与点F重合,其折线MN与PF的延长线交于点Q,以正方形的BC、BA为x轴、y轴建立平面直角坐标系,设点Q的坐标为(x,y),求y与x之间的函数关系式.2.(2008•淄博)正方形ABCD的对角线交点为O,两条对角线把它分成了四个面积相等的三角形.(1)平行四边形ABCD的两条对角线交点为O,若△AOB,△BOC,△COD,△DOA面积分别为S1,S2,S3,S4,试判断S1,S2,S3,S4的关系,并加以证明;(2)四边形ABCD的两条对角线互相垂直,交点为O,若△AOB,△BOC,△COD,△DOA面积分别为S1,S2,S3,S4,试判断S1,S2,S3,S4的关系,并加以证明;(3)四边形ABCD的两条对角线交点为O,若△AOB,△BOC,△COD,△DOA面积分别为S1,S2,S3,S4,试判断S1,S2,S3,S4的关系,并加以证明;(4)四边形ABCD的两条对角线相等,交点为O,∠BAC=∠BDC,若△AOB,△BOC,△COD,△DOA面积分别为S1,S2,S3,S4,试只用S1,S3或只用S2,S4表示四边形ABCD的面积S.4.(2007•永州)在梯形ABCD中,AB∥CD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.(1)求DC的长;(2)E为梯形内一点,F为梯形外一点,若BF=DE,∠FBC=∠CDE,试判断△ECF的形状,并说明理由.(3)在(2)的条件下,若BE⊥EC,BE:EC=4:3,求DE的长.106.(2007•河北)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC 以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQ∥DC;(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.7.(2008•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.8.(2010•本溪)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.119.(2008•南平)(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,求证:△ABE≌△ADC;②探究:如图1,∠BOC=______;如图2,∠BOC=______;如图3,∠BOC=______;(2)如图4,已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O.①猜想:如图4,∠BOC=360÷n(用含n的式子表示);②根据图4证明你的猜想.10.(2012•河东区二模)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G 为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;12(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).13。
初一三角形旋转题解题技巧

初一三角形旋转题解题技巧
初一学习三角形旋转题时,需要掌握一些基本的技巧和方法,才能更好地解决问题。
以下是一些常用的技巧和方法:
1. 确定旋转中心和旋转角度:在解决三角形旋转问题时,首先需要确定旋转中心和旋转角度。
旋转中心通常是三角形的某个顶点或某个中心。
旋转角度通常是90度、180度或360度。
2. 利用对称性质:三角形的旋转可以形成简单的对称图形,因此可以利用三角形的对称性质来解决问题。
例如,如果三角形旋转180度后,能够重合或对称,则它们可能是等边三角形或等腰三角形。
3. 利用相似性质:三角形旋转后,仍然保持相似,因此可以利用相似性质来解决问题。
例如,如果一个三角形旋转180度后,与原来的三角形相似,则它们的角度相等,比例尺相等。
4. 利用角度计算:三角形旋转后,三角形的角度会发生变化,可以通过计算旋转后的角度来解决问题。
例如,如果一个三角形旋转180度后,原来的角度减去180度得到旋转后的角度。
5. 利用向量运算:向量是解决三角形旋转问题的有力工具。
可以通过向量运算来计算旋转后三角形的坐标和长度。
例如,如果一个三角
形绕原点逆时针旋转90度,可以通过向量运算得到旋转后的坐标。
初一数学三角形练习题及答案

初一数学三角形练习题及答案1. 在下列三角形中,哪些是等腰三角形?a) △ABC,其中AB = BC = 5 cm,AC = 6 cmb) △DEF,其中DE = 7 cm,DF = 8 cm,EF = 9 cmc) △GHI,其中GH = 5 cm,GI = 6 cm答案:a) 是。
b) 不是。
c) 不是。
2. 解答下列问题:a) 如果一个三角形的两个角度分别是60°和70°,第三个角度是多少?b) 一个三角形的三个角度分别是45°、45°和90°,这个三角形属于什么类型?答案:a) 50°。
b) 直角三角形。
3. 计算下列三角形的周长:a) △JKL,其中JK = 9 cm,KL = 6 cm,JL = 8 cmb) △MNO,其中MN = 12 cm,NO = 10 cm,MO = 7 cm答案:a) 周长为 23 cm。
b) 周长为 29 cm。
4. 已知△PQR 是等边三角形,边长为 10 cm。
计算△PQR 的高度。
答案:△PQR 的高度为 8.66 cm。
5. 判断下列三角形的形状:a) △STU,其中ST = TU = US,且∠STU = 60°b) △VWX,其中VW = WX = XV,且∠VWX = 90°c) △YZA,其中YAZ = ZAY,且∠YZA = 45°答案:a) 等边三角形。
b) 等腰直角三角形。
c) 等腰等角三角形。
6. 根据下列信息判断△ABC 是什么类型的三角形:a) AB = BC,且∠BAC = 90°b) AB = BC,且∠BAC = 75°c) AB = AC,且∠ABC = 45°答案:a) 直角等腰三角形。
b) 等腰锐角三角形。
c) 等边等角三角形。
7. 计算下列三角形的面积:a) △DEF,其中DE = 8 cm,DF = 10 cm,EF = 12 cmb) △GHI,其中GH = 7 cm,GI = 5 cm,∠GHI = 60°答案:a) 面积为 39.69 cm²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N,1、如图1,顺次连接P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论;证明时依据的定理或定义有:(1);(2)。
2、若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2):①判断此时四边形PQMN的形状为,并说明理由②当AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)3、在图2的基础上,将△BCE绕着点E旋转任意一个角度,在旋转过程中,四边形PQMN的角∠MNP的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请直接写出∠MNP的度数。
二、如图①,将两个有公共直角顶点A的不全等的等腰直角三角板叠放在一起,点B在AD上,点C在AE上.(1)在图①中,你发现线段BD,CE的数量关系是,直线BD,CE相交成度的角.(2)将图①中的△ABC绕点A逆时针旋转一个锐角得到图②,这时(1)中的两个结论是否成立?作出判断并说明理由.若△ABC绕点A继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.(3)如图③若将“两个有公共直角顶点A的不全等的等腰直角三角板”改为“两个有公共顶角为锐角∠A的不全等等腰三角形”,△ABC绕点A逆时针旋转任意一个角度,这时(1)中的两个结论仍然成立吗?作出判断,不必说明理由.三、(2014百校联考)如图,在△ABC中,AB=AC,∠CAB的角度记为α.(1)操作与证明:如图①,点D为边BC上一个动点,连接AD,将线段AD绕点A 逆时针旋转角度α至AE位置,连接CE.求证:BD=CE;(2)探究与发现:如图②,在(1)中若α=90°,点D变为BC延长线上一动点.可以发现:①线段BD和CE的数量关系是________;②线段BD和CE的位置关系是________;(3)思考与判断:如图③,在(1)中若α=90°,AB2=BD·BC,判断四边形ADCE 的形状,并说明理由.四、如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是线段OC上一点,过点A 作BE的垂线,交线段OB于点G,垂足为点F,(1)求证:OG=OE;(2)如图2,若点E在AC的延长线上,过点A作BE的垂线,交OB的延长线于点G,垂足为点F,求证OG=OE.(3)如图3,将图1 中的“正方形ABCD”改为“菱形ABCD”,且∠ABC=60度,其余条件不变,试求OG:OE的值。
五、如图1,在Rt△ABC中,AC=BC,∠C=90°,点D是CB的中点,将△ACD沿AD 折叠后得到△AED,过点B作BF平行AC,交AE的延长线于点F。
1、问线段BF和EF的数量关系?并说明理由。
2、若将图1中“AC=BC”改成“AC≠BC”,其他条件不变,如图2,那么1中的发现是否仍然成立?请说明理由。
3、若将图1中“在Rt△ABC中,AC=BC,∠C=90°”改为“在△ABC中”,其他条件不变,如图3,那么1中的发现是否仍然成立,请说明理由。
六、两个全等的直角三角板ABC和DEF重叠在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不动,将△DEF沿AC平移(点D在线段AC上移动).(1)猜想与证明:如图①,当点D为AC的中点时,请你猜想四边形BDCE的性状,并证明结论;(2)思考与验证:如图②,连接BD,BE,CE,四边形BDCE的形状在不断的变化,它的面积变化吗?若不变,求出其面积;若变化,请说明理由;(3)操作与计算:如图③,当点D为AC的中点时,将点D固定,然后再将△DEF 绕点D顺时针旋转60°,若点P为线段AC延长线上一动点,求PE+PF的最小值.七、(2014•模拟)问题情境:数学活动课上,老师提出了一个问题:如图①,已知在△ABC中,∠ACB=90°,AC=BC,点D为直线AB上的一动点(点D不与点A,B重合)连接CD,以点C为旋转中心,将CD逆时针旋转90°得到CE,连接BE,试探索线段AB,BD,BE之间的数量关系.小组展示:“希望”小组展示如下:解:线段AB,BD,BE之间的数量关系是AB=BE+BD.证明:如图①∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB=∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE是由CD旋转得到.∴C E=CD则在△ACD和△BCE中,AC=BC∠ACD=∠BCECD=CE∴△ACD≌△BCE(依据1)∴AD=BE(依据2)∵AB=AD+BD∴AB=BE+BD反思与交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:______依据2:______(2)“腾飞”小组提出了与“希望”小组不同的意见,认为还有两种情况需要考虑,你根据他们的分类情况直接写出发现的结论:①如图②,当点D在线段AB的延长线上时,三条点段AB,BD,BE之间的数量关系是______.②如图③,当点D在线段BA的延长线上时,三条线段AB,BD,BE之间的数量关系是______.(3)如图④,当点D在线段BA的延长线上时,若CD=4,线段DE的中点为F,连接FB,求FB的长度.八、如图1,在△ABC和△AEF中,∠BAC=∠EAF=α,AB=AC,AE=AF,点D是BC 的中点,点M是EF的中点,连接CE,点N是CE的中点,连接DN,MN.(1)如图2,将△AEF绕点A旋转,使点E,F分别在边BA,CA的延长线上.①试探究线段DN与MN的数量关系,并证明你的结论;②此时,∠DNM与α之间存在等量关系,这个等量关系为_____。
请说明理由.(2)将△AEF绕点A旋转,使点E落在△ABC部,如图3,此时,你在(1)中得到的①、②两个结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
九、如图(1),点F是正方形ABCD的边AB上一点,以AF为边在正方形的外部作△AEF,使∠AFE=90°,AF=FE,点O是线段CE的中点,连接OB,OF,请探究线段OB,OF的数量关系和位置关系.小颖的思路:延长FO交BC于点G,通过构造全等三角形解决.(1)请按小颖的思路解决图(1)中的问题:①证明:△EOF≌COG;②直接写出OB,OF的位置关系为______,数量关系为______.(2)将图(1)中的△AEF绕点A旋转,使AE落在对角线CA的延长线上,其余条件都不变,请写出此时OB,OF的数量关系和位置关系,并证明;(3)将图(2)中的正方形变为菱形,其中∠ABC=60°,将等腰△AEF的顶角变为120°,其余条件都不变,此时线段OB,OF的位置关系为______,OBOF十、如图1,分别过线段AB的端点A、B作直线AM、BN,且AM∥BN,∠MAB、∠NBA的角平分线交于点C,过点C的直线l分别交AM、BN于点D、E.(1)求证:△ABC是直角三角形;(2)在图1中,当直线l⊥AM时,线段AD、BE、AB之间有怎样的数量关系?证明你的猜想;(3)当直线l绕点C旋转到与AM不垂直时,在如图2、3两种情况下,(2)中的三条线段之间又有怎样的数量关系?请写出你的猜想,并选择一种情况给予证明.十一、已知在△ABC和△DBE中,AB=AC,DB=DE,且∠BAC=∠BDE=α,点D在△ABC 的部,连接AD、CE,探究AD和CE的数量关系.为解决这些问题,小明先研究一些特殊情况,最后得出结论。
(1)如图1,若∠BAC=∠BDE=60°,则线段CE与AD之间的数量关系是______;并证明。
(2)如图2,若∠BAC=∠BDE=120°,且点D在线段AB上,则线段CE与AD之间的数量关系是______;(3)如图3,若∠BAC=∠BDE=α,请你探究线段CE与AD之间的数量关系(用含α的式子表示),并证明你的结论.十二、问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D 落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.十三、数学活动——求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)独立思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC 于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是________.②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答.十四、在△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,问题发现:(1)如图1,若∠ACB=90°,点E是线段AB上的一个动点(点E不与点A、B重合),连接CE,将线段CE绕点C逆时针旋转90度,得到线段CF,连接BF,猜想线段CD,BE,BF之间的数量关系,并证明你的结论。
(2) 如图2,问题1中,若点E是线段AB延长线上一个动点时,(点E不与点A、B重合),其他条件不变,请直接写出线段CD,BE,BF之间的数量关系,。
拓广探索:(3)若∠ACB=60°,点E是射线AB上的一个动点,连接CE,将线段CE绕点C逆时针旋转60度,得到线段CF,连接BF,①如图3,点E是线段AB上的一个动点(点E不与点A、B重合),则线段CD,BE,BF 之间的数量关系是②如图4,若点E是线段AB延长线上一个动点时,(点E不与点A、B重合),则线段CD,BE,BF之间的数量关系是提出猜想:若∠ACB=α,CE=k·AB (k为常数),点E是射线AB上的一个动点(点E不与点A、B 重合),连接CE,将线段CE绕点C逆时针旋转度α,得到线段CF,连接BF,请你利用上述条件,根据前面的解答过程提出一个类似的猜想,并在图5 中画出图形,表明字母,不必解答。