复变函数与积分变换复习题

合集下载

【复变函数与积分变换期末复习题】含大题答案

【复变函数与积分变换期末复习题】含大题答案

复习题2一.单项选择题1.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A)),(y x u 在),(00y x 处连续(B)),(y x v 在),(00y x 处连续(C)),(y x u 和),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续2.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A)3-(B)2-(C)1-(D)13.函数)(z f 在点z 可导是)(z f 在点z 解析的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既非充分条件也非必要条件4.下列命题中,正确的是()(A)设y x ,为实数,则1)cos(≤+iy x (B)若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析5.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ()(A)iπ2-(B)0(C)iπ2(D)iπ46.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ()(A)1sin -(B)1sin (C)1sin 2i π-(D)1sin 2i π7.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i6561-(B)i 6561+-(C)i 6561--(D)i6561+8.复变函数1)(-=z e z f 在复平面上()(A)无可导点(B)有可导点,但不解析(C)仅在零点不解析(D)处处解析9.使得22z z =成立的复数z 是()(A)不存在的(B)唯一的(C)纯虚数(D)实数10.设z 为复数,则方程i z z +=+2的解是()(A)i +-43(B)i +43(C)i -43(D)i --4311.ii 的主值为()(A)0(B)1(C)2πe(D)2eπ-12.ze 在复平面上()(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析13.设z z f sin )(=,则下列命题中,不正确的是()(A))(z f 在复平面上处处解析(B))(z f 以π2为周期(C)2)(iziz e e z f --=(D))(z f 是无界的14.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i 6561-(B)i 6561+-(C)i 6561--(D)i 6561+15.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为()(A)2iπ(B)2i π-(C)0(D)(A)(B)(C)都有可能16.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ()(B)i π2-(B)0(C)iπ2(D)iπ417.设()()F f t F ω=⎡⎤⎣⎦则()0sin F f t t ω=⎡⎤⎣⎦().A .()()00j2F F ωωωω+--⎡⎤⎣⎦B.()()00j2F F ωωωω++-⎡⎤⎣⎦C.()()0012F F ωωωω+--⎡⎤⎣⎦D.()()0012F F ωωωω++-⎡⎤⎣⎦18.设()()F f t F ω=⎡⎤⎣⎦则()()1F t f t -=⎡⎤⎣⎦().A .()()F F ωω'- B.()()F F ωω'--C.()()j F F ωω'- D.()()j F F ωω'--19.积分=-⎰=231091z dz z z ()(A)0(B)i π2(C)10(D)5i π20.积分21sin z z zdz ==⎰()(A)0(B)61-(C)3i π-(D)iπ-21.复数ii+=1z 位于复平面第()象限.A .一B .二C .三D .四22.下列等式成立的是().A .Lnz Lnz 77=;B .)1arg()1(r =g A ;C .112=i;D .)z z Re(z z =。

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

(完整版),复变函数与积分变换期末考试题及答案,推荐文档

(完整版),复变函数与积分变换期末考试题及答案,推荐文档

1. z0 为函数 f z 的 m 阶零点;
2. z0 为函数 f z 的 m 阶极点;

Res
z
f f
z z
,
z0

ez2
六.(15 分)写出函数
的幂级数展开式至含项为止,并指出其收敛范围。
cos z
七.(10 分)求函数 f t 1 tu t 3 t sin 2t 傅氏变换。
四、填空题(15 分,每空 3 分)
1. ln 2 i 。2. i 。3. 2 z 3 3 。4. 半平面 Re w 1 R。5.0。
4
2
三.(10 分)解:容易验证 u 是全平面的调和函数。利用 C-R 条件,先求出 v 的两个偏导数。
v u 2 y x, v u 2x y
江西科技师范学院卷(B)
2007--2008 学年第二学期
时间 110 分钟
复变函数与积分变换 课程 40 学时 2.5 学分 考试形式:闭卷
专业年级:电子科学与技术 总分 100 分,占总评成绩 70 %
注:此页不作答题纸,请将答案写在答题纸上
三、单项选择题(15 分,每小题 3 分)
1.A。2. B 。3. A。4. C。5.C。
z
z
z0
z
z0
n z0
n!
z
z0
n
(1)z0为f的阶z 零m点等价于在的一个z0邻域内
f z z z0 m z
其中在点z 解析, z0
于z是在0,的去心领z0 域
z
f f
z z
m z
z z0
z
z z
m z0
z z0
m
n1
m zz

复变函数与积分变换试卷(答案)

复变函数与积分变换试卷(答案)

一、填空题(每题3分,共30分)1. 设i z -=,则=)arg(z 2π-;2.i z -=1的指数式为i e 42π-;3. 设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c zdz i__ ; 4.函数iay x z f +=2)(在复平面内处处解析,那么实常=a ___2__;5. 幂级数∑∞=02n n n z 的收敛半径=R 21;6. 函数)1(1)(z z z f -=在圆环10<<z 内的洛朗展开式为...1132+++++z z z z ; 7. 积分=⎰=dz z z 1||tan __0______;8. i z -=是函数222)1()(+=z z z f 2 级极点; 9、221)(2++=s s s F 的拉普拉斯逆变换是t e e e t t i t i cos 2)1()1(---+-+或 ; 10.单位脉冲函数)3(-t δ的傅氏变换=-⎰+∞∞--dt e t t j ωδ)3(jw e 3-; 二、(本题12分)1、求21的所有值 解:1221Ln e =……………………………………………………………………..2分=)]21(arg 1[ln 2πk i e ++ (2,1,0±±=k )…………………………… .…….2分 =)22sin()22cos(ππk i k + (2,1,0±±=k )……………………2分2、解方程0cos =z 解:02cos =+=-iziz e e z …………………………………………………1分 即0=+-iz iz e e ,即12-=iz e设iy x z +=,则有)1(1122-⨯=-=+-xi y e所以 ππn x e y 22,12+==- (...2,1,0±±=n ) ……………….. 3分 所以有:ππn x y +==2,0 (...2,1,0±±=n ) 即ππn z +=2 (...2,1,0±±=n ) …………………2分三、. 将函数22)(ze zf z-=在圆环10<<z 内展开为洛朗级数。

2018-2019学年度高等教育理科《复变函数与积分变换》大学试题含填空选择答案

2018-2019学年度高等教育理科《复变函数与积分变换》大学试题含填空选择答案

复变函数与积分变换复习题1一、单项选择题(每小题2分,共24分).1. 复数ii+-=3z 位于复平面第( ) 象限. A .一 B .二 C .三 D .四解:()()()10313333z ii i i i i i --=-+--=+-=,故选择C 2. 下列等式成立的是( ). A .i ne5l i5=; B .)arg()(r i i g A =;C .1e L =n ;D .)z z Re(z z =。

解:A z i z nz arg ln l +=,故A 不对; B ,πk z z g A 2)arg()(r +=,B 不对 CiArgz z n +=ln z L ,故C 不对; D ,z z 是个实数,故选择D3. arg6z 满足( ). A.在复平面上连续 B.在原点处连续C.在负实轴连续D.在除原点及负实轴上连续解:argz 在除原点及负实轴上连续,故arg6z 也是这样。

选D 4. 方程54z 1z =-++表示的图形是( ). A.圆 B. 直线段 C.椭圆 D.双曲线 解:该方程表示的是复平面上的动点z 到两个定点i z 011+-=和i z 042+=的距离的和,而1z 和2z 的距离就是5,所以该动点在1z 和2z 所连线的直线段上。

选B 5. ()i sin 是( ).A. 0B. 一个纯虚数C. 一个实数D. 无法计算解:由欧拉公式可以推导出ie e x ixix 2sin --=,故i sin 是纯虚数或者用θθish i =)sin(也可以判别选B6. 若lnz )(=z f (0,0>>y x ),则 =')(z f ( ).A .2z 3 B. 0 C. ze33 D. 1-z选D,求导公式,本题是平凡的 7. 计算积分⎰=Ldz zz I4cos ,其中)10(:<<=r r z L ,方向正向,I =( ).A .-π2B .i π2C .i π2-D .0 解:由于奇点0在L 内部,故可以使用高阶求导公式()()()()dz z z z f i n z f Cn n ⎰+-=1002!π(n 为正整数)奇点内点是D z 0,D 为L 所围成的封闭区域。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数与积分变换复习题

复变函数与积分变换复习题

复变函数与积分变换复习题1、 设iz -=11,则___Im __,Re ==z z2、 设i z 31-=,则____,arg __,||===z z z 。

3、 ____,==y x 时,i iy i x +=+-++155)3(14、 设i z -=,则____,arg __,||===z z z5、 设i z 31-=,则z 关于实轴的对称点为___, z 关于虚轴的对称点为___,z 关于原点的对称点为___。

6、 )3)(2)(1(---i i i i=7、设1z 、2z实、是两复数,求证:212221221Re 2||||||z z z z z z -+=-8、设1z 、2z实、是两复数,求证:||||||||2121z z z z -≥-。

9、设1z 、2z 是两复数,求证:)|||(|2||||2221221221z z z z z z +=-++,并说明其几何意义。

10、求证:)2sin 2(cos 2cos 2)sin cos 1(θθθθθn i n i nnn+=++11、解方程:0)3(32=---i iz z12、满足下列条件的点z 所组成的点集是什么?如果是区域,是单连通区域还是多连通区域:(1)、3Im =z ; (2)、21Re >z ;(3)、|2|||i i z +≤-;13、求41i +的所有值。

14、求nn i i )21()21(-++ 15、求20002000)1()1(i i -++16、化简1)1()1(--+n ni i第二章、复变函数 试题库 第一部分、判断与填空: 1、若),(),()(y x iv y x u z f +=在区域D 上满足柯西黎曼条件,则它在区域D 内解析。

2、若)(z f 在点0z 可导,则)(z f 在点0z 解析。

3、若)(z f 在点0z 解析,则存在0>δ,使得)(z f 在),(0δz U 内解析。

复变函数与积分变换考试题

复变函数与积分变换考试题

[试题分类]:复变函数与积分变换[题型]:单选[分数]:2分1.复数 3 – 2i的虚部为()。

A. 3B.– 2iC.– 2D.–i[答案]:C2.算式(3 – 2i) – (–1 + i) 的值等于()。

A. 4 –iB. 4 – 3iC. 2 –iD. 2 – 3i[答案]:B3.算式(–1 + i)2的值等于()。

A. –2iB. 2 – 2iC. 2D. 2i[答案]:A4.算式的值等于()A.B.C.D.[答案]:D5.已知z1和z2 是两个复数,以下关于共轭复数运算的式子()是正确的。

A.B.C.D.[答案]:A6.方程组的解为()。

A.B.C.D.[答案]:B7. 复数的三角表示式为()。

A.B.C.D.[答案]:D8.复数z的主辐角在()上不连续。

A. 负实轴B. 正实轴C. 原点及负实轴D. 原点及正实轴[答案]:C9. 复数的三角表示式为()。

A.B.C.D.[答案]:D10. 的值等于()。

A.8iB.–8iC. 8D.–8[答案]:B11. 圆周方程的复数形式为()。

A.B.C.D.[答案]:A12.复数的模等于()。

A.13B.49C.7D.[答案]:C13.复数6 – 8i的模等于()。

A. 10B.–10C.D. 100[答案]:A14.复数2 + 3i的主辐角()。

A.B.C.D.[答案]:B15.复数–4 + 6i的主辐角()。

A.B.C.D.[答案]:D16.复数–1 – 2i的主辐角()。

A.B.C.D.[答案]:B17.复数 1 – 2i的主辐角()。

A.B.C.D.[答案]:C18.以下式子中,不正确的是()。

(注:Re表示实部,Im表示虚部)A.2i > 0B.| 2i | > 1C.Re (2i) = 0D.Re (2i) < Im (2i)[答案]:A19.以下()不是方程的根。

A.B.C. 2D. –2[答案]:C20. 以下复数中只有()是方程的根。

复变函数与积分变换复习题

复变函数与积分变换复习题

一、简答题(本题满分24分,共含6道小题,每小题4分) 1、38i -; 2、i i ; 3、()i Ln 43+-及其主值;
4、求()2)1(1+=s s F 的拉氏逆变换;
5、求幂级数∑∞=+0
)1(n n n z i 的收敛半径; 6、dz z z z ⎰=⎪⎭⎫ ⎝
⎛-++21551 二、计算题(本题满分30分,共含6道小题,每小题5分)
1、求积分dz z e z z
⎰=+23
2)
1(. 2、对于映射z
w 1=
,求出曲线R z =||的像. 3、求i e 21-的模与辐角主值。

4、求函数()t tu t f +=1)(的傅里叶变换。

5、求函数t e t f t 2cos )(3⋅=的拉普拉斯变换。

6、计算积分⎰=--52d 13z z z
z z 三、(10分) 求函数()z
z z z f 212-+=
在有限奇点处的留数。

四、(10分) 将函数()51-=z z f 展开为洛朗级数,圆环域为 (1)230<-<z ; (2)+∞<-<32z
五、(10分) 利用拉氏变换解下列微分方程⎪⎩
⎪⎨⎧=='-=+''0)0(1)0(sin 2y y t y y
六、(10分) 利用定义求函数⎩
⎨⎧>≤=1||,01||,1)(t t t f 的傅氏变换,并推证下面的积分结果:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<=⎰∞+1,01412d cos sin 0t t t t ,,
ππωωωω。

大学复变函数复习题+答案

大学复变函数复习题+答案

《复变函数和积分变换》一.(本题30分,其每小题各3分)1. 方程()t i 1z +=(t 为实参数)给出的曲线是 ;2. 复数3i 1+的指数形式是 ____3. 计算34-________4.函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点5. 若∑==0n n n 2nz )(z f ,则其收敛半径 ; 6.计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;7. 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为 _____8. 曲线y x :=C 在映射z1)(=z f 下的像是_______ 9. C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数) ;10. 判断n1n 25i 1∑∞=⎪⎭⎫⎝⎛+的敛散性 .二、计算题(25分,每小题各5分)(1)、计算积分⎰CRezdz 其中积分路径C 为: ①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r 4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。

(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =. (7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22yx ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分)八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)答案一、(1)直线y=x (2)i32k 2e⎪⎭⎫ ⎝⎛+ππ (3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21- (7)①函数u(x,y),v(x,y)在(x,y)可微 ②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π (10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为: z=(1+i)t 1)t (0≤≤故 ⎰CRezdz =()[]{}()dt i 1t i 1Re 10++⎰ =()⎰+1tdt i 1=2i 1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤,即 z=1+it 1)t (0≤≤,故 ⎰C Rezdz =()[]⎰⎰++101idt it 1Re Retdt =⎰⎰+110dt i tdt =i 21+ (2)由题可知被积函数只有z=0一个奇点。

【复变函数与积分变换期末复习题】

【复变函数与积分变换期末复习题】

试确定解析函数 f (z) u iv ,且 f (0) 0 .(8 分)
解:u v 3x y 且 f (z) u iv 解析
ux vy


u
y
ux

vx vx
3
uy vy 1
求出 u 2 x y c,v x 2 y c
F (s)
106 页积分性质
0
s
(3 分)
L [ f (t)] F (s)
(4 分)
lim L[
s0
t 0
f
(t
)dt
]

lim
s0
1

cos s2
4s
lim
s0
2sin 2 2s s2
lim
s0
22s2
s2
8
(8 分)
7.已知 u, v 均是以 x, y 为自变量的实二元函数,且 u v 3x y ,
为正向圆周:
z

7
。(6
分)
3. 计算积分 Im(z2 z)dz ,其中 C 为从原点到1 i 的直线段。(6 分) C
4. (1)求 Im(tani) 。(6 分)
4.(2)求(1 i)i 。 (6 分)
5.已知函数 F
(f
(t

2
))
e2 1
j
j
,求 F
(tf
(t
)) 1
cos i ch1
Im(tani) th1
4.(2)求(1 i)i 。 (6 分)
解:
(1 i)i = eLn(1i)i
e e = iLn(1i) = i[ln 1i iArg (1i)]

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数与积分变换期末考试复习题及参考答案-高起本

复变函数与积分变换期末考试复习题及参考答案-高起本

《复变函数与积分变换》复习题一、判断题1、cos z 与sin z 在复平面内有界. ( )2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz .( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( )10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点.( )二、选择题 1.arg13i ( )A.-3π B.3πC.32πD.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy7.0z 是3sin zz 的极点,其阶数为( ) A.1 B.2 C.3 D.410.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k11、设复数1cossin33z i ,则arg z ( )A.-3B.6C.3D.2312、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴13、下列说法正确的是( )。

总复习题(复变)

总复习题(复变)

《复变函数与积分变换》总复习题一、填空1.=+-4)i1i 1( 。

2. 2z 1lim 1+z →∞= 。

3. 已知虚数8z 3=,则=+++22z z z 23 。

4. i 31z 1+-=,i 1z 2+-=,=21z argz 。

5.=+3)i 31( 。

6. 区域就是 。

7.函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充分必要条件是:)y ,x (u 和)y ,x (v 在D 内任一点iy x z +=可微,而且满足柯西—黎曼方程即 。

8. 如果函数)z (f 在0z 及其邻域内处处可导,则称)z (f 在0z 。

9.没有重点的连续曲线C ,称为 曲线(或若尔当曲线)。

10. 复平面加上无穷远点称为 。

11. 若()f z 在0z 不解析,则称0z 为()f z 的 。

12. 如果函数()f z 在单连通域D 内处处解析,那么()f z 沿D 内的任意一条封闭曲线C 的积分()Cf z dz =⎰Ñ 。

13.+=lnz Lnz 。

14. 如果二元实函数)y ,x (ϕ在区域D 内有二阶连续偏导数,且满足二维拉普拉斯方程0yx 2222=∂∂+∂∂ϕϕ,则称)y ,x (ϕ为区域D 内的 。

15. 复变函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充要条件为:在区域D 内,)z (f 的虚部)y ,x (v 是实部)y ,x (u 的 。

16. 3i2e-的辐角主值为 。

17. 一个解析函数在圆心处的值等于它在 上的平均值。

18. 如果函数)z (f 在单连通域B 内处处解析,那么函数)z (f 沿B 内的任何一条封闭曲线C 的积分为_____________________。

19. 设函数)z (f 在区域D 内解析,且)z (f 不是常数,则在D 内)z (f 最大值。

20. 在区域D 内解析的函数,若其模在D 的内点达到最大值,则此函数必恒为 。

复变函数及积分变换试卷及答案

复变函数及积分变换试卷及答案

«复变函数与积分变换»期末试题〔A〕一.填空题〔每题3分,共计15分〕1.231i-的幅角是〔〕;2.)1(iLn+-的主值是〔〕;3.211)(zzf+=,=)0()5(f〔〕;4.0=z是4sinzzz-的〔〕极点;5.zzf1)(=,=∞]),([Re zf s〔〕;二.选择题〔每题3分,共计15分〕1.解析函数),(),()(yxivyxuzf+=的导函数为〔〕;〔A〕yxiuuzf+=')(;〔B〕yxiuuzf-=')(;〔C〕yxivuzf+=')(;〔D〕xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf〔〕,那么0d)(=⎰C zzf.〔A〕23-z;〔B〕2)1(3--zz;〔C〕2)2()1(3--zz;〔D〕2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,那么级数在〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 〕.(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成以下各题〔每题10分,共计40分〕〔1〕设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a〔2〕.计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;〔3〕计算⎰=++3342215d )2()1(z z z z z〔4〕函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩大复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、〔此题14分〕将函数)1(1)(2-=z z z f 在以下区域展开成罗朗级数; 〔1〕110<-<z ,〔2〕10<<z ,〔3〕∞<<z 1五.〔此题10分〕用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、〔此题6分〕求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题〔A 〕答案及评分标准一.填空题〔每题3分,共计15分〕1.231i -的幅角是〔 2,1,0,23±±=+-k k ππ〕;2.)1(i Ln +-的主值是〔 i 432ln 21π+ 〕; 3.211)(z z f +=,=)0()5(f 〔 0 〕,4.0=z 是4sin z zz -的〔 一级 〕极点;5. zz f 1)(=,=∞]),([Re z f s 〔-1 〕; 二.选择题〔每题4分,共24分〕1.解析函数),(),()(y x iv y x u z f +=的导函数为〔B 〕;〔A 〕 y x iu u z f +=')(; 〔B 〕y x iu u z f -=')(;〔C 〕y x iv u z f +=')(; 〔D 〕x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f 〔 D 〕,那么0d )(=⎰Cz z f .〔A 〕23-z ; 〔B 〕2)1(3--z z ; 〔C 〕2)2()1(3--z z ; 〔D 〕2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,那么级数在〔C 〕〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( B )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 D 〕.的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成以下各题〔每题10分,共40分〕〔1〕.设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海应用技术学院 2010—2011学年第二学期
《复变函数与积分变换》期(末)复习卷
一、填空题
1. 若3arg 1π=
z ,4arg 2π=z ,则21arg z z 材= 2. 复数i z 23
21
+=的指数形式是 ,幅角主值z arg = 。

3. 复数)1ln(i += ,i i = 。

4. 设()()23233mxy x i y x y z f ++-=解析,则=m ,()z f ' == 。

5. 设C 为自原点到i +1的直线段,则积分⎰C zdz cos = 。

6. 级数∑

=⎪⎭
⎫ ⎝⎛+-1)1(1n n n i n 是 (填发散、条件收敛或绝对收敛)。

7. 12z z e d z z -=⎰ = 。

8. 函数)1)(2(1)(2+-=
z z z f 的奇点是 。

9. 设z
z z f sin )(=,则0=z 是 (选:可去奇点、极点或本性奇点), ()[]0,Re z f s = 。

10. 0=z 是z e 1
(选:可去奇点、极点或本性奇点) ⎥⎦⎤⎢⎣⎡0,Re 1z e s = 。

11. 函数()z z f 211
-=的幂级数展开式是。

12. 拉普拉斯变换的定义是[]____________)()(==s F t f L
13. 若()43t f t e
-=-, 则()L f t =⎡⎤⎣⎦。

二、计算
1. 说明函数)(z f 在一点0z 连续、可导、解析的关系。

2. 讨论z z z f Re )(=的连续、可导、解析性。

3. 求2)2(i e +,i e +11
的模、幅角、实部、虚部。

4. 验证.y y x x y x u 24),(22+-+=是调和函数,并求(),v x y ,
使函数
()()(),,f z u x y i v x y =+为解析函数。

5. 求 i i ,i i -+1)1(
三、求展开式
1. 求2)1(1
)(z z z f -=在011z <-<内的罗朗展开。

2. 求22)(1)(i z z z f -=在10<-<i z 内的罗朗展开。

3. 将函数z z f 1sin
)(=展成z 的罗朗级数,并指出收敛范围。

四、计算
1.
dz ze C z ⎰,其中C 是从0到1i +的直线段。

2.
dz z C ⎰)Re(其中C 是从0到i +2的直线段
3. 设⎰=-++=
32173)(ςςςςςd z z f ,求).5(),(),(),(i f i f z f z f '
4. 求积分dz a z ze C
z
⎰-3
)(,C 不通过a 的闭曲线.
5. dz z z ⎰=5
tan π
6. 1
12
z z e dz -=⎰
五、积分变换
1. 求拉氏变换
1) []t L 2sin
2) []t L 2cos
3) [])sin(c at e L bt +-
2. 求下列函数的拉氏逆变换
1) )
3)(1(3
)(-++=s s s s F 2) )1(1
)(2+=s s s F
六、证明题:用柯西—黎曼方程证明,设)(z f 在区域D 内解析, )()(z f i z g =,证明)
(z g 也在区域D 内解析。

七、叙述定理
1. 叙述留数定理的内容
2. 叙述柯西积分定理内容
3. 叙述柯西积分公式内容
4. 叙述高阶导数公式内容。

相关文档
最新文档