概率论期末复习知识点

合集下载

概率论复习知识点总结-V1

概率论复习知识点总结-V1

概率论复习知识点总结-V1概率论是数学的重要分支之一,它是研究随机现象的可能性和规律的学科。

作为一个复习的概率论学习者,我们需要清晰地掌握一些重要的概率论知识点,以便能够更好地掌握概率论的基础知识。

以下是概率论复习知识点的总结:一、基础概念1. 随机事件:指在某种条件下,可能会发生或不发生的现象。

2. 样本空间:指所有随机事件发生的可能性的集合。

3. 事件:指样本空间的一部分,也就是样本空间中的某些元素所组成的集合。

二、概率的基本概念1. 古典概型:指每个随机事件发生的可能性相同的情况。

例如,抛硬币、掷骰子等。

2. 概率:指事件发生的可能性大小,通常用P(A)来表示。

3. 概率的性质:(1)非负性:概率值不为负数。

(2)规范性:所有事件的概率之和为1。

(3)可数可加性:对于可数个互不重叠的事件A1, A2, …, Ak,在任一样本点上至多发生其中一个事件,其对应概率即为所有事件概率之和。

三、条件概率1. 事件A在事件B已经发生的条件下所发生的概率,称为条件概率。

用P(A|B)表示。

2. 条件概率的计算公式:P(A|B)=P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率。

四、独立性1. 事件A和事件B互相独立,指的是事件A的发生不会对事件B的发生产生影响,反之亦然。

2. 条件独立性:如果对于事件A、B、C来说,有P(A|B∩C)=P(A|B),则称事件A与事件B在事件C的条件下相互独立。

五、贝叶斯定理1. 反向条件概率的计算公式,即已知事件B发生的情况下,推导出事件A发生的概率。

2. 贝叶斯公式的公式为:P(A|B)=P(B|A) x P(A) / P(B)其中,P(A)表示事件A发生的先验概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率,也称为似然函数;P(B)表示事件B发生的概率。

以上是关于概率论复习知识点的总结,希望这些知识可以帮助您更好地掌握概率论的基础知识。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论的知识点总结

概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。

样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。

2.概率分布概率分布描述了随机变量可能取值的概率情况。

概率分布分为离散分布和连续分布两种。

常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。

概率密度函数和累积分布函数是描述连续分布的重要工具。

3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。

随机变量分为离散随机变量和连续随机变量。

离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。

4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。

数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。

5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。

大数定律包括弱大数定律和强大数定律两种。

弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。

6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。

中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。

中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。

以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。

随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。

概率论复习知识点总结

概率论复习知识点总结
?贝叶斯公式:
? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。

概率论广泛应用于统计学、金融、生物学等领域。

本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。

一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。

2. 样本空间:随机试验所有可能结果的集合,用S表示。

3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。

4. 概率:事件发生的可能性大小的度量,用P(A)表示。

二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。

计算概率时可以根据样本空间和事件个数进行计算。

2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。

3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。

三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。

a. 伯努利分布:只有两个可能取值的离散概率分布。

b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。

c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。

2. 连续概率分布:表示随机变量在一个区间上的概率分布。

a. 均匀分布:随机变量在一段区间上取值的概率相等。

b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。

四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。

2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。

3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。

4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。

总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

(完整版)概率论知识点总结

(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。

相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。

记为 A ∪B 。

事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。

事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。

用交并补可以表示为B A B A =-。

互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。

互斥时B A ⋃可记为A +B 。

对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。

对立事件的性质:Ω=⋃Φ=⋂B A B A ,。

事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论是数学中的一个重要分支,主要研究随机现象的规律性和概率分布。

在现实生活中,概率论广泛应用于统计学、金融、工程、生物学等领域。

下面将对概率论中的一些重要知识点进行总结。

一、基本概念1. 样本空间:随机试验所有可能结果的集合。

2. 随机事件:样本空间中的一个子集。

3. 概率:随机事件发生的可能性大小,用P(A)表示。

4. 事件的互斥与对立:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。

二、概率的性质1. 非负性:概率值始终大于等于0。

2. 规范性:样本空间的概率为1。

3. 可数可加性:如果事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。

4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B)。

三、条件概率1. 定义:在事件B发生的条件下,事件A发生的概率。

2. 计算公式:P(A|B) = P(A∩B) / P(B)。

3. 乘法公式:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)。

四、独立事件1. 定义:事件A发生与否不受事件B发生与否的影响。

2. 判别条件:P(A∩B) = P(A) * P(B)。

五、全概率公式与贝叶斯定理1. 全概率公式:设事件B1、B2、...、Bn为样本空间的一个划分,即B1∪B2∪...∪Bn = S,且P(Bi) > 0,有P(A) = ∑P(A|Bi) * P(Bi)。

2. 贝叶斯定理:在全概率公式的基础上,可以得到P(Bi|A) = P(A|Bi) * P(Bi) / ∑P(A|Bi) * P(Bi)。

六、随机变量与概率分布1. 随机变量:将数学状态与随机事件的结果联系起来的变量。

2. 离散型随机变量与连续型随机变量。

3. 概率分布:描述随机变量各个取值的概率情况。

4. 均匀分布、正态分布、泊松分布等。

七、大数定律与中心极限定理1. 大数定律:随着试验次数的增加,样本均值趋于总体均值。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论总复习-知识总结(一)

概率论总复习-知识总结(一)

概率论总复习-知识总结(一)概率论总复习-知识总结概率论是一门广泛应用于自然科学、社会科学、医学、金融等领域的数学学科,是研究随机事件及其发生规律的学科。

下面就概率论常见的概念、公式和计算方法进行总结和复习。

一、基本概念1. 试验和事件:试验是人为、自然、社会等各种实际现象的模拟或观测过程,试验的每一个结果称为该试验的一个基本事件;事件是由基本事件构成的,即试验结果的任意某些组合,可以是单个事件,可以是多个事件组合形成的复合事件。

2. 样本空间和事件域:样本空间是由一切可能的基本事件组成的集合;事件域是指样本空间中,所有事件的全体,即事件的集合。

3. 必然事件和不可能事件:试验中一定会发生的事件称为必然事件,常用符号Ω表示;试验中不可能发生的事件称为不可能事件,常用符号Ø表示。

4. 等可能概型:所有基本事件的发生是等可能的,即每个基本事件发生的概率相等。

5. 概率的基本性质:对于任何事件A,有0 ≤ P(A) ≤ 1,并且P(Ω) = 1,P(Ø) = 0;对于任意两个互不相容的事件A和B,有P(A∪B) =P(A) + P(B)。

二、概率的计算方法1. 古典概型:若试验基本事件有限且等可能,则事件A的概率P(A) = A中基本事件数 / S中基本事件总数。

2. 几何概型:可以利用图形面积的比值计算。

3. 组合计数:若A是从n个不同元素中取m个元素集合,则其包含m个元素的子集个数称为A的组合数。

三、条件概率和独立事件1. 条件概率:设A、B是两个事件,且P(A) > 0,则事件B在事件A发生的条件下发生的概率记为P(B|A),称为条件概率,P(B|A) = P(AB) / P(A)。

2. 乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。

3. 全概率公式和贝叶斯公式:全概率公式是用于计算复杂事件的概率,表示为P(B) = ΣiP(Ai)P(B|Ai);贝叶斯公式是在已知结果的情况下,得出反推因果关系的方法,表示为P(Ai|B) = P(Ai)P(B|Ai) /ΣjP(Aj)P(B|Aj)。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率论知识点

概率论知识点

概率论知识点概率论是数学的一个分支,它研究随机现象和不确定情况下的数学模型和分析方法。

在概率论中,我们通过数学方法来描述和分析事件发生的可能性。

下面是概率论中的一些重要知识点:1. 概率的基本定义:在概率论中,我们使用概率来描述事件发生的可能性。

概率的基本定义是:对于一个随机试验E,其可能的结果为S,事件A是S的一个子集,事件A发生的概率等于A中所有可能结果的概率之和。

2. 事件的性质:在概率论中,我们研究事件的性质和运算。

事件的运算包括并、交、差和补等。

并是指两个事件同时发生的情况,交是指两个事件都发生的情况,差是指一个事件发生而另一个事件不发生的情况,补是指一个事件不发生的情况。

3. 条件概率:条件概率是指在已知某事件发生的条件下,另一个事件发生的概率。

条件概率用P(A|B)表示,其中A和B分别为两个事件。

条件概率的计算方法是:P(A|B) = P(A∩B) /P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

4. 独立性:在概率论中,如果两个事件A和B的发生与对方无关,即事件B的发生对事件A的发生没有影响,我们称事件A和事件B是独立的。

当事件A和事件B是独立的时候,我们有P(A∩B) = P(A) * P(B)。

5. 随机变量:在概率论中,随机变量是一个函数,它把一个随机试验的结果映射到一个实数。

随机变量可以是离散型的,也可以是连续型的。

离散型随机变量的取值是有限个或可数个,连续型随机变量的取值是整个实数区间。

6. 概率分布函数:概率分布函数是描述随机变量概率分布的函数。

对于离散型随机变量X,概率分布函数是一个累积函数,它定义为P(X ≤ x)。

对于连续型随机变量X,概率分布函数是一个密度函数,它定义为f(x) = dF(x) / dx,其中F(x)是X的累积分布函数。

7. 期望值和方差:在概率论中,期望值是随机变量的平均值,方差是随机变量的离散程度的度量。

概率论总复习知识总结

概率论总复习知识总结
概率论总复习知识总结
contents
目录
• 概率论概述 • 随机变量及其分布 • 随机变量的数字特征 • 大数定律与中心极限定理 • 参数估计与假设检验 • 贝叶斯统计推断 • 概率论的应用
01 概率论概述
概率论的基本概念
01
02
03
04
概率
描述随机事件发生的可能性大 小。
随机试验
具有随机性结果的试验。
对于连续型随机变量,数学期望的计算公式为$E(X) = int x f(x) dx$,其中$f(x)$是随机变量$X$的概率 密度函数。
方差与协方差
方差的定义
方差是用来衡量随机变量取值分散程度的量,计算公式为 $D(X) = E[(X - E(X))^2]$。
方差的性质
方差具有非负性、可加性、可乘性和变换不变性等性质。
在贝叶斯决策理论中,决策者需要先对各种可能的结果赋予主观概率,然后根据 这些结果的价值和发生的概率计算期望值,最后选择期望值最大的方案作为最优 决策。
贝叶斯网络与推理
贝叶斯网络是一种基于概率的图形模型,用于表示随机变量 之间的条件独立关系。它由一组节点和有向边组成,节点代 表随机变量,边代表变量之间的概率依赖关系。
协方差的定义
协方差是用来衡量两个随机变量同时取值的分散程度和它 们之间的相关程度的量,计算公式为$Cov(X, Y) = E[(X E(X))(Y - E(Y))]$。
协方差的性质
协方差具有非负性、可加性、可乘性和变换不变性等性质 。
矩与特征函数
矩的定义
矩是用来描述随机变量取值分布特征 的量,包括数学期望、方差、偏度和 峰度等。
样本空间
随机试验所有可能结果的集合 。
事件

大学概率论知识点总结

大学概率论知识点总结

大学概率论知识点总结越是临考试,大家一定要稳定自己的情绪,不能乱了脚步。

里头大学是大学概率论知识点总结,为大家提供参考。

第一章随机事件和概率1、随机惨案的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和敌对事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的开映射3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、特征值函数的分布(离散型、连续型)布季夫第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、概率分布函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量的期望)4、常见分布的期望期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章形式系统数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选统一标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、洛佐韦的两类错误3、单个及两个正态总体的均值和方差的假设检验。

在备考投资过程中提醒大家:要学着思考,学着"记忆",最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!。

概率论重点总结

概率论重点总结

概率论重点总结概率论是数学的一个分支,研究随机试验的可能结果和概率规律。

在学习概率论过程中,我们会遇到许多重要的概念和定理。

本文将对概率论的重点内容进行总结,帮助读者更好地理解和掌握概率论的核心知识。

一、概率的基本概念1. 随机试验:指具有多个可能结果的试验。

2. 样本空间:代表随机试验所有可能结果的集合,记作S。

3. 事件:样本空间中的一个子集,表示随机试验的某个可能结果或者一类可能结果的集合。

4. 事件的概率:事件发生的可能性大小,通常用P(A)表示,其中A为事件。

二、概率的性质和计算方法1. 事件的互斥:若两个事件A和B不可能同时发生,则称事件A和事件B互斥。

概率计算公式为:P(A∪B) = P(A) + P(B)。

2. 事件的独立:若事件A的发生与事件B的发生互不影响,则称事件A和事件B独立。

概率计算公式为:P(A∩B) = P(A) × P(B)。

3. 事件的全概率公式:若对于事件B的一个划分{B₁,B₂,...,Bₙ},则有P(A) = ΣP(A|Bᵢ) × P(Bᵢ),其中P(A|Bᵢ)表示在事件Bᵢ发生的条件下,事件A发生的概率。

4. 贝叶斯定理:若对于事件B的一个划分{B₁,B₂,...,Bₙ},且P(Bᵢ) > 0,则有P(Bᵢ|A) = [P(A|Bᵢ) × P(Bᵢ)] / Σ[P(A|Bₙ) × P(Bₙ)],其中P(Bᵢ|A)表示在事件A发生的条件下,事件Bᵢ发生的概率。

三、随机变量及其分布1. 随机变量:将样本空间S中的每个元素与实数对应起来的函数X,记作X(ω),其中ω属于S。

2. 离散型随机变量:其取值为有限或无限可数个的随机变量。

概率质量函数P(X = x)用来描述离散型随机变量X的取值概率分布。

3. 连续型随机变量:其取值为一个区间内的随机变量。

概率密度函数f(x)用来描述连续型随机变量X的取值概率分布。

4. 期望与方差:离散型随机变量X的期望值E(X) = Σ[xP(X = x)],方差Var(X) = E[(X - E(X))²];连续型随机变量X的期望值E(X) =∫[xf(x)dx],方差Var(X) = E[(X - E(X))²]。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论是一门研究随机现象数量规律的数学分支,它在众多领域如统计学、物理学、工程学、经济学等都有着广泛的应用。

以下是对概率论主要知识点的总结。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

而概率则是衡量随机事件发生可能性大小的数值。

概率的定义有多种,常见的是古典概型和几何概型。

古典概型中,假设样本空间包含有限个等可能的基本事件,事件 A 所包含的基本事件数为 n(A),样本空间的基本事件总数为n(Ω),则事件 A 的概率 P(A) = n(A) /n(Ω)。

几何概型则适用于样本空间是无限的情况,比如在一个区间或平面区域内随机取点。

此时,事件 A 的概率与事件对应的区域长度、面积或体积等成比例。

二、条件概率与乘法公式条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 B 在事件 A 发生的条件下的概率为 P(B|A),其计算公式为P(B|A) = P(AB) / P(A) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

乘法公式则是通过条件概率来计算两个事件同时发生的概率,即P(AB) = P(A)P(B|A) 。

三、全概率公式与贝叶斯公式全概率公式用于计算某个复杂事件的概率。

假设有 n 个互不相容的事件 B₁, B₂,, Bₙ 构成样本空间的一个完备事件组,且 P(Bᵢ) > 0 (i = 1, 2,, n),事件 A 为样本空间中的任意一个事件,则 A 的概率可以表示为 P(A) =∑P(Bᵢ)P(A|Bᵢ) (i 从 1 到 n)。

贝叶斯公式则是在已知结果的情况下,反推导致该结果的各种原因的概率。

设 B₁, B₂,, Bₙ 是一组完备事件组,且 P(A) > 0,P(Bᵢ) >0 (i = 1, 2,, n),则在事件 A 发生的条件下,事件 Bᵢ发生的概率为P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑P(Bₙ)P(A|Bₙ) (k 从 1 到 n)。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是一门研究随机现象数量规律的数学学科,它在许多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

下面将对概率论中的一些重要知识点进行总结归纳。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,掷骰子出现的点数就是一个随机事件。

2、样本空间样本空间是指随机试验的所有可能结果组成的集合。

3、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。

4、概率的定义概率是对随机事件发生可能性大小的度量。

概率的古典定义适用于等可能概型,几何概型则通过几何度量来计算概率。

5、概率的性质包括非负性、规范性和可加性。

二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率。

2、乘法公式用于计算两个事件同时发生的概率。

三、全概率公式与贝叶斯公式1、全概率公式如果事件组构成一个完备事件组,那么对于任意一个事件,可以通过全概率公式计算其概率。

2、贝叶斯公式在已知结果的情况下,反推导致这个结果的某个原因的概率。

四、随机变量及其分布1、随机变量用来表示随机现象结果的变量。

2、离散型随机变量取值可以一一列举的随机变量,常见的离散型随机变量分布有二项分布、泊松分布等。

3、连续型随机变量取值充满某个区间的随机变量,其概率通过概率密度函数来描述。

常见的连续型随机变量分布有正态分布、均匀分布等。

五、期望与方差1、期望反映随机变量取值的平均水平。

2、方差描述随机变量取值的离散程度。

六、协方差与相关系数1、协方差衡量两个随机变量之间的线性关系程度。

2、相关系数是标准化后的协方差,取值范围在-1 到 1 之间。

七、大数定律与中心极限定理1、大数定律说明在大量重复试验中,随机变量的平均值趋近于其期望值。

2、中心极限定理当样本量足够大时,独立同分布的随机变量之和近似服从正态分布。

在学习概率论的过程中,需要理解各个概念的含义,掌握相关的公式和定理,并通过大量的练习来加深对知识点的理解和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1)A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃L (简记为1nii A =U ).(3) 积事件: AB , 12n A A A ⋂⋂⋂L (简记为12n A A A L 或1nii A =I ).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) . (7) 德g 摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A L 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑L .(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A L ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑L L U .4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,nA A A L 相互独立性定义如下:对任意一个2,,k n =L ,任意的11k i i n ≤<<≤L ,若事件1,2,,nA A A L 总满足11()()()k k i i i i P A A P A P A =L L ,则称事件1,2,,nA A A L 相互独立.这里实际上包含了21nn --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭L ,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,nA A A L 两两互不相容,且1ni i A ==ΩU ,()0i P A >,1,2,,i n =L ,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑L .第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律 分布律也可用下列表格形式表示:2.*概率函数的性质 (1)0i p ≥, 1,2,,,;i n =L L(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =L ,01p <<. (4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =L L ,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:其中,0,,1,2,,1ij ijijp i j p≥==∑∑L .5.*二维离散型随机变量的边缘概率 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率(,1,2,i j =L ),称概率()(1,2,)i P X a i ==L 为随机变量X 的边缘分布律,记为i p g 并有.(),1,2,i i ij jp P X a p i ====∑L,称概率()(1,2,)j P Y b j ==L 为随机变量Y 的边缘分布率,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑L.6.随机变量的相互独立性 . 设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论. 7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数(Y g =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 .3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3)121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+.5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有 成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度.6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==;(5) 设()f x 是连续型随机变量X 的概率密度,则有=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1)(,)0,,f x y x y ≥-∞<<+∞;(2) (,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度 设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布221212(,,,,)N μμσσρ如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布.12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=. 第四章 随机变量的数字特征本章重点:随机变量的期望。

相关文档
最新文档