七年级数学《生活中的立体图形》测试题
七年级数学上册“生活中的立体图形”能力训练题
华师七年级上册 4.1生活中的立体图形【知识技能天地】一、判断题1.柱体的上、下两个面一样大.………………………………………………..()2.圆柱的侧面展开图是长方形.………………………………………………()3.球体不是多面体.……………………………………………………………()4.圆锥是多面体.………………………………………………………………..()5.长方体是多面体.……………………………………………………………..()6.柱体都是多面体.……………………………………………………………..()二、选择题:1、如图,下列图形()柱体.2、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()3、如下图,下列图形中有十四棱的是()二、填空题。
1、一个多面体有12条棱,6个顶点,则这个多面体是体。
2、把下列图形的名称填在括号内:3、长方体有个顶点,经过每个顶点有条棱,共有条棱。
4、一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形。
三、连线题:把图形与对应的图形名称用线连接起来。
四、解答题:1、将图4-8中的几何体进行分类,并说明理由。
2、图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?【探究创新乐园】3、三棱柱有9条棱,6个顶点,5个面;三棱锥有6条棱,4个顶点,4个面;四棱柱有12个棱,8个顶点,6个面;四棱锥有8条棱,5个顶点,5个面,等等,问能否组成一个有24条棱,10个面,15个顶点的多面体?请简要说明理由?4、若一个简单的多面体的每个面都是三角形,其顶点数为V,棱数为E,面数为F,则F=2V-4成立吗,若成立,说明理由;若不成立,请举出反例。
【数学生活实践】将一个圆柱体的面包切3刀,能将面包切成6块吗?能将面包切成7块吗?能将面包切成8块吗?如果能,请画图说明如何切法。
七年级数学《生活中的立体图形》测试题
《生活中的立体图形》测试题
一、 判断题:
1.柱体的上、下两个面一样大.…………( ) 2.圆柱的侧面展开图是长方形.……… ( ) 3.球体不是多面体.……………………… ( ) 4.圆锥是多面体.…………………………..( ) 5.长方体是多面体.………………………( ) 6.柱体都是多面体.………………………( ) 二、 选择题:
1、如图,下列图形( )是柱体.
2、下面
给出的图形中,绕虚线旋转一周能形成圆锥的是( )
3、如下图,下列图形中有十四条棱的是( )
4.按组成面的平或曲划分,与圆锥为同一类几何体()
(A)正方体(B)长方体(C)球(D)棱柱
三、填空题:
1、一个多面体有12条棱,6个顶点,则这个多面体是体。
2、把下列图形的名称填在括号内:
3、长方体有个顶点,经过每个顶点有条棱,共有条棱。
4、一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.
5、(1)长方形绕其一边所在直线旋转一周得到__________;
(2)直角三角形绕其一条直角边所在直线旋转一周得到___________;
(3)半圆绕其直径所在直线旋转一周得到______________.
6、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
四.解答题:
1、将图4-8中的几何体进行分类,并说明理由。
五、现有一个长方形,长为2 cm,宽为1 cm,以它的一边所在的直线为轴旋转一周,得到的几何体的体积是多少?。
数学七年级上册1.1生活中的立体图形同步练习含答案
第一章丰富的图形世界1.1生活中的立体图形A基础知识训练1.(2016•丽水中考)下列图形中,属于立体图形的是()2.(2016•滨湖中学月考)下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③3. (2016•阴平中学月考)如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.4.如图,在长方体ABCD-EFGH中,与平面ADHE垂直的棱共有条.5.(2016•枣庄实验期中)汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.6.如图,把下列物体和与其相似的图形连接起来.B基本技能训练1(2016•台儿庄39中模拟)下面图形中为圆柱的是()2.(2016•龙口期中)若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱3.(2015•本溪二模)将如图所示的几何图形,绕直线l旋转一周得到的立体图形()4.硬币在桌面上快速地转动时,看上去象球,这说明了.5.(2016•枣庄十五中月考)如图:将一个长方形形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽边分别为6厘米和4厘米,分别绕它的长或宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)6.(2016•丹东七中月考)已知一个长方体的长为4cm,宽为3cm,高为5cm,请求出:(1)长方体所有棱长的和.(2)长方体的表面积.7.(能力提升题)将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体100个,那么至少应该将此正方体的棱等分.附答案:1.1生活中的立体图形A基础知识训练1.【解析】选C.A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.2.【解析】选C.因为教科书是一个空间实物体,是长方体所以不能说它是一个长方形,因为有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱所以它是棱柱.教科书的表面是一个长方形.3.【解析】是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.答案:①②⑤⑦⑧,④⑥,③.4.【解析】与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.答案:45.【解析】汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,答案:线动成面.6.【解析】如图:B基本技能训练1.【解析】选D.由圆柱的特征可知,D是圆柱.2.【解析】选B.一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.3.【解析】选C.绕直线l旋转一周,可以得到的圆台.4.【解析】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体.答案:面动成体.5.解:(1)得到的图形是圆柱形;(2)绕宽旋转得到的圆柱的底面半径为6cm,高为4cm,体积=π×62×4=144πcm3;绕长旋转得到的圆柱底面半径为4cm,高为6cm,体积=π×42×6=96πcm3.6.解:长方体的长、宽、高分别为4cm,3cm,5cm,(1)这个长方体的棱长总和为4×(4+3+5)=48cm,(2)长方体的表面积为:2×(4×3+4×5+3×5)=2×47=94cm2.7. 解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,所以正方体的棱n等分时三面被涂色的有8个,有(n-2)3个是各个面都没有涂色的,故答案为:8,(n-2)3;(3)由(2)得将这个正方体的棱n等分,有(n-2)3个是各个面都没有涂色的,所以(n-2)3=100,解得6<n<7,∴至少应该将此正方体的棱7等分,故答案为:7.。
2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版
2019-2020年七年级数学上册4.1生活中的立体图形4.1.1认识立体图形跟踪训练含解析新版华东师大版一.选择题(共9小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱2.如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个4.直四棱柱,长方体和正方体之间的包含关系是()A. B C. D.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个9.下列立体图形中,是多面体的是()A.B. C.D.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有_________ 条.11.如图,在长方体中,面ABCD与面_________ 平行.12.圆柱上下两个面是_________ 的圆形;圆锥的底面是一个_________ 形,侧面是一个_________ 面.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是_________ .14.下列说法中正确的有_________ 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.15.如图,在每个几何体下面写出它们的名称_________ .三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?20.将下列几何体与它的名称连接起来.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?第四章图形的认识4.1.1认识立体图形参考答案与试题解析一.选择题(共10小题)1.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.2如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C.D.考点:认识立体图形.分析:观察长方体,可知第四部分所对应的几何体在长方体中,前面有一个正方体,后面有三个正方体,前面一个正方体在后面三个正方体的中间.解答:解:由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选A.点评:本题考查了认识立体图形,找到长方体中,第四部分所对应的几何体的形状是解题的关键.3.如图,在长方体ABCD﹣EFGH中,与棱AD平行的平面共有()A.1个B.2个C.3个D.4个考点:认识立体图形.分析:根据图示,我们可以看出,与AD相交的面有前面、后面、左面、下面四个面,只有上面和右面与其平行,解答即可.解答:解:观察可知,AD平行的平面有BCGF、EFGH两个面,故选B.点评:正确理解平行的概念是解题的关键.4.直四棱柱,长方体和正方体之间的包含关系是()A B. C.D.考点:认识立体图形.分析:根据正方体,长方体,直四棱柱的概念和定义即可解.解答:解:正方体是特殊的长方体,长方体又是特殊的直四棱柱故选:A.点评:本题考查了直四棱柱,长方体和正方体之间的包含关系.5.下列物体的形状类似于球体的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡考点:认识立体图形.分析:根据球的形状与特点即可解答.解答:解:根据日常生活常识可知乒乓球是球体.故选:C.点评:熟练掌握常见立体图形的特征,是解决此类问题的关键.6.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体()A.4个B.8个C.16个D.27个考点:认识立体图形.专题:压轴题.分析:本题要求所得到的正方体最小,则每条棱是由两条小正方体的边组成.解答:解:根据以上分析要组成新的正方体至少要2×2×2=8个.故选B.点评:本题主要考查空间想象能力,解决的关键是要能想象出正方体的形状.7.如图,正方体ABCD﹣A′B′C′D′中,面ABB′A′上△AOA′的实际图形是()A.B.C.D.考点:认识立体图形.分析:结合正方体的特点,根据围成正方体6个面都是正方形,再由正方形的性质判断△AOA′的实际图形.解答:解:因为围成正方体6个面都是正方形,且正方形的对角线垂直平分,所以△AOA′是等腰直角三角形.故选B.点评:本题考查了立体图形的认识,属于基础题型.解题的关键是熟记正方体和正方形的性质.8.如图,立体图形由小正方体组成,这个立体图形有小正方体()A.9个B.10个C.11个D.12个考点:认识立体图形.分析:仔细观察图,从左向右依次相加即解.注意被挡住的一个.解答:解:这个立体图形有小正方体5+2+1+3=11个.故选:C.点评:解决此类问题,注意不要忽略了被挡住的小正方体.9.下列立体图形中,是多面体的是()A.B. C. D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.二.填空题(共6小题)10.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 4 条.考点:认识立体图形.分析:在长方体,棱与面之间的关系有平行和垂直两种.解答:解:与平面ADHE垂直的棱有:AB,DC,HG,EF.共4条.故答案为4.点评:本题考查的知识点为:与一个平面内的一条直线垂直的直线就与这个平面垂直.11.如图,在长方体中,面ABCD与面A1B1C1D1平行.考点:认识立体图形.分析:根据图形可直接得到答案.解答:解:根据图形可得面ABCD与面A1B1C1D1平行,故答案为:A1B1C1D1.点评:此题主要考查了认识立体图形,题目比较简单.12.圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.考点:认识立体图形.分析:根据圆柱和圆锥的特征,即可进行解答.解答:解:由圆柱和圆锥的特征可以得知:圆柱的底面都是圆,并且大小一样,侧面是曲面;圆锥的底面也是圆形,侧面是扇形面,则圆柱上下两个面是相等的圆形;圆锥的底面是一个圆形,侧面是一个扇形面.故答案为:相等;圆;扇形.点评:此题考查了对圆柱体和圆锥体的认识,正确记忆重点图形的形状是解题关键.13.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,则该几何体的体积是56a .考点:认识立体图形.分析:根据正方体的体积减去正方体的体积,可得答案.解答:解:V=(4a)3﹣(2a)3=64a3﹣8a3=56a3,故答案为:56a3.点评:本题考查了认识立体图形,利用了正方体的体积.14.下列说法中正确的有 1 个.①棱锥的底面边数和侧面数相等;②正方体和长方体是特殊的四棱柱,也是特殊的四面体;③长方体是四棱柱,四棱柱也是长方体.考点:认识立体图形.分析:根据棱锥的特点,可判断①;根据长方体的特点,可判断②③.解答:解:①棱锥的底面边数和侧面数相等,故①说法正确;②正方体和长方体是特殊的四棱柱,也是特殊的六面体,故②说法错误;③长方体是四棱柱,四棱柱不一定是长方体,故③说法错误;故答案为:1.点评:本题考查了认识立体图形,利用了长方体和四棱柱的关系.15.如图,在每个几何体下面写出它们的名称长方体、圆柱、三棱锥.考点:认识立体图形.分析:根据所给图形的特征进行判断.解答:解:从左向右三个几何体的名称是:长方体、圆柱、三棱锥.故答案为长方体、圆柱、三棱锥.点评:熟记常见立体图形的特征,是解决此类问题的关键,此题属于简单题型.三.解答题(共6小题)16.如图是由一个正方体和一个长方体组成的组合体.(1)请你用代数式表示这个组合体的体积;(2)请你说出它是几次几项式.考点:认识立体图形;多项式.分析:(1)根据正方体的体积公式,长方体的体积公式,可得组合体的体积;(2)根据多项式的项与次数,可得多项式的表示方法.解答:解;(1)由题意,得这个组合体的体积是:a3+a2b;(2)a3+a2b是三次二项式.点评:本题考查了认识立体图形,利用了正方体的体积公式,长方体的体积公式.17.如图,画出8个立体图形,请你找出与图②具有相同特征的图形,并说出相同的特征是什么?考点:认识立体图形.分析:根据立体图形的特点从形状的特征考虑.解答:解:图④、⑦与图②,相同的特征是:它们都是锥体.点评:本题考查了认识立体图形,题目简单但不容易解答,需熟悉立体图形的特点,找出与题目已经提供的特征不相同的共同特征.18.观察图中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平面还是曲面?(2)该圆柱的侧面与底面相交形成几条线?这些线是直线还是曲线?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?考点:认识立体图形.分析:根据立体图形可得圆柱有3个面,六棱柱有8个面,圆柱的侧面与底面相交形成曲线,棱柱的侧面与下底面相交形成6条线.解答:解:(1)圆柱有3个面,上下底为平面,侧面为曲面;六棱柱有8个面,都是平面;(2)圆柱的侧面与底面相交形成2条线,是曲线;(3)该棱柱的侧面与下底面相交形成6条线;(4)棱柱共有12个顶点,经过一个顶点有3条棱.点评:此题主要考查了认识立体图形,根据图形的形状进行解答即可.19.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?考点:认识立体图形;几何体的表面积.分析:(1)(2)(3)根据直四棱柱的特征直接解答即可.(4)根据棱柱的侧面积公式:底面周长×高,进行计算.解答:解:(1)它有6个面, 2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.点评:本题考查了立体图形.解题时勿忘记四棱柱的特征及展开图的特征.四棱柱是由四个长方形的侧面和上下两个底面组成.20.将下列几何体与它的名称连接起来.考点:认识立体图形.分析:根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征.解答:解:如图所示:点评:考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.此题属于简单题型.21.一位画家有若干个边长为1cm的正方体,他在地面上把它们摆成如图(三层)的形式,然后,他把露出的表面都涂上颜色.(1)图中的正方体一共有多少个?(2)一点颜色都没涂上颜色的正方体有多少个?(3)如果画家摆按此方式摆成七层,那又要多少个正方体?同样涂上颜色,又有多少个正方体没有涂上一点颜色?考点:认识立体图形.分析:(1)图中的正方体一共的个数=三层的个数的和;(2)观察图形可知最底层正中间一个没涂上颜色;(3)观察图形可知最底层有72个正方体,第2层有62个正方体,第3层有52个正方体,第4层有42个正方体,第5层有32个正方体,第6层有22个正方体,第7层有12个正方体,相加即可求出摆成七层的正方体一共的个数;没有涂上一点颜色的正方体第5层有12个正方体,第4层有22个正方体,第3层有32个正方体,第4层有42个正方体,最底层有52个正方体,相加即可求出.解答:解:(1)图中的正方体一共有1+4+9=14个;(2)一点颜色都没涂上颜色的正方体有1个;(3)七层的正方体一共的个数12+22+32+42+52+62+72=140个;没有涂上一点颜色的正方体12+22+32+42+52=55个.答:(1)图中的正方体一共有14个.(2)一点颜色都没涂上颜色的正方体有1个.(3)如果画家摆按此方式摆成七层,要140个正方体,同样涂上颜色,有55个正方体没有涂上一点颜色.点评:本题考查学生对简单几何图形的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.2019-2020年七年级数学上册4.1生活中的立体图形4.1.2跟踪训练含解析新版华东师大版一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.217.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,68.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是_________ .10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是_________ .11.矩形绕其一边旋转一周形成的几何体叫_________ ,直角三角形绕其中一条直角边旋转一周形成的几何体叫_________ .12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为_________ cm2.13.长方体有_________ 个顶点,_________ 条棱,_________ 个面.14.把一块学生使用的三角板以一条直角边为轴旋转成的形状是_________ 形状.三.解答题(共6小题)15.将下列平面图形绕直线AB旋转一周,所得的几何体分别是什么?16.一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.17.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.18.如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.19.棱长为a的正方体摆放成如图的形状:(1)试求其表面积(含底面);(2)若如此摆放10层,其表面积是多少?若如此摆放n层呢?20.下列各图是棱长为1cm的小正方体摆成的,如图①中,共有1个小正方体,从正面看有1个正方形,表面积为6cm2;如图②中,共有4个小正方体,从正面看有3个正方形,表面积为18cm2;如图③,共有10个小正方体,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,共有多少个小正方体?从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?第四章图形的初步认识4.1.2参考答案与试题解析一.选择题(共8小题)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.球B.圆柱C.半球D.圆锥考点:点、线、面、体.分析:根据半圆绕直径旋转一周,结合几何体的特点可得答案.解答:解:将平面图形绕轴旋转一周,得到的几何体是球,故选:A.点评:本题考查了点、线、面、体,半圆绕直径旋转一周得到的几何体是球.2.将一个长方形绕它的一条边旋转一周,所得的几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:点、线、面、体.分析:一个长方形围绕它的一条边为中为对称轴旋转一周,根据面动成体的原理即可解.解答:解:一个长方形绕着它的一条边旋转一周,围成一个光滑的曲面是圆柱体.故选A.点评:本题考查了平面图形旋转可以得到立体图形,体现了面动成体的运动观点.3.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.考点:点、线、面、体.分析:先根据面动成体得到圆锥,进而可知其侧面展开图是扇形.解答:解:直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个圆锥,那么它的侧面展开得到的图形是扇形.故选:D.点评:主要考查了圆锥的侧面展开图和面动成体的道理.4.将如图放置的含30°角的直角三角形,绕点A旋转90°所得的图形是()A. B.C.D.考点:点、线、面、体.分析:图形的旋转关键是对应点的旋转,根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置.解答:解:根据三角形其他两点绕点A旋转90°的位置,即可得出所得的图形的位置如图所示:故选:C.点评:此题主要考查了图形绕点旋转:考查学生图形的空间想象能力及分析问题,解决问题的能力.5.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,则这个几何体的表面积等于()A.6a2+4b2B.6a2+6b2C.5a2+6b2D.6(a+b)(a﹣b)考点:几何体的表面积;整式的混合运算.分析:分大正方体的表面积为六个正方形的面积减去重叠部分小正方形的面积,小正方体的五个表面的面积,然后根据正方形的面积公式列式进行计算即可得解.解答:解:∵大正方体的棱长为a,小正方体的棱长是b,∴大正方体的表面积为6a2﹣b2,小正方体可看见的面的面积为5b2,所以,这个几何体的表面积等于6a2﹣b2+5b2=6a2+4b2.故选A.点评:本题考查了几何体的表面积,以及整式的加减运算,要注意重叠部分的面积为小正方形的面积,需要在大正方体与小正方体分别减去一次.6.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21考点:几何体的表面积.专题:压轴题.分析:此题可根据表面积的计算分层计算得出红色部分的面积再相加.解答:解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.点评:此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.7.正四面体的顶点数和棱数分别是()A.3,4 B.3,6 C.4,4 D.4,6考点:欧拉公式.分析:正四面体也就是正三棱锥,根据三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,可以判断它的顶点数和棱数.解答:解:正四面体的顶点数和棱数分别是4,6.故选D.点评:掌握三棱锥的侧面是三个三角形围成和底面是一个三角形的特征,即三棱锥共有4个面,三个侧面,一个底面.8.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如下图的形状,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()A.19m2B.21m2C.33m2D.34m2考点:几何体的表面积.专题:压轴题.分析:解此类题首先要计算表面积即从上面看到的面积+四个侧面看到的面积.解答:解:根据分析其表面积=4×(1+2+3)+9=33m2,即涂上颜色的为33m2.故选C.点评:本题的难点在于理解露出的表面的算法.二.填空题(共6小题)9.5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是22 .考点:几何体的表面积.分析:先根据正方体的棱长为1,求出1个正方形的面积为1,再根据该几何体的表面有22个正方形构成,即可得出答案.解答:解:∵正方体的棱长为1,∴1个正方形的面积为1,∵该几何体的表面有22个正方形构成,∴该几何体的表面积22.故答案为:22.点评:此题考查了几何体的表面积,解决这类题的关键是找出该几何体的表面有多少个正方形构成.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是18cm2.考点:点、线、面、体;简单几何体的三视图.分析:首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再找出主视图的形状可得答案.解答:解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.点评:此题主要考查了点、线、面、体,以及三视图,关键是掌握主视图是从几何体的正面看所得到的图形.11.矩形绕其一边旋转一周形成的几何体叫圆柱,直角三角形绕其中一条直角边旋转一周形成的几何体叫圆锥.考点:点、线、面、体.分析:根据线动成面的知识可判断矩形及三角形旋转后的图形.解答:解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.点评:本题考查线动成面的知识,难度不大,解决本题的关键是掌握各种面动成体的特征.12.如图所示的图形可以被折成一个长方体,则该长方体的表面积为88 cm2.考点:几何体的表面积;展开图折叠成几何体.专题:计算题;几何图形问题.分析:由图形可知,这是一个长方体图形的展开图,先得出长方体的长、宽、高,根据长方体的表面积计算公式即可求解.解答:解:长方体的表面积是:2×(6×4+6×2+4×2)=88m2.故答案为:88.点评:本题考查了几何体的展开图和表面积,长方体的表面积=2(长×宽+长×高+宽×高).13.长方体有8 个顶点,12 条棱, 6 个面.考点:欧拉公式.。
1.1 生活中的立体图形 提高练习 2021-2022学年北师大版数学七年级上册
1.1 生活中的立体图形提高练习一、选择题1.如图,含有曲面的几何体编号是()A.①②B.①③C.②③D.②④2.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转3.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A.圆柱体B.球体C.圆D.圆锥体4.围成下列这些立体图形的各个面中,都是平的面为()A.B.C.D.5.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥6.从棱长为a的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.6a2+3B.6a2C.6a2﹣3D.6a2﹣17.如图所示,过长方体的一个顶点,截掉长方体的一个角,则新几何体的棱数为()A.11B.12C.13D.148.下边的立体图形是由哪个平面图形绕轴旋转一周得到的()A.B.C.D.9.下列几何体中,是圆柱的为A.B.C.D.10.六棱柱中,棱的条数有()A.6条B.10条C.12条D.18条二、填空题11.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为_____个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个_____面体.12.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).13.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____.14.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.15.一个棱柱有12个面,它有__________个顶点,___________条棱.16.这是一个_______体,它的长是_______ cm,宽是_______ cm,高是_______ cm.棱长总和是_______cm.17.“枪打一条线,棍打一大片”这个现象用数学知识解释说明:___________.18.如图,把一个长方体的礼盒用丝带打上包装,蝴蝶结部分需丝带42cm,那么打好整个包装所用丝带总长为________cm.19.请同学们手拿一枚硬币,将其立在桌面上用力一转,它形成的是一个______体,由此说明______________.20.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说______.三、解答题21.如图,把下列物体和与其相似的图形连接起来.22.如图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体.用线连一连.23.如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是______;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是____3cm(结果保留 );(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留 ).24.十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列儿种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是______________________.(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案一、选择题1--10CBABA BDAAD二、填空题11.12.12.12.).13.814.315或115.20 3016.长方25 12 18 22017.点动成线,线动成面18.14019.球面动成体20.线动成面三、解答题21..22.. 23.(1)圆柱;(2)48π;(3)240cm π或233cm π. 24.(1)V+F -E=2;(2) 20;(3)26。
生活中的立体图形练习题
生活中的立体图形十分钟测试1、棱柱的两个底面是形,侧面是形;圆柱的两个底面是形,侧面是面,展开图形是形。
2、棱柱和圆柱统称体。
3、棱锥的底面是形,侧面是形;圆锥的底面是形,侧面是面。
4、棱锥和圆锥统称体。
5、常见的立体图形分为体,体,体。
6、如图,下列图形()是柱体.7、把下列立体图形的名称填到下面括号里。
8、判断下列的陈述是否正确(1)柱体的上、下两个面不一样大( )(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面不一定是四边形()(4)圆柱的侧面是平面()(5)棱锥的侧面不一定是三角形()(6)柱体都是多面体()小测试(1)一、选择1.与易拉罐类似的几何体是()A、圆锥B、圆柱C、棱锥D、棱柱2.下图中是三棱锥的立体图形是( )3.埃及金字塔类似于几何体 ( )A 、圆锥B 、圆柱C 、棱锥D 、棱柱 4.下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体 5.下列说法正确的是 ( ) A .有六条侧棱的棱柱的底面一定是三角形 B .棱锥的侧面是三角形 C .长方体和正方体不是棱柱D .柱体的上、下两底面可以大小不一样二、填空6.立体图形的各个面都是__________的面,这样的立体图形称为多面体. 7.篮球、排球、足球、乒乓球都是球形的,不是球形的球是。
8.棱柱的长相等,上下底面是的多边形,侧面是。
9.一个棱锥有7个面,这是棱锥,有个侧面。
10.长方体ABCD -A ′B ′C ′D ′有个面,条棱,个顶点。
与棱AB 垂直相交的棱有条,与棱AB 平行的棱有条。
11.如图所示立体图形中,(1)球体有___________;(2)柱体有_________;(3)锥体有____________.12.如图,是一座粮仓,它可以看作是由和几何体组成的.13.如图,用边长为4的正方形,做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积是______.14、判断(1)柱体上下两个面一样大。
初一数学《生活中的立体图形》例题测试(北师大版)
初一数学《生活中的立体图形》例题测试(北师大版)北师大版七上数学生活中的立体图形例题解析(含解析)1.生活中常有的立体图形(1)常有的立体图形和对应的几何体图(1)是生活中几种常有的实物图形,其对应的几何体如图(2)所示.图(1)图(2)生活中包括着大量的几何图形,这些几何图形可以抽象为几何体.常有的几何体有长方体、正方体、圆柱、圆锥、球和棱柱等.注意:棱锥也是一种常有的几何体.如上面的最后一图.(2)几何体的组成几何体是由平面或曲面围成的立体图形.若是围成的面都是平的,叫做多面体.【例 1】以下列图形中,上面一行是一些详尽的实物图形,下面一行是一些几何体,试用线连接几何体和近似的实物图形.解析:比较实物图与几何体,从实物图形中抽象出数学几何体即可.第1页/共8页解:以下列图.2.几何图形的组成(1)几何图形的组成几何图形包括立体图形和平面图形,几何图形是由点、线、面组成的.面有平面和曲面,面不分厚薄;线有直线和曲线,线不分粗细.面与面订交获取线,线与线订交获取点,点不分大小.(2)点、线、面的关系从运动的角度看,点动成线,线动成面,面动成体.比方,把笔尖看做一个点,笔尖在纸上搬动就能形成一条线,即点动成线.点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球转动过的路线等.钟表的分针旋转一周形成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等.长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等.【例 2】以下列图的立体图形,是由__________个面组成的,其中有 __________个平面,有 __________个曲面;面与面相交成 __________条线,其中曲线有__________条.解析:该几何体的两个底面是平面;两个侧面中一个是平面,一个是曲面.两个底面与曲侧面订交成两条曲线,两个底面与平侧面订交成两条直线,两个侧面订交成两条直线.答案: 43162点技巧线与面的数法对于几何体,面与面订交获取线,线与线订交获取点.在数面时可先数底面,再数侧面;数线时,可先数底面与侧面相交成的线,再数侧面与侧面订交成的线.3.立体图形的鉴别几何图形的特色:(1)圆柱:两个底面是等圆,侧面是曲面.如八宝粥盒、茶杯等.(2)圆锥:底面是圆,侧面是曲面.像锥子.如烟囱帽、铅锤、漏斗等.(3)长方体:有 6 个面,底面是长方形,相对的两个面平行且完好相同.如砖、文具盒等.(4)正方体: 6 个面是大小完好相同的正方形.如魔方等.(5)棱柱:所有侧棱长都相等,底面是多边形,上、下底面的形状相同,侧面的形状都是平行四边形.(6)球:由一个曲面组成,圆圆的.如足球、乒乓球等.(7)棱锥:一个面是多边形,其余各面是一个有公共极点的三角形.多边形的面称为棱锥的底面,其余各面称为棱锥的侧面.依照底面的边数可将棱锥分为三棱锥、四棱锥谈重点从哪几个方面认识几何体的特色①有几个面围成,是平面还是曲面;②有无极点,有几个极点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等.【例 3- 1】请在每个几何体下面写出它们的名称.解析:依照立体图形的定义特色即可得出图形的名称.答案:三棱柱圆柱长方体圆锥四棱柱正方体球【例 3- 2】如图,在下面四个物体中,最凑近圆柱的是 ().解析:圆柱是“直”的,与弯管 B 有明显差异; D 中的饮料瓶的盖确实可以看作是圆柱,但它在该物中只占很小的一部分,该物体从整体上讲更凑近于棱柱; A 中烟囱上下粗细不同,不是圆柱,故应消除 A ,B,D ;作为柱体的本质特色之一是“粗细”各处相同,而与高、矮 (长、短 )没关, C 中玩具硬币尽管扁一些,但是最凑近圆柱,所以应选 C.答案: C4.几何体的分类(1)几何体按柱、锥、球的特色分为:(2)按围成的面分为:分类是数学中的基本方法,在分类时要一致标准,做到不重不漏.__________________________________________________________________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例 4- 1】在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状近似于棱柱的有().A.1 个 B.2 个 C.3 个 D.4 个解析:粉笔盒、三棱镜、书本可以看作棱柱,乒乓球是球体,易拉罐瓶是圆柱,热水瓶胆既不是棱柱,也不是圆柱和球体.故答案选 C.答案: C【例 4- 2】将以下几何体分类,并说明原由.解析:分类时,先确定分类标准.分类标准不相同,所属种类也不相同,同时应注意分类要不重不漏.解:(1)按柱、锥、球划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面是平面或曲面分:①④⑤⑦为一类,它们是多面体;②③⑥为一类,它们是旋转体.(3)按几何体有无极点分:①③④⑤⑦为一类,它们都有极点;②⑥为一类,它们都无极点.5.几何体的形成(1)长方形绕其一边所在直线旋转一周获取圆柱;(2)直角三角形绕其一条直角边所在直线旋转一周获取圆锥;(3)半圆绕其直径所在直线旋转一周获取球体.释疑点旋转体的形成①平面图形旋转会形成几何体;②平面图形绕某素来线旋转一周才可以形成几何体;③由平面图形旋转而获取的几何体有:圆柱、圆锥、球以及它们的组合体.___________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例 5】我们曾学过圆柱的体积计算公式: V = Sh=πR2h(R 是圆柱底面半径, h 为圆柱的高 ),现有一个长方形,长为 2cm,宽为 1cm,以它的一边所在的直线为轴旋转一周,获取的几何体的体积是多少?解析:问题中的几何体可由两种方式旋转获取.一种是绕这个长方形的长所在的直线旋转,另一种是绕这个长方形的宽所在的直线旋转,其结果不相同,注意不要漏解.解:(1)当以长方形的宽所在的直线为轴旋转时,如图 (1)所示,获取的圆柱的底面半径为 2cm,高为 1cm. 所以,其体积是 V1 =π× 22×1=4π(cm3).宋今后,京师所设小学馆和武学堂中的教师称号皆称之为“教谕”。
七年级数学上册 第一章 丰富的图形世界 1 生活中的立体图形 第1课时 常见的立体图形同步练习(含解
第一章丰富的图形世界1生活中的立体图形第1课时常见的立体图形1.将下列几何体分类,并说明理由.解:按球体、柱体、锥体分类,(1)(2)(4)(6)(7)是柱体,(5)是锥体,(3)是球体.2.如图是一个五棱柱,它的底面边长都是4 cm,侧棱长是6 cm.回答下列问题:(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?解:(1)这个五棱柱一共有7个面,其中5个是长方形,2个是五边形.2个五边形的形状、面积完全相同,所有的侧面(5个长方形)形状、面积完全相同.(2)这个五棱柱一共有15条棱.5条侧棱长度彼此相等,都等于6 cm,围成底面的所有的边的长都相等,都等于4 cm.3.下面图形中为圆柱的是( D )A B C D4.下列标注的图形名称与图形不相符的是( A )A.球B.长方体C.圆柱D.圆锥5.乒乓球类似于几何体中的__球体__;篮球类似于几何体中的__球体__;易拉罐与几何体中的__圆柱__体形状相似;魔方与几何体中的__正方体__形状相似.6.一个正方体共有( D )A.1个面 B.2个面C.4个面 D.6个面7.下列说法错误的是( D )A.长方体与正方体都有六个面B.圆锥的底面是圆C.棱柱的上、下底面的形状相同D.三棱柱有三个面、三条棱8.下列物体的形状属于球体的是( B )A B C D9.下列几何体属于柱体的个数是( D )A.3 B.4 C.5 D.610.下面几种图形:①三角形;②长方体;③正方形;④圆;⑤圆锥;⑥圆柱.其中立体图形有( D )A.6个 B.5个C.4个 D.3个11.直棱柱的侧面都是( B )A.正方形 B.长方形C.五边形 D.菱形12.长方体有__6__个面,__8__个顶点,过每个顶点有__3__条棱,长方体共有12条棱.13.圆柱由__3__个面围成,其中一个是__曲面__,另外两个是__平面__.14.长方体和圆柱都是__柱__体,圆锥和三棱锥都是__锥__体.15.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥,如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是( B )A.五棱柱 B.六棱柱C.七棱柱 D.八棱柱16.如图所示的一些物体与我们学过的哪些图形类似?把相应的物体和图形连接起来.17.将如图所示几何体分类,并说明理由.解:①③④⑤是柱体,②⑥是锥体,⑦是球体.(答案不唯一)18.一个正n棱柱,它有18条棱,一条侧棱长为10 cm,一条底面边长为5 cm.(1)这是几棱柱?(2)此棱柱的侧面积是多少?(3)过它一个底面的某个顶点连接该底面的其他各顶点,可把该底面分成几个三角形?[底面是正多边形的直棱柱叫做正棱柱,各边相等,各角也相等的多边形叫做正多边形(多边形:边数大于或等于3)]解:(1)18÷3=6,这是一个六棱柱.(2)此棱柱的侧面积是6×5×10=300(cm2).(3)可把该底面分成4个三角形.。
数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)
20212021数学北师大版七年级上册1.1《生活中的立体图形》同步训练一、选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为矩形D. 球体的三种视图均为同样大小的图形3.下列立体图形中,有五个面的是()A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,则它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCDEFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是________cm3,最大表面积是________cm2.10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行路线.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.12.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?14.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)15.观察图形,回答下列问题:(1)图 是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?答案解析部分一、选择题1.【答案】C【考点】几何体的表面积【解析】【解答】解:A、圆柱由上下两个平面和侧面一个曲面组成,不符合题意;B、圆锥由侧面一个曲面和底面一个平面组成,不符合题意;C、球只有一个曲面组成,符合题意;D、正方体是由六个平面组成,不符合题意.故答案为:C.【分析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只有一个曲面组成。
《1.1生活中的立体图形》同步能力提升训练(附答案)2021-2022学年七年级数学北师大版上册
2021年北师大版七年级数学上册《1.1生活中的立体图形》同步能力提升训练(附答案)1.三棱柱的顶点个数是()A.3B.6C.9D.122.若一个棱柱有24条棱,则它的底面一定是()A.四边形B.六边形C.八边形D.十二边形3.下面的几何体中,哪一个不能由平面图形绕某直线旋转一周得到()A.B.C.D.4.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“点动成线”的是()A.流星划过夜空B.打开折扇C.汽车雨刷的转动D.旋转门的旋转5.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.6.已知有一个长为5,宽为3的长方形,若以这个长方形的长边所在的直线为轴,将它旋转一周,则所得的几何体的体积为(结果保留π).7.如果将两个棱长分别为3cm、5cm、7cm的相同的长方体拼成一个大长方体,那么它们的表面积(前后)最多减少(cm)2.8.如果一个棱柱是由15个面围成的,那么这个棱柱是棱柱.9.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的共有个.10.若一个棱柱有十个顶点,则它有个面,有条棱.11.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.12.薄薄的硬币在桌面上转动时,看上去像球,这说明了.13.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为.(结果保留π)14.如图所示,下列图形绕着虚线旋转一周得到的几何体分别是:(1);(2);(3).15.一根长方体木料长2米,当把它按如图方式截成4个小长方体木料时,表面积比原来增加了84平方厘米,则原来的体积是立方厘米.16.一个直棱柱有八个面,所有侧棱长的和为36cm,则每条侧棱的长是cm.17.以三角形一直角边为轴旋转一周形成.18.已知一个直角三角形的两直角边分别是6cm,8cm.将这个直角三角形绕它的一直角边所在直线旋转一周,可以得到一个圆锥,则这个圆锥的体积是cm3.(结果用π表示)19.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)20.已知一个直棱柱有8个面,它的底面边长都是5cm,侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?参考答案1.解:一个直三棱柱是由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,它有6个顶点.故选:B.2.解:n棱柱有3n条棱,又24÷3=8,因此底面是八边形,故选:C.3.解:A.将“半圆”绕着其直径所在的直线,旋转一周所形成的几何体是“球”,因此选项A不符合题意;B.由于正方体的六个面都是“平面”,因此不可能是某个平面图形旋转得到的,因此选项B符合题意;C.将“直角三角形”绕着一条直角边所在的直线,旋转一周所形成的几何体是“圆锥”,因此选项C不符合题意;D.将“长方体”绕着一条边所在的直线,旋转一周所形成的几何体是“圆柱”,因此选项D不符合题意;故选:B.4.解:A、流星划过夜空,属于点动成线,本选项符合题意.B、打开折扇,属于线动成面,本选项不符合题意.C、汽车雨刷的转动,属于线动成面,本选项不符合题意.D、旋转门的旋转,属于面动成体,本选项不符合题意,故选:A.5.解:设这个棱柱为n棱柱,∵一个直n棱柱有3n条棱,∴21÷3=7,七棱柱的底面形状为七边形,故答案为:七边形.6.解:长方形绕一边旋转一周,得圆柱,所得的几何体的体积为:π×32×5=45π.故答案为:45π.7.解:将两个长方体拼在一起时,接触面积越大减小的面积越大,∴将长是7cm,宽是5cm的两个面拼在一起时减少的面积最多,即7×5×2=70(cm2),故答案为:70.8.解:一个棱柱是由15个面围成的,则有2个底面,13个侧面,因此此立体图形是十三棱柱,故答案为:十三.9.解:在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的有圆锥、正方体、棱锥共3个.故答案为:3.10.解:由棱柱的特点可知,这是一个五棱柱,故它有7个面,有15条棱.故答案为:7、15.11.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.12.解:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面动成体.故答案为:面动成体.13.解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).16πcm3<32πcm3.故答案为:32π14.解:(1)绕虚线旋转可得球;(2)绕虚线旋转可得圆柱;(3)绕虚线旋转可得圆锥;故答案为:球;圆柱;圆锥.15.解:∵截成4个小长方体木料时,表面积比原来增加了6个长方形∴每一个长方形的面积为84÷6=14平方厘米,∴原来的体积为:14×200=2800立方厘米,故答案为:2800.16.解:∵一个直棱柱有八个面,∴这个直棱柱是六棱柱,因此每条侧棱的长为36÷6=6(cm),故答案为:6.17.解:以三角形一直角边为轴旋转一周形成圆锥,故答案是:圆锥.18.解:分两种情况:①×π×82×6=×π×64×6=128π(cm3);②×π×62×8=×π×36×8=96π(cm3).∴这个圆锥的体积是128π或96π立方厘米.故答案为:128π或96π.19.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.20.解:因为一个直棱柱有8个面,所以它是六棱柱,所以有12个顶点,18条棱,答:它是六棱柱,它有12个顶点,18条棱;(2)因为六棱柱的底面边长都是5cm,侧棱长都是4cm.所以侧面展开后是长为5×6=30cm,宽为4cm的长方形,因此侧面积为30×4=120(cm2),答:这个棱柱的所有侧面的面积之和是120cm2.。
《生活中的立体图形》新题精炼 2022年北师大版数学七上
生活中的立体图形新题精炼根底稳固 1.如图1—1—17观察以下实物模型,其形状是圆柱体的是〔 〕2.以下图形中不是立体图形的是〔 〕3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱〔 〕A .6条B .12条C .18条D .24条4.以下立体图形中,有五个面的是〔 〕A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.将下面的直角梯形绕直线l 旋转一周,可以得到如图1—1—19立体图形的是〔 〕6. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是〔 〕A .点动成线B .线动成面C .面动成体D .以上都不对7.假设一个棱柱的底面是一个七边形,那么它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.A .B .C .D . 1—1—17A .B .C .D . 1—1—19 1—1—189.六棱柱有_____个顶点,有_______条侧棱.10.如图1—1—20至少找出以下几何体的4个共同点.11.〔1〕如图1—1—21下面这些根本图形和你很熟悉,试一试在括号里写出它们的名称.〔2〕将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是〔 〕能力提升12.多面体是由多个平面围成的几何体,如图1—1—23以下几何体中,属于多面体的有〔 〕A .2个B .3个C .4个D .5个1—1—20 〔 〕 〔 〕 〔 〕 〔 〕 〔 〕1—1—21 1—1—23 1—1—2213.假设一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,那么这个直棱柱的体积是______________cm3.14.〔1〕探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填写下表.〔3〕验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.〔4〕应用〔2〕的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案根底稳固1.D思路导引:圆柱的上下底面都是圆,所以正确的选项是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.那么这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有〔n+2〕个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等答复.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.〔1〕针对立体图形的特征,直接填写它们的名称即可.〔2〕可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:〔1〕从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.〔2〕观察图形,按柱、锥、球划分,那么有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.〔〕2.用一个平面去截一个圆柱,截出的面一定是圆.〔〕3.用一个平面去截圆锥,截出的面一定是三角形.〔〕4.用一个平面去截一个球,无论如何截,截面都是一个圆.〔〕二、填空题5.用一个平面去截一个球体所得的截面图形是__________.6.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.7.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.三、选择题8.用一个平面去截圆锥,得到的平面不可能是〔〕9.用一个平面去截一个圆柱,得到的图形不可能是〔〕10.用一个平面去截一个正方体,截面图形不可能是〔〕A.长方形; B.梯形; C.三角形; D.圆11.用一个平面去截一个几何体,如果截面的形状是圆,那么这个几何体不可能是〔〕A.圆柱; B.圆锥; C.正方体; D.球12.截去四边形的一个角,剩余图形不可能是〔〕A.三角形; B.四边形; C.五边形; D.圆四、解答题13.用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.15.指出以下几何体的截面形状.______________________ 16.编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、5.圆6.矩形7.三角形三、8.C9.D 10.D11.C12.D 四、13.可能14.略15.四、五边形圆形16.略。
最新北师大版七年级数学上册第一章-1、生活中的立体图形(练习题及答案)
1、生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.常见的几何体有()、()、()、()、()、和()等。
2、几何图形包括立体图形和(),几何图形是由()、()、()构成。
面有平面和(),面不分厚薄;线有直线和(),线不分粗细。
面与面相交得到(),线与线相交得到(),点不分大小。
3、从运动的角度看,点动成(),线动成(),面动成()。
(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线。
点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等。
钟表的分针旋转一周形成一个圆面,即线动成面。
线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等。
长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体。
面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等)4、如图所示的立体图形,是由()个面组成的,其中有()个平面,有()个曲面;面与面相交成()条线,其中曲线有()条。
5、立体图形的识别。
几何图形的特征:(1)圆柱:两个底面是(),侧面是()。
如()、()等。
(2)圆锥:底面是(),侧面是(),像锥子。
如()、()等。
(3)长方体:有6个面,底面是(),相对的两个面平行且()。
如()、()等。
(4)正方体:6个面是大小完全相同的()。
如()、()等。
(5)棱柱:所有()都相等,底面是(),上、下底面的(),侧面的形状都是()。
(6)球:由一个()组成,圆圆的。
如足球、乒乓球等。
(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的()。
多边形的面称为棱锥的(),其余各面称为棱锥的()。
根据()可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面认识几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等。
6、请在每个几何体下面写出它们的名称。
7、如图,在下面四个物体中,最接近圆柱的是( ).8、几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:9、在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( )。
1.1.2 生活中的立体图形 第2课时 北师大版七年级数学上册同步练习(含答案)
1.1.2生活中的立体图形一.选择题。
1.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )A.B.C.D.2.如图,下面的平面图形绕轴旋转一周,可以得到圆柱体的是( )A.B.C.D.3.“节日的焰火”可以说是( )A.面与面交于线B.点动成线C.面动成体D.线动成面4.把一枚硬币在桌面上竖直快速旋转后所形成的几何体是( )A.圆柱B.圆锥C.球D.正方体5.下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A.B.C.D.7.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是( )A.①②③④B.①②③C.②③④D.①③④二.填空题(共5小题)8.粉笔在黑板上划过写出一个又一个字母,画出一个个图案,这说明 .9.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 .(结果保留π)10.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的的体积是 立方厘米.(结果保留π)三.解答题(共4小题)11.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)12.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是 ,这能说明的事实是 .(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.1.1.2生活中的立体图形参考答案与试题解析一.选择题。
生活中的立体图形习题精练- 2021-2022学年七年级数学北师大版上册
第一章1.1生活中的立体图形习题精练一、选择题1.下列几何体中,含有曲面的有()A. 1个B. 2个C. 3个D. 4个2.下面几何体中为圆柱的是()A. B. C. D.3.如果一个棱柱有12个顶点,那么它的面的个数是()A. 10B. 9C. 8D. 74.下列图形中,不是立体图形的是()A. 圆锥B. 圆柱C. 圆D. 球5.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A. 2个B. 3个C. 4个D. 5个6.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.7.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.8.如图是由()图形绕虚线旋转一周形成的.A.B.C.D.9.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的所有侧面的面积之和是()A. 20cm2B. 60cm2C. 120cm2D. 240cm210.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()πcm2A. 652B. 60πcm2C. 65πcm2D. 130πcm211.如图,在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是()A. 30cm2B. 32cm2C. 120cm2D. 128cm212.把一个长12cm,宽9cm,厚2cm的长方体铁坯,加工成一个正方体铁锭后,则其表面积的变化是()A. 变大B. 变小C. 不变D. 无法确定二、填空题13.一个五棱柱有______个顶点,______个面,______条棱.14.如图所示的几何体由个面围成,面与面相交成条线,其中直的线有条,曲线有条.15.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.16.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、解答题17.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?18.观察图,回答下列问题:(1)图 ①是由几个面组成的?这些面有什么特征?(2)图 ②是由几个面组成的?这些面有什么特征?(3)图 ①中共形成了多少条线?这些线都是直的吗?图 ②呢?(4)图 ①和图 ②中各有几个顶点?19.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积。
华师大版初中数学七年级上册《4.1 生活中的立体图形》同步练习卷(含答案解析
华师大新版七年级上学期《4.1 生活中的立体图形》同步练习卷一.选择题(共7小题)1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等2.将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是()A.B.C.D.3.n棱柱的棱数与面数之和等于()A.3n B.4n+2C.3n+2D.2n+24.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(6)个图形由()个正方体叠成.A.36B.37C.56D.845.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.6.一个长方形的长和宽分别为3cm和2cm,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V甲、V乙,侧面积分别记作S甲、S乙,则下列说法正确的是()A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲=S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙7.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方形叠成.A.86B.87C.85D.84二.填空题(共22小题)8.笔尖在纸上快速滑动写出英文字母C,这说明了.9.一个棱柱共有18个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是厘米.10.一位画家用棱长为2的正方体,在地面上摆成如图所示的图形,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为.11.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明.12.“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为.13.如图,5个边长为1cm的正方体摆在桌子上,则露在表面的部分的面积为cm2.14.一个棱柱体共有18条棱,则它的底面边数为.15.流星划过天空时留下一道明亮的光线,用数学知识解释为.16.将如图所示的图形沿虚线旋转一周,所成的几何体是.17.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做.18.一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.19.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为cm2.20.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.21.如图是一个三棱柱的图形,它共有五个面,其中三个面是长方形,两个面是三角形,请写出符合下列条件的棱(说明:每个空只需写出一条即可).(1)与棱BB1平行的棱:;(2)与棱BB1相交的棱:;(3)与棱BB1不在同一平面内的棱:.22.棱长为1.3cm的立方体的体积为cm3;表面积为cm2.(结果都保留2个有效数字)23.如果一个棱柱由八个面围成,那么这个棱柱是棱柱.24.如图,图形沿虚线旋转一周,所围成的几何体是.25.已知一个n棱柱共有12条棱,那么这个n棱柱共有个顶点.26.三棱柱是由个面围成,五棱柱有个顶点.27.将下列几何体分类,柱体有:,锥体有(填序号).28.将下列几何体分类,柱体有:,锥体有(填序号)29.如果长方体从一点出发的三条棱长分别为2,3,4,则该长方体的表面积为,体积为.三.解答题(共15小题)30.一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).31.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.32.如图,棱长为a的小正方体,按照如图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:(2)研究上表可以发现,S随n的变化而变化,且S随n的增大而增大有一定的规律,可用式子S=来表示.当n=10时,S=.33.一个长方体长、宽、高分别为4厘米、2厘米和1厘米.(1)小明用斜二测画法画这个长方体的直观图时,长画4厘米,宽画厘米,高画1厘米;(2)如果用一根细铁丝做成这个长方体架子,不计材料损耗,至少需要多少厘米的铁丝?(3)如果用8个这样相同的小长方体拼成一个正方体,那么此正方体的表面积是多少平方厘米?34.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?35.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?36.将下列几何体分类,并说明理由.37.用第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.38.做大小两个长方体纸盒,尺寸如图(单位:cm)(1)用a、b、c的代数式表示做这两个纸盒共需用料多少cm2.(2)试计算做大纸盒比做小纸盒多用料多少cm2.39.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是.40.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.41.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?42.如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)(1)这是一个棱锥.(2)这个几何体有4个面.(3)这个几何体有5个顶点.(4)这个几何体有8条棱.(5)请你再说出一个正确的结论.43.如图,是按规律摆放在墙角的一些小正方体,从上往下分别记为第一层,第二层,第三层…第n层…(1)第三层有个小正方体.(2)从第四层至第六层(含第四层和第六层)共有个小正方体.(3)第n层有个小正方体.(4)若每个小正方体边长为a分米,共摆放了n层,则要将摆放的小正方体能看到的表面部分涂上防锈漆,则防锈漆的总面积为分米2.44.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.华师大新版七年级上学期《4.1 生活中的立体图形》同步练习卷参考答案与试题解析一.选择题(共7小题)1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等【分析】根据立体图形的概念定义和特性即可求解.【解答】解:A、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.所以长方体和正方体都是四棱柱,故说法正确;B、底面是五边形的棱柱是五棱柱,故说法正确;C、n棱柱有n条侧棱,(n+2)个面,故说法错误;D、若棱柱的底面边长相等,则它的各个侧面是全等的平行四边形,则它们面积相等,故说法正确.故选:C.【点评】本题主要考查棱柱的定义以及它的性质,属于基础题.2.将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是()A.B.C.D.【分析】根据面动成体结合常见立体图形的形状解答即可.【解答】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选:A.【点评】本题考查了点、线、面、体的知识,是基础题,熟悉常见几何体的形成是解题的关键.3.n棱柱的棱数与面数之和等于()A.3n B.4n+2C.3n+2D.2n+2【分析】根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.【解答】解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.所以n棱柱的棱数与面数之和:3n+(n+2)=4n+2故选:B.【点评】本题考查了欧拉公式中多面体的顶点数,面数,棱数之间的关系,灵活运用公式是解题关键.4.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(6)个图形由()个正方体叠成.A.36B.37C.56D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(6)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,∴第(5)个图形中正方体的个数为1+3+6+10+15=35;第(6)个图形中正方体的个数为1+3+6+10+15+21=56;故选:C.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.5.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.【分析】根据面对成体的原理及日常生活中的常识解题即可.【解答】解:A是长方形绕虚线旋转一周,得到的几何体,故错误;B是一个圆绕虚线旋转一周,得到的几何体,故正确;C是一个直角梯形图绕长底边旋转一周,得到的几何体,故错误;D是半圆绕直径旋转一周,得到的几何体,故错误.故选:B.【点评】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.6.一个长方形的长和宽分别为3cm和2cm,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V甲、V乙,侧面积分别记作S甲、S乙,则下列说法正确的是()A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲=S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.【解答】解:由题可得,V甲=π•22×3=12π,V乙=π•32×2=18π,∵12π<18π,∴V甲<V乙;∵S甲=2π×2×3=12π,S乙=2π×3×2=12π,∴S甲=S乙,故选:A.【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.7.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.二.填空题(共22小题)8.笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.【分析】线是由无数点组成,字是由线组成的,所以点动成线;【解答】解:笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线【点评】本题考查点,面,线,体的构成,关键是根据点动成线,线动成面,面动成体解答.9.一个棱柱共有18个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是8厘米.【分析】根据棱柱顶点的个数确定出是9棱柱,然后根据棱柱的每一条侧棱都相等列式求解即可.【解答】解:∵棱柱共有18个顶点,∴该棱柱是9棱柱,∵所有的侧棱长的和是72厘米,∴每条侧棱长为72÷9=8(厘米).故答案为:8.【点评】本题考查了认识立体图形,主要利用了棱柱顶点的个数与棱数的关系,比较简单.10.一位画家用棱长为2的正方体,在地面上摆成如图所示的图形,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为132.【分析】涂上颜色的总面积为:从上面看到的面积+四个侧面看到的面积.【解答】解:根据分析其表面积=4×(1+2+3)+9=33,即涂上颜色的为33个.33×4=132故答案为132.【点评】本题考查几何体的表面积,本题的难点在于理解露出的表面的算法.11.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明线动成面.【分析】根据点动成线,线动成面,面动成体进行解答即可.【解答】解:“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明线动成面.故答案为:线动成面.【点评】本题考查的是点、线、面、体,从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.12.“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为点动成线,线动成面.【分析】流星是点,光线是线,所以说明点动成线;雨刷可看成线,扇面是面,那么线动成面.【解答】解:“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为点动成线,线动成面.故答案为:点动成线,线动成面.【点评】此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.13.如图,5个边长为1cm的正方体摆在桌子上,则露在表面的部分的面积为16 cm2.【分析】5个边长为1cm的正方体的表面积之和是30cm2,因为被盖住的面有14个小正方形,其面积之和是14.【解答】解:根据以上分析故露在表面的部分的面积为16cm2.故答案为16.【点评】正方体的表面积=6×棱长的平方.14.一个棱柱体共有18条棱,则它的底面边数为6.【分析】根据题意确定出底面边数即可.【解答】解:一个棱柱体共有18条棱,则它的底面边数为6,故答案为:6【点评】此题考查了认识立体图形,要求学生具备空间想象能力.15.流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线..【分析】根据点动成线进行回答.【解答】解:流星划过天空时留下一道明亮的光线,用数学知识解释为点动成线.故答案为:点动成线.【点评】此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.16.将如图所示的图形沿虚线旋转一周,所成的几何体是圆锥.【分析】如图,本题是一个直角三角形围绕一条直角边为对称轴旋转一周,根据面动成体的原理即可解.【解答】解:由题意可知,该图是一个直角三角形,沿直角边旋转一周所成的几何体是圆锥.故答案为圆锥.【点评】本题考查的知识点为:直角三角形,沿直角边旋转一周所成的几何体是圆锥.17.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做圆锥.【分析】如图,一个直角三角形围绕一条直角边为中心对称轴旋转一周,根据面动成体的原理即可解.【解答】解:直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆锥.【点评】解决本题的关键是掌握各种面动成体的特征.18.一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是8cm.【分析】根据棱柱的概念和定义,可知12个顶点的棱柱是六棱柱.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.【点评】在棱柱中,是几棱柱,它就有几个侧面,并且就有几条侧棱.19.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为592cm2.【分析】表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10x6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10x8)重叠,长是10cm,宽是8cm,高是6+6=12(cm),由此计算即可;【解答】解:表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10x6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10x8)重叠,长是10cm,宽是8cm,高是6+6=12(cm).这个大长体的表面积是:(10x8+10x12+8x12)x2=(80+120+96)x2=296x2=592(平方厘米),故答案为592.【点评】本题考查几何体的表面积,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.【分析】根据旋转的性质、圆锥体的特征即可求解.【解答】解:如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.故答案为:圆锥.【点评】考查了点、线、面、体,关键是熟悉点动成线,线动成面,面动成体的知识点.21.如图是一个三棱柱的图形,它共有五个面,其中三个面是长方形,两个面是三角形,请写出符合下列条件的棱(说明:每个空只需写出一条即可).(1)与棱BB1平行的棱:AA1;(2)与棱BB1相交的棱:A1B1;(3)与棱BB1不在同一平面内的棱:AC.【分析】在长方体中,棱与棱之间有平行,相交(垂直)和异面等关系,即可得出结果.【解答】解:(1)与棱BB1平行的棱是AA1;故答案为:AA1;(2)与棱BB1相交的棱A1 B1;故答案为:A1B1;(3)与棱BB1不在同一平面内的棱AC;故答案为:AC.【点评】本题考查了立体图形的有关概念;熟记棱与棱之间有平行,相交(垂直)和异面等关系是解决问题的关键.22.棱长为1.3cm的立方体的体积为 2.2cm3;表面积为 1.7cm2.(结果都保留2个有效数字)【分析】根据立方体的体积V=a3,表面积S=6a2,列式计算即可求解..【解答】解:1.33≈2.2(cm3),1.32≈1.7(cm2).故棱长为1.3cm的立方体的体积为2.2cm3;表面积为1.7cm2.故答案为:2.2;1.7.【点评】考查了几何体的体积和表面积,关键是熟悉立方体的体积V=a3,表面积S=6a2的知识点.23.如果一个棱柱由八个面围成,那么这个棱柱是六棱柱.【分析】根据棱柱是由8个面围成的,则有2个底面,6个侧面,可得此立体图形是六棱柱,再根据六棱柱的特点可得答案.【解答】解:一个棱柱是由8个面围成的,则有2个底面,6个侧面,因此此立体图形是六棱柱,故答案为:六.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.24.如图,图形沿虚线旋转一周,所围成的几何体是圆柱.【分析】根据面动成体的原理解答即可.【解答】解:该图形沿虚线旋转一周,所围成的几何体是圆柱体.故答案为:圆柱.【点评】本题主要考查的是点、线、面、体,根据平面图形的特点判断出几何体的形状是解题的关键.25.已知一个n棱柱共有12条棱,那么这个n棱柱共有8个顶点.【分析】根据n棱柱有n+2面,3n条棱,2n个顶点求解即可.【解答】解:根据题意得:3n=12.解得:n=4.2×4=8.故答案为:8.【点评】本题主要考查的是认识立体图形,明确n棱柱有有n+2面,3n条棱,2n个顶点是解题的关键.26.三棱柱是由5个面围成,五棱柱有10个顶点.【分析】根据三棱柱、五棱柱的概念和特性即可解.【解答】解:三棱柱有2个底面,3个侧面,共5个面围成;五棱柱有10个顶点.故答案为:5;10.【点评】本题考查的是认识立体图形.柱体中,面与面相交成棱,棱与棱相交成顶点.27.将下列几何体分类,柱体有:1、2、3,锥体有5、6(填序号).【分析】首先要明确柱体,椎体的概念和定义,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有:1、2、3;锥体包括棱锥与圆锥,所以锥体有5、6;球属于单独的一类.故答案为:1、2、3;5、6.【点评】本题考查了几何体的分类,几何体一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.28.将下列几何体分类,柱体有:(1)(2)(3),锥体有(5)(6)(填序号)【分析】解这类题首先要明确柱体,椎体的概念和定义,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3);锥体包括圆柱与圆锥,所以锥体有(5)(6),球属于单独的一类.故答案为柱体有(1)(2)(3);锥体有(5)(6).【点评】几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.29.如果长方体从一点出发的三条棱长分别为2,3,4,则该长方体的表面积为52,体积为24.【分析】根据长方体的概念和表面积及体积的计算公式即解.【解答】解:由题意可知,长方体的长、宽、高分别是2,3,4,所以该长方体的表面积为2×(2×3+2×4+3×4)=52,体积为:2×3×4=24.故答案为52,24.【点评】长方体的表面积=2×(长×宽+长×高+宽×高);长方体的体积=长×宽×高.三.解答题(共15小题)30.一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).【分析】直接利用圆柱体体积公式计算得出答案.【解答】解:设圆柱的高是hcm,根据题意得:π×1.52h=4×3×2,∴h≈3.4,答:圆柱的高约是3.4cm.【点评】此题主要考查了认识立体图形,正确掌握圆柱体体积公式是解题关键.31.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由10个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为3200cm2.【分析】(1)根据几何体的形状,可得左列三排,第一排一层,第二排两层,后排三层,中间列两排,每排一层,右列一排,共一层,可得答案;(2)根据几何体的形状,可得小正方体露出表面的个数;(3)根据露出的小正方体的面数,可得几何体的表面积.【解答】解:(1)这个几何体由10个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.(3)露出表面的面一共有32个,则这个几何体喷漆的面积为3200cm2,故答案为:10;1,2,3;3200.【点评】本题考查了几何体的表面积,小正方体露出面的面积和,露出4个面的有两个正方形,露出5个面的有两个正方形.32.如图,棱长为a的小正方体,按照如图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:(2)研究上表可以发现,S随n的变化而变化,且S随n的增大而增大有一定的规律,可用式子S=n(n+1)来表示.当n=10时,S=55.【分析】(1)第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,根据相应规律可得第3层,第4层正方体的个数;(2)依据(1)得到的规律可得第n层正方体的个数,进而得到n=10时S的值.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:6,10;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学《生活中的立体图形》测试题
一、判断题:
1.柱体的上、下两个面一样大.………………………………………………..()
2.圆柱的侧面展开图是长方形.………………………………………………()
3.球体不是多面体.……………………………………………………………()
4.圆锥是多面体.………………………………………………………………..()
5.长方体是多面体.……………………………………………………………..()
6.柱体都是多面体.……………………………………………………………..()
二、选择题:
1、如图,下列图形()是柱体.
2、下面给出的图形中,绕虚线旋转一
周能形成圆锥的是()
3、如下图,下列图形中有十四条棱的
是()
三、填空题:
1、一个多面体有12条棱,6个顶点,
则这个多面体是体。
2、把下列图形的名称填在括号内:
3、长方体有个顶点,经过每个顶点有
条棱,共有条棱。
4、一个七棱柱共有个
面,条棱,个顶点,形状和面积完全相同的只有个面.
5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
四.连线题:
把图形与对应的图形名称用线连接起来。
五.解答题:
1、将图4-8中的几何体进行分类,并说明理由。