第一章反比例函数测试

合集下载

第一章反比例函数单元测试2022-2023学年鲁教版(五四制)九年级数学上册(含答案)

第一章反比例函数单元测试2022-2023学年鲁教版(五四制)九年级数学上册(含答案)

鲁教版五四制九年级数学第一章反比例函数单元测试一、选择题1. 下列函数:①y =2x ,②y =15x ,③y =x −1,④y =1x+1.其中,是反比例函数的有( ) A. 0个 B. 1个 C. 2个 D. 3个2. 如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A. 一条直角边与斜边成反比例B. 一条直角边与斜边成正比例C. 两条直角边成反比例D. 两条直角边成正比例3. 如图,等腰三角形△ABC 的顶点A 在原点固定,且始终有AC =BC ,当顶点C 在函数y =kx (x >0)的图象上从上到下运动时,顶点B 在x 轴的正半轴上移动,则△ABC 的面积大小变化情况是( )A. 先减小后增大B. 先增大后减小C. 一直不变D. 先增大后不变4. 如图,点B 在反比例函数y =6x (x >0)的图象上,点C 在反比例函数y =−2x (x >0)的图象上,且BC//y 轴,AC ⊥BC ,垂足为点C ,交y 轴于点A.则△ABC 的面积为( )A. 3B. 4C. 5D. 65. 如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是( ) A. y =3xB. y =−3x C. y =±3x D. y =3x6. 如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y =2x−1的函数图象.根据这个函数的图象,下列说法正确的是( ) 7. A. 图象与x 轴没有交点B. 当x >0时,y >0C. 图象与y 轴的交点是(0,−12)D. y 随x 的增大而减小8. 2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m 3土石方的任务,该运输公司平均运送土石方的速度v(单位m 3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是( )A. v =106tB. v =106tC. v =1106t 2 D. v =106t 2第3题第4题第5题9.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(ℎ)变化的函数图象,其中BC段是双曲线y =kx(k≠0)的一部分,则当x=16时,大棚内的温度约为( )A.18℃B. 15.5℃C. 13.5℃D. 12℃10.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).血液中药物浓度不低于6微克毫升的持续时间为( )A. 73B. 3 C. 4 D. 16311.在平面直角坐标系中,点A是双曲线y1=k1x (x>0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2=k2x(x<0)交于点B,连接AB,已知AOBO =2,则k1k2=( )A. 4B. −4C. 2D. −2二、填空题(12.若函数y=(m−2)x m2−5是反比例函数,则m=______.13.下列函数,①x(y+2)=1②y=1x+1③y=1x2④y=−12x⑤y=−x2⑥y=13x;其中是y关于x的反比例函数的有:______.14.已知反比例函数y=kx 在第一象限的图象如图所示,点A是在图象上AB⊥OB,且S△AOB=3,则k=______.第6题第9题第10题第11题第14题15. 设函数y =x −3与y =2x 的图象的两个交点的横坐标为a ,b ,则1a +1b=______.16. 在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是 m.者之间的关系:I =UR ,测得数据如下: 17. 科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三R(Ω) 100 200 220 400 I(A)2.21.110.55那么,当电阻R =55Ω时,电流I =______A .三、解答题18.如图,△AOB 的边OB 在x 轴上,且∠ABO =90°反比例函数y =kx(x >0)的图象与边AO 、AB 分别相交于点C 、D ,连接BC.已知OC =BC ,△BOC 的面积为12. (1)求k 的值;(2)若AD =6,求直线OA 的函数表达式.19.为了预防新冠病毒,某中学对教室进行药熏消毒,已知药物燃烧阶段,教室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y(mg)与时间x(min)成反比例(如图所示),现测得药物10min 燃烧完,此时教室内每立方米空气中的含药量达到最大,为8mg ,根据图象,解答下列问题:(1)求药物燃烧时y(mg)与x(min)的函数关系式及药物燃烧完后y(mg)与时间x(min)的函数关系式,并写出它们自变量x 的取值范围; (2)据测定,只有当教室内每立方米空气中的含药量不低于4 mg ,且至少持续作用10分钟以上,才能完全杀死病毒,请问这次药熏消毒是否有效?20.如图,正方形AOCB 的边长为4,反比例函数的图像过点E (3,4).。

第1章反比例函数单元能力达标测评 2021-2022学年九年级数学鲁教版(五四制)上册( 含答案)

第1章反比例函数单元能力达标测评 2021-2022学年九年级数学鲁教版(五四制)上册( 含答案)

2021-2022学年鲁教版九年级数学上册《第1章反比例函数》单元能力达标测评(附答案)一.选择题(共12小题,满分48分)1.下列函数中,y是x的反比例函数的是()A.B.C.D.2.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.23.若反比例函数的图象经过点(﹣1,2),则它的解析式是()A.B.C.D.4.如图,双曲线y=与直线y=mx相交于A、B两点,B点坐标为(﹣2,﹣3),则A点坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)5.函数y=﹣kx+k和函数y=在同一坐标系内的图象可能是()A.B.C.D.6.若点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列关系式正确的是()A.y2<y3<y1B.y3<y2<y1C.y1<y3<y2D.y1<y2<y37.若图中反比例函数的表达式均为,则阴影面积为4的有()A.1个B.2个C.3个D.4个8.已知反比例函数y=﹣,当y≤且y≠0时,自变量x的取值范围为()A.x<0B.x≤﹣9C.﹣9≤x<0D.x≤﹣9或x>0 9.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下面四个判断正确的有()①反比例函数y2的解析式是y2=﹣②两个函数图象还有另一交点,且坐标为(﹣2,﹣4)③当x<﹣2或0<x<2时,y1<y2④正比例函数y1与反比例函数y2都随x的增大而增大A.1个B.2个C.3个D.4个10.一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)在同一平面直角坐标系中的图象如图所示,若y1<y2,则x的取值范围是()A.﹣2<x<0或x>1B.x<﹣2或0<x<1C.x>1D.x>﹣211.如图,A、B是反比例函数y=的图象上关于原点O对称的任意两点,过点A作AC ⊥x轴于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.412.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温将至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是()A.水温从20℃加热到100℃,需要7minB.水温下降过程中,y与x的函数关系式是y=C.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D.水温不低于30℃的时间为min二.填空题(共6小题,满分24分)13.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为14.已知反比例函数所在的每一个象限内,y的值随x的增大而增大,k的取值范围为.15.函数y=﹣x与y=(k≠0)的图象无交点,且y=的图象过点A(1,y1),B(2,y2),则y1y2.(填>,<或=)16.已知点A(m,n)在双曲线上,点B(﹣m,n)在直线y=2x﹣3k上,则的值为.17.如图,已知点A,B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,OA ⊥OB,则的值为.。

第1章《反比例函数》单元检测题(含答案) 2023-2024学年湘教版九年级数学上册

第1章《反比例函数》单元检测题(含答案) 2023-2024学年湘教版九年级数学上册

第1章《反比例函数》单元检测题2023-2024学年九年级上册数学湘教版一、单选题(共10小题,满分40分)1.函数是反比例函数,则a 的值是( )A .B .1C .D .2.反比例函数的比例系数是( )A .-1B .-2C .D .3.如图,反比例函数(,且k 为常数)的图象与直线(,且a 为常数)交于、B 两点,则点B 的坐标为( )A .B .C .D .4.反比例函数y =的图象,当x <0时,y 随x 的增大而增大,则k 的取值范围为( )A .k ≥2B .k ≤﹣2C .k >2D .k <﹣25.如图,在平面直角坐标系中,点为坐标原点,平行四边形的顶点在反比例函数的图像上,顶点在反比例函数的图像上,顶点在轴的负半轴上.若平行四边形的面积是5,则的值是( )A .1B .C .2D .36.如图,点是反比例函数图象上任意一点,轴于,点是轴上的动点,则的面积为( )()221ay a x -=-1-1±12y x=-12-12ky x=0k ≠y ax =0a ≠()2,3A -()3,2-()2,3-2kx-O OBAD A 2y x=-B ky x=D x OBAD k 32A 2y x=(0)x >AB y ⊥B C xA .1B .2C .4D .不能确定7.如图,等边△ABC 的边长是2,内心O 是直角坐标系的原点,点B 在y 轴上.若反比例函数y=(x >0),则k 的值是( )A BCD8.一辆汽车匀速通过某段公路,所需时间(h )与行驶速度(km/h )满足函数关系 ,其图象为如图所示的一段双曲线,端点为和,若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要( )A .分钟B .40分钟C .60分钟D .分钟9.如图,在平面直角坐标系中,点A 在第一象限,AB ⊥y 轴于点B ,函数的图象与线段AB 交于点C ,且AB=3BC ,若△AOB 的面积为12,则k 的值( )A .4B .6C .8D .12kxv kt v=(0)k >(40,1)A (,0.5)B m 232003(0,0)k y k x x=>>10.如图,点A 是双曲线在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )A .y=﹣xB .y=﹣xC .y=﹣D .y=﹣二、填空题(共8小题,满分32分)11.如图,在平面直角坐标系中,直线y =3x +3与x 轴、y 轴分别交于A 、B 两点,以线段AB 为边在第二象限内作正方形ABCD ,点C 恰好落在双曲线y =上,则k 的值是 .12.直线与双曲线的图象交于A 、B 两点,设A 点的坐标为,则边长分别为m 、n 的矩形的面积为,周长为.13.如果点,,都在反比例函数的图象上,那么,,的大小关系是 (用“<”连接).14.若点是一次函数与反比例函数图像的交点,则的值为 .15.已知反比例函数图像上三点的坐标分别是、、,且,试判断,,的大小关系 .16.已知点A 是双曲线y=在第三象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为一边作等边三角形ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .4y x=14124x2xkx5y x =-4(0)y x x=>(,)m n ()12,A y -()21,B y -()32,C y 10y x=-1y 2y 3y (,)a b 263y x =-+9y x =32a b +()0ky k x=>()11,x y ()22,x y ()33,x y 1230x x x <<<1y 2y 3y17.在平面直角坐标系xOy 中,已知反比例函数满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线P ,且k=18.在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A 的“倒数点”.如图,矩形的顶点C 为,顶点E 在y 轴上,函数的图象与交于点A .若点B 是点A 的“倒数点”,且点B 在矩形的一边上,则点B 的坐标为.三、解答题(共6小题,每题8分,满分48分)19.已知x ,y 满足下表.x … 14…y…41…(1)求y 关于x 的函数表达式:(2)当时,求y 的取值范围.20.如图,已知反比例函数与一次函数的图象相较于点、,点的纵坐标为3,点的纵坐标为-2.(1)求一次函数的表达式.(2)连接、,求.(3)请直接写出的解集.2(0)ky k x=≠y x =-+|OP (),A x y 11,B x y ⎛⎫⎪⎝⎭OCDE ()3,0()20y x x =>DE OCDE 2-1-2-4-24x <<6y x=y kx b =+A B A B AO BO AOB S V 6kx b x>+21.已知函数和函数(的常数)的图象交于点.(1)求的函数关系式;(2)当时,比较与的大小(直接写出结果).22.已知一次函数的图像与反比例函数的图像相交于点,.(1)求一次函数的表达式,并在图中画出这个一次函数的图像;(2)过B 作轴,垂足为C 点,点D 在第一象限的反比例函数图像上,连接,若,求点D 的坐标;(3)直接写出关于x 的不等式的解集.23.如图,在平面直角坐标系中,函数的图象与函数的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为.(1)填空: , ;(2)求点的坐标;(3)若将绕点顺时针旋转,使点的对应点落在轴正半轴上,得到,判断点是否在函数的图象上,并说明理由.24.某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电14y x =-+2ky x=0k ≠()1,A m 2y 23x <<1y 2y 0y kx b k =+≠()4y x=1A m (,)3B n -(,)0y kx b k =+≠()BC y ⊥CD 4BCD S =V 4kx b x+≥y x b =+(0)k y x x=>(1,4)B x A C AB OAC V OAB △1:4k =b =C OAC V O C C 'x OA C ''V A '(0)ky x x=>价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.(1)求y与x之间的函数解析式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]参考答案:1.A 2.C 3.D 4.C 5.D 6.A 7.A 8.B 9.C 10.C 11.-1212.41013.y 3< y 1<y 214.215.16.y=﹣.17.18.(,1)(3,)19.(1)(2)当时,20.(1);(2);(3)或21.(1);(2).22.(1)一次函数的解析式为(2)213y y y <<15x12164y x=24x <<12y <<1y x =+523x <-02x <<23y x=12y y >31y x =+4(,3)3(3)或23.(1)4,3(2)(3)点不在函数的图象上24.(1) y =;(2) 当电价调至0.6元/度时,本年度电力部门的收益将比上年度增加20%.403x -<<1x >()2,1-A 'ky x=()0x >152x -。

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章反比例函数数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、已知下列命题:①若a≠b,则a2≠b2;②对于不为零的实数c,关于x的方程的根是c.③对角线互相垂直平分的四边形是菱形.④过一点有且只有一条直线与已知直线平行.⑤在反比例函数中,如果函数值y<1时,那么自变量x>2,是真命题的个数是()A.4个B.3个C.2个D.1个2、已知三角形的面积一定,则底边a与其上的高h之间的函数关系的图象大致是()A. B. C. D.3、抛物线y=x2﹣9与x轴交于A、B两点,点P在函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为( )A.2个B.3个C.4个D.6个4、已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限5、反比例函数的图像经过点(1,-2),则此函数的解析式是()A.y=2xB.y=-C.y=-D.y= x6、在同一坐标系中,函数y=ax2+bx与y=的图象大致为()A. B. C. D.7、下列函数中,y是x的反比例函数的是()A.x(y﹣1)=1B.y=C.y=D.y=8、如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是()A. πB.2 πC.4 πD.条件不足,无法求9、已知和均是以为自变量的函数,当时,函数值分别是和,若存在实数,使得,则称函数和具有性质P。

以下函数和具有性质P的是()A. 和B. 和C.和 D. 和10、已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.11、如图,B、C两点都在反比例函数y= (x>0)上,点A在y轴上,AB∥x轴,当△ABC是等边三角形时,的值为()A. B. C. D.12、甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内,y值随x值的增大而减小.根据他们的描述,这个函数表达式可能是()A.y=2xB.y=C.y=﹣D.y=2x 213、a、b是实数,点 A(2,a)、 B(3,b)在反比例函数的图象上,则( )A. B. C. D.14、如图,点的坐标是(-1,0),点的坐标是(0,6),为的中点,将绕点逆时针旋转90°.后得到.若反比例函数的图像恰好经过的中点,则k的值是()A.19B.16.5C.14D.11.515、已知反比例函数,下列结论中不正确的是A.其图象经过点B.其图象分别位于第一、第三象限C.当时,y随x的增大而减小 D.当时,二、填空题(共10题,共计30分)16、如图,直线y=﹣x+b与双曲线(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE,则b=________.17、已知同一个反比例函数图象上的两点P1(x1, y1)、P2(x2, y2),若x2=x1+2,且,则这个反比例函数的解析式为________.18、如图所示,在某一电路中,保持电压不变,电阻R(欧)与电流I (安)之间的函数关系如图所示,则这一电路的电压为________伏.19、若,都在函数的图象上,且,则________ .(填“”或“”)20、某厂有煤2500吨,则这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为________21、设A(x1, y1),B(x2, y2)是反比例函数y=﹣图象上的两点,若x1<x2<0,则y1与y2之间的关系是________.22、如图,双曲线y= 经过第二象限的点B,点P在y轴上,点A在x轴上,且点B与点A关于点P对称,若OC=2OA,△BCP的面积为4,则k的值是________.23、如图,已知点A,B分别在反比例函数y1= 和y2= 的图象上,若点A是线段OB 的中点,则k的值为________.24、已知点A、B分别在反比例函数y= (x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为________.25、如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时, ;时, .试求当时, 的值.27、某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出x与y之间的关系式,并求出x=5时,y的值.28、如图,点A,B关于y轴对称,S△AOB=8,点A在双曲线y=,求k的值.29、某乡要在生活垃圾存放区建一个老年活动中心,这样必须把1 200 m3的生活垃圾运走.(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运12 m3,则5辆这样的拖拉机要多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?30、如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B (3,n)两点.(Ⅰ)求一次函数的解析式;(Ⅱ)根据图象直接写出的x的取值范围;(Ⅲ)求△AOB的面积.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、C5、B6、D7、D8、B9、A11、C12、B13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。

第一章《反比例函数》(基础卷)(解析版)

第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。

反比例函数单元测试题

反比例函数单元测试题

反比例函数单元测试题一、选择题(每题3分,共15分)1. 反比例函数的一般形式是()。

A. y = kx + bB. y = k/xC. y = -kxD. y = kx2. 如果反比例函数的图象经过点(1,6),那么比例系数k的值是()。

A. 6B. -6C. 1D. -13. 反比例函数y = 3/x的图象在第()象限。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 反比例函数y = 1/x的图象具有以下哪个性质?()A. 当x增大时,y减小。

B. 当x减小,y增大。

C. 当x增大时,y增大。

D. 当x减小,y减小。

5. 反比例函数y = k/x的图象在x轴上的截距是()。

A. kB. 0C. 1/kD. 无法确定二、填空题(每题2分,共10分)6. 反比例函数y = 2/x的图象在x轴上的截距为______。

7. 当k > 0时,反比例函数y = k/x的图象在第______象限和第______象限。

8. 如果反比例函数y = k/x的图象经过点(-2,3),那么k的值为______。

9. 当x < 0时,反比例函数y = k/x的图象在第______象限。

10. 反比例函数y = k/x的图象是两条______的曲线。

三、简答题(每题5分,共10分)11. 描述反比例函数y = k/x的图象在坐标平面上的位置和特点。

12. 解释反比例函数y = k/x的图象为什么没有与坐标轴相交的点。

四、计算题(每题10分,共20分)13. 已知反比例函数y = k/x,当x = 3时,y = 2。

求比例系数k的值。

14. 已知反比例函数y = 4/x,求当x = 2时,y的值。

五、综合题(每题15分,共15分)15. 已知反比例函数y = k/x,其图象经过点A(a, b)和点B(c, d)。

如果a < 0,b > 0,c > 0,d < 0,求k的值,并描述图象在坐标平面上的位置。

(常考题)人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)

(常考题)人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)

一、选择题1.反比例函数(0)k y k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( ) A . B . C . D . 2.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .53.下列函数中,y 总随x 的增大而减小的是( )A .4y x =-B .4y x =-C .4y x =D .4y x =- 4.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x =()0x < 5.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④ 6.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x =≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2--7.对于反比例函数21k y x+=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值8.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( )A .412,3y x y x== B .412,3y x y x =-=- C .412,3y x y x =-= D .412,3y x y x==- 9.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y <<D .321y y y << 10.同一坐标系中,函数()1y k x +=与k y x=的图象正确的是( ) A . B .C .D .11.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积()A.不变B.逐渐变大C.逐渐变小D.先变大后变小12.如图,双曲线kyx=经过Rt BOC∆斜边上的中点A,且与BC交于点D,若BOD 6S∆=,则k的值为()A.2B.4C.6D.8二、填空题13.如图,设点P在函数5yx=的图象上,PC⊥x轴于点C,交函数y=2x的图象于点A,PD⊥y轴于点D,交函数y=2x的图象于点B,则四边形PAOB的面积为_____.14.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间的函数关系如图所示,即2,(04)32,(4)x x y x x≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.15.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.16.如图,在方格纸中(小正方形的边长为1),反比例函数k y x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D ,则正方形ABCD 的面积是_____.18.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.19.若函数2yx=与24y x=--的图像的交点坐标为(,)a b, 则12a b+的值是______.20.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.三、解答题21.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC =4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣mx<0的解集.22.已知y是x的反比例函数,且当x=4时,1y=-.(1)求y与x之间的函数解析式;(2)求当132x-≤≤-时,y的取值范围.23.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数k y x =(k≠0,x >0)的图象相交于A (1,5),B (m ,1)两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数k y x=(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积. 24.如图,已知一次函数y=x+b 的图像与反比例函数k y x=(x <0)的图像相交于点A (-1,2)和点B ,点P 在y 轴上.(1)求b 和k 的值;(2)当PA+PB 的值最小时,点P 的坐标为______;(3)当x+b <k x时,请直接写出x 的取值范围. 25.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标;(3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.26.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min ;完成2间办公室和1间教室的药物喷洒要11min .(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg /m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg /m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据反比例函数所在象限确定k <0,再根据k <0确定抛物线的开口方向和对称轴,即可选出答案.【详解】解:∵反比例函数(0)k y k x=≠图象在二、四象限, ∴k <0,∴二次函数y=kx 2-2x 的图象开口向下, 对称轴=-212k k-=, ∵k <0, ∴1k<0,∴对称轴在x 轴的负半轴,故选:A .【点睛】本题考查了反比例函数的性质,以及二次函数图象,解题的关键是根据反比例函数的性质确定k 的正负.2.C解析:C【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【详解】解:∵点A 在反比例函数k y x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =, ∵点A 在第一象限,x y ∴、都是正数,1122AOB S OB AB xy ∴=⋅=, 2AOB S =,4k xy ∴==.故选:C .【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键. 3.A解析:A【分析】根据正比例函数的性质,可判断A ;根据一次函数的性质,可判断B ;根据反比例函数的性质,可判断C 、D .【详解】A 选项:y 随x 的增大而减小,符合题意,故A 正确;B 选项:y 随x 的增大而增大,不符合题意,故B 错误;C 选项:在每个象限内y 随x 的增大而减小,不符合题意,故C 错误;D 选项:在每个象限内y 随x 的增大而增大,不符合题意,故D 错误.故选:A .【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.4.D解析:D【分析】 根据反比例函数k y x=中k>0, 在每个象限内,y 随着x 的增大而减小;k<0,在每个象限内,y 随着x 的增大而增大求解.【详解】-1<0,在每个象限内,y 随着x 的增大而增大,故A 选项错误;-2<0,在每个象限内,y 随着x 的增大而增大,故B 选项错误;-3<0且x >0,y 随着x 的增大而增大,故C 选项错误;4>0且x <0,y 随着x 的增大而减小,故D 选项正确;故选D .【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质. 5.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.6.A解析:A【分析】过原点的直线与反比例函数图象的交点关于原点成中心对称,由此可得B 的坐标.【详解】1y k x =与2k y x=相交于A ,B 两点 ∴A 与B 关于原点成中心对称∵(1,2)B ∴(1,2)A --故选择:A .【点睛】熟知反比例函数的对称性是解题的关键.7.B解析:B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 8.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.9.B解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 10.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.11.A解析:A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C , ∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.3【分析】根据反比例函数系数k的几何意义求出四边形PCOD的面积△OBD和△OAC的面积然后求解即可【详解】解:根据题意S四边形PCOD=PC•PD=5S△OBD=S△OAC=×2=1所以四边形PA解析:3.【分析】根据反比例函数系数k的几何意义求出四边形PCOD的面积,△OBD和△OAC的面积,然后求解即可.【详解】解:根据题意,S四边形PCOD=PC•PD=5,S△OBD=S△OAC=12×2=1,所以,四边形PAOB的面积=S四边形PCOD﹣S△OBD﹣S△OAC=5﹣1﹣1=3.故答案为:3.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数kyx(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于12k.14.6不可以【分析】分别求出y=4时的两个函数值再求时间差即可解决问题【详解】解:当y=4则4=2x解得:x=2当y=4则4=解得:x=8∵8﹣2=6<7∴血液中药物浓度不低于4微克/毫升的持续时间为6解析:6,不可以【分析】分别求出y=4时的两个函数值,再求时间差即可解决问题.【详解】解:当y=4,则4=2x,解得:x=2,当y=4,则4=32x,解得:x=8,∵8﹣2=6<7,∴血液中药物浓度不低于4微克/毫升的持续时间为6小时,这种抗菌新药不可以作为有效药物投入生产.故答案为:6,不可以.【点睛】本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.15.﹣3【分析】由题意可设一次函数的解析式为y =k1x+4然后联立两个函数的解析式可得等式k1x2+4x ﹣k2=0进而可根据根与系数的关系得出x1+x2=﹣x1x2=﹣再由可得点C 的横坐标是点B 横坐标的解析:﹣3【分析】由题意可设一次函数的解析式为y =k 1x +4,然后联立两个函数的解析式可得等式k 1x 2+4x ﹣k 2=0,进而可根据根与系数的关系得出x 1+x 2=﹣14k ,x 1x 2=﹣21k k ,再由2BC AB =可得点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,然后对上述的两个式子整理变形即得结果.【详解】解:∵一次函数y =k 1x +b 的图象过点A (0,4),∴一次函数的解析式为y =k 1x +4,由k 1x +4=2k x,得k 1x 2+4x ﹣k 2=0, 设上述方程的两个实数根为x 1、x 2,则x 1+x 2=﹣14k , x 1x 2=﹣21k k , ∵BC =2AB ,∴点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,∴x 1+x 2=4x 1=﹣14k ,x 1x 2=3x 12=﹣21k k , ∴221113k k k ⎛⎫⨯-=- ⎪⎝⎭,整理得:k 1k 2=﹣3. 故答案为﹣3.【点睛】本题考查了一次函数与反比例函数的交点、一元二次方程的根与系数的关系等知识,熟练掌握上述知识、掌握求解的方法是关键.16.(22)或(-2-2)【分析】先求得反比例函数的解析式为设C 点的坐标为()根据AC=BC 得出方程求出即可【详解】由图象可知:点A 的坐标为(-1-4)代入得:所以这个反比例函数的解析式是设C 点的坐标为解析:(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4y x =,设C 点的坐标为(x ,4x),根据AC=BC 得出方程,求出x 即可.【详解】 由图象可知:点A 的坐标为(-1,-4), 代入k y x=得:4k xy ==, 所以这个反比例函数的解析式是4y x =, 设C 点的坐标为(x ,4x), ∵A (-1,-4),B (-4,-1),AC=BC , 即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭, 解得:2x =±,当2x =时,422y ==, 当2x =-时,422y ==--, 所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.12【解析】设D (aa )∵双曲线y=经过点D ∴a2=3解得a=∴AD=2∴正方形ABCD 的面积=AD2=(2)2=12故答案为12解析:12【解析】设D (a ,a ),∵双曲线y=3x经过点D , ∴a2=3,解得,∴∴正方形ABCD 的面积=AD2=(2=12.故答案为12.18.<【分析】直接利用反比例函数的增减性分析得出答案【详解】∵反比例函数中k =﹣1<0∴在每个象限内y 随x 的增大而增大∵点A (﹣4y1)B (﹣2y2)都在反比例函数的图象上且﹣2>﹣4∴y1<y2故答案解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1y x=-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大, ∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.19.-2【分析】求出两函数组成的方程组的解即可得出ab 的值再分别代入求出即可【详解】解:由题意得:把①代入②得:整理得:x2+2x+1=0解得:∴交点坐标是(-1-2)∴a=-1b=-2∴=-1+(-1解析:-2【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再分别代入求出即可.【详解】 解:由题意得:224y x y x ⎧=⎪⎨⎪=--⎩①②把①代入②得:224x x=--, 整理得: x 2+ 2x +1=0, 解得: 12x y =-⎧⎨=-⎩ ∴交点坐标是(-1,-2),∴ a= -1,b= -2, ∴12a b+= -1 +(-1)= -2. 故答案为:- 2.【点睛】 本题主要考查函数交点坐标求法与运用;求出两函数组成的方程组的解,即为交点坐标是本题的解题关键.20.70【分析】根据点关于y 轴对称的特点写出B 点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A 在双曲线y =上得到2ab =1即ab =根据AB 两点关于y 轴对称得到点B (﹣ab )根据点B 在直线解析:70【分析】根据点关于y 轴对称的特点写出B 点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A 在双曲线y =12x 上,得到2ab =1,即ab =12, 根据A 、B 两点关于y 轴对称,得到点B (﹣a ,b ).根据点B 在直线y =x +6上,得到a +b =6, ∴22a b a b b a ab++= =2()2a b ab ab+- =2162212-⨯=36112-=70.故答案为:70.【点睛】 此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y 轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.三、解答题21.(1)y =﹣12x ,y =32x +9;(2)9;(3)x <﹣4或﹣2<x <0. 【分析】(1)根据勾股定理求出AC 长度,从而得知A 点坐标,用待定系数法可求反比例函数解析式.把B 点纵坐标代入反比例函数即可知道B 点横坐标.同样用待定系数法把A 、B 的坐标代入一次函数解析式可得方程组,求出方程组的解即可求出一次函数解析式; (2)求出一次函数与x 轴交点R 的坐标.=-AOB BOR AOR SS S ,根据三角形的面积公式求出AOR S 和BOR S 即可;(3)要使kx +b ﹣m x<0,即函数y kx b =+的图像在m y x =的下方,在根据A 、B 的坐标即可求出答案.【详解】(1)在Rt△AOC中,3 AC===,故点A的坐标为(-4,3),将A(-4,3)代入myx=,解得m=﹣12,∴反比例函数的解析式为y=﹣12x;∵当y=6时,代入y=﹣12x,解得x=﹣2,∴B(-2,6),将A(-4,3),B(-2,6)代入y=kx+b得4326k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴一次函数的解析式为y=32x+9;(2)设一次函数交x轴于点R,把y=0代入y=32x+9,解得:x=﹣6,即R的坐标是(-6,0),OR=6,S△AOB=S△BOR﹣S△AOR=1166639 22⨯⨯-⨯⨯=;(3)由图象知kx+b﹣mx<0的解集为:x<﹣4或﹣2<x<0.【点睛】本题考查一次函数与反比例函数交点的问题,反复用待定系数法先后求出反比例函数和一次函数的解析式,用大三角形面积减去小三角形面积也是本题的关键,最后根据函数图像和两个函数的交点,判断kx+b﹣mx<0时,即函数y kx b=+的图像在myx=的下方,x的取值范围.22.(1)4yx=-;(2)4y83≤≤.【分析】(1)利用待定系数法确定反比例函数的解析式即可;(2)根据自变量的取值范围确定函数值的取值范围即可.【详解】解:(1)设反比例函数的解析式为kyx =,∵当x=4,y=-1,∴k=-1×4=-4,∴反比例函数的解析式为4y x =-; (2)当x=-3时,43y =,当x=-12时,y=8, ∴当-3≤x≤-12时,y 的取值范围是43≤y≤8. 【点睛】本题考查了反比例函数的性质,求得反比例函数的解析式是解答本题的关键. 23.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x=得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b 得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB的面积=△BOD的面积-△AOD的面积1165611222=⨯⨯-⨯⨯=.【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.24.(1)b=3,k=-2;(2)5()3P0,;(3)x<-2或-1<x<0【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A 关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(3)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y=x+b的图象与反比例函数kyx=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=(−1)+b,2=−k,解得:b=3,k=−2;(2)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m n m n +-+==,解得:1353m n ⎧⎪⎪⎨⎪⎪⎩==, ∴直线A′B 的解析式为y =13x +53. 令x =0,则y =53, ∴点P 的坐标为(0,53); (2)观察函数图象,发现: 当x <−2或−1<x <0时,一次函数图象在反比例函数图象下方,∴当x +b <k x时,x 的取值范围为x <−2或−1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B 的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.25.(1)32y x -=;(2)48⎛ ⎝⎭或8⎛ ⎝⎭或1224,55⎛⎫-- ⎪⎝⎭;(3)329,9⎛⎫- ⎪⎝⎭或()1,32-【分析】(1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可; (3)设设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称,∴点C 坐标为(4,-8). 设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD ==,解得:45a =±点D 坐标为48⎛ ⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.26.(1)校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一班学生能安全进入教室,计算说明过程见解析.【分析】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y ,再根据题干信息建立二元一次方程组,然后解方程组即可得;(2)先求出完成11间教室的药物喷洒所需时间,再根据一次函数的解析式求出点A 的坐标,然后利用待定系数法求出反比例函数的解析式,最后根据反比例函数的解析式求出55x =时,y 的值,与1进行比较即可得.【详解】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y则3219211x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一间教室的药物喷洒时间为5min ,则11个房间需要55min当5x =时,2510y =⨯=则点A 的坐标为(5,10)A 设反比例函数表达式为k y x =将点(5,10)A 代入得:105k =,解得50k = 则反比例函数表达式为50y x =当55x =时,50155y =< 故一班学生能安全进入教室.【点睛】本题考查了二元一次方程组的应用、反比例函数与一次函数的综合等知识点,较难的是题(2),依据题意,正确求出反比例函数的解析式是解题关键.。

九年级数学上册第一章反比例函数单元试题(附答案)

九年级数学上册第一章反比例函数单元试题(附答案)

九年级数学上册第一章反比例函数单元试题(附答案)以下是为您推荐的九年级数学上册第一章反比例函数单元试题(附答案),希望本篇文章对您学习有所帮助。

九年级数学上册第一章反比例函数单元试题(附答案)一、选择题(每小题5分,共25分)1.反比例函数的图象大致是( )2.如果函数y=kx-2(k0)的图象不经过第一象限,那么函数的图象一定在A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限3. 如图,某个反比例函数的图像经过点P,则它的解析式为( )A. B.C. D.4. 某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图像应为( )5. 如果反比例函数的图像经过点(2,3),那么次函数的图像经过点( )A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2)二、填空题6.已知点(1,-2)在反比例函数的图象上,则k= .7.一个图象不经过第二、四象限的反比例函数的解析式为 .8.已知反比例函数,补充一个条件:后,使得在该函数的图象所在象限内,y随x值的增大而减小.9.近视眼镜的度数y与镜片焦距x(米)成反比例.已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x 之间的函数关系式是 .10.如图,函数y=-kx(k0)与y=- 的图像交于A、B两点.过点A作AC垂直于y轴,垂足为C,则△BOC的面积为 .三、解答题(共50分)11.(8分) 一定质量的氧气,其密度(kg/m,)是它的体积v (m,)的反比例函数.当V=10m3 时甲=1.43kg/m.(1)求与v的函数关系式;(2)求当V=2m3时,氧气的密度.12.(8分)已知圆柱的侧面积是6m2,若圆柱的底面半径为x(cm),高为ycm ).(1)写出y关于x的函数解析式;(2)完成下列表格:(3)在所给的平面直角坐标系中画出y关于x的函数图像.13.(l0分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例.当电阻R=5欧姆时,电流 I=2安培.(l)求I与R之间的函数关系式;(2)当电流I= 0.5 安培时,求电阻R的值;(3)如果电路中用电器的可变电阻逐渐增大,那么电路中的电流将如何变化?(4)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?14. (12分)某蓄水池的排水管每小时排水飞12m3, 8h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(m3),那么将满池水排空所需的时间y(h)将如何变化?(3)写出y与x之间的关系式;(4)如果准备在6h内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管每小时的最大排水量为24m3,那么最少多长时间可将满池水全部排空?15.(12分) 反比例函数和一次函数y=mx+n的图象的一个交点A(-3,4),且一次函数的图像与x轴的交点到原点的距离为5.(1)分别确定反比例函数与一次函数的解析式;(2)设一次函数与反比例函数图像的另一个交点为B ,试判断AOB(点O为平面直角坐标系原点)是锐角、直角还是钝角?并简单说明理由.。

湘教版九年级数学上册第1章《反比例函数》单元测试题(含答案)

湘教版九年级数学上册第1章《反比例函数》单元测试题(含答案)

九年级数学上册第1章《反比例函数》单元测试题(时间:100分钟 总分:120分)班级 姓名 得分一、选择题(每小题3分,共30分) 1、下列各点中,在反比例函数3y x=图象上的是( ) A. 3,(1) B. 3,(-1) C. 13,3⎛⎫ ⎪⎝⎭D.133⎛⎫ ⎪⎝⎭,2、已知函数ky x=的图象过点(1,-2),则该函数的图象必在( ) A. 第二、三象限 B. 第二、四象限 C. 第一、三象限 D. 第三、四象限 3、若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围 是( ) A .2->m B .2-<mC .2>mD .2<m4、函数y =-kx 与y =xk(k ≠0)的图象的交点个数是( ) A.0 B.1 C.2 D.不确定 5、反比例函数6=y x图象上有三个点112233(,),(,),(,)x y x y x y ,其中1230x x x <<<,则123,,y y y 的大小关系是 ( )A. 123y y y <<B. 312y y y <<C. 213y y y <<D. 321y y y << 6、矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为 ( )7、如图,321P P P ,,是双曲线一支上的三点,过这三点分别作y 轴的垂线,垂足分别为321A A A ,,,得到三角形11A OP 、三角形22A OP 、三角形33A OP ,设它们的面积分别是321S S S ,,,则有( )A.1S <2S <3SB.2S <1S <3SC.3S <1S <2SD.1S =2S =3S(第7题图) (第8题图) 8、如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( ) A .2B 、-2C 、-4D 、49、反比例函数y =xm的图象如图所示,以下结论: ① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ;④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是( )A.①②B.②③C.③④D.①④10.函数y 1=xk和y 2=kx-k 在同一坐标系中的图象大致是( )二、填空题(每小题3分,共30分)11、请你写出一个图象在第一、三象限的反比例函数.答: . 12、已知反比例函数的图象经过点(m ,5)和(5,-2),则m 的值为 . 13、若点1P (1,m ),2P (2,n )在反比例函数y =xk(k <0)的图象上,则m n (填“>”“<”或“=”).14、点A (2,1)在反比例函数y kx=的图像上,则k= .15、如图,反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,那么B 点的坐标为 .16、已知反比例函数y =xk(k ≠0)的图象经过点P (-2,1),则这个函数的图象位于第 象限.17、矩形的面积是12 cm ²,则一边长y (cm)与其邻边的长x (cm)之间的函数关系式为 .18、若一次函数y =kx +b 与反比例函数y =xk的图象交于点(2,2),则k = ,b = . 19、某种蓄电池的电压为定值,使用此电源时,电流 I (A )与可变电阻 R (Ω)之间的函数关系如图所示,当用电器的电流为1.5A 时,用电器的可变电阻为 Ω.(第19题图) (第20题图) 20、如图,直线x =2与反比例函数y =x 2和y =-x1的图象分别交于A ,B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是 .三、解答题(60分)21、(本题9分)在如图所示的坐标系中,画出y =x2和y = 2x 的图象,并求出交点坐标.22、(本题9分)已知反比例函数y =xk的图象过点A (x ,y ),且点A 的坐标满足(x +5)2+6-y =0,求此反比例函数的表达式.23(本题9分)如图,第一象限的角平分线OM 与反比例函数的图象相交于点A ,已知OA =22.(1)求点A 的坐标;(2)求此反比例函数的解析式.24、(本题9分)如图 ,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x=(k 为常数, 0k ≠)的图象相交于点 A (1,3). (1)求这两个函数的解析式;(2)观察图象,直接写出满足函数值y 1≥ y 2>0的自变量xy B1- 1- 1 2 3 3 12 A (1,3)25、(本题12分)如图8,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积. 26、(本题12分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图9所示.根据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?O 9 (毫克) 12(分钟) xy九年级数学上册第1章《反比例函数》单元测试题答案一、选择题 1-5 ABAAC 6-10 BDACD二、填空题 11.答案不唯一 12.-2 13. < 14.2 15. (2,-1) 16. 二、四17.y=x1218. 4, -6 ; 19.24 20.1.5 三、解答题21解:图象如答图1;观察图象可知,交点坐标为A (1,2),B (-1,-2).22. 解:由(x +5)2+6-y =0,可得⎩⎨⎧==+,0605-,y x 解得⎩⎨⎧==,65y x ,-所以点A 的坐标为(-5,6). 又因为点A 在反比例函数y =x k 的图象上,所以将点A (-5,6)的坐标代入y =xk ,得6=5-k ,所以k =-30,故此反比例函数的表达式为y =-x30. 23.解:(1)过点A 作AB ⊥x 轴于点B ,则∠AOB=∠OAB=45o,∴OB=AB ,由勾股定理,得,OB=AB=2, A(2,2)(2)设反比例函数的表达式为y =x k把A(2, 2)代入,得,k=4, ∴y =x 4.24.(1) y 1=x+2, y 2=x3(2) x ≥1 25.(1)y=-x8 (2)当x=-4时,y=2, ∴B(-4,2),把A(-2,4),B(-4,2)分别代入b kx y +=,得,{4224=+-=+-b k b k ,解得k=1,b=6,∴y=x+6,当y=0时,x=-6,∴C(-6,0) ∴OC=6∴△AOC 的面积=21×6×4=12 26.(1) 药物释放过程中,y=43x (0≤x ≤12)药物释放完毕后,y=x108(x >12)(2) 0.45=x108,∴x=240分=4小时,即从药物释放开始,至少需要经过4小时后,学生才能进入教室。

《第一章反比例函数》单元评估检测试卷(有答案)

《第一章反比例函数》单元评估检测试卷(有答案)

湘教版九年级数学上册第一章反比例函数单元评估检测试卷一、单选题(共10题;共30分)1.下列函数中,变量y是x的反比例函数的是()A. y=B. y=-C. y=D. y=-12.反比例函数的图象经过点 ,则当时,函数值的取值范围是()A. B. C. D.3.反比例函数y=-的图像在( )A. 第一、二象限B. 第二、三象限C. 第一、三象限D. 第二、四象限4.若反比例函数y= 图象经过点(5,﹣1),该函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限5.下列四个点,在反比例函数y=图象上的是()A. (2,-3)B. (2,3)C. (-1,6)D. (-,3)6.若A(a,b),B(a-2,c)两点均在函数y=的图象上,且a<0,则b与c的大小关系为()A. b>cB. b<cC. b=cD. 无法判断7.对于反比例函数,下列说法正确的是A. 图象经过点(1,﹣3)B. 图象在第二、四象限C. x>0时,y随x的增大而增大D. x<0时,y随x增大而减小8.在同一平面直角坐标系中,函数y=x+k与y= (k为常数,k≠0)的图象大致是()A. B. C. D.9.已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.10.如图,函数与y2=k2x的图象相交于点A(1,2)和点B,当y1>y2时的自变量x的取值范围是()A. x>1B. ﹣1<x<0C. ﹣1<x<0或x>1D. x<﹣1或0<x<1二、填空题(共10题;共30分)11.若反比例函数的图象经过点(﹣1,2),则k的值是________.12.如图,反比例函数y= 的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC 的面积等于________个面积单位.13.如图,它是反比例函数y= 图象的一支,根据图象可知常数m的取值范围是________.14.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC= .则k的值是________.15.已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是________ .16.如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.17.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为________.18.如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y= (x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为________.19.如图,点A是双曲线y= (x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线交双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,对四边形ABCD的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大;③由小变大再由大变小;④不变.你认为正确的是________.(填序号)20.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m, ),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是________三、解答题(共9题;共60分)21.已知,与x成反比例,与成正比例,并且当x=-1时,y=-15,当x=2时,y= ;求y与x之间的函数关系式.22.如图所示,Rt△AOB中,∠AOB=90°,OA=10,点B在反比例函数y=图象上,且点B的横坐标为3.(1)求OB的长;(2)求过点A的双曲线的解析式.23.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.24.反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=的图象上,求t的值.25.已知A(﹣4,2),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.26.如图,已知反比例函数y = 的图象经过点A(1,-3),一次函数y =kx +b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.试确定点B的坐标.27.如图,Rt△ABO的顶点A是双曲线与直线y=−x−(k+1)在第二象限的交点,AB⊥x轴于B且S△ABO= 。

【九年级】九年级上册数学第1章反比例函数测试题(浙教版含答案)

【九年级】九年级上册数学第1章反比例函数测试题(浙教版含答案)

【九年级】九年级上册数学第1章反比例函数测试题(浙教版含答案)第1章反比例函数检测题(本试卷满分:100分,时间:90分钟)一、(每小题3分,共30分)1.在以下选项中,如果是反比函数关系,则为()a.在直角三角形中,30°角所对的直角边与斜边之间的关系b、在等腰三角形中,顶角和底角之间的关系c.圆的面积与它的直径之间的关系d、面积为20的钻石,一条对角线和另一条对角线之间的关系2.(2021哈尔滨中考)如果反比例函数的图象经过点(-1,-2),则k的值是()a、 2b.-2c.-3d。

三3.在同一坐标系中,函数和的图象大致是()当图像的逆比例小于0(.0)时a.第一象限b.第二象限c.第三象限d.第四象限5.如果购买一个茶杯只需15元,那么一个茶杯的单价与a.(取实数)b.(取整数)c、(取自然数)d(取正整数)6.若反比例函数的图象位于第二、四象限,则的值是()a、 0b。

0或1C0或2D四7.如图,a为反比例函数图象上一点,ab垂直于轴b点,若s△aob=3,则的值为()a、 6b。

3c。

d、不确定8.已知点、、都在反比例函数的图象上,则的大小关系是()a、 b。

c.d.9.如果正比例函数和反比例函数的图像在两点a和C相交,ab⊥ X轴在点B和CD处⊥ X轴位于d点(如图所示),四边形ABCD的面积为()a.1b.c.2d.10.(2022年福州市高中入学考试)如图所示,通过点C(1,2)分别画出x轴和y轴的平行线,相交线y=-x+6位于a点和B点。

如果反比例函数y=(x>0)的图像与△ ABC,K的取值范围为()a.2≤k≤9b.2≤k≤8c、二,≤K≤5d。

5.≤K≤8.二、题(每小题3分,共24分)11.已知与当时成反比12.(2021山东潍坊中考)点p在反比例函数(k≠0)的图象上,点q(2,4)与点p 关于y轴对称,则反比例函数的解析式为.13.已知逆比例函数。

当时,其图像的两个分支位于第一象限和第三象限;在那个时候,它的图像随着每个象限中的亮度的增加而增加14.若反比例函数的图象位于第一、三象限内,正比例函数的图象过第二、四象限,则的整数值是________.15.有一批救灾物资需要从a市运送到B市。

第一章反比例函数单元检测 鲁教版(五四制)数学九年级上册

第一章反比例函数单元检测 鲁教版(五四制)数学九年级上册

2021-2022鲁教版九年级上册第一章反比例函数单元检测一、选择题1.下列式子:①y=x2;②y=2x;③xy=k;④y=x-1;⑤y=-23x,能表示y是x的反比例函数的有( )A.4个B.3个C.2个D.1个2.对于反比例函数y=-5x,下列说法不正确的是( )A.图象分布在第二、四象限B.当x<0时,y随x的增大而增大C.图象经过点(5,-1)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y23.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.(2020阜新)若A(2,4)与B(-2,a)都是反比例函数y=kx(k≠0)图象上的点,则a的值是( )A.4B.-4C.2D.-25.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度ρ也随之改变,ρ与V在一定范围内满足ρ=mV,它的图象如图所示,则该气体的质量m为( )A.1.4 kgB.5 kgC.7 kgD.6.4 kg第5题图的图象的交点位6.正比例函数y=6x的图象与反比例函数y=6x于( )A.第一象限B.第二象限C.第三象限D.第一、三象限7.(2020宁夏)如图所示,函数y1=x+1与函数y2=2的图象相交x于点M(1,m),N(-2,n).若y1>y2,则x的取值范围是( ) A.x<-2或0<x<1 B.x<-2或x>1C.-2<x<0或0<x<1D.-2<x<0或x>1第7题图8.如图所示,平面直角坐标系中,点A是x轴负半轴上一个定(x<0)上一个动点,PB⊥y轴于点B,当点P 点,点P是函数y=-6x的横坐标逐渐增大时,四边形OAPB的面积将会( )A.先增后减B.先减后增C.逐渐减小D.逐渐增大第8题图9.如图所示,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.的图象恰好经过A′B的中点D,则k的值是若反比例函数y=kx( )A.9B.12C.15D.18第9题图10.(2020赤峰)如图所示,点B在反比例函数y=6(x>0)的图象x(x>0)的图象上,且BC∥y轴,AC⊥上,点C在反比例函数y=-2xBC于点C,交y轴于点A,则△ABC的面积为( )A.3B.4C.5D.6第10题图二、填空题11.已知反比例函数y=k与一次函数y=2x-1的图象的交点为x(1,a),则k的值为.在每个象限内,函数值y随x值的增大而增12.双曲线y=k+1x大,则k的取值范围是.13.王师傅用一根撬棒撬动一块大石头,已知阻力臂和阻力不变,分别为0.5 m和1 000 N,当动力臂l为2 m 时,撬动这块大石头需用的动力F为 .14.如图所示,在平面直角坐标系中,过点M(-3,2)分别作x轴、的图象交于A,B两点,则四边形y轴的垂线与反比例函数y=4xMAOB的面积为.第14题图15.(2020北京)在平面直角坐标系xOy中,直线y=x与双曲线交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2y=mx的值为.三、解答题(k为常数,k≠0)的图象经过点16.已知反比例函数y=kxA(2,3).(1)求这个函数的表达式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-2<x<-1时,求y的取值范围.的图象有一个公17.已知正比例函数y=ax与反比例函数y=bx共点 A(1,2).(1)求这两个函数的表达式;(2)在所给的平面直角坐标系中,画出两函数的图象,根据图象写出正比例函数值大于反比例函数值时x的取值范围.的图象的一支位于第一象限. 18.已知反比例函数y=m-7x(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图所示,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.19.如图所示,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=-12的图象交于A,B两点,且与x轴交于点C,x与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;的解集.(3)写出不等式kx+b>-12x20.某商场出售一批进价为2元的贺卡,在销售中发现此商品的日销售单价x(元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数表达式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数表达式.若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.21.(2020江西)如图所示,在Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=k(x>0)的图象上,直线AC⊥x轴于点xD,连接OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD= 45°,OA=2√2.(1)求反比例函数的表达式;(2)求∠EOD的度数.。

反比例函数测试- 第1章《反比例函数》测试题

反比例函数测试- 第1章《反比例函数》测试题

第一章《反比例函数》测试题一、选择题:(每题5分,共50分)1、下列函数中,不属于反比例函数的是( ) A 、1xy = B 、11y x =+ C 、1y x -=- D 、13y x= 2、有以下判断:①圆面积公式2S r π=中,面积S 与半径r 成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式213V r h π=中,当体积V 不变时,圆柱的高h 与底面半径r 的平方成反比例,其中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个 3、若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )A 、 正比例函数B 、 反比例函数C 、 一次函数D 、 不能确定 4、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、+3或-3D 、+6或-65、如果反比例函数的图象经过点)2,3(,那么下列各点在此函数图象上的是( )A 、)23,2(-B 、)32,9( C 、)32,3(- D 、 )23,6( 6、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0, 2k >0B 、1k >0, 2k <0C 、1k 、2k 同号D 、1k 、2k 异号7、下列函数中y 随x 的增大而减小的是( ) A 、90)y x x =-<( B 、11y x =C 、30)y x x=>( D 、2y x = 8、已知112233(,),(,),(,)x y x y x y 是反比例函数4y x-=的图象上三点,且1230x x x <<<,则123,,y y y 的大小关系是( )第4题图A 、1230y y y <<<B 、1230y y y >>>C 、1320y y y <<<D 、1320y y y >>> 9、在同一坐标系中,函数ky x=和3y kx =+的图象大致是 ( )A B C D10、已知P 为函数2y x=-的图像上的点,且P P 点的个数为( )A 、0个B 、2个C 、4个D 、无数个 二、填空题:(各题6分,共30分) 11、已知反比例函数xky =的图象经过点(3,4),则k = ; 12、若反比例函数221(1)k k y k x --=-的图象经过二、四象限,则k= _______.13、已知A (-3,3m -)和B (m+3,2)都是反比例函数ky x=的图像上的两点,则m=______. 14、对于函数2y x=,当2x >时,y 的取值范围是______y <<______;当2x ≤时且0x ≠时,y 的取值范围是y ______1。

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章反比例函数数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、已知反比例函数y=−,下列结论不正确的是()A.图象必经过点(-1,2)B.y随x的增大而减小C.图象在第二、四象限内D.若x>1,则-2<y<02、已知点A(﹣2,y1),B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列结论中正确的是()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y3<y13、一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B.C. D.4、如图,在平面直角坐标系中,正方形OABC的顶点О在原点,A,C分别在x轴和y轴的正半轴上,反比例函数图象交AB边于点D,交BC边于点E,连接EO并延长,交的图象于点F,连接DE,DO,DF,若,,则k的值等于()A.3B.4.6C.6D.85、下列各点中,在反比例函数y=的图象上的是( )A.(-1,4)B.(1,-4)C.(2,3)D.(1,4)6、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的()A.7:00B.7:10C.7:25D.7:357、已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B. y随 x的增大而增大C.图象在第一、三象限内D.若 x>1,则0< y<28、已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=B.y=C.y=D.y=-9、反比例函数y= 的图象经过()象限.A.一、二B.一、三C.二、三D.二、四10、若函数y= 的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2B.m<0C.m>﹣2D.m>011、若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.﹣2B.2C.﹣D.12、点A(-2,y1)与点B(-1,y2)都在反比例函数y=-的图像上,则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定13、在平面直角坐标系中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. B. C. D.14、如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(-1,-3)、B(1,3)两点.若>k2x,则x的取值范围是( )A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>115、已知A(x1, y1)和B(x2, y2)是反比例函数y= 的上的两个点,若x2>x1>0,则()A.y2>y1>0 B.y1>y2>0 C.0>y1>y2D.0>y2>y1二、填空题(共10题,共计30分)16、如图,点A、B分别在双曲线y= 和y= 上,四边形ABCO为平行四边形,则▱ABCO 的面积为________.17、如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数(x<0)图象上一点,AO的延长线交函数(x>0,k>0的常数)的图象于点C,点A关于y 轴的对称点为A′,点C关于x轴的对称点为C′且点O、A′、C′在同一条直线上,连接CC′,交x轴于点B,连接AB,AA′,A′C′,若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于________18、如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”)19、如图,点A在函数y= (x>0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为________.20、已知反比例函数y= ,当x>3时,y的取值范围是________.21、如图,若点A在反比例函数y= (k≠0)的图象上,AM⊥x轴于点M,△AMO的面积为2,则k=________.22、已知A(,)和B(,)是反比例函数的图象上两点,若,则y1与y2的大小关系是________.23、如图,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2,G为矩形对角线的交点,经过点G的双曲线与BC相交于点M,则CM:MB=________.24、如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为________ .25、如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A,B,C,D是格点。

九年级数学第一章《反比例函数》测试题

九年级数学第一章《反比例函数》测试题

九年级数学第一章《反比例函数》测试题一、选择题(每题3分,共30分)1.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x +是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个2.某工厂现有材料100吨,若平均每天用去x 吨,这批材料能用y 天,则y 与x 之间的函数关系式为( )A .y =100xB .y =100xC .y =100-100x D .y =100-x3.已知反比例函数y =m -5x的图象在第二、四象限,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <54.已知三角形的面积一定,则底边a 与其上的高h 之间的函数关系的图象大致是( )D 5.对于反比例函数y =2x,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第二、四象限D .当x >0时,y 随x 的增大而减小 6.反比例函数6=y x图象上有三个点112233(,),(,),(,)x y x y x y ,其中1230x x x <<<,则123,,y y y 的大小关系是 ( )A. 123y y y <<B. 312y y y <<C. 213y y y <<D. 321y y y << 7.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )8.反比例函数y =kx在第一象限的图象如图所示,则k 的值可能是( )A .1B .2C .3D .4 9.若函数y =(m +2)x|m |-3是反比例函数,则常数m 的值是( ).A .2B .-2C .±2D .≠-210.如图,函数11y x =-和函数22y x=的图象相交于点(2,)M m , (1,)N n -,若12y y >,则x 的取值范围是( )A .102x x <-<<或 B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或 二、填空题(本大题共8个小题,每小题3分,共24分) 11. 反比例函数ky x=的图象经过点,3(-2),则函数的解析式为____________.12.已知y 与21x +() 成反比例,且当=1x 时,=3y ,那么当=0x 时,=y __________.13.如图,P 是反比例函数y =kx的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的比例系数是 .14.平面直角坐标系中有六个点,()5,1A ,⎪⎭⎫ ⎝⎛--35,3B ,()1,5--C ,⎪⎭⎫ ⎝⎛-25,2D ,⎪⎭⎫ ⎝⎛35,3E ,⎪⎭⎫⎝⎛2,25F ,其中有五个点在同一反比例函数图象上,不在这个反比例函数图象上的点是 .15.已知直线y =kx 和双曲线y =6x有一交点是(3,32),则另一交点是 16.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .17. 如图,反比例函数x ky =的图象位于第一、三象限,其中 第一象限内的图象经过点A (1,3),请在第三象限内的图象 上找一个你喜欢的点P ,你选择的P 点坐标为 18.如图,在反比例函数y =2x (x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3= .三、解答题(66分)19.(10分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积) S (mm 2)的反比例函数,其图象如图所示.⑴ 求y (m )与S (mm 2)的函数关系式;⑵ 求当面条横截面积为1.6 mm 220.(10分)如图,在平面直角坐标系中,点O 为原点,反比例函数y =kx的图象经过点(1,4),菱形OABC 的顶点A 在函数的图象上,对角线OB 在x 轴上. (1)求反比例函数的关系式;(2)直接写出菱形OABC 的面积.21.(10分)如图,已知一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =mx(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA =OB =OD =1. (1)写出点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.22.(12分)一次函数y ax b =+的图像与反比例函数ky x=的图像交于(2,)M m 、(1,4)N --两点.(1)求反比例函数和一次函数的解析式;(2)根据图像写出使反比例函数值大于一次函数值时x 的取值范围.23.(12分)如图,在平面直角坐标系xOy中,正比例函数32y x=-与反比例函数kyx=的图象在第二象限交于点A,且点A的横坐标为-2.(1)求反比例函数的解析式;(2)点B的坐标为(-3,0),若点P在y轴上,且△AO B的面积与△AOP的面积相等,直接写出点P的坐标.24..(12分)制作一种产品,需先将材料加热达到60 ℃,再进行操作,该材料温度为y(℃),从加热开始计算的时间为x(分钟),据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系(如图所示).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数表达式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?。

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章 反比例函数数学九年级上册-单元测试卷-湘教版(含答案)

第1章反比例函数数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,的顶点在反比例函数的图像上,顶点在轴上,轴,若点的坐标为,,则的值为()A.4B.-4C.7D.-72、下列函数中,变量y是x的反比例函数的是().A. B. C. D.3、若函数y=(m+1)是反比例函数,则m的值为()A.m=﹣2B.m=1C.m=2或m=1D.m=﹣2或﹣14、反比例函数y=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为()A.2B.-2C.4D.-45、若反比例函数的图象经过第二、四象限,则m为()A. B. C. D.6、如图,A,B是反比例函数图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,,,则k的值为()A.5B.4C.3D.7、如图,过反比例函数y= (x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△=2,则k的值为()AOBA.2B.3C.4D.58、如图,反比例函数(k>0)与一次函数的图象相交于两点A( ,),B( , ),线段AB交y轴与C,当| -|=2且AC = 2BC时,k、b的值分别为()A.k=,b=2B.k=,b=1C.k=,b=D.k=,b=9、如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B 两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A.2B.4C.6D.810、下列关于y与x的表达式中,反映y是x的反比例函数的是().A. y=4 xB. =-2C. xy=4D. y=4 x-311、关于x的函数y=k(x+1)和y= (k≠0)在同一坐标系中的图象大致是()A. B. C. D.12、函数的图象与直线y=x没有交点,那么k的取值范围是 ( )A. B. C. D.13、若反比例函数y=的图象位于第二、四象限内,则m的取值范围是()A.m>0B.m<0C.m>1D.m<114、如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为( )A.5B.﹣5C.10D.﹣1015、如图,A为双曲线y=上任意一点,过点A作轴的垂线,交双曲线y=﹣于点B,连结OA,OB,则△AOB的面积等于()A. B. C.3 D.6二、填空题(共10题,共计30分)16、如图,点P是反比例函数图象上任意一点, PA⊥x轴于A,连接PO,则S△PAO为________.17、如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形,点D恰好在双曲线上,则k值为________.18、如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为________.19、如果反比例函数y= 的图象经过点(1,3),那么它一定经过点(﹣1,________).20、如图,正比例函数的图象和反比例函数的图象交于A,B两点,分别过点A,B作轴的垂线,垂足为点C,D,则△与的面积之和为________.21、已知反比例函数y=﹣,则有①它的图象在一、三象限:②点(﹣2,4)在它的图象上;③当l<x<2时,y的取值范围是﹣8<y<﹣4;④若该函数的图象上有两个点A (x1, y1),B(x2, y2),那么当x1<x2时,y1<y2以上叙述正确的是________22、如图,⊙P的半径为2,圆心P在(x>0)的图象上运动,当⊙P与x轴相切时,点P的坐标为________.23、如图,将函数的图象沿轴向下平移3个单位后交轴于点,若点是平移后函数图象上一点,且的面积是3,已知点,则点的坐标________.24、如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为________.25、已知反比例函数y= (k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、已知函数y=y1﹣y2, y1与x成反比例,y2与x成正比例,且当x=1时,y=10;当x=3时,y=6.求y与x的函数关系式.28、家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 kΩ?29、已知:如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y=(其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.(1)求k的值;(2)设点A的坐标为(a,0),求a的值.30、如图,点A为函数图象上一点,连结OA,交函数的图象于点B,点C是x轴上一点,且AO=AC,求△ABC的面积.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、D5、B6、D7、C8、D9、B10、C11、D12、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 反比例函数测试
一、选择题(每题3分,共30分)
1、下列函数关系式中,是反比例函数的是( )。

A 、4x
y =
B 、12+-=x y
C 、x m y =
D 、x
y 32-= 2、对于反比例函数y=2
x
,下列说法正确的是( ) A.点(-2,1)在它的图象上 B.它的图象经过原点
C.它的图象在第一、三象限
D.当x>0时,y 随x 的增大而增大
3、函数x k y =的图象经过点(-4,6),则下列各点中在x
k
y =图象上的是( )
A 、(3,8)
B 、(3,-8)
C 、(-8,-3)
D 、(-4,-6) 4.函


在同一平面直角坐标系中的图像可能是
( )
5、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示(
A 6.设双曲线y=x
k
与直线y=-x+1相交于点A 、B , O 为坐标原点,则∠AOB 是
( )
A 、锐角
B 、直角
C 、钝角
D 、锐角或钝角 7、如图,A 、C 是函数y= x -1
的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt Δ的面积为S 1,Rt △COD 的面积为S 2,则( )
A 、S 1>S 2;
B 、S 1<S 2;
C 、S 1 =S 2;
D 、S 1和S 2的大小关系不能确定
8、若点A(x 1 ,1)、B(x 2 ,2)、C(x 3 ,-3)在双曲线1
y x
=-上,则( )
A 、x 1>x 2>x 3
B 、x 1>x 3>x 2
C 、x 3>x 2>x 1
D 、x 3>x 1>x 2
9、在反比例函数1k y x
-=的图象的每一条曲线上,y 随x 的增大而增大,则k 的
值可以是( )
A.-1
B.1
C.-2
D.2
10.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的
正半轴上.反比例函数y=k
x
(x>0)的图象经过顶点B ,
则k 的值为( ) A.12 B.20 C.24 D.32
二、填空题(每小题3分,共30分)
11、反比例函数y =
x
n 5
+图象经过点(2,3),则n 的值是_________. 函数2
3
-=
x y 的自变量的取值范围是 . 12、已知反比例函数y=2
k x
-的图象位于第一、三象限,则k 的取值范围是
_______.
13、反比例函数y =(m +2)x m
2
-10
的图象分布在第二、四象限内,则反比例函
数解析式为 .
14、已知直线y=mx 与双曲线y =
k
x
的一个交点坐标为(3,4),则它们的另一个交点坐标为__________.
15、某工厂现有材料100吨,若平均每天用去x 吨,这批材料能用y 天,则y 与x 之间的函数关系式为________________.
16、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为______________.
17、已知一个函数的图象与y=6
x
的图象关于y 轴对称,则该函数的解析式为 .
18、反比例函数x
y 6
-=
中,若y <2则x 的取值范围是19、如图,A 、B 是函数2
y x
=BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________
20、已知y 与x 成正比例,z 与y 成反比例,那么z 与x 成 __________函数关系.
三、解答题
21、(8分)蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.
(1)求这个反比例函数的表达式; (2)当R=10Ω时,电流是多少?
22、(8分)已知 21y y y += ,若1y 与2
x 成正比例关系 ,2y 与x 成反比例关系 ,
且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式.
23、(10分)已知三角形的面积为30cm 2,一边长为acm ,这边上的高为hcm .
(1)写出a 与h 的函数关系式. (2)在坐标系中画出此函数的图像. (3)若h=10cm ,求a 的长度.
24、(10分)如图,一次函数y=12x-2与反比例函数y=
m
x
的图象相交于点A ,且点A 的纵坐标为1.
(1)求反比例函数的解析式; (2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x 的取值范围.
18.(12分)如图,反比例函数y=k
x
与一次函数y=x+b 的图象,都经过点A(1,2).
(1)试确定反比例函数和一次函数的解析式; (2)求一次函数图象与两坐标轴的交点坐标.
(3)直接写出反比例函数值大于一次函数值的x 的取值范围;
23、(12分)如图,若(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m
y x
=
的图象的两个交点. (1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;
(3)求方程0=-+x
m b kx 的解及不等式
0<-+x m b kx 的解集(直接写出答案).。

相关文档
最新文档