人教版九上数学之《旋转》全章复习与巩固--巩固练习(提高)(1)
人教版九年级数学上册《旋转》知识点及复习题
第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
新人教版九年级上册数学[图形的旋转--重点题型巩固练习]
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习图形的旋转--巩固练习【巩固练习】一. 选择题1.(2015•洛阳模拟)如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.2.下列图形绕某点旋转180°后,不能与原来图形重合的是( )3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个 B.2个 C.3个 D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____.8. 针表的分针匀速旋转一周需要60分钟,则经过15分钟,分针旋转了__________.9.正三角形绕其中心至少旋转__________ ,可与其自身重合.10. 一个平行四边形ABCD绕其对角线的交点旋转,至少要旋转________,才可与其自身重合.11.(2015•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,•PC=10,若将△PAC绕点A逆时针旋转后,•得到△P′AB,•则点P•与点P′之间的距离为_____,∠APB=_______.三.综合题13.(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.14. 如图,E 是正方形ABCD 的边BC 上一点,F 是DC 的延长线上一点,且∠BAE=∠FAE. 求证:BE+DF=AF.15.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M N 、,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a321B MC D N O A【答案与解析】一、选择题1.【答案】D ;【解析】A 图形顺时针旋转120°后,能与原图形完全重合,A 不正确;B 图形顺时针旋转90°后,能与原图形完全重合,B 不正确;C 图形顺时针旋转180°后,能与原图形完全重合,C 不正确;D 图形顺时针旋转72°后,能与原图形完全重合,D 正确,故选:D .2.【答案】B3.【答案】D4.【答案】B【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心。
(完整版)人教版九年级数学上册《旋转》知识点及复习题.docx
新启航,新学习,新收获!第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质( 1)对应点到旋转中心的距离相等。
( 2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转 180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征( 3 分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’( -x ,-y )2、关于 x 轴对称的点的特征两个点关于x 轴对称时,它们的坐标中,x 相等, y 的符号相反,即点P( x, y)关于 x 轴的对称点为 P’( x, -y )两个点关于y 轴对称时,它们的坐标中,y 相等, x 的符号相反,即点P(x, y)关于 y 轴的对称点为 P’( -x, y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.( l )( 2)B.( l )( 2)( 3)C.( 2)( 3)( 4)D.( 1)( 2)( 3( 4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
人教版数学九年级上学期课时练习- 《旋转》全章复习与巩固(巩固篇)(人教版)
专题23.9 《旋转》全章复习与巩固(巩固篇)(专项练习)一、单选题1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D .2.如图,将AOB 绕着点O 顺时针旋转,得到COD △(点C 落在AOB 外),若30AOB ∠=︒,10BOC ∠=︒,则最小旋转角度是( )A .20°B .30°C .40°D .50°3.如图,在正方形网格中,△ABC 绕某点旋转一定的角度得到A B C ''',则旋转中心是点( )A .OB .PC .QD .M4.如图,菱形 ABCD 的对角线 AC 、BD 交于点 O ,将△BOC 绕着点 C 旋转 180°得到B O C '',若AC =2,5AB '=,则菱形 ABCD 的边长是( )A .3B .4CD 5.如图,在钝角ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠6.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .(-C .()2-D .(-7.如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 1B .2C .D .8.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5--9.已知点()2,4P a a --关于原点对称的点在第三象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .10.在如图所示的单位正方形网格中,ABC 经过平移后得到111A B C △,已知在AC 上一点()2.4,2P 平移后的对应点为1P ,点1P 绕点O 逆时针旋转180°,得到对应点2P ,则2P 点的坐标为( )A .()1.6,1--B .()1, 1.6--C .()1.6,1D .()1, 1.6-二、填空题11.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =___. 12.如图,在ABC 中,△C =90°,点D 、E 分别在AC 、BC 上,△CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)13.如图,AB =BC =CD ,AB △BC ,△BCD =30°,则△BAD =________°.14.如图,ABC 中,AB =2AC =,30BAC ∠=︒.将ABC 绕点A 逆时针旋转60°,得到ADE ,连接BE ,则BE =______.15.如图,BD 为ABCD 的对角线,点P 为ABD △内一点,连接PA 、PB 、PC 、PD ,若ABP △和BCP 的面积分别为3和13,则BDP △的面积为_________.16.如图,在直角坐标平面内,△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,AB =BC ,△CAB =30°,将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,那么BE 所在直线的解析式为______.17.如图,在矩形ABCD 中,AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.18.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0,(,将OAB 绕原点O 顺时针旋转60°再将其各边都扩大为原来的2倍,使得12OA OA =,12OB OB =,得到11OA B .将11OA B 绕原点顺时针旋转60°再将其各边都扩大为原来的2倍,使得212OA OA =,212OB OB =,得到22OA B △,…,如此继续下去,得到20222022OA B △,则点2022A 的坐标是______.三、解答题19.已知△ABC 的三个顶点的坐标分别为A (-5,0)、B (-2,3)、C (-1,0).(1)画出△ABC 关于坐标原点O 成中心对称的△A ′B ′C ′;(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出对应的△A ′′B ′′C ′′;(3)若以A ′、B ′、C ′、D ′为顶点的四边形为平行四边形,则在第四象限中的点D ′坐标为 .20.如图,点D 在等边三角形ABC 的边BC 上,将△ABD 绕点A 旋转,使得旋转后点B 的对应点为点C .小明是这样做的:如图,过点C 画BA 的平行线l ,在l 上取CE BD =,连接AE ,则△ACE 即为旋转后的图形.你能说明小明这样做的道理吗?21.已知:如图,在△ABC中,△BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求△BAD的度数与AD的长.22.如图,ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE(1) 求证:BD=CE(2) 延长ED交BC于点F,△ 求△CED的度数;△ 求证:F为BC的中点23.如图,在平面直角坐标系中,直线AB与x轴、y轴分别相交于A(6,0)、B(0,2)两点.(1) 直接写出直线AB 的关系式为 .(2) 点C 为y 轴上的一点,当BC =AC 时,求△ABC 的周长;(3) 点D 为x 轴上的一点,将线段DB 绕着点D 旋转90°得到DE ,若点E 恰好落在直线AB 上,求满足条件的其中一个点E 的坐标,并直接写出满足条件的其余点E 的坐标,24.【性质探究】(1)如图1,在Rt ABC △中,90BAC ∠=︒,AB =AC ,点D 在斜边BC 上,将△ABD 绕点A 逆时针旋转90°得到△ACE .△直线BD 与CE 的位置关系为______;△若点F 为BE 的中点,连接AF ,请探究线段AF 与CD 的数量关系,并给予证明.【拓展应用】(2)如图2,已知点E是正方形ABCD的边BC上任意一点,以AE为边作正方形AEFG,连接BG,点H为BG的中点,连接AH.若AB=4,BE=3,求AH的长.参考答案1.D【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A,不是中心对称图形,故此选项不符合题意;B. 不是中心对称图形,故此选项不符合题意;C. 不是中心对称图形,故此选项不符合题意;D.是中心对称图形,故选:D【点拨】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.C【分析】直接利用已知得出△AOC的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.解:△△AOB= 30°,△BOC = 10°,△△AOC=△AOB+△COB = 30°+ 10°= 40°△将△AOB绕着点O顺时针旋转,得到△COD,△最小旋转角为△AOC = 40°.故选:C.【点拨】此题主要考查了旋转的性质,正确得出△AOC的度数是解题关键.3.B【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.解:如图,连接BB',AA',可得其垂直平分线相交于点P,∴旋转中心是点P.故选:B .【点拨】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.4.D【分析】根据菱形的性质、旋转的性质,得到1OA OC O C '===、OB OC ⊥、O B O C '''⊥、BC B C '=,根据5AB '=,利用勾股定理计算O B '',再次利用勾股定理计算B C '即可.解:△四边形ABCD 是菱形,且△BOC 绕着点C 旋转180°得到B O C '',2AC =,△1OA OC O C '===,OB OC ⊥,BC B C '=,△O B O C '''⊥,213O A AC O C ''=+=+=,△5AB '=,△4O B ''==,△B C '==△BC B C '== ABCD故选:D .【点拨】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.5.D【分析】根据旋转可知△CAB △△EAD ,△CAE =70°,结合△BAC =35°,可知△BAE =35°,则可证得△CAB △△EAB ,即可作答.解:根据旋转的性质可知△CAB △△EAD ,△CAE =70°,△△BAE =△CAE -△CAB =70°-35°=35°,AC =AE ,AB =AD ,BC =DE ,△ABC =△ADE ,故A 、B 错误,△△CAB =△EAB ,△AC =AE ,AB =AB ,△△CAB △△EAB ,△△EAB △△EAD△△BEA =△DEA ,△AE 平分△BED ,故D 正确,△AD +BE =AB +BE >AE =AC ,故C 错误,故选:D .【点拨】本题考查了旋转的性质和全等三角形的判定与性质,求出△BAE =35°是解答本题的关键.6.D【分析】过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,根据矩形的性质得到点C 的坐标,求出△COE =45°,OC C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,求出△C 1OF =30°,利用勾股定理求出OF ,即可得到答案.解:过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,△四边形ABCD 是矩形,△AD =BC ,AB =CD ,AD ∥BC ,△CDA =△DAB =90°,△△HCD =△ADO =△BAG ,△△CHD =△BGA =90°,△△CHD △△AGB (AAS ),△1,0A ,()0,2D ,()5,2B ,△CH =AG =5-1=4,DH =BG =2,△OH =2+2=4,△C (4,4),△OE =CE =4,△△COE =45°,OC如图,过点C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,△△C 1OF =30°,△C 1F =12OC 1=12OC ,△OF =△点C 1的坐标为(-,故选:D .【点拨】此题考查了矩形的性质,旋转的性质,勾股定理,直角三角形30度角的性质,熟记各知识点并综合应用是解题的关键.7.A【分析】设AC 与BC '的交点为点O ,连接CC ',先利用勾股定理、旋转的性质可得2,60AC AC CAC ''==∠=︒,再根据等边三角形的判定与性质可得AC CC ''=,然后根据垂直平分线的判定与性质可得12,2OA AC OA BC '==⊥,最后利用勾股定理分别可得2,OB OC '==解:如图,设AC 与BC '的交点为点O ,连接CC ',90,ABC AB BC ∠=︒==2AC ∴,由旋转的性质得:2,60AC AC CAC ''==∠=︒,ACC '∴是等边三角形,AC CC ''∴=,BC '∴是线段AC 的垂直平分线,11,2OA AC OA BC '∴==⊥,在Rt AOB 中,1OB ==,在Rt AOC '△中,OC ',则1BC OB OC ''=+=故选:A .【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.8.B【分析】根据菱形的中心对称性,A 、C 坐标关于原点对称,利用横反纵也反的口诀求解即可. 解:△菱形是中心对称图形,且对称中心为原点,△A 、C 坐标关于原点对称,△C 的坐标为()2,5-,故选C . 【点拨】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.9.D【分析】根据点P(a−2,4−a)关于原点对称的点在第三象限,可得点P在第一象限,因此就可列出不等式,解不等式可得a的取值范围.解:△点P(a−2,4−a)关于原点对称的点在第三象限,△点P在第一象限,△20 40aa-⎧⎨-⎩>>,△24<<a,则a的取值范围在数轴上表示正确的是:故选:D.【点拨】本题主要考查不等式组的解法,根据不等式组的解集,在数轴上表示即可,关键在于点P的坐标所在的象限.10.C【分析】根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解:△A点坐标为:(2,4),A1(﹣2,1),△点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),△点P1绕点O逆时针旋转180°,得到对应点P2,△P2点的坐标为:(1.6,1).故选:C.【点拨】此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.11.2【分析】根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:△点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,△a -1+5=0,5+1-b =0,△a =-4,b =6,△a +b =2.故答案为:2【点拨】本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.12.452x ⎛⎫+ ⎪⎝⎭ 【分析】根据旋转的性质可得1DE DE =,1EDE x ∠=,利用等腰三角形的性质和三角形内角和定理求出1E ED ∠和△CED 即可解决问题.解:如图,由旋转的性质可得:1DE DE =,1EDE x ∠=, △11809022x x E ED ︒-∠==︒-, △△C =90°,△CDE =45°,△△CED =45°, △1118018090454522x x BEE E ED CED ⎛⎫⎛⎫∠=︒-∠-∠=︒-︒--︒=+︒ ⎪ ⎪⎝⎭⎝⎭, 故答案为:452x ⎛⎫+ ⎪⎝⎭.【点拨】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,灵活运用各性质进行推理计算是解题的关键.13.15【分析】把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,可得△CDE 是等边三角形,从而得到DE =CD =CE ,△DEC =60°,再由△BCD =30°,可得BC △DE ,然后根据AB =BC =CD ,可得BC =CE ,AB =DE ,从而得到()1180752BEC BCE ∠=︒-∠=︒,进而得到△BED =15°,再证得四边形ABED 是平行四边形,即可求解.解:如图,把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,△△DCE =60°,CD =CE ,△△CDE 是等边三角形,△DE =CD =CE ,△DEC =60°,△△BCD =30°,△△BCE =30°,△△BCD =△BCE ,△BC △DE ,△AB =BC =CD ,△BC =CE ,AB =DE , △()1180752BEC BCE ∠=︒-∠=︒, △△BED =△BEC -△DEC =15°,△AB △BC ,△AB △DE ,△四边形ABED 是平行四边形,△△BAD =△BED =15°.故答案为:15【点拨】本题主要考查了图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,熟练掌握图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质是解题的关键.14.3【分析】根据旋转的性质得出△CAE =60°,AC =AE =2,求出△BAE =90°,根据勾股定理求出即可.解:△将△ABC 绕点A 逆时针旋转60°得到△ADE ,AB =2AC = ,△60,CAE AC =AE =2,△△BAC =30°,△△BAE =30°+60°=90°,在Rt △BAE 中, 由勾股定理得:2222523,BEAB AE 故答案为:3.【点拨】本题考查了旋转的性质和勾股定理,能求出AE 的长度和求出△BAE 的度数是解此题的关键.15.10 【分析】由平行四边形和三角形的面积公式及平行四边形的性质可以得到BDP BCP ABP S S S =-,把已知ABP △和BCP 的面积分别为3和13代入计算即可得到答案. 解:由平行四边形和三角形的面积公式易得12ADP BCP ABCD SS S +=, 由平行四边形的性质可得12ABD ABCD SS =, △12ADP ABP BDP ABCD SS S S ++=, △BCP ABP BDP SS S =+, △13310BDP BCP ABP S S S =-=-=,故答案为10.【点拨】本题考查平行四边形的应用,熟练掌握平行四边形和三角形的面积公式及平行四边形的中心对称性是解题关键.16.y =【分析】如图,过点C 作CF △x 轴于点F ,根据关于原点对称的点的坐标特征可得点B 坐标,根据等腰三角形的性质可得AB =BC =2,利用外角性质可得△CBF =60°,利用含30°角的直角三角形的性质及勾股定理可得CF 、BF 的长,利用旋转的性质可得AB =CE =2,AC =CD ,△ECD =△ACB =30°,根据等腰三角形的性质可得△CDA =△CAD=30°,可得CE //AD ,可得点E 坐标,利用待定系数法即可得答案.解:如图,过点C 作CF △x 轴于点F ,△△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,△()10B ,, △AB =BC =2.△△CAB =30°,△△ACB =△CAB =30°,△△CBF =△CAB +△ACB =60°,△BCF =30°,△BF =12BC =1,CF=△(C .△将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,△AB =CE =2,AC =CD ,△CDA =△CAD=30°,△ECD =△ACB =30°,△CE //AD ,△(E .设直线BE 的解析式为()0y kx b k =+≠,△04k b k b +=⎧⎪⎨+⎪⎩解得:k b ⎧=⎪⎪⎨⎪=⎪⎩△BE所在直线的解析式为:y .故答案为:y =【点拨】本题考查关于原点对称的点的坐标特征,旋转的性质、等腰三角形的性质、含30°角的直角三角形的性质及勾股定理,30°角所对的直角边等于斜边的一半;图形旋转前后的对应边相等、对应角相等;熟练掌握相关性质及定理是解题关键.17【分析】将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.当点G 运动到H 时,AG 最小,最小值即为AH 的长度,利用旋转的性质,根据“边角边”的判定方法可证明DCE DC G '≌△△,进而利用全等三角形的性质以及旋转性质可求出AG 的最小值.解:如图所示,将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .120,,,EDC EDC GDC CD C D DE DG '''∠=︒-∠=∠==DCE DC G '∴≌△△(SAS )90,GC D C KC D ''∴∠=∠=︒=∠如图所示,当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.∴当点G 运动到H 时,AG 最小,最小值即为AH 的长度.120,90,CDC CDA '∠=︒∠=︒30,KDC '∴∠=︒1,602C K DK C KD AKH ''∴=∠=︒=∠C D CD AB '===2,4C K DK '∴==6AD BC ==2AK AD DK ∴=-=在Rt AKH 中,60AKH ∠=︒11,2KH AK AH ∴===则线段AG【点拨】本题主要考查了矩形中的旋转变换,能够掌握旋转的性质以及正确作出辅助线找到点G 的轨迹是解决本题的关键.18.(22022,0)【分析】根据图形可知:首先△OAB 绕原点O 顺时针方向旋转60°,旋转6次后,正好旋转一周,规律是6次一循环,其次根据将其各边都扩大为原来的2倍,依此类推,得到OAn =2n ,进而得出答案.解:如图,1,0,(,△点A,B的坐标分别为()△OAB=90°,△OA=1,AB△△OBA=30°,△△AOB=60°,△每一次旋转角是60°,△旋转6次后,正好旋转一周,点A6在x轴的正半轴上,△2022÷6=337,△点A2022在x轴的正半轴上;△每次旋转后OA1=2OA,OB1=2OB,OA2=2OA1,OB2=2OB1,…△OA1=2=2,OA2=2OA1=2×2=22,OA3=2OA2=2×22=23,…依此类推,OAn=2n,当n=2022时,OA2022=22022,△点A2022在x轴的正半轴上,△点A2022的坐标是(22022,0).故答案为:(22022,0).【点拨】本题主要考查了旋转的性质、含30°锐角的直角三角形的性质、勾股定理、坐标与图形性质、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.(1)见分析(2)见分析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A、B、C绕坐标原点O顺时针旋转90°的点A″、B″、C″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.(1)如图所示,△A′B′C′就是求作的图形;(2)如图所示,△A′′B′′C′′就是求作的三角形;(3)如图所示,点D′坐标为(6,-2);【点拨】本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.能,见分析【分析】直接利用等边三角形的性质结合全等三角形的判定方法进而得出答案.解:能.理由:△△ABC 为等边三角形,△60B BAC ∠=∠=,AC AB =.△//CE AB ,△60ACE BAC ∠=∠=,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,△()ABD ACE SAS ∆≅∆△AD AE =,BAD CAE ∠=∠,△60DAE BAC ∠=∠=,△△ACE 即为旋转后的图形.【点拨】本题主要考查了旋转变换以及全等三角形的判定,正确应用等边三角形的性质是解题关键.21.△BAD =60°,AD 的长为5.【分析】由旋转的性质可得出△ADE =60°、DA =DE ,进而可得出△ADE 为等边三角形以及△DAE =60°,由点A 、C 、E 在一条直线上可得出△BAD =△BAC -△DAE =60°;由点A 、C 、E 在一条直线上可得出AE =AC +CE ,根据旋转的性质可得出CE =AB ,结合AB =3、AC =2可得出AE 的长度,再根据等边三角形的性质即可得出AD 的长度.解:△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△△ADE =60°,DA =DE ,△△ADE 为等边三角形,△△DAE =60°.△点A 、C 、E 在一条直线上,△△BAD =△BAC -△DAE =120°-60°=60°.△点A 、C 、E 在一条直线上,△AE =AC +CE .△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△CE =AB ,△AE =AC +AB =2+3=5.△△ADE 为等边三角形,△AD =AE =5.【点拨】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE 为等边三角形是解题的关键.22.(1)见详解(2)△△DEC =30°;△见详解【分析】(1)由等边三角形的性质和旋转的性质可得△BAD =△CAE ,AB =AC ,AD =AE ,再利用SAS 可证△BAD △△CAE ,可得BD =CE ;(2)△根据AD △BD ,得出△ADB =90°,根据△BAD △△CAE ,得出△ADB =△AEC =90°,根据△AED =60°,利用图中角度计算即可;△过点C 作CG △BP ,交EF 的延长线于点G ,由等边三角形的性质和全等三角形的性质可得CG =BD ,△BDG =△G ,△BFD =△GFC ,可证△BFD △△CFG ,可得结论;(1)证明:△线段AD 绕点A 逆时针旋转60°得到线段AE ,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,在等边△ABC 和等边△ADE 中,△ AB =AC ,AD =AE ,△BAD +△DAC =△CAE +△DAC =60°,△△BAD =△CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, △△BAD △△CAE (SAS ),△BD =CE ;(2)解:△△AD △BD ,△△ADB =90°,△△BAD △△CAE△△ADB =△AEC =90°,△△AED =60°,△△DEC =△AEC -△AED =90°-60°=30°,△如图,过点C 作CG △BP 交DF 的延长线于点G ,△△G =△BDF ,由(1)可知,BD =CE ,△CEA =△BDA ,△AD △BP ,△△BDA =90°,△△CEA =90°,△△AED =60°,△△BDG =180°-△ADB -△ADE =30°,△△CED =△G =△BDG =30°,△CE =CG ,△BD =CG ,在△BDF 和△CGF 中,BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BDF △△CGF (AAS ),△BF =FC ,即F 为BC 的中点.【点拨】本题考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.23.(1)123y x =-+(2)20(3)点E 的坐标为(6,4)-或(3,1)【分析】(1)用待定系数法即可得直线AB 解析式,(2)由(6,0)A 、(0,2)B ,得AB =,设(0,)C m ,由BC AC =,可得22(2)36m m -=+,解得8m =-,即可得10BC =,10AC =,从而可得ABC ∆的周长为20AB BC AC ++=;(3)当D 在B 左侧时,过E 作EH x ⊥轴于H ,设OD n =,根据将线段DB 绕着点D 旋转90︒得到DE ,可得()EDH DBO AAS ∆≅∆,从而可得(2,)E n n --,把(2,)E n n --代入123y x =-+即可得(6,4)E -,当D 在B 右侧时,同理可得(3,1)E ',即可得答案.(1)解:设直线AB 解析式为y kx b =+,把(6,0)A 、(0,2)B 代入得:602k b b +=⎧⎨=⎩, 解得132k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为123y x =-+, 故答案为:123y x =-+; (2)解:(6,0)A 、(0,2)B ,AB ∴=设(0,)C m ,则22(2)BC m =-,2236AC m =+,BC AC =,22(2)36m m ∴-=+,解得8m =-,22(82)100BC ∴=--=,2236(8)100AC =+-=,10BC ∴=,10AC =,ABC ∴∆的周长为101020AB BC AC ++=+=;(3)解:当D 在B 左侧时,过E 作EH x ⊥轴于H ,如图:设OD n =,将线段DB 绕着点D 旋转90︒得到DE ,90EDB ∴∠=︒,ED BD =,90EDH BDO DBO ∴∠=︒-∠=∠,90EHD DOB ∠=︒=∠,EDH DBO ∴∆∆≌(AAS ),2HD OB ∴==,HE OD n ==,2OH n ∴=+,(2,)E n n ∴--,把(2,)E n n --代入123y x =-+得: 1(2)23n n =---+, 解得4n =,(6,4)E ∴-,当D 在B 右侧时,同理可得(3,1)E ',综上所述,E 的坐标为(6,4)-或(3,1).【点拨】本题考查一次函数综合应用,涉及待定系数法,三角形周长,全等三角形判定与性质等知识,解题的关键是作辅助线,构造全等三角形.24.(1)△BD BC ⊥;△12AF CD =,证明见分析;(2 【分析】(1)△先证明△BAD =△CAE ,△ABC =△ACB =45°, 再证明△BAD △△CAE ,利用全等三角形的性质可得结论;△ 延长BA 至点G ,使AG =AB ,连接GE ,证明△ADC △△AEG ,可得CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,证明△ABF △△AGQ ,可得△BF A =△GQA ,BF =GQ ,证明四边形EFQG 是平行四边形,可得QF =GE .从而可得结论;(2)如图,连接DE 、DG ,证明△BAE △△DAG ,△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.可得CE =1,CD =4.17,DE 延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,从而可得答案. 解:(1)△△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB△△BAD =△CAE ,△ABC =△ACB =45°,在△BAD 和△CAE 中,BA CABADCAE AD AE ,△△BAD △△CAE ,△△ABC =△ACE =45°,△△BCE =45°+45°=90°, 即BD CE ⊥ △12AF CD =,理由如下: 延长BA 至点G ,使AG =AB ,连接GE ,△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB =AG ,又△DAC =90°-△CAE =△GAE ,△△ADC △△AEG ,△CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,△AG =AB ,△BAF =△GAQ ,△△ABF △△AGQ ,△△BF A =△GQA ,BF =GQ ,△BE GQ ∥,即EF GQ ∥.△点F 为BE 的中点,△EF =BF =GQ ,△四边形EFQG 是平行四边形,△QF =GE .△12AF QF =,CD =GE , △12AF CD =. (2)如图,连接DE 、DG ,△四边形ABCD 和四边形AEFG 为正方形,△AB =AD=BC=CD ,AE =AG ,△BAD =△EAG =90°,又△BAE =90°-△EAD =△DAG ,△△BAE △△DAG ,△△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.△AB =4,BE =3,△CE =1,CD =4. 221417,DE延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,△12AH DE ==. 【点拨】本题考查的是全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,勾股定理的应用,旋转的性质,作出合适的辅助线,构建全等三角形与平行四边形是解本题的关键.。
人教版九年级数学上册第三十章-旋转-巩固练习(含答案)
人教版九年级数学上册第三十章-旋转-巩固练习一、单选题1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°2.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A. (2,5)B. (5,2)C. (4,)D. (,4)3.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为()A. 4B. 12C. 6D. 34.下列图形中是中心对称图形的是()A. B. C. D.5.在平面直角坐标中,点P(-3,5)关于原点的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.7.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A. B.C. D.8.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )A. (3,-2)B. (2,3)C. (-2,-3)D. (2,-3)二、填空题9.如图,将△ABC(其中∠ABC = 60°,∠C = 90°)绕点B按顺时针转动一个小于180°的角度到△的位置,使得点A,B,在同一条直线上,那么旋转角度的大小等于________度10.作点A关于点O的对称点时,连接AO并延长________,即可得到点A的对称点;作某个图形关于点O的对称图形时,先作出图形的________关于点O的对称点,然后顺次连接各对称点即可.11.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=α,则∠BED=________.(用含α的代数式表示)12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是________.13.上图中的△A′B′C′是由△ABC绕点P旋转180°后得到的图形,根据旋转的性质回答下列问题:(1)PA与PA′的数量关系是________。
29初中数学九年级全册 《旋转》全章复习与巩固--知识讲解(提高)(1)
初中数学九年级全册《旋转》全章复习与巩固--知识讲解(提高)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:(1)求∠ABC的度数.(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.(3)求BD的长度.【答案】∴BC=4,∴∠ABC=30°(2)如图所示:(3)连接BE.由(2)知:△ACE≌△ADB,∴AE=AB,∠BAE=60°,BD=EC,∴∠EBC=90°,又BC=2AC=4,4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.5.已知:点P是正方形ABCD内的一点,连结PA、PB、PC,(1)若PA=2,PB=4,∠APB=135°,求PC的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。
2022年人教版初中数学9年级上册《旋转》全章复习与巩固--巩固练习(基础)及答案
2022年人教版初中数学9年级上册《旋转》全章复习与巩固--巩固练习(基础)一、选择题1.(2020•德州)如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为()A .35°B .40°C .50°D .65°2.如图,在等腰直角△ABC 中,B=90°,将△ABC 绕顶点A 逆时针方向旋转60°后得到△AB′C′,则等于().A.60°B.105°C.120°D.135°3.如图,如果一个四边形ABCD 旋转后能与另一个正方形重合,那以该图形所在的平面可以作旋转中心的点有()个.A、1B、2C、3D、4第2题第3题第4题4.如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形0ABC 绕点O 旋转180°旋转后的图形为矩形OA 1B 1C 1,那么点B 1的坐标为().A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)5.如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为().A.B.C.D.6.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是().A.90°B.60°C.45°D.30°第5题第6题7.轴对称与平移、旋转的关系不正确的是().A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过—次平移得到的B.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过—次平移得到的C.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D.经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过—次平移得到的8.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)二.填空题9.正三角形绕中心旋转__度的整倍数之后能和自己重合.10.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________.11.(2020•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.12如图所示,四边形ABCD是正方形,点E是边CD上一点,点F是CB延长线上一点,且DE=BF,连结FE,此时△AEF是___.如果FB=1,EC=2,则正方形ABCD的面积是__.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.第12题第13题第14题14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE',连接EE',则EE'的长等于__________.15.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是_________.第15题第16题16.如图所示,将△ABC沿AB翻折后形成△ABE,再将△ABE绕点A顺时针旋转一定角度后,使点E与点C重合,若∠1:∠2:∠3=28:5:3.则此次旋转过程中的旋转角是________.三综合题17.(2020•衡阳)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.18.如图,在△ABC中,AB=AC,点P是△ABC内一点,且∠APB=∠APC.求证:BP=CP.19.已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.20.已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长.(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.【答案与解析】一.选择题1.【答案】C.【解析】∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.2.【答案】 B.【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.2题图5题图3.【答案】C.【解析】旋转中心的点分别是点D,点C,和线段DC 的中点.4.【答案】C.5.【答案】C.【解析】,∴ADPB s'四边形=332=63⨯∴3=1-3s 阴影.6.【答案】 C.【解析】旋转的角度应该是45°的倍数.7.【答案】 B.8.【答案】 A.【解析】逆时针旋转90°,点A′在第二象限,利用三角形全等可得.二、填空题9.【答案】12O.10.【答案】21-;【解析】∵△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD=BC=1,AF=FC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1.故答案为:21-.11.【答案】31+.【解析】如图,连接AM ,由题意得:CA=CM ,∠ACM=60°,∴△ACM 为等边三角形,∴AM=CM ,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC ,CM=AM ,∴BM 垂直平分AC ,∴BO=AC=1,OM=CM •sin60°=,∴BM=BO+OM=1+,故答案为:1+.12.【答案】等腰直角三角形;9.【解析】由△ABF≌△ADE,得到AF=AE,∠BAF=∠DAE,即△AEF 是等腰直角三角形.12题图13题图13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG≌△DCF,即EG=FC,又因为3ADEs=△,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】25.【解析】∵AE=2231+=10=AE′,∴EE′=102=25⨯.15.【答案】(b+1,1-a).【解析】因为AC=b,BC=a-1,所以BD=b,A′D=a-1,又因为点B(1,0),所以OD=b+1,A′D=a-1,因为点A′在第四象限,所以点A′(b+1,a-1).16.【答案】80°.三.解答题17.【解析】解:(1)A (3,2)、B (3,5)、C (1,2)关于x 轴的对称点分别为A 1(3,﹣2),B 1(3,﹣5),C 1(1,﹣2),如图所示,(2)①∵A (3,2)、B (3,5)、C (1,2),∴AB=3,AC=2,BC=,∵,∴AB 2+AC 2=BC 2,∴∠CAB=90°,∵AC 与AC 2的夹角为∠CAC 2,∴旋转角为90°;②∵AB=AB 2=3,∴CB 2=AC+AB 2=5,∴B 2的坐标为(6,2).18.【解析】证明:将△ABP 沿逆时针旋转至△ACQ 的位置,则有△ABP≌△ACQ.∴AP=AQ,∠APB=∠AQC,BP=CQ.∵∠APB=∠APC,∴∠APC=∠AQC.连结PQ.则有∠1=∠2,∴∠APC-∠2=∠AQC-∠1,即:∠3=∠4,即在△CPQ 中,有CP=CQ.∴BP=CQ.∴BP=CP.19.【解析】,(1)AE 与BF 平行且相等,∵ABC 绕点C 顺时针旋转180°得到△FEC,∴△ABC 与△FEC 关于C 点中心对称,∴AC=CF,BC=CE,∴四边形ABFE 为平行四边形,∴;(2)∵AC=CF,∴S △BCF =S △ABC =3,∵BC=CE,∴S △ABC =S △ACE =3,∴S △CEF =S △BCF =3,∴S □ABFE =3×4=12(cm 2).(3)当∠ACB=60°时,四边形ABFE 为矩形,∵AB=AC,∴∠ABC=∠ACB=60°,∴AB=BC=CA,∴AF=BE,∴平行四边形ABFE 为矩形.20.【解析】(1)①S 阴影=②连结PP′,证△PBP′为等腰直角三角形,从而PC=6;(2)将△PAB 绕点B 顺时针旋转90°到△P′CB 的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P 在对角线AC 上.《旋转》全章复习与巩固--知识讲解(基础)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的).2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是().A.甲 B.乙 C.丙 D.丁【答案】B.【解析】因为圆被平分为8部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图1的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理O点也在BB′的垂直平分线上∴两条垂直平分线的交点O就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2020•裕华区模拟)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知D是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形ABCD中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点D,C,E三点共线.∴BD+DC=CE+DC=DE.又∵∠DBE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD.求证:BD2=AB2+BC2.【思路点拨】利用AD=CD可以将△BCD绕点D逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明:∵AD=CD,∠ADC=60°,∴△BCD绕点D逆时针旋转60°,得到△EAD,∴∠BDE=∠CDA=60°,△BCD≌△EAD.∴BC=AE,BD=DE,∠DAE=∠DCB,∴△BDE为等边三角形.∴BE=BD.∵在四边形ABCD中,∠ABC=30°,∠ADC=60°,∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°.∴∠BAE=90°.∵在Rt△BAE中,,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5、正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上(1)如图连结DF、BF,试问:当正方形AEFG绕点A旋转时,DF、BF的长度是否始终相等?若相等请证明;若不相等请举出反例.(2)若将正方形AEFG绕点A顺时针方向旋转,连结DG,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明.【答案与解析】(1)如图,DF、BF的长度不是始终相等,当点F旋转到AB边上时,DF>AD>BF.(2)线段BE=DG如图:∵正方形ABCD和正方形AEFG∴AD=AB,AG=AE,∠1+∠2=∠2+∠3∴∠DAG=∠BAE∴△ADG≌△ABE∴DG=BE【总结升华】利用旋转图形的不变性确定全等三角形.举一反三:【变式】(2020•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,求AK的长?【答案与解析】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:233 .6.如图,已知△ABC为等腰直角三角形,∠BAC=900,E、F是BC边上点且∠EAF=45°.求证:.【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵△ABC为等腰直角三角形且∠BAC=90°∴AB=AC,将△CAF绕点A顺时针旋转90°,如图,得到∴∴,,,,∴,连结,则在中,,∴①,又∵,∵.又∵,∴在与中,.∴②,∴由①②得:.【总结升华】旋转性质:旋转前,后的图形全等.《旋转》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是().2.时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是().A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2B.60,2C.60,D.60,6.(2020•乌鲁木齐)如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是()A .(,1)B .(1,﹣)C .(2,﹣2)D .(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30°B.45°C.60°D.90°8.在平面直角坐标系中,将点A 1(6,1)向左平移4个单位到达点A 2的位置,再向上平移3个单位到达点A 3的位置,△A 1A 2A 3绕点A 2逆时针方向旋转900,则旋转后A 3的坐标为().A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二.填空题9.(2020•扬州)如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC .若点F 是DE 的中点,连接AF ,则AF=.10.如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm.如果正方形AEFG 绕点A 旋转,那么C、F 两点之间的最小距离为_________cm.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点Pn坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P绕着原点O按逆时针方向旋转60°得点P 1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17.如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证:BE+CF>EF19.(2020•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.【答案与解析】一、选择题1.【答案】C.2.【答案】C.【解析】分针每5分钟转动30.3.【答案】A.【解析】因为以M或O或N为旋转中心两个图形能够完全重合.4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形. 5.【答案】C.【解析】△BDC为正三角形,所以△FDC为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】B.【解析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y 轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B7.【答案】D.8.【答案】C.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1).二、填空题9.【答案】5.【解析】作FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F 是DE 的中点,∴FG ∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.10.【答案】32;【解析】当点F 在正方形ABCD 的对角线AC 上时,CF=AC﹣AF,当点F 不在正方形的对角线上时由三角形的三边关系可知AC﹣AF<CF<AC+AF,∴当点F 在正方形ABCD 的对角线AC 上时,C、F 两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm.故答案为:32.11.【答案】60°或120°.【解析】正六边形的中心角是60°.12.【答案】1.【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得.13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG≌△DCF,即EG=FC,又因为3ADEs△,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP′是等腰直角三角形,所以PP′=32.15.【答案】(1),(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…)16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB≌△CP′B.∴BP′=BP,CP′=AP,∠PBP′=90°,∠APB=∠CP′B.设CP′=AP=k,则BP′=BP=2k,CP=3k,在Rt△BP′P 中,BP′=BP=2k,∴∠BP′P=45°.=(3k)2=CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE 绕点D 沿顺时针方向旋转180°至△CDG 位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即DF⊥EG.∴EF=FG,在△FCG 中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP 逆时针旋转60°得到△A ′BC ,∴∠A ′BA=60°,A ′B=AB ,AP=A ′C ∴△A ′BA 是等边三角形,∴A ′A=AB=BA ′=2,在△AA ′C 中,A ′C <AA ′+AC ,即AP <6,则当点A ′A 、C 三点共线时,A ′C=AA ′+AC ,即AP=6,即AP 的最大值是:6;故答案是:6.(2)如图3,∵Rt △ABC 是等腰三角形,∴AB=BC .以B 为中心,将△APB 逆时针旋转60°得到△A'P'B .则A'B=AB=BC=4,PA=P ′A ′,PB=P ′B ,∴PA+PB+PC=P ′A ′+P'B+PC .∵当A'、P'、P 、C 四点共线时,(P'A+P'B+PC )最短,即线段A'C 最短,∴A'C=PA+PB+PC ,∴A'C 长度即为所求.过A'作A'D ⊥CB 延长线于D .∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt △A'DC 中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF.《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的).2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB 与ΔADE 都是等腰直角三角形,∠ACB 和∠ADE 都是直角,点C 在AE 上,如果ΔACB 经逆时针旋转后能与ΔADE 重合.。
人教版九年级数学上册《旋转》知识点及复习题
人教,版,九年级,数学,上册,《,旋转,》,知识点,第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试3.5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
A.5个 B.2个 C.3个 D.4个7.将图形按顺时针方向旋转900后的图形是( )A B C D8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()A、顺时针方向 500B、逆时针方向 500C、顺时针方向 1900D、逆时针方向 190010.如下左图,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图23—A—4,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到右图.两次旋转的角度分别为().A.45°,90° B.90°,45° C.60°,30° D.30°,60°11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A. B. C. D.13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
部编数学九年级上册23.10《旋转》全章复习与巩固(培优篇)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题23.10 《旋转》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是( )A .M (1,﹣3),N (﹣1,﹣3)B .M (﹣1,﹣3),N (﹣1,3)C .M (﹣1,﹣3),N (1,﹣3)D .M (﹣1,3),N (1,﹣3)2.如图,在Rt △ABC 中,∠ACB =90°,AC BC ==△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A B .C D 3.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB Ð等于( ).A .120°B .135°C .150°D .160°4.如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,点D 为BC 的中点,直角MDN Ð绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF V 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .45.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .B 2C .4D 16.如图,在平面直角坐标系中,Y OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-67.如图,已知等腰直角三角形ABC 中,AC=BC ,把AB 绕点B 逆时针旋转一定角度到点D ,连接AD 、DC ,使得∠DAC=∠BDC ,当时,线段AC 的长 ( )A .3B .C .D 8.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5).已知点A 的坐标为(2,0),点Q 是直线l 上的一点,点A 关于点Q 的对称点为点B ,点B 关于直线l 的对称点为点C ,若点B 由点A 经n 次斜平移后得到,且点C 的坐标为(8,6),则△ABC 的面积是( )A .12B .14C .16D .189.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---10.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()2,0,()0,2,()2,0-.一个电动玩具从原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称;第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;….电动玩具照此规律跳下去,则点2021P 的坐标是( ).A .()4,-0B .()4,0C .()4,4D .()0,4-二、填空题11.如图,已知△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.12.如图,在Rt △ABC 中,90ACB Ð=o ,30BAC Ð=o ,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.13.如图,在平行四边形ABCD 中,2AB =,60ABC Ð=°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是______.14.如图,点P 是等边三角形ABC 内一点,且PA =PB =PC个等边三角形ABC 的边长为________.15.如图,在矩形ABCD 中,5AB =,9BC =,E 是边AB 上一点,2AE =,F 是直线BC 上一动点,将线EF 绕点E 逆时针旋转90°得到线段EG ,连接CG ,DG ,则+CG DG 的最小值是________.16.如图,C 为线段AB 的中点,D 为AB 垂直平分线上一点,连接BD ,将BD 绕点D顺时针旋转60°得到线段DE ,连接AE ,若AB =6AE =,则CD 的长为 __________ .17.如图所示,抛物线y =x 2+2x ﹣3顶点为Q ,交x 轴于点E 、F 两点(F 在E 的右侧),T 是x 轴正半轴上一点,以T 为中心作抛物线y =x 2+2x ﹣3的中心对称图形,交x 轴于点K 、L 两点(L 在K 的右侧),已知∠FQL =45°,则新抛物线的解析式为 __.18.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形AB 1C 1D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图1(2));以此下去,则正方形 A n B n C n D n 的面积为________.三、解答题19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(1,1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,画出△ABC关于原点O对称的△A2B2C2,并写出点B2的坐标____________;(3)请在x 轴上找一点D 得到▱ACDB ,则点D 的坐标为________,若直线y =32-x +b 平分▱ACDB 的面积,则b =_______.20.如图,一伞状图形,已知120AOB Ð=°,点P 是AOB Ð角平分线上一点,且2OP =,60MPN Ð=°,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN Ð在(1)的情形下绕点P 逆时针旋转a 度()060a <<°,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.21.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB V V ≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE V 的面积,求S 的取值范围(直接写出结果即可).22.[问题提出](1)如图,ABC ADE V V ①、均为等边三角形,点D E 、分别在边AB AC 、上.将ADE V绕点A 沿顺时针方向旋转,连结BD CE 、.在图②中证明△≌△ADB AEC .[学以致用](2)在()1的条件下,当点D E C 、、在同一条直线上时,EDB Ð的大小为 度.[拓展延伸](3)在()1的条件下,连结CD .若6,4,BC AD ==直接写出DBC △的面积S 的取值范围.23.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM Ð=°,求线段AM 长的最大值及此时点P 的坐标.24.(1)观察理解:如图 1,ABC D 中,90,ACB AC BC Ð=°=,直线l 过点C ,点,A B 在直线l 同侧, ,BD l AE l ^^,垂足分别为,D E ,由此可得:90AEC CDB Ð=Ð=°,所 以90CAE ACE Ð+Ð=°, 又 因为90ACB Ð=°, 所以90BCD ACE Ð+Ð=°,所以CAE BCD Ð=Ð,又因为AC BC =,所以AEC CDB D @D ( );(请填写全等判定的方法)(2)理解应用:如图2,AE AB ^,且,AE AB BC CD =^,且BC CD =,利用(1)中的结论,请按照图中所标的数据计算图中实线所围成的图形的面积S =_________;(3)类比探究:如图 3, Rt ABC D 中,90ACB Ð=°,4AC =,将斜边AB 绕点A 逆时针旋转 90°至AB ¢,连接B C ¢,则AB C ¢D 的面积=_________ .(4)拓展提升:如图4,等边EBC D 中,3EC BC ==cm ,点O 在BC 上,且2OC =cm ,动点P 从点E 沿射线EC 以1cm/s 速度运动,连接OP ,将线段OP 绕点O 逆时针旋转 120°得到线段OF ,设点P 运动的时间为t 秒.①当t =________秒时,OF ∥ED ;②当t =________秒时,点F 恰好落在射线EB 上.参考答案1.C解:M 点与A 点关于原点对称,A 点与N 点关于x 轴对称,由平面直角坐标中对称点的规律知:M 点与A 点的横、纵坐标都互为相反数,N 点与A 点的横坐标相同,纵坐标互为相反数.所以M (-1,-3),N (1,-3).2.C【分析】连接EC ,过E 作EH ⊥BC 于H ,先利用勾股定理、旋转的性质可得2,60AB CAE =Ð=°,再根据等边三角形的判定与性质可得AE CE ==,然后根据勾股定理分别求出EH BE 、,由此即可得出答案.解:连接EC ,过E 作EH ⊥BC 于H ,在Rt △ABC 中,AC BC ==∴2AB ===,∴112AB =,由旋转可知:60AC AE CAE ==Ð=°,∴ACE V 是等边三角形,∴60AC AE EC ACE ===Ð=°,∴30BCE Ð=°,∴12EH EC ==∴CH ==∴BH BC CH =-=,∴1BE =====,∴1112BE AB +=+=故选:C.【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、,通过作辅助线,构造等边三角形是解题关键.3.C【分析】利用旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,通过旋转的性质得出△APM为等边三角形以及△PMB是直角三角形,从而求得∠APB的度数.解:连接PM,如图,由旋转性质可知,△APC≌△AMB,∴AP=AM,MB=PC=10,∵∠MAP=60°,∴△APM是等边三角形,∴PM=AP=6,∵PB=8,∴MB2=PB2+MP2,∴△PMB是直角三角形,∴∠MPB=90°,∵∠MPA=60°,∴∠APB=150°.【点拨】本题主要考查了旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,难度较大.通过旋转的性质得出△APM 为等边三角形以及△PMB 是直角三角形是解答本题的第一个关键.4.C【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.解:∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ÐÐìïíïÐÐî===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S =V V ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.【点拨】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质、三角形的三边关系、同角的余角相等,熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.5.B【分析】连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,通过SAS 证明△AEF ≌△AGP ,得PG =EF =2,再利用勾股定理求出GE 的长,在△GPE 中,利用三边关系即可得出答案.解:连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,∵将线段AF 绕着点A 顺时针旋转90°得到AP ,∴AF =AP ,∠PAF =90°,∴∠FAE +∠PAE =∠PAE +∠PAG =90°,∴∠FAE =∠PAG ,在△AEF 和△AGP 中,,AF AP FAE PAG AE AG =ìïÐ=Ðíï=î∴△AEF ≌△AGP (SAS ),∴PG =EF =2,∵BC =3,CE =2BE ,∴BE =1,在Rt △ABE 中,由勾股定理得:AE ==,∵AG =AE ,∠GAE =90°,∴GE =,在△GPE 中,PE >GE -PG ,∴PE 的最小值为GE -PG 2,故选:B .【点拨】本题主要考查了旋转的性质,全等三角形的判定与性质,三角形的三边关系等知识,作辅助线构造出全等三角形是解题的关键.6.A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=ìí+=î,解得12k b =ìí=-î,∴直线DE 的解析式为y=x-2.故选:A .【点拨】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.7.D【分析】如图(见分析),先根据等腰直角三角形的性质可得45,BAC AC AB Ð=°=,再根据旋转的性质、等腰三角形的性质可得,45AB BD ADC BAC =Ð=Ð=°,然后根据三角形全等的判定定理与性质可得45,BEC ADC BE AD Ð=Ð=°=,从而可得,2,4BE AD AE DE BE AD ^====,最后利用勾股定理即可得.解:如图,过点C 作CE CD ^,交AD 于点E ,连接BE ,ABC Q V 是等腰直角三角形,AC BC =,45,BAC AB \Ð=°==,即AC AB =,由旋转的性质得:AB BD =,BAD BDA \Ð=Ð,DAC B B C C AC AD D \Ð+=ÐÐ+Ð,DAC BDC Ð=ÐQ ,45ADC BAC \Ð=Ð=°,CDE \V是等腰直角三角形,2,45CE CD DE CED \====Ð=°,又90DCE ACB Ð=Ð=°Q ,DCE ACE ACB ACE \Ð+Ð=Ð+Ð,即ACD BCE Ð=Ð,在BCE V 和ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,()BCE ACD SAS \@V V ,45,BEC ADC BE AD \Ð=Ð=°=,90BED BEC CED \Ð=Ð+Ð=°,即BE AD ^,又AB BD =Q ,2AE DE \==(等腰三角形的三线合一),24BE AD DE \===,在Rt ABE △中,AB ==AC AB \===故选:D .【点拨】本题考查了等腰直角三角形的判定与性质、三角形全等的判定定理与性质、旋转的性质、勾股定理等知识点,通过作辅助线,构造等腰直角三角形和全等三角形是解题关键.8.A【分析】连接CQ ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB =90,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,根据待定系数法得出直线的解析式进而解答即可.解:连接CQ ,如图:由中心对称可知,AQ =BQ ,由轴对称可知:BQ =CQ ,∴AQ =CQ =BQ ,∴∠QAC =∠ACQ ,∠QBC =∠QCB ,∵∠QAC +∠ACQ +∠QBC +∠QCB =180°,∴∠ACQ +∠QCB =90°,∴∠ACB =90°,∴△ABC 是直角三角形,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,如图,∵A (2,0),C (8,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,∵18090ACE ACB Ð=°-Ð=°,∴∠AEC =45°,∴E 点坐标为(14,0),设直线BE 的解析式为y =kx +b ,∵C ,E 点在直线上,可得:14086k b k b ì+=ïí+=ïî,解得:114k b ì=-ïí=ïî,∴y =﹣x +14,∵点B 由点A 经n 次斜平移得到,∴点B (n +2,2n ),由2n =﹣n ﹣2+14,解得:n =4,∴B (6,8),∴△ABC 的面积=S △ABE ﹣S △ACE =12×12×8﹣12×12×6=12,故选:A .【点拨】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到B 的坐标是解本题的关键.9.A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ´-=-,2510y y ´-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--×-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.A【分析】根据题意,先求出前几次跳跃后1P 、2P 、3P 、4P 、5P 、6P 、7P的坐标,可得出规律,继而可求点2021P 的坐标.解:由题意得:点()14,0P 、()24,4P -、()30,4P -、()44,4P 、()54,0P -、()60,0P 、()74,0P ,∴点P 的坐标的变化规律是6次一个循环,∵20216336...5¸=,∴点2021P 的坐标是()4,-0.故选:A .【点拨】本题主要考查了中心对称及点的坐标的规律,解题的关键是求出前几次跳跃后点的坐标并总结出一般规律.11.1【分析】连接BB ′,设BC ′与AB ′交点为D ,根据∠C =90°,AC =BC =AB=2,根据旋转,得到∠AC ′B ′=∠ACB =90°,AC ′=AC =B ′C ′=BC ,AB =AB ′=2,∠BAB ′=60°,推出BC ′垂直平分AB ′,△ABB ′为等边三角形,得到C ′D 12=AB ′=1,'60ABB Ð=°,推出1''302ABD B BD ABB Ð=Ð=Ð=°,得到BD =′C ′B =C ′D +BD =1.解:连接BB ′,设BC ′与AB ′交点为D ,如图,△ABC中,∵∠C=90°,AC=BC=∴AB===2,∵△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,∴∠AC′B′=∠ACB=90°,AC′=AC=B′C′=BC,AB=AB′=2,∠BAB′=60°,∴BC′垂直平分AB′,△ABB′为等边三角形,∴C′D12=AB′=1,'60ABBÐ=°,∴1''302ABD B BD ABBÐ=Ð=Ð=°,∴BD=∴C′B=C′D+BD=1故答案为1【点拨】本题考查了旋转图形全等的性质,线段垂直平分线判定和性质,等边三角形的判定与性质,等腰直角三角形的性质,含30°角的直角三角形边的性质,作辅助线构造出等边三角形,求出'C D,BD的长是解题的关键.12.3【分析】通过已知求得D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,再运用圆外一定点到圆上动点距离的最大值=定点与圆心的距离+圆的半径,求得CE的最大值.解:∵BC=2,线段BC绕点B旋转到BD,∴BD =2,∴112BD =.由题意可知,D 在以B 为圆心,BD 长为半径的圆上运动,∵E 为AD 的中点,∴E 在以BA 中点为圆心,12B D 长为半径的圆上运动,CE 的最大值即C 到BA 中点的距离加上12BD 长.∵90ACB Ð=o ,30BAC Ð=o ,BC =2,∴C 到BA 中点的距离即122AB =,又∵112BD =,∴CE 的最大值即1121322AB BD +=+=.故答案为3.【点拨】本题考查了与圆相关的动点问题,正确识别E 点运动轨迹是解题的关键.13【分析】以AB 为边向右作等边△ABK ,连接EK ,证明△ABF ≌△KBE (SAS ),推出AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,EK 的值最小,求出EK 即可解决问题.解:如图,以AB 为边向右作等边△ABK ,由60ABC Ð=°可知点K 在BC 上,连接EK ,∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,EK的值最小,即AF的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAK=∠AKB=60°,∴∠AKE=30°,∵AB=AK=2,AK=1,∴AE=12∴EK=,∴AF【点拨】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.14【分析】将三角形BCP绕点B逆时针旋转60°得三角形BDA,过B作BH⊥直线AP于H,先证明三角形BDP为等边三角形,利用勾股定理逆定理得∠DPA=90°,进而得∠BPH=30°,利用勾股定理解直角三角形即可得答案.解:将三角形BCP绕点B逆时针旋转60°,得三角形BDA,BC边落在AB上,过B作BH ⊥直线AP 于H ,如图所示,由旋转知,△BDP 为等边三角形,AD =PC =,∴BP =PD =BD ,∠BPD =60°,∵PA ,∴222PD PA AD +=,∴∠APD =90°,∴∠BPH =30°,∴BH =12BP =,由勾股定理得:AB.【点拨】本题考查了等边三角形的性质与判定、勾股定理逆定理、旋转变换的应用等知识点,解题关键是作旋转变换,将分散的条件集中在同一三角形中.15.13【分析】将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,由矩形的条件和旋转的性质可得3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,可说明四边形EBMH 是矩形,然后由正方形的性质可得到12CN =,GM CN ^,从而说明GM 是CN 的垂直平分线,进一步推导出CG DG NG DG ND +=+³,当点N ,G ,D 三点共线时,+CG DG 取最小值,最后由勾股定理可求解.解:将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,∵在矩形ABCD 中,5AB =,9BC =,2AE =,∴3EB AB AE =-=,90B BCD Ð=Ð=°,5CD =,∴3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,∴90EHM Ð=°,∴四边形EBMH 是矩形,∴3BM EH ==,90BMH Ð=°,∴()229312CN CM ==´-=,GM CN ^,∴GM 是CN 的垂直平分线,∴CG NG =,∵F 是直线BC 上一动点,∴CG DG NG DG ND +=+³,∴当点N ,G ,D 三点共线时,+CG DG 取最小值ND ,在Rt NCD V 中,12CN =,5CD =,13ND ===,∴+CG DG 的最小值是13.故答案为:13.【点拨】本题考查了旋转的性质,矩形的性质,垂直平分线,三角形三边的关系,勾股定理等知识,采用了转化的思想方法.确定点C 关于GM 的对称点N 是解题的关键.16.9【分析】连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,可证△BDE 是等边三角形,利用等边对等角结合三角形内角和为180°求出18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,从而得到3601502BDE BAE °-ÐÐ==°,进而可求出∠HAE =30°.再根据含30度角的直角三角形的性质可求出EH ,AH ,再利用勾股定理即可先后求出BE 和CD .解:如图,连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,∴△BDE 是等边三角形,∴BE =BD .∵C 为AB 中点,点D 在AB 的垂直平分线上,∴AD =BD =DE ,12BC AB ==∴18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,∴()36036022ADB ADE BDE BAD EAD °-Ð+а-ÐÐ+Ð==,即3602BDE BAE °-ÐÐ=.∵∠BDE =60°,∴∠BAE =150°,∴∠HAE =180°-150°=30°.∵AE =6,∴132EH AE ==,∴AH ==∴BH AH AB =+=∴BE ==,∴BD =,∴9CD ==.故答案为:9.【点拨】本题考查了图形的旋转,三角形内角和定理,线段垂直平分线的性质,勾股定理以及含30°的直角三角形的性质等知识,通过作辅助线构造出直角三角形是解题的关键.17.y=﹣x2+18x﹣77【分析】根据顶点式求得Q点的坐标,进而令0y=求得点,E F的坐标,作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,根据∠FQL=45°,证明△PQF≌△NFM(AAS),进而求得点M的坐标,求得直线QL的解析式为y11133x=-,继而求得L(11,0),T点坐标为(4,0),根据中心对称的性质可得K(7,0),根据交点式即可写出新抛物线的解析式.解:∵y=x2+2x﹣3=(x+1)2﹣4,∴Q(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,∴E(﹣3,0),F(1,0),作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,如图,∵∠FQL=45°,∴△QFM为等腰直角三角形,∴FQ=FM,∵∠PFQ+∠PQF=90°,∠PFQ+∠MFN=90°,∴∠PQF=∠MFN,∴△PQF≌△NFM(AAS),∴PQ=FN=4,MN=PF=2,∴M(5,﹣2),设直线QL的解析式为y=kx+b,把Q (﹣1,﹣4),M (5,﹣2)代入得452k b k b -+=-ìí+=-î,解得13113k b ì=ïïíï=-ïî,∴直线QL 的解析式为y 11133x =-,当y =0时,11133x -=0,解得x =11,∴L (11,0),∵点E (﹣3,0)和点L (11,0)关于T 对称,∴T 点坐标为(4,0),∵点F 与点K 关于T 点对称,∴K (7,0),∵新抛物线与抛物线y =x 2+2x ﹣3关于T 对称,∴新抛物线的解析式为y =﹣(x ﹣7)(x ﹣11),即y =﹣x 2+18x ﹣77.故答案为y =﹣x 2+18x ﹣77.【点拨】本题考查了二次函数的性质,中心对称的性质,等腰直角三角形的性质与判定,求抛物线的解析式,求得对称中心是解题的关键.18.5n解:根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.如图(1),已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,三角形AA 1B 1的面积是1,新正方形A 1B 1C 1D 1的面积是5,从而正方形A 2B 2C 2D 2的面积为5×5=25,正方形A n B n C n D n 的面积为5n .考点:找规律-图形的变化【点拨】解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.19.(1)见分析(2)画图见分析,B 2(-5,-2)(3)(3,0),6【分析】(1)分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1即可解答;(2)根据中心对称的坐标特征:横纵坐标互为相反数;求得A2、B2、C2的坐标即可;(3)C点先向下平移1个单位,再向右平移2个单位,即可得到点D(3,0);求出平行四边形ACDB的中心坐标,根据中心对称图形的性质可得直线y经过中心坐标,进而求得b;(1)解:如图,分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1,连接相应顶点得△A1B1C即为所求;(2)解:∵A(3,3),B(5,2),C(1,1),∴A、B、C关于原点的对称点坐标为:A2(-3,-3),B2(-5,-2),C2(-1,-1),如图,△A2B2C2即为所求,(3)解:如图,C点先向下平移1个单位,再向右平移2个单位,得到点D(3,0),连接相应顶点,四边形ACDB为平行四边形;∵A 点先向下平移1个单位,再向右平移2个单位,可得到点B ,∴BD 可由AB 平移得到,即BD ∥AB ,BD =AB ,∴四边形ACDB 是平行四边形,∵C (1,1),B (5,2),平行四边形是中心对称图形,∴平行四边形ACDB 的中心坐标为(3,32),如图所示,当直线y 经过平行四边形中心时,直线两侧的图形关于中心点对称面积相等,∴(3,32)代入直线y =32-x +b ,可得b =6;【点拨】本题考查了图形旋转,中心对称图形的性质,坐标的平移和对称变换,平行四边形的判定和性质;掌握中心对称图形的性质是解题关键.20.(1)=PE PF ,证明详见分析;(2)=PE PF 【分析】(1)根据角平分线定义得到∠POF=60°,推出△PEF 是等边三角形,得到PE=PF ;(2)过点P 作PQ ⊥OA ,PH ⊥OB ,根据角平分线的性质得到PQ=PH ,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF ,S 四边形OEPF =S 四边形OQPH ,求得OQ=1,解:(1)∵120AOB а=,OP 平分AOB Ð,∴60POF а=,∵60MPN а=,∴60MPN FOP Ðа== ,∴PEF D 是等边三角形,∴=PE PF ;(2)过点P 作PQ OA ^,PH OB ^,∵OP 平分AOB Ð,∴PQ PH =,90PQO PHO Ðа==,∵120AOB а=,∴∠QPH =60°,∴QPE FPH EPH Ð+Ð+Ð,∴QPE EPF ÐÐ=,在QPE D 与HPF D 中EQP FHP QPE HPF PQ PH Ð=ÐìïÐ=Ðíï=î,∴QPE HPF AAS D D ≌(),∴=PE PF ,OEPF OQPH S S 四边形四边形=,∵PQ OA ^,PH OB ^,OP 平分AOB Ð,∴30QPO а=,∴1OQ =,QP=∴112OPQ S D ´´=∴四边形OEPF 的面积=2OPQ S D【点拨】本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.21.(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见分析;②点H 的坐标为17(,3)5.(Ⅲ)S £分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO Ð=Ð,再根据矩形的性质得CBA OAB Ð=Ð.从而BAD CBA Ð=Ð,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(ⅢS ££解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C Ð=Ð=°.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴DC = 4==.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE Ð=°.又点D 在线段BE 上,得90ADB Ð=°.由(Ⅰ)知,AD AO =,又AB AB =,90AOB Ð=°,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO Ð=Ð.又在矩形AOBC 中,//OA BC ,∴CBA OAB Ð=Ð.∴BAD CBA Ð=Ð.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =.∴点H 的坐标为17,35æöç÷èø.(ⅢS ££【点拨】本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.22.(1)见分析;(2)60或120;(3)1212S ££【分析】(1)运用SAS 证明△≌△ADB AEC 即可;(2)分“当点E 在线段CD 上”和“当点E 在线段CD 的延长线上”两种情况求出EDB Ð的大小即可;(3)分别求出DBC △的面积最大值和最小值即可得到结论解:(1),ABC ADE Q V V 均为等边三角形,AD AE \=,AB AC =,DAE BAE BAC BAE \Ð-Ð=Ð-Ð,即BAD CAEÐ=Ð在ADB △和AEC △中AD AE BAD CAEAB AC =ìïÐ=Ðíï=î()ABD ACE SAS \@V V ;(2)当,,D E C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵ADE V 是等边三角形,60ADE AED \Ð=Ð=°,180120AEC AED \Ð=-Ð=°°,由(1)可知,ADB AEC @V V ,120ADB AEC \Ð=Ð=°,1206060EDB ADB ADE \Ð=Ð-=-°=°Ð°②当点E 在线段CD 的延长线上时,如图,ADE Q V是等边三角形,60ADE AED \Ð=Ð=°180120ADC ADE \Ð=-Ð=°°,由(1)可知,ADB AEC@V V 60ADB AEC \Ð=Ð=°,60EDB ADB ADE \Ð=Ð+Ð=° 60120+=°°综上所述,EDB Ð的大小为60°或120°(3)过点A 作AF BC ^于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==AF \==4DF \=此时1164)1222DBC S BC DF =×=´´=V ; 当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==,AF \==4AD =Q4DF AF AD \=+=此时,1164)1222DBC S BC DF =×=´´=V ;综上所述,DBC △的面积S 取值是1212S -££【点拨】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.23.(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见分析;②BE 的最大值是4;(3)AM 的最大值是P 的坐标为()【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN。
部编数学九年级上册23.3图形的旋转(巩固篇)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题23.3 图形的旋转(巩固篇)(专项练习)一、单选题1.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张2.如图,四边形ABCD是正方形,点E,F分别在边CD,BC上,点G在CB的延长线上,DE=CF=BG.下列说法:①将△DCF沿某一直线平移可以得到△ABG;②将△ABG 沿某一直线对称可以得到△ADE;③将△ADE绕某一点旋转可以得到△DCF.其中正确的是( )A.①②B.②③C.①③D.①②③3.如图,△ABC按顺时针旋转到△ADE的位置,以下关于旋转中心和对应点的说法正确的是()A.点A是旋转中心,点B和点E是对应点B.点C是旋转中心,点B和点D是对应点C.点A是旋转中心,点C和点E是对应点D.点D是旋转中心,点A和点D是对应点4.如图,已知OBC V 是等边三角形,边长为4,将OBC V 绕点O 逆时针旋转90°后点C 的对应点的坐标是( )A .()2B .(2,C .()2--D .(2,-5.如图,Rt ABC V 中,90C Ð=°,3BC =,4AC =,将ABC V 绕点B 逆时针旋转得A BC ¢¢△,若点C ¢在AB 上,连接CC ¢,则CC ¢的长为( )A B C D 6.如图,点A ,B 的坐标分别为(1,1)、(3,2),将△ABC 绕点A 按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为( )A .(﹣1,3)B .(-1,2)C .(0,2)D .(0,3)7.如图C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( )A .1对B .2对C .3对D .4对8.如图在平面直角坐标系中,直线y =43x +4与x 轴、y 轴分别交于A 、B 两点,把V AOB 绕点B 逆时针旋转90°后得到V A 1O 1B ,则点A 1的坐标是( )A .(5,3)B .(3,4)C .(4,2)D .(4,1)9.如图,四边形ABCD 是菱形,AB =60ABC ABE Ð=Ð=°,G 为对角线BD (不含B 点)上任意一点,将ABG V 绕点B 逆时针旋转60°得到EBF △,当AG BG CG ++取最小值时EF 的长( )A B .3C .1D .210.如图,等边ABC V 边长为ABC Ð和ACB Ð的角平分线相交于点O ,将OBC V 绕点O 逆时针旋转30°得到11OB C V ,11B C 交BC 于点D ,11B C 交AC 于点E ,则DE =( )A .2B .6-C 1D .3二、填空题11.如图,在直角坐标系中,△ABC 的顶点坐标分别为A (1,2),B (-2,2),C (-1,0).将△ABC 绕某点顺时针旋转90°得到△DEF ,则旋转中心的坐标是_____________.12.如图,将边长为1的正三角形AOP 沿x 轴正方向作无滑动的连续反转,点P 依次落在点1P ,2P ,32020P P ×××的位置,则点2020P 的坐标为______.13.如图,菱形OABC ,60AOC Ð=°,边OC 在y 轴上,若将菱形OABC 绕点O 逆时针旋转75°,得到菱形OA B C ¢¢¢,则点B 的对应点B ¢的坐标为______.14.如图,将ABC V 绕点A 逆时针旋转角()0180a a °<<°得到ADE V ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ^Ð=°,则旋转角a 的度数是______.15.如图,将□ABCD 绕点A 顺时针旋转,其中点B ,C ,D 分别落在点E ,F ,G 处,且点B ,E ,D ,F 在同一直线上.若∠CBA =115°,则∠CBD 的度数为______.16.一个等边三角形至少要旋转___________度的角才能和原三角形重合;若等边三角形的边长为10cm ,则它的面积是__________.17.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B ,那么()2,5A -的对应点'A 的坐标是__________.18.如图,△AOB 为等腰三角形,顶点A 的坐标为(3,4),底边OB 在x 轴正半轴上.将△AOB 绕点O 按逆时针方向旋转一定角度后得△A 'OB ',点A 的对应点A '在x 轴负半轴上,则点B 的对应点B '的坐标为_______.19.如图,在坐标系中放置一菱形OABC ,已知60ABC Ð=°,点B 在y 轴上,1OA =,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转12次,点B 的落点依次为1B ,2B ,3B ,¼,则12B 的横坐标为______.20.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,点D 在线段BC 上,BD =将线段AD 绕点A 逆时针旋转90°得到线段AE ,EF ⊥AC ,垂足为点F .则AF 的长为________.三、解答题21.在平面直角坐标系xOy 中,ABC V 的顶点坐标分别是()2,2A -,()3,2B --,()1,0C -.(1) 按要求画出图形:① 将ABC V 向右平移6个单位得到111A B C △;② 再将111A B C △绕点1A 顺时针旋转90°得到22A B C 1△;(2) 如果将(1)中得到的22A B C 1△看成是由ABC V 经过以某一点M 为旋转中心旋转一次得到的,请写出M 的坐标.22.在Rt ABC V 中,90ABC Ð=°,30ACB Ð=°,将ABC V 绕点C 顺时针旋转一定的角度a 得到DEC V ,点A 、B 的对应点分别是D 、E .(1) 当点E 恰好在AC 上时,如图1,求ADE Ð的大小;(2) 若60a =°时,点F 是边AC 中点,如图2,求证:四边形BEDF 是平行四边形(请用两组对边分别相等的四边形是平行四边形)23.如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺时针旋转90度得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC的长是方程的2314456x y x y +=ìí-=î的解,且OC >BC .(1) 求直线BD 的解析式;(2) 求△OFH 的面积;24.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.25.定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P 的“垂直图形”.例如:在下图中,点D为点C关于点P的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为(0,2),直接写出点B 的坐标;②若点B 的坐标为(2,1),直接写出点A 的坐标;(2)E (-3,3),F (-2,3),G (a ,0).线段EF 关于点G 的“垂直图形”记为E ′F ′,点E 的对应点为E ′,点F 的对应点为F ′.①求点E ′的坐标;②当点G 运动时,求FF ¢的最小值.26.如图,等腰Rt ABC V 中,90,BAC AB AC Ð=°=,点P 为射线BC 上一动点(不与点B 、C 重合),以点P 为中心,将线段PC 逆时针旋转a 角,得到线段PQ ,连接AP BQ 、、M 为线段BQ 的中点.(1)若点P 在线段BC 上,且M 恰好也为AP 的中点,①依题意在图1中补全图形:②求出此时a 的值和BP PC的值;(2)写出一个a 的值,使得对于任意线段BC 延长线上的点P ,总有AP PM的值为定值,并证明;27.如图,△AOB 中,OA =OB =6,将△AOB 绕点O 逆时针旋转得到△COD .OC 与AB 交于点G ,CD 分别交OB 、AB 于点E 、F .(1) ∠A 与∠D 的数量关系是:∠A ______∠D ;(2) 求证:△AOG ≌△DOE ;(3) 当A ,O ,D 三点共线时,恰好OB ⊥CD ,求此时CD 的长.28.如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC .将一直角三角板()30AOB OAB Ð=°的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方.将直角三角板绕着点O 按每秒20°的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA 恰好平分COD Ð,此时,BOC Ð与ÐBOE 之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线OC 的位置保持不变,且140COE Ð=°.①当边AB 与射线OE 相交时(如图3),则AOC BOE Ð-Ð的值为_______;②当边AB 所在的直线与OC 平行时,求t 的值.参考答案1.A解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A .【点拨】中心对称图形.2.C【分析】由正方形的性质和已知条件可以得到△ADE ≌△DCF 、△ADE ≌△ABG 、△ABG ≌△DCF ,然后根据图形变换的知识可以对各选项的正误作出判断.解:∵四边形ABCD 是正方形,∴AB =AD =CD ,∠ABC =∠ADE =∠DCB =90°,又∵DE =CF ,∴△ADE ≌△DCF (SAS ),同理可得:△ADE ≌△ABG ,△ABG ≌△DCF ,∴将△DCF 沿某一直线平移可以得到△ABG ,故①正确;将△ABG 绕点A 旋转可以得到△ADE ,故②错误;将△ADE 绕线段AD ,CD 的垂直平分线的交点旋转可以得到△DCF ,故③正确;故选:C .【点拨】本题考查正方形性质和图形变换的综合应用,根据全等三角形的性质和图形变换的知识解题是关键所在.3.C【分析】由ABC V 按顺时针旋转到ADE V 的位置,可得点A 是旋转中心,点B 和点D 是对应点,点C 和点E 是对应点.继而求得答案,注意排除法在解选择题中的应用.解:∵如图,ABC V 按顺时针旋转到ADE V 的位置,∴点A 是旋转中心,点B 和点D 是对应点,点C 和点E 是对应点.故A ,B ,D 三项错误,C 正确.故选:C .【点拨】此题考查了旋转的性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意掌握旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.4.B【分析】过点C 作CH OB ^于点.H 过点'C 作'C R y ^轴于点.R 求出点C 的坐标,再利用全等三角形的性质求解.解:过点C 作CH OB ^于点H ,过点'C 作'C R y ^轴于点R .Q V OBC 是等边三角形,4OB BC OC \===,CH OB ^Q ,2OH BH \==,CH \===2C \-(),''90C RO CHO COC Ð=Ð=Ð=°Q ,'90C OR COH \Ð+Ð=°,90COH OCH Ð+Ð=°,'C OR OCH \Ð=Ð,在'ORC V 和CHO V 中,'''C RO CHO C OR OCH OC CO Ð=ÐìïÐ=Ðíï=î,'ORC \V ≌CHO AAS V (),'2C R OH \==,OR CH =='2,C \(,故选:B .【点拨】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.C【分析】作CD AB ^,根据等面积法1122ABC S AC BC AB CD D =×=×,可求CD ,再由勾股定理即可求解CC ¢.解:如图,作CD AB ^,90CD AB ACB ^Ð=°∵,∴AB 5=∵1122ABC S AC BC AB CD D =×=×435CD´=∴125CD \=95BD ==∴3BC BC ¢==∵96355C D BC BD ¢¢=-=-=∴CC ¢===故选:C【点拨】本题主要考查图形的旋转、勾股定理,正确画出辅助线是解题的关键.6.D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.解:如图,根据图形可得:点B′坐标为(0,3),故选:D .【点拨】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.7.C【分析】分别证明△ACD ≌△BCE 、△ACF ≌△BCG 、△GEC ≌△FDC ,即可解决问题.解:∵△ABC 和△CDE 均为等边三角形,∴∠ACB=∠ECD=60∘,AC=BC ,CE=CD ,∴∠BCE=∠ACD,∠ACE=180°-120°=60°;在△ACD 与△BCE 中,AC BC ACD BCECD CE =ìïÐ=Ðíï=î∴△ACD ≌△BCE(SAS),∴∠CAF=∠CBG ,∠CEG=∠CDF ;在△ACF 与△BCG 中,CAF CBG AC BCACF BCG Ð=Ðìï=íïÐ=Ðî∴△ACF ≌△BCG(ASA),同理可证△GEC ≌△FDC ,∴以点C 为旋转中心,可通过旋转而相互得到的三角形有:△ACD 与△BCE 、△ACF 与△BCG 、△GEC 与△FDC ,共三对.故选C.【点拨】本题考查了旋转的性质, 等边三角形的性质,掌握三角形全等的判定是解题的关键.8.D【分析】先根据函数图像分别求出OA 、OB 的长度,再通过旋转之后对应边相等可求出点A 1的坐标.解:由函数图像得B 点的坐标为(0,4),将y =0代入443y x =+,可得x =﹣3,故A 点的坐标为(﹣3,0),∴OA =3,OB =4,∴BO 1=OB =4,故A 1的横坐标为4,又∵A 1O 1=OA =3,故A1的纵坐标为1,∴点A1的坐标是(4,1).故选:D.【点拨】本题主要考查一次函数与几何图形结合在一起的应用,旋转前后对应边长度不变是解题的关键.9.D【分析】根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长.解:如图:∵将ΔABG绕点B逆时针旋转60°得到ΔEBF,∴BE=AB=BC,BF=BG,EF=AG,∴ΔBFG是等边三角形,∴BF=BG=FG,∴AG+BG+CG=EF+FG+CG,根据“两点之间线段最短”,∴当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长,过E点作EH⊥BC交CB的延长线于H,如上图所示:∴∠EBH=60°,∵BE AB==,∴BH=,EH=3,∴EC=2EH=6,∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴123EF CE ==,故选:D .【点拨】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.10.B【分析】过O 点作OH ⊥BC 于H ,OB 1与BC 交于点M ,过M 作MF ⊥BO 于F ,求出BO =4,证明△BOM 和△DMB 1均为等腰三角形,求出BM 和MD 的值,进而求出DC 的长,最后证明△DEC 为30°、60°、90°直角三角形,利用DE 即可求解.解:过O 点作OH ⊥BC 于H ,OB 1与BC 交于点M ,过M 作MF ⊥BO 于F ,如下图所示:∵△ABC 为等边三角形,且OB 、OC 分别为∠ABC 、∠ACB 的角平分线,∴∠1=12∠ABC =30°,∠3=12∠ACB=30°,∴△OBC 为等腰三角形,由“三线合一”可知:BC =∴BO 4,∵OBC V 绕点O 逆时针旋转30°得到11OB C V ,∴∠2=30°=∠1,∴△OBM 为等腰三角形,由“三线合一”可知:BF =12BO =2,∴MO =BM∴MB 1=OB 1-OM =OB-OM =4-又由旋转可知∠B =∠B 1=30°,且对顶角∠BMO =∠DMB 1=120°,∴∠MDB 1=180°-∠B 1-∠DMB 1=180°-30°-120°=30°,∴△MB 1D∴MD =MB 1=4-∴CD=BC-MD-BM =(44-=-,∵对顶角∠EDC =∠MDB 1=30°,且∠ACB =60°,∴∠DEC =180°-∠EDC -∠ACB =90°,∴△CDE 为、90°直角三角形,∴DE 4)6=-故选:B .【点拨】本题考查了等边三角形的性质、等腰三角形的判定及性质、直角三角形的性质及判定等,熟练掌握特殊三角形的性质及判定是解决本题的关键.11.(1,-1)【分析】由旋转的性质可得A 的对应点为D ,B 的对应点为E ,C 的对应点为F ,同时旋转中心在AD 和BE 的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A 的对应点为D ,B 的对应点为E ,C 的对应点为F作BE 和AD 的垂直平分线,交点为P∴点P 的坐标为(1,-1)故答案为:(1,-1)【点拨】本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.12.(2020,0)【分析】根据图形的翻转,分别得出1P 、2P 、3P¼的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.解:由题意可知1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5¼依此类推下去,2017P 、2018P 的横坐标是2017,2019P 的横坐标是2018.5,2020P 的横坐标是2020,2020P \的坐标是(2020,0),故答案为(2020,0).【点拨】本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出1P 、2P 、3P ¼的横坐标,得出规律是解答此题的关键.13.()3,3-【分析】根据菱形的性质可得出∠AOC =60°,则三角形OAC 为等边三角形,即AC ,根据菱形对角线的性质可得出∠AOE =30°,根据勾股定理可得OE , OB ,再根据旋转的性质可得OB =OB 1,∠B 1OF =45°,根据勾股定理即可得出OF 与B 1F 的长度,即可得出答案.解:如图,连接AC 与OB 相交于点E ,过点B 1作B 1F ⊥x 轴,垂足为F ,∵四边形OABC 为菱形,60AOC Ð=°,OA =OC ,∴△AOC 是等边三角形,OC =OA =AC ,∵AC ⊥OB ,在Rt △OAE 中,OA ,AE =12AC∴OE∴OB =∵∠COB =12∠AOC =30°,∠BOB 1=75°,∴∠B 1OF =180°-60°-∠BOB 1=180°-60°-75°=45°,在Rt △B 1OF 中,OB 1=OB =OF =B 1F ,∴OF 2+B 1F 2=OB 12,可得OF =B 1F =3,∵点B 1在第二象限,∴点B 1的坐标为()3,3-.故答案为:()3,3-.【点拨】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键.14.50°【分析】先求出65ADE Ð=°,由旋转的性质,得到65Ð=Ð=°B ADE ,AB AD =,则65ADB Ð=°,即可求出旋转角a 的度数.解:根据题意,∵,25DE AC CAD ^Ð=°,∴902565ADE Ð=°-°=°,由旋转的性质,则65Ð=Ð=°B ADE ,AB AD =,∴65ADB B Ð=Ð=°,∴180665550BAD °-Ð=°=°-°;∴旋转角a 的度数是50°;故答案为:50°.【点拨】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.15.50°【分析】由旋转的性质得AB AE =,115AEF CBA Ð=Ð=°,由等腰三角形的性质得出65AEB ABE Ð=Ð=°,则CBD CBA ABE Ð=Ð-Ð.解:∵□ABCD 绕点A 顺时针旋转到□AEFG 的位置,∴AB AE =,115AEF CBA Ð=Ð=°,∴18065AEB ABE AEF Ð=Ð=°-Ð=°,∴1156550CBD CBA ABE Ð=Ð-Ð=°-°=°,故答案为:50°.【点拨】本题考查旋转的性质,平行四边形的性质,等腰三角形的性质等,找出旋转前后的对应线段、对应角是解题的关键.16. 120 【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可;首先由勾股定理求得等边三角形的高,再利用三角形的面积公式可得结果.解:∵等边△ABC 的中心角为360÷3=120°,∴旋转120°后即可与原图形重合.故答案为:120.如图,作AD ⊥BC ,∵△ABC 为等边三角形,∴BD=CD=12BC=5,∴==∴S △ABC =12×BC×AD=1102´´=(cm 2),故答案为:2.【点拨】本题主要考查了等边三角形的性质,利用等边三角形的性质“三线合一”是解答此题的关键.还考查了旋转对称图形,把正多边形旋转它的一个中心角度数之后,可与原来的图形重合.17.()5,2【分析】过点A 作AC y ^轴,垂足为C ,过点'A 作''A C x ^轴,垂足为'C ,证明()AOC A OC AAS ¢¢V V ≌,所以,AC A C OC OC ¢¢¢==,根据()2,5A -得到2,5AC OC ==,所以2,5A C OC ¢¢¢==,写出对应点'A 的坐标即可.解:如图,过点A 作AC y ^轴,垂足为C ,过点'A 作''A C x ^轴,垂足为'C ,∵AC y ^轴,''A C x ^轴,∴''90ACO A C O Ð=Ð=°,∵将线段AB 绕点O 顺时针旋转90°得到线段''A B ,∴'AO A O =,90AOA ¢Ð=°∵'90AOA AOC A OC ¢Ð=Ð+Ð=°,'90COC A OC A OC ¢¢¢Ð=Ð+Ð=°,∴AOC A OC ¢¢Ð=Ð,∴()AOC A OC AAS ¢¢V V ≌,∴,AC A C OC OC ¢¢¢==,∵()2,5A -,∴2,5AC OC ==,∴2,5A C OC ¢¢¢==,∴()5,2A ¢,故答案为:()5,2.【点拨】本题考查旋转的性质,证明AOC A OC ¢¢V V ≌是解答本题的关键.18.(﹣185,245)【分析】作AG ⊥OB 于G ,作B 'H ⊥A 'O 于H ,利用面积法即可得到B 'H =245,根据勾股定理可得Rt △B 'HO 中,HO =185,进而得出点B '的坐标为(﹣185,245).解:如图,作AG ⊥OB 于G ,作B 'H ⊥A 'O 于H ,∵△AOB 为等腰三角形,顶点A 的坐标为(3,4),∴AG =4,OG =3,AO =5,OB =6,∴由旋转可得A 'O =5,OB '=6,∵12OB ×AG =12A 'O ×B 'H ,∴B 'H =245,∴Rt △B 'HO 中,HO =185,∴点B '的坐标为(﹣185,245),故答案为:(﹣185,245).【点拨】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.19.【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于1226=´,因此点B 向右平移8即可到达点12B ,根据点B 的坐标就可求出点12B 的坐标.解:连接AC ,如图所示,∵四边形OABC 是菱形,∴OA AB BC OC ===,∵60ABC Ð=°,∴ABC V 是等边三角形,∴AC AB =,∴AC OA =,∵1OA =,∴1AC =,画出第5次、第6次、第7次翻转后的图形,如图所示,由图可知:每翻转6次,图形向右平移4,∵1226=´,∴点B 向右平移2×4=8个单位到点12B ,∵B点的坐标为(,∴12B的坐标为(8,故答案为:.【点拨】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.20.1【分析】根据勾股定理先求出BC 边长,再求出DC 长,过点D 作DM 垂直AC ,可证ADM EAF △≌△,即AF =DM ,在等腰直角△DMC 中可求DM ,即可直接求解.解:在Rt △ABC 中,∠BAC =90°,AB =AC =4,根据勾股定理得,AB 2+AC 2=BC 2,∴BC =又∵BD,∴DC =BC −BD过点D 作DM ⊥AC 于点M ,由旋转的性质得∠DAE =90°,AD =AE ,∴∠DAC +∠EAF =90°.又∵∠DAC +∠ADM =90°,∴∠ADM =∠EAF .在Rt △ADM 和Rt △EAF 中,AD AE AMD EFA ADM EAF ìïÐÐíïÐÐî===.∴ADM EAF △≌△(AAS ),∴AF =DM .在等腰Rt △DMC 中,由勾股定理得,DM 2+MC 2=DC 2,∴DM =1,∴AF =DM =1.故答案为:1.【点拨】本题主要考查等腰直角三角形,旋转的性质以及全等三角形的判定与性质,证明△ADM ≌△EAF 是解答本题的关键.21.(1)①见分析;②见分析;(2)M (1,-1)【分析】(1)①根据平移的性质得出1A 、1B 、1C 的位置,顺次连接即可;②根据旋转的性质得出2B 、2C 的位置,顺次连接即可;(2)连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,作出M 点写出坐标即可.(1)解:①如图,111A B C △即为所求;②如图,22A B C 1△即为所求;(2)解:连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,由图可知,M 的坐标为(1,-1).【点拨】本题考查了作图—平移和旋转,熟练掌握平移和旋转的性质找出对应点的位置是解题的关键.22.(1)15ADE Ð=°(2)见分析【分析】(1)根据旋转的性质可得CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,根据等边对等角即可求出∠CAD =∠CDA =75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF =12AC ,然后根据30°所对的直角边是斜边的一半即可求出AB =12AC ,从而得出 BF =AB ,然后证出△ACD 和△BCE 为等边三角形,再利用HL 证出△CFD ≌△ABC ,证出DF =BE ,即可证出结论.(1)解:∵△ABC 绕点C 顺时针旋转α得到△DEC ,点E 恰好在AC 上,∴CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,∴∠CAD =∠CDA =12(180°﹣30°)=75°,∴∠ADE =90°﹣∠CAD =15°.(2)证明:如图2,连接AD ,∵点F 是边AC 中点,∴BF =AF =CF =12AC ,∵∠ACB =30°,∴AB =12AC ,∴BF =CF =AB ,∵△ABC 绕点C 顺时针旋转60°得到△DEC ,∴∠BCE =∠ACD =60°,CB =CE ,DE =AB ,DC=AC ,∴DE =BF ,△ACD 和△BCE 为等边三角形,∴BE =CB ,∵点F 为△ACD 的边AC 的中点,∴DF ⊥AC ,在Rt △CFD 和Rt △ABC 中CF ABíî=,∴Rt △CFD ≌Rt △ABC ,∴DF =BC ,∴DF =BE ,而BF =DE ,∴四边形BEDF 是平行四边形.【点拨】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键.23.(1)2833y x =-+(2)6421【分析】(1)解二元一次方程组可得B (-2,4),再由△ODE ≌△OCB ,可知D (4,0),用待定系数法求直线BD 的解析式即可;(2)求出F (0,83),直线OE 的解析式为y =12x ,进而求出H 的坐标,即可求△OFH 的面积;(1)解:2314456x y x y +=ìí-=î解得4,2x y =ìí=î∵OC >BC ,∴CO =4,BC =2,∴B (-2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90度得到,∴△ODE ≌△OCB ,∴OD =OC ,DE =BC ,∴D (4,0),E (4,2),设直线BD 的解析式为y =kx +b ,将点B 与D 代入可得40k b í+=î,解得2383k b ì=-ïïíï=ïî,∴BD 的解析式为2833y x =-+;(2)由2833y x =-+,令0x =,得83y =8(0,)3F \设直线OE 的解析式为y =k 1x ,将点E 代入可得k 1=12,12y x \=,122833y x y x ì=ïïíï=-+ïî,解得16787x y ì=ïïíï=ïî,168(,)77H \,\△OFH 的面积181********=´´=.【点拨】本题考查一次函数的综合,掌握待定系数法求函数解析式,旋转的性质,解二元一次方程组,求一次函数与坐标轴的交点问题,两直线与坐标轴围成的三角形面积,数形结合是解题的关键.24.(1)点N 在直线AB 上,理由见分析(2)以MC 、MN 为邻边的正方形面积为S =18【分析】(1)根据∠CMH =∠B ,∠CMH +∠C =90°,则∠B +∠C =90°,故∠BMC =90°,即可判断;(2)作CD ⊥AB 于点D ,在△BCM 中,已知两角一边,可通过解三角形求出MC 的长度,进而求正方形的面积.(1)解:点N 在直线AB 上,理由如下:∵∠CMH=∠B,∠CMH+∠C=90°,∴∠B+∠C=90°,∴∠BMC=90°,即CM⊥AB,∴线段CM逆时针旋转90°落在直线BA上,即点N在直线AB上(2)解:作CD⊥AB于点D,∵MC=MN,∠CMN=90°,∴∠MCN=45°,∵NC∥AB,∴∠BMC=45°,∵BC=6,∠B=30°,∴CD=3,MC==∴S=MC2=18,即以MC、MN为邻边的正方形面积为S=18.【点拨】本题主要考查了旋转的性质,等腰直角三角形的性质,正方形的性质,解三角形等知识,作辅助线,构造两个特殊的直角三角形是解题的关键.25.(1)①B(2,0);②A(-1,2);(2)①E′(3+a,3+a);②FF′的最小值为【分析】(1)①②根据“垂直图形”的定义解决问题即可;(2)①构造全等三角形,利用全等三角形的性质求解即可;②△FGF′是等腰直角三角形,当FG⊥x轴时,FG取得最小值,即FF′有最小值,据此求解即可解决问题.(1)解:①如图中,观察图象可知B(2,0);②如图,∵∠AOB=∠ACO=∠ODB=90°,∴∠A+∠AOC=90°,∠AOC+∠BOD=90°,∴∠A=∠BOD,∵AO=OB,∴△AOC≌△OBD(AAS),∴OC=BD=1,AC=OD=2,∴A(-1,2);(2)解:①如图,过点E作EP⊥x轴于P,过点E′作E′H⊥x轴于H.∵∠EPG=∠EGE′=∠GHE′=90°,∴∠E+∠PGE=90°,∠PGE+∠E′GH=90°,∴∠E=∠E′GH,∵EG=GE′,∴△EPG≌△GHE′(AAS),∴EP=GH=3,PG=E′H=a+3,∴OH=3+a,∴E′(3+a,3+a);②∵∠FGF′=90°,FG=GF′,∴△FGF′是等腰直角三角形,∴FF,当FG⊥x轴时,FG取得最小值,即FF′有最小值,∴FF′的最小值为【点拨】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题.a°,理由见分析26.(1)①见分析;1(2)=90【分析】(1)①由题意,画出图形即可;②连接AQ ,证四边形ABPQ 是平行四边形,得AB =PC ,再根据ABC V 是等腰三角形即可求解.(2)令=90a °,延长PM 至N ,使得MN =PM ,连接BN 、AN 、QN ,证四边形BNQP 是矩形,根据SAS 证ACP ABN @V V ,得出ANP V 为等腰直角三角形,即可求解.(1)①如图所示,即为所求,②连接AQ ,如图所示,∵M 为AP 、BQ 的中点,∴AM =PM ,BM =QM ,∴四边形ABPQ 是平行四边形,∴AB =PQ ,AB //PQ ,∴45QPC ABC a =Ð=Ð=°,∵PC =PQ ,∴AB =PC ,ABC Q V 为等腰直角三角形,\AB :1BP PC \==.(2)=90a °,延长PM 至N ,使得MN =PM ,连接BN 、AN 、QN ,如图所示:Q M 为线段BQ 的中点,∴BM =QM ,又∵MN =PM ,∴四边形BNQP 是平行四边形,又∵∠CPQ =90°,∴四边形BNQP 是矩形,//BN PQ \,=BN PQ ,18090NBP a \Ð=°-=°,ABC Q V 为等腰直角三角形,4590135ABN \Ð=°+°=°,=180-45=135ACP а°°,即=ACP ABN ÐÐ,又AB =AC ,()ACP ABN SAS \@V V ,AN AP \=,CAP BAN Ð=Ð,CAP CAN BAN CAN \Ð+Ð=Ð+Ð,即90NAP BAC Ð=Ð=°,即ANP V 为等腰直角三角形,AP PN \=又12PM PN =Q ,AP PM\=即AP PM的值为定值,当=90a °时,AP PM 的值为定值.【点拨】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性质,熟练利用辅助线构造平行四边形是解题的关键.27.(1)=(2)证明见分析(3)【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知∠AOB=∠DOC,可证得∠AOG=∠DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设∠A=x°,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可.(1)解:由旋转知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,故答案为:=.(2)证明:由旋转知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分两种情况讨论,①如图所示,设∠A =∠B =∠C =∠D =x°,则∠DOB =2x°,∵OB ⊥CD ,∴∠OED =90°,∴x +2x =90°,解得:x =30,即∠D =30°,在Rt △ODE 中,OE =3,由勾股定理得:DE =∵OC =OD ,OE ⊥CD ,∴CD =2DE =②当D 与A 重合时,如图所示,同理,得:CD =综上所述,当A ,O ,D 三点共线时,OB ⊥CD ,此时CD 的长为【点拨】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系.28.(1)BOC BOE Ð=Ð,理由见分析(2)①50°;② 3.5t =或12.5t =【分析】(1)由90AOB Ð=°,可知90BOC AOC Ð+Ð=°,90AOD BOE Ð+Ð=°,由OA 平分COD Ð,可知AOD AOC Ð=Ð,进而可证BOC BOE Ð=Ð;(2)由140COE Ð=°,18040COD COE Ð=°-Ð=°,可知140AOC COE AOE AOE Ð=Ð-Ð=°-Ð,90BOE AOE Ð=°-Ð,进而得()()1409050AOC BOE AOE AOE Ð-Ð=°-Ð-°-Ð=°,由此可求出结果;②由140COE Ð=°以及18040COD COE Ð=°-Ð=°,结合题意可分两种情况:当AB 在直线DE 上方时,或当AB 在直线DE 下方时,将两种情况分别进行讨论求解即可.解:(1)BOC BOE Ð=Ð,理由如下:∵90AOB Ð=°,∴90BOC AOC Ð+Ð=°,90AOD BOE Ð+Ð=°,∵OA 平分COD Ð,∴AOD AOC Ð=Ð,∴BOC BOE Ð=Ð;(2)①50°;∵140COE Ð=°,∴18040COD COE Ð=°-Ð=°,∵140AOC COE AOE AOE Ð=Ð-Ð=°-Ð,90BOE AOE Ð=°-Ð,∴()()1409050AOC BOE AOE AOE Ð-Ð=°-Ð-°-Ð=°,∴AOC BOE Ð-Ð的值为50°.②∵140COE Ð=°,∴18040COD COE Ð=°-Ð=°,(I )如图3-1,当AB 在直线DE 上方时,∵AB OC ∥,∴30AOC A Ð=Ð=°,∴70AOD AOC COD Ð=Ð+Ð=°,∵直角三角板绕点O 按每秒20°的速度旋转,∴7020 3.5t =°¸°=;(II )解法一:如图3-2,当AB 在直线DE 下方时,∵AB OC ∥,∴60COB B Ð=Ð=°,∴20BOD BOC COD Ð=Ð-Ð=°,9020110AOD Ð=°+°=°,∴直角三角板AOB 绕点O 旋转的角度为360250AOD °-Ð=°,∵直角三角板AOB 绕点O 按每秒20°的速度逆时针旋转,∴()3601102012.5t =°-°¸°=,解法二:如图3-3,在②(Ⅰ)的基础上,继续将直角三角板11A OB 绕点O 按每秒20°的速度逆时针旋转180°,得到直角三角板AOB ,此时,AB OC ∥,∴直角三角板AOB 绕点O 旋转的角度为18070250°+°=°,∵直角三角板AOB 绕点O 按每秒20°的速度逆时针旋转,∴2502012.5t =°¸°=,综合(Ⅰ)(Ⅱ)得: 3.5t =或12.5t =.【点拨】本题考查旋转问题,角平分线的性质,以及角的互相转换,能够掌握数形结合思想是解决本题的关键.。
人教版初三数学:《旋转》全章复习与巩固--知识讲解(提高)(1)
《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【高清课堂:高清ID号: 388636关联的位置名称(播放点名称):经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt △ABC 中,AC=BC ,∠ACB=90°,点E 在线段AB 上,CF ⊥CE ,CE=CF ,EF 交AC 于G ,连接AF .(1)填空:线段BE 、AF 的数量关系为 ,位置关系为 ; (2)当=时,求证:=2;(3)若当=n 时,=,请直接写出n 的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.【高清课堂:高清ID号:388636关联的位置名称(播放点名称):经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC , (1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360lS rlππ=扇n=,圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB切⊙O于点B,OA=23AB=3,弦BC∥OA,则劣弧BC的弧长为().A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)CBAO【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .A EB DC F P类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
人教版九年级数学上册第23章旋转 巩固提升练习(含答案)
人教版九年级数学上册第23章旋转 巩固提升练习巩固练习1. 如图,该图形围绕点按下列角度旋转后,不能与其自身重合的是( )O A. B. C. D.72︒108︒144︒216︒2. 如图,在△中, . 在同一平面内, 将△绕点旋转到ABC 70=∠CAB ABC A △的位置, 使得, 则( )//C AB AB CC ///=∠/BAB A.B.C.D. 30 35 40503. 如图,将绕点顺利针方向旋转得,若,则ABC △C 40︒A CB ''△AC A B ''⊥BAC ∠等于( )A. B. C. D.50︒60︒70︒80︒4. 一个图形无论经过平移还是旋转,有以下说法:①对应线段平行 ②对应线段相等③对应角相等④图形的形状和大小都没有发生变化其中都正确的说法是( )A .①、②、③B .①、②、④C .①、③、④D .②、③、④5. 在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为。
这个定点称为,转动的角称为。
6. 旋转的基本性质(1)旋转不改变图形的 .(2)图形上的每一点都绕旋转中心沿相同方向转动了 .(3)任意一对对应点与旋转中心的连线所成的角度都是 .(4)对应点到旋转中心的距离 .7. 绕着某一定点转动一定的角度后能与的图形叫旋转对称图形.8. 如图,正方形ABCD 中,∠BAD =∠ABC=∠C=∠D =90°,AB =BC =CD =DA 边DC 上有一点E ,将△ADE 旋转后得到了△ABG ;旋转中心是________,旋转了_______度。
9. 如图,△ABC 按逆时针方向绕点O 旋转了60°后成为△DEF ,那么OA =_____,OB =______,∠COF =_____度, ∠AOD =_____度, ∠A =______,∠C =______,AB =_____, BC =______。
人教版九年级数学上册《旋转》知识点及复习题
第三单元 旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征 (3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是( )A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是( )A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是( )A.(l)(2) B.(l)(2)(3) C.(2)(3)(4) D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有( )①正方形 ;②长方形 ;③等边三角形; ④线段; ⑤角; ⑥平行四边形。
人教版数学九年级上册《旋转》复习与巩固课件
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
四边形.
7
解:(1)∵△ABC 绕点 C 顺时针旋转 α 得到△DEC,点 E 恰好在 AC 上, ∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.∵CA=CD,∴∠CAD =∠CDA=12(180°-30°)=75°,∴∠ADE=∠DEC-∠DAE=90°-75°=15°.
11
• 11.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和 原来的图形重合,其中旋转的角度最大的是( )
A
A
B
C
D
12
• 12.如图,在小正方形组成的网格中,△ABC和 △DEF的顶点都在格点上.根据图形解答下列问 题:
• (1)将△ABC向左平移4个单位长度,再向下平移2 个单位长度,画出平移后的△A1B1C1;
8
• ★考点2 中心对称图形
• 6.【广东中考】下列所述图形中,是轴对称图形但不是中心对称图形 的是( )
• AD.圆 B.菱形
• C.平行四边形 D.等腰三角形
• 7.下列命题:①中心对称图形一定是轴对称图形;②有两条互相垂直
的对称轴的轴对称图形一定是中心对称图形;③关于某一点成中心对
称的两个三角形全等;④两个能重合的图形一定成中心对称.其中正
点A与点B关于原点O对称,则ab=________.
12
10
• ★考点3 旋转作图 • 10.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重
人教版数学九年级数学上册-第二十三章-旋转-巩固练习(含答案)
人教版数学九年级上册-第二十三章-旋转-巩固练习一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.后《旋转》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是().2.时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是().A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在△R t ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,6.(2015乌鲁木齐)如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A .30°B .45°C .60°D .90°8.在平面直角坐标系中,将点 A 1(6,1)向左平移 4 个单位到达点 A 2 的位置,再向上平移 3 个单位到 达点 A 3 的位置, △A 1A 2A 3 绕点 A 2 逆时针方向旋转 900,则旋转后 A 3 的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. (2015 扬州)如图,已知 △Rt ABC 中,∠ACB=90°,AC=6,BC=4△,将 ABC 绕直角顶点 C 顺时 针旋转 90°△得到 DEC .若点 F 是 DE 的中点,连接 AF ,则 AF=.10.如图,正方形 ABCD 的边长为 4cm ,正方形 AEFG 的边长为 1cm .如果正方形 AEFG 绕点 A 旋转,那么 C 、F 两点之间的最小距离为 _________ cm .11.绕一定点旋转 180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明 发现将正六边形绕着它的中心旋转一个小于 180°的角,也可以使它与原来的正六边形重合,请你写 出小明发现的一个旋转角的度数:_____________________.12.如图所示,在 △R t ABC 中,∠A =90°,AB =AC =4cm ,以斜边 BC 上距离 B 点cm 的 H 为中心,把这个三角形按逆时针方向旋转 △90°至 DEF ,则旋转前后两个直角三角形重叠部分的面积是___cm 2.13.如图,直角梯形 A BCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰 CD 以 D 为中心逆时针旋转 90°至 ED ,连 接 AE 、△D E , ADE 的面积为 3,则 BC 的长为_________.14. 如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点 A 逆时针旋转后与 △ACP ′重合,如果 AP=3,那么线段 PP ′的长等于________.15.如图,在直角坐标系中,已知点P 0 的坐标为(1,0),进行如下操作:将线段 OP 0 按逆时针方向 旋转 45°,再将其长度伸长为 OP 0 的 2 倍,得到线段 OP 1;又将线段 OP 1 按逆时针方向旋转 45°,长 度伸长为 OP 1 的 2 倍,得到线段 OP 2,如此重复操作下去,得到线段 OP 3,OP 4,…,则:(1)点 P 5 的坐标为__________;(2)落在 x 轴正半轴上的点 P n 坐标是_________,其中 n 满足的条件是________.16.在平面直角坐标系中,已知点 P 0 的坐标为(1,0),将点 P 0 绕着原点 O 按逆时针方向旋转 60°得点 P 1,延长 OP 1 到点 P 2,使 OP 2=2OP 1,再将点 P 2 绕着原点 O 按逆时针方向旋转 60°得点 P 3,则点 P 3 的坐标 是__________.三 综合题17. 如图,已知,点 P 是正方 ABCD 内一点,且 AP ∶BP ∶CP=1∶2∶3.求证:∠APB =135°.18.如图,已知点 D 是△ABC 的 BC 边的中点,E 、F 分别是 AB 、AC 上的点,且 DE ⊥DF .求证: BE + CF >EF得19.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1△,在ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°△到A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰△Rt ABC.边AB=4,P△为ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.A 2 ,【答案与解析】一、选择题 1.【答案】C.2.【答案】C.【解析】分针每 5 分钟转动 30.3.【答案】A.【解析】 因为以 M 或 O 或 N 为旋转中心两个图形能够完全重合. 4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC 为正三角形,所以△FDC 为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】B.【解析】根据题意画出△AOB 绕着 O 点顺时针旋转 120°得到的△COD,连接 OP ,OQ ,过 Q 作 QM⊥y轴,∴∠POQ=120°, ∵AP=OP,∴∠BAO=∠POA=30°, ∴∠MOQ=30°,在 Rt△OMQ 中,OQ=OP=2, ∴MQ=1,OM= ,则 P 的对应点 Q 的坐标为(1,﹣ ),故选 B7.【答案】D. 8.【答案】C.【解析】 (2,1),A 3 (2,4), 即旋转 90°后 A 3坐标为(-1,1).二、填空题9.【答案】5.【解析】作 FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90° ∵点 F 是 DE 的中点, ∴FG ∥CD∴GF= CD= AC=3EG= EC= BC=2∵AC=6,EC=BC=4 ∴AE=2 ∴AG=4根据勾股定理,AF=5.1212310.【答案】32;【解析】当点F在正方形ABCD的对角线AC上时,CF=AC﹣AF,当点F不在正方形的对角线上时由三角形的三边关系可知AC﹣AF<CF<AC+AF,∴当点F在正方形ABCD的对角线AC上时,C、F两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm.故答案为:32.11.【答案】60°或120°.【解析】正六边形的中心角是60°.12.【答案】1.【解析】证明△FHC和△FHG是等腰直角三角形,且腰长为13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD的延长线于点G,则AD=BF,,即得.可证得△DEG≌△DCF,即EG=FC,又因为s△ADE3,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP′是等腰直角三角形,所以PP′=32.15.【答案】(1),(2)落在x轴正半轴上的点Pn坐标是,其中n满足的条件是n=8k(k=0,,,…)16.【答案】(-1,).【解析】首先求得P,P的坐标,即可求得P坐标.三.解答题17.【解析】证明:将△APB绕点B沿顺时针方向旋转90°至△CP′B位置(如图),则有△APB≌△CP′B.∴BP′=BP,CP′=AP,∠PBP′=90°,∠APB=∠CP′B.设CP′=AP=k,则BP′=BP=2k,CP=3k,在△R t BP′P中,BP′=BP=2k,∴∠BP′P=45°.=(3k)2=CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE绕点D沿顺时针方向旋转180°至△CDG位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即DF⊥EG.∴EF=FG,在△FCG中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP逆时针旋转60°△得到A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵△Rt ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°△得到A'P'B.则A'B=AB=BC=4,P A=P′A′,PB=P′B,∴P A+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=P A+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在△Rt A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2故答案是:2+2(或不化简为(或不化简为).).20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF.。