用PLC和变频器实现电机的变频调速和远程控制

合集下载

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。

但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。

下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。

1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。

在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。

电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。

在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。

印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。

但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。

为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。

牵引电机和印刷电机采用变频调速,其控制框图如图1所示。

在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。

变频器与PLC的联动控制

变频器与PLC的联动控制

变频器与PLC的联动控制随着现代工业自动化的发展,变频器和PLC成为了工业控制领域中常用的设备。

它们分别担负着驱动电机和控制各种自动化设备的重要任务。

而将变频器和PLC进行联动控制,可以实现更加灵活和高效的工业生产过程。

本文将详细介绍变频器与PLC的联动控制原理、应用和优势。

一、变频器和PLC的基本介绍1. 变频器变频器,即交流变频调速器,是一种通过调整电源频率和电压来控制电机转速的装置。

它可以使电机实现无级调速,适用于各种需要调整转速的场合。

2. PLCPLC,即可编程逻辑控制器,是一种专门用于控制自动化设备的计算机控制系统。

它可以编程实现各种逻辑运算,对输入输出信号进行处理,并控制各种执行器的动作。

二、变频器与PLC的联动控制原理变频器与PLC的联动控制主要基于以下几个原理。

1. 通信协议变频器和PLC之间需要通过某种通信协议进行数据传输和控制命令的交互。

常用的通信协议包括Modbus、Profibus等。

2. 输入输出信号交互PLC可以通过输入模块接收传感器或者其他设备的信号,然后根据预设的逻辑进行处理,并通过输出模块控制变频器的启停、转速等参数。

3. 控制策略根据实际需求,可以通过PLC编程实现不同的控制策略。

例如,根据流量传感器检测到的流量信号,PLC可以调整变频器的输出频率,以达到预期的流量控制效果。

三、变频器与PLC的联动控制应用变频器与PLC的联动控制在工业自动化领域有广泛的应用。

以下是几个常见的例子。

1. 水泵控制系统通过变频器和PLC联动控制,可以实现水泵的自动控制。

根据PLC程序中的逻辑,通过检测水位、压力等信号,PLC可以控制变频器的启停和转速,以确保水泵的正常运行。

2. 输送带控制系统在自动化生产线上,通过变频器和PLC的联动控制,可以实现对输送带的运行速度和方向的精确控制。

根据PLC的程序逻辑,可以根据工件的数量和位置,实时调整变频器的输出频率和方向,使输送带与生产线的工作同步。

plc和变频器通讯教程

plc和变频器通讯教程

plc和变频器通讯教程PLC(可编程逻辑控制器)和变频器通讯,是现代工业自动化领域中常见的一种应用。

PLC用于控制生产线的运行,而变频器则用于控制电机的转速。

通过PLC和变频器的通信,可以实现对电机的远程控制和监控。

下面是一个关于PLC和变频器通讯的教程,包含了硬件连接、通信协议、通信参数的配置等步骤。

一、硬件连接在PLC和变频器之间建立通信连接之前,需要确定两者之间的硬件连接方式。

通常,PLC和变频器之间使用RS485接口进行通信。

首先,需要将PLC和变频器的RS485接口连接起来。

具体连接方式如下:1. 将PLC的RS485接口的A线连接到变频器的RS485接口的A线;2. 将PLC的RS485接口的B线连接到变频器的RS485接口的B线;3. 保持PLC和变频器的地线连接到一块;4. 确保所有连接都紧固可靠。

二、通信协议PLC和变频器之间的通信需要使用一种特定的通信协议。

常见的通信协议包括Modbus、Profibus、Ethernet等。

在选择通信协议时,需要根据实际需要和硬件设备的兼容性来确定。

本教程以Modbus通信协议为例。

三、PLC参数设置在PLC的编程软件中,需要进行一些参数的设置。

具体步骤如下:1. 设置通信口的类型为RS485;2. 设置通信口的波特率和数据位数,通常为9600波特率和8数据位;3. 设置Modbus通信协议的相关参数,包括通信地址、数据格式、校验位等。

四、变频器参数设置在变频器的设置面板中,也需要进行一些参数的设置。

具体步骤如下:1. 设置通信口的类型为RS485;2. 设置通信口的波特率和数据位数,需与PLC的设置一致;3. 设置Modbus通信协议的相关参数,包括通信地址、数据格式、校验位等。

五、PLC编程设置在PLC的编程软件中,需要编写一些代码来实现PLC与变频器的通信。

具体步骤如下:1. 在PLC的程序中创建一个通信模块;2. 在通信模块中配置通信口和通信协议的相关参数;3. 编写代码实现PLC向变频器发送指令、读取状态等操作;4. 调试程序,确保通信正常。

plc控制变频器调速

plc控制变频器调速

基于PLC控制变频器调速实验报告电控学院电气实训目的:本次实验针对电气工程及其自动化专业。

通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。

要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。

在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。

学生实验应做到以下几点:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。

2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。

3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。

4. 培养动手能力,增强对可编程控制器运用的能力。

5. 培养分析,查找故障的能力。

6. 增加对可编程控制器外围电路的认识。

实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机第一部分采样转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。

编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。

欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。

实训8 PLC和变频器联机实现多段速频率控制

实训8 PLC和变频器联机实现多段速频率控制
输出频率与输入端子之间的关系 各输入端子状态 S2 OFF OFF ON S1 OFF ON OFF 输出频率 OFF 固定频率1 固定频率2
ON
ON
固定频率3
实训内容
1、画出硬件接线图
~380V QS +24V SB1 SB2 L1 L2 L3
I0.0 I0.1
Q0.0 Q0.1 Q0.2
5 6 7 +24V 8 9 0V
选择固定频率设定值
(5)控制工艺设置 序号 16 17 18 19 20 21 22 23 参数号 P0003 P0004 P0701 P0702 P0703 P0003 P0004 P1001 出厂值 1 0 1 1 1 1 0 0 设置值 2 7 17 17 1 2 10 10 命令和数字I/O 选择固定频率 选择固定频率 ON接通正转,OFF停止 设用户访问级扩展级 设定值通道和斜坡函数发生器 设置固定频率1(Hz) 说明 设用户访问级扩展级
24
25
P1002
P1003
5
10
20
-50
设置固定频率2(Hz)
设置固定频率3(Hz)
7、运行调试及操作控制
将PLC置于运行模式,开启程序状态监控。 (1)按照变频器外部接线图完成变频器的接线,认真检查, 确保正确无误。
(2)打开电源开关,按照参数功能表正确设置变频器参数。 (3)按下起动按钮SB2,电动机起动并运行在第一段,频 率为10Hz。 (4)延时20s后电动机运行在第二段,频率为20Hz。 (5)再延时10s后电动机反向运行在第三段,频率为50Hz。 (6)按下停止按钮SB1 ,电动机停止运行。
MM420
PLC
M 3~
2、列出I/O地址分配表

用PLC控制变频器调速的实例(图与程序)

用PLC控制变频器调速的实例(图与程序)

用PLC控制变频器调速的实例(图与程序)《PLC控制变频器调速》实例的要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制。

《PLC控制变频器调速》实例的目的1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。

2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。

3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使理论知识更加巩固。

4. 培养动手能力,增强对可编程控制器运用的能力。

5. 培养分析,查找故障的能力。

6. 增加对可编程控制器外围电路的认识。

《PLC控制变频器调速》实例的器件欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G 系列变频器,三相异步电机。

本次实例由3部分组成第一部分采样:转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。

编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。

它分为单路输出和双路输出两种。

第二部分控制部分:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

第三部分软件::控制的基本思路是讲采样的结果作为反馈量,输入到PLC中与所想要的频率对应值比较,然后再由PLC做出相应的控制。

实例中的电路图与梯形图一、光电编码器二、变频器三、实例总结四、梯形图。

台达变频器与PLC通讯功能的实现方法

台达变频器与PLC通讯功能的实现方法

台达变频器与PLC通讯功能的实现方法一、引言在自动化控制系统中,变频器作为一个重要的控制设备,常常与PLC (可编程逻辑控制器)进行通讯。

变频器与PLC的通讯功能的实现,可以实现在PLC控制下对变频器进行远程控制,从而实现对电机的速度、转向等参数的控制,提高整个系统的稳定性和灵活性。

二、PLC与变频器通讯的基本原理1.串行通讯原理:PLC与变频器之间的通讯一般采用串行通讯方式,即通过串行通信口发送和接收数据。

PLC通过串行通信口将控制命令和参数发送给变频器,变频器接收到数据后进行相应的操作,并将反馈的数据发送给PLC,PLC 再根据反馈数据进行相应的处理。

2.通讯协议选择:通讯协议是PLC与变频器之间通讯的规则,不同的厂家和型号的变频器通常采用不同的通讯协议。

在选择通讯协议时,需要考虑PLC和变频器的兼容性,以及通讯速度、稳定性等因素。

常用的通讯协议有Modbus、Profibus、CANopen等。

三、台达变频器与PLC通讯实现方法1.Modbus通讯协议实现方法:Modbus是一种常用的通讯协议,因为其简单、可靠而被广泛应用于自动化领域。

实现变频器与PLC的通讯,可以选择Modbus RTU或Modbus TCP通讯方式。

(1)Modbus RTU通讯方式在Modbus RTU通讯方式下,PLC通过RS485接口与变频器连接。

PLC发送Modbus RTU格式的命令帧,包括从站地址、功能码、寄存器地址等信息,变频器接收到命令后进行相应的操作,并将结果通过RS485接口发送给PLC。

(2)Modbus TCP通讯方式在Modbus TCP通讯方式下,PLC与变频器之间通过以太网连接。

PLC通过以太网发送Modbus TCP格式的命令帧,包括从站地址、功能码、寄存器地址等信息,在以太网中传输。

变频器接收到命令后进行相应的操作,并将结果通过以太网发送给PLC。

2.Profibus通讯协议实现方法:Profibus是一种采用国际标准的工业现场总线,具有高速、可靠等特点。

PLC与变频器实现电机正反转、任意转速、停车急停

PLC与变频器实现电机正反转、任意转速、停车急停

摘要随着电气工业的不断发展,可编程控制器(PLC)、变频器得以普及到人们生活、生产中,使电气控制更加方便、简洁、实用。

在工业生产过程中,具有大量的的开关量顺序控制,要求按照逻辑条件进行顺序动作,并按照逻辑关系进行联锁保护动作的控制,及大量离散量的数据采集等。

传统上,这些功能是通过气动或电气控制系统来实现的。

1968年美国GM(通用汽车)公司公开招标,提出研制能够取代继电器的控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程控制器,成Programmable Controller (PC)。

个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC),现在,仍常常将PLC简称PC。

现今,PLC已经具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

可预见的将来,PLC 在工业自动化控制特别是顺序控制中的主导地位,是其他控制技术无法求带的。

变频器是把工频电源(50Hz或60HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。

其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有事还需要一个进行转矩运算的CPU以及一些相应的电路。

目录引言----------------------------------------------------------------------3第一章. PLC与变频器实现电机正反转控制1.1 设计要求--------------------------------------41.2 设计思路--------------------------------------41.3 设计目的--------------------------------------4第二章. 电机正反转控制系统PLC设计2.1 梯形图程序的设计方案--------------------------52.2 系统所需的电气元件介绍------------------------5第三章. 电动机控制要求实现3.1 PLC通过RS485通讯实现变频调速---------------113.2 变频器控制电机正反转--------------------------123.3 变频器实现电机制动、急停----------------------123.4 实现电动机控制梯形图程序---------------------14第四章.注意事项4.1 安装环境-------------------------------------164.2 电源接线-------------------------------------164.3 接地-----------------------------------------164.4 直流24V接线端-------------------------------174.5 输入接线注意点-------------------------------17结束语-------------------------------------------18 参考文献-----------------------------------------19 评审意见表---------------------------------------201引言本课题设计:电动机要实现无级调速,可用变频器控制,电机的正反转,停车,急停也可由PLC控制变频器实现。

运用PLC和变频器实现电机多段调速

运用PLC和变频器实现电机多段调速

运用 PLC和变频器实现电机多段调速摘要:近年变频调速技术获得良好的发展空间,其控制精度突出、调速便捷、节能效果突出,可以达到直流电动机调速状态。

但是在现代农业与工作快速发展的背景下,在自动化控制方面的要求更为严格,仅仅借助变频器调速已经无法进一步提高生产效率与质量,所以需要对PLC、变频器以及其他自动化工控设备进行综合使用,同时借助组态软件、人机界面等开展远程监控,是现代控制技术的主要发展方向。

PLC是对通信、自动化控制以及计算机等技术进行融合的技术设备,因为其低成本、维修便捷、抗干扰能力突出、可靠性高、组合灵活等特点,在自动化领域具有重要作用,在自动化控制中有着广泛应用。

关键词:PLC;变频器;调速1 PLC与变频器概述1.1 PLC概述PLC工作形式较为直观,采用循环扫描的方式。

借助编程软件将用户程序输入、储存到PLC用户储存器中,PLC工作过程中对用户程序进行执行,在操作过程中,无法同时操作多个,需要根据分时原理开展。

由此,即能够借助PLC正常运行执行程序。

工作流程主要涵盖以下阶段,采样输入、执行程序以及刷新输出。

在PLC编程语言中,梯形图是应用较多的形象,PLC电路符号、表达方式和继电器电路原理图较为相似。

为了提高PLC抗干扰水平,引进了相关硬件和软件抗干扰手段。

PLC虽然具有较高科技含量,然而实际操作中并不复杂,同时调试和维护工作也较为便捷。

1.2 变频器概述变频器涵盖主电路与控制电路等零部件,可以借助下式进行变频原理表述:,对极对数P进行调整,能够实现电动机调速的目的,对S进行调整能够实现电机转差率调速,对f1进行调整能够促使异步电机电源频率发生变化。

一般情况下,调整电源频率是调速的主要方法。

借助科学分析三相异步电机和相关等效电路,获得:E1=ΔU+U1,基于E1和f1较大的情况,定子漏阻抗会减少,可以不计算ΔU,即可以获得定子电压,因此。

借助相关推理公式与科学计算能够获得:U1/f1=常数,即可以借助控制U1对E1进行控制。

PLC自动控制技术在变频器中的应用

PLC自动控制技术在变频器中的应用

PLC自动控制技术在变频器中的应用摘要:电气工程中有很多的电动机需要长期或者间歇运行,有的需要变频控制,有的为了更加精细地控制产品指标和生产参数,采用多元化的控制方式,包括直接启动、软启动、正反转启动、降压启动、变频器控制等。

变频器控制在自动控制中有着举足轻重的作用,包括启停控制、运行、故障、电流、频率给定、频率切换等方式,电机扭矩等大量的电信号需要与PLC进行数据交换,采用一对一硬接线的方式可以实现控制目的,但需要很多的接线进入PLC模块,这会影响系统的性能,工作量很大,容易出错,且成本高。

采用PLC与变频器通信的方式来控制电机,可以实现更好的控制效果。

基于此,本文探讨PLC自动控制技术在变频器中的应用。

关键词:PLC;变频器;自动控制应用一、PLC技术概述(一)工作原理PLC为可编译逻辑控制器,是一种新型的控制系统,由于系统中采用了现代化技术,可对被控制模块实施专业化、自动化管理。

PLC技术可分为输入采样、用户程序运行和输出更新三个阶段。

第一阶段,该技术允许综合学习和分析读取相关数据,以相对牢固地存储相关数据。

第二阶段PLC技术主要进行科学合理的扫描。

计算用户显示的梯形数据,确保其逻辑和可靠性,并在固定文件中显示数据的实际处理条件和结果。

在第三阶段,PLC技术允许初始数据传输、在固定区域中完整显示数据,然后向外传输数据。

CPU技术在PLC技术的开发中起着关键作用,因为它能够相应地处理数据,确保这些过程的可靠性和效率,并能够更好地检测和分析自动化系统的实际运行情况。

随着我国科学的发展,近年来,PLC技术从长远来看已有了积极的发展。

但是,PLC的运行机理与我们平常所见或所用的普通电脑装置有很大的区别。

通常,PLC的工作模式是周期性重复扫描,集中数据采集和更新,并按次序指令执行。

我们把整个扫描过程称为一个循环。

从内部工程师的观点,扫描周期可以分为三个阶段:输入信号扫描,工业控制程序的执行,以及输出信号的更新。

基于台达PLC和变频器的位置控制的实现

基于台达PLC和变频器的位置控制的实现

基于台达PLC和变频器的位置控制的实现位置控制是工业自动化中常见的一种控制方法,通过对执行器的位置进行精确控制,实现对工艺过程的精准控制。

在位置控制中,PLC(可编程逻辑控制器)和变频器(变频调速器)是两种常用的控制设备。

本文将基于台达PLC和变频器的组合实现位置控制的方案进行介绍。

首先,我们需要了解PLC和变频器在位置控制中的作用及其原理。

PLC是工业控制中一种常见的控制器,通过编程实现对各种工业设备、传感器和执行器的控制。

而变频器则是用来控制电机的转速和转矩的设备,通过改变电机的频率和电压,实现电机的调速。

在位置控制中,PLC主要负责控制系统的逻辑控制和信号处理,实时监控执行器的位置信息,并根据设定的位置控制算法计算出控制信号。

而变频器则负责接收PLC发出的控制信号,控制电机的转速和位置,从而实现对执行器位置的精准控制。

当PLC接收到启动信号后,根据设定的算法计算出控制信号,通过通讯接口发送给变频器。

变频器根据接收到的信号,控制电机的转速和位置,使传送带按照设定的路径和速度移动物料。

同时,PLC实时监测传送带的位置信息,根据反馈信息调整控制信号,实现对传送带位置的精准控制。

通过PLC和变频器的组合实现位置控制,不仅可以提高系统的精确度和稳定性,还可以实现更加灵活和智能的控制方式。

例如,可以根据不同的工艺要求设定不同的位置控制算法,实现多种工艺的自动切换和优化控制。

同时,通过PLC的通讯功能,还可以实现远程监控和控制,方便对系统进行远程管理和维护。

总之,基于台达PLC和变频器的组合实现位置控制,可以有效提高系统的控制精度和可靠性,实现对工艺过程的精准控制。

通过合理的设计和编程,将PLC和变频器融合在一起,可以实现更加智能和高效的位置控制方案,为工业自动化系统的发展提供更多可能性。

变频器和PLC在传送带多种速度控制中的应用

变频器和PLC在传送带多种速度控制中的应用

变频器和PLC在传送带多种速度控制中的应用一、本文概述随着工业自动化程度的不断提升,传送带作为物料运输的核心设备,其运行效率与稳定性对于生产线的顺畅运作至关重要。

在传送带的运行过程中,速度控制是关键因素之一,它直接影响到生产线的生产效率和产品质量。

近年来,随着变频器与PLC(可编程逻辑控制器)技术的快速发展和应用,它们在传送带速度控制中发挥着越来越重要的作用。

本文旨在探讨变频器和PLC在传送带多种速度控制中的应用,分析它们的工作原理、优势以及在实际生产中的应用案例,以期为相关领域的工程技术人员提供有益的参考和启示。

二、变频器的基本原理与功能变频器是一种能够调整电机运行频率的设备,它通过改变电源的频率和电压,实现对电机转速的精确控制。

变频器主要由整流器、滤波器和逆变器三部分组成。

整流器将输入的交流电转换为直流电,滤波器则用于平滑直流电压,消除谐波干扰,而逆变器则将直流电转换回交流电,其频率和电压可以根据需要进行调整。

变频器的基本工作原理是通过改变逆变器的开关模式,从而改变输出交流电的频率和电压。

当变频器接收到来自PLC或其他控制器的指令时,它会根据指令调整输出电压和频率,进而改变电机的转速。

通过这种方式,变频器能够实现电机的平滑调速,提高设备的运行效率和稳定性。

除了基本的调速功能外,变频器还具有多种保护功能,如过流保护、过压保护、欠压保护、过热保护等。

这些保护功能可以确保电机在出现异常情况时能够及时停机,避免设备损坏或事故发生。

变频器还可以通过与PLC等设备的通讯,实现远程监控和控制,提高设备的自动化程度和运行效率。

在传送带速度控制中,变频器发挥着至关重要的作用。

通过精确控制电机的转速,变频器可以实现传送带的平稳运行和多种速度切换。

变频器还可以与PLC等设备配合,实现对传送带速度的自动调整和监控,提高生产线的自动化程度和运行效率。

三、(可编程逻辑控制器)的基本原理与功能可编程逻辑控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

基于plc的电机变频调速系统设计_毕业设计论文

基于plc的电机变频调速系统设计_毕业设计论文

基于plc的电机变频调速系统设计1 绪论1.1本课题研究目的和意义PLC具有结构简单、编程方便、性能优越、灵活通用、使用方便、可靠性高、抗干扰能力强、寿命长等到一系列优点[2]。

可编程控制器(PLC)的核心微处理器,通过将计算机技术与传统的继电器控制系统有机结合起来,能够实现高度灵活、高可靠性的工业控制。

为了进一步提高设备的自动化程度,越来越多的企业将PLC 技术应用于其工厂设备中。

将原有电机控制系统的技术进行改造,引入电机控制系统的数据自动采集、监控以及变频、组态技术完善并改进电机变频调速机构。

该系统能对电机转速实现精确控制,实用性强,具有一定的推广价值随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用[5]。

交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。

电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。

变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式[3]。

本文对如何利用变频器连接PLC和控制对象,利用软件操作来控制电机的转速,达到远程自动控制进行了讨论[4]。

在工业生产中,电机交流变频调速技术以其优异的调速和起制动性能,高效率、高功率因数和节电效果,被公认为最有发展前途的调速方式。

PLC控制技术在自动控制系统中被普遍采用。

本文构建了一个变频嚣连接PLC和控制对象,利用软件操作来控制电机转速.以达到远程自动控制的系统[8]。

1.2 交流变频调速技术的研究情况及其发展在21世纪电力电子器件的快速发展,使交流变频调速技术优越的性能得到迅速发展,同时控制理论进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善,响应速度快、节能显著等优点,现在以广泛的用于电力、制造、运输等国民经济领域[6]。

变频调速技术现在被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求以及节约能源、降低生产成本。

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用
PLC(可编程逻辑控制器)和变频器在电机控制中扮演着重要的角色。

PLC是一种用于工业自动化控制的计算机,广泛应用于各种生产过程中。

而变频器是一种用于控制交流电机转速的设备,通过改变电机供电频率来改变电机的转速。

PLC与变频器通讯的应用可以实现对电机的更加精确的控制,提高生产过程的效率和质量。

以下是PLC与变频器通讯在电机控制中的一些常见的应用。

1. 速度控制:通过PLC与变频器通讯,可以实现对电机的精确的速度控制。

通过改变变频器的输出频率,可以控制电机的转速。

PLC可以根据生产过程的需要,通过变频器设置电机的转速,从而实现对生产过程的准确控制。

4. 故障诊断:通过PLC与变频器通讯,可以实现对电机故障的快速诊断。

变频器可以采集电机的运行状态信息,并通过与PLC通讯将这些信息传输给PLC。

PLC可以根据这些信息进行故障分析,并快速判断出电机是否存在故障,并定位故障的原因,从而提高维修的效率。

基于PLC与变频器的交流电机调速控制系统

基于PLC与变频器的交流电机调速控制系统

基于PLC与变频器的交流电机调速控制系统摘要:变频调速系统中,变频控制与PLC的应用是十分关键的。

所以,要根据现场实际情况,对变频器和PLC 进行优化控制,以确保二者都能实现真正的自动控制,希望能在一定程度上减少交流电动机调速系统的能耗,本论文以PLC和变频调速为基础,对我国电动机行业的发展起到了积极作用。

关键词:PLC;变频器;交流电机采用变频调速器可以有效地提高工业的自动化程度和提高工作的工作效率。

为此,设计者必须加强对变频调速的研究,深入理解其工作机理,并利用其自身的制动、调速、启动特性,并运用组合程序Wincc进行控制,确保调速的稳定。

1、PLC概述PLC是一种常用的计算机控制软件,它所使用的内存都是可编程的,具有储存程式的功能,可执行顺序控制、计数及逻辑运算等有关运算,并以模拟量、数字等形式进行资料的输出与输入,对各类机器的运作进行高效控制。

PLC供电在电力供应中占有举足轻重的地位。

PLC的控制中心是微机,该软件受PLC软件编程的支配,具有从编程软件输入的程序和资料的接收和储存,并可以进行故障诊断。

此外,PLC的相关设备能够适应用户对变频调速器的要求,提高PLC的抗干扰性和稳定性。

另外,通过PLC配线与程序的设计可以达到某种程度上的同步,既可以大大减少研发周期,又可以大大地提升交流电动机的工作性能。

2、变频器概述本工程在进行交流电动机的控制时,十分注重变频器的应用,并将它应用于电工、电力、信息和控制等方面。

另外,采用变频技术可以有效地解决传统的DC电机自身的抽水問题,确保了交流电机的优越性。

由于其自身坚固耐用,结构简单,采用变频技术可有效地克服交流电机的速度问题。

2.1变频器在交流电机调速控制系统节能结合方面的运用通过对变频调速器的详细研究,可以看出它是一种典型的泵、风机,它可以在一定程度上减少电力的损耗,通常可以节省20%~60%的电力,再加上风机和泵的负荷,它的功耗与速度成正比,既可以达到节能的目的,又可以改善整个系统的性能。

基于PLC和变频器的多电机速度同步控制

基于PLC和变频器的多电机速度同步控制

基于PLC和变频器的多电机速度同步控制【摘要】随着我国机电一体化和科学技术的高速发展,PLC和变频器在我国各界已经得到广泛运用。

目前,随着我国工业领域的不断发展,单电机控制方法早已无法满足生产需求,因此多电机同步控制就成了首要解决问题。

本文从PLC功能特点和变频器分类入手,对基于PLC和变频器的多电机速度同步控制的设计进行分析,对基于模糊PID补偿算法的同步控制原理进行分析,确定基于PLC和变频器的多电机速度同步控制方案。

【关键词】PLC和变频器多电机速度同步控制模糊控制随着我国市场经济和科学技术的不断发展,PLC的功能也在不断增多,其影响力也随之增强。

由于PLC内各模块和模拟量之间相互结合,使之能够实现多种多样的控制算法,加上它对过程和运动的控制也越来越复杂,因此PLC的功能运用不断得以发展。

将模糊控制理论和PID控制算法紧密融合在一起并进行利用,将其运用于多电机速度同步控制中去,并设计出一种基于PLC的模糊自适应PID控制器,这样能够有效提高多电机速度同步控制的高效性和可靠性。

1 PLC功能特点与变频器分类1.1 PLC功能特点(1)体积小,耗能低。

由于PLC模块的体积十分小,并且很轻,因此在进行设备连接或器件连接的时候操作起来十分简便。

PLC是机电一体化中的重要组成,PLC在建立控制系统时所消耗的时间不长,加上PLC简明的操作界面,这为使用者操作PLC时省去了许多麻烦,为用户提供了极大的方便。

PLC系统内每个模块都安装了检测系统,当发生故障时可以通过监视器快速准确的检测到发生故障的位置,此外,当PLC系统内某个模块发生故障无法正常运行使,系统内其他模块可以代替故障模块继续运行,这样能够使整个系统迅速恢复正常工作状态,故障模块并不会影响整个系统的顺利有序运行[1]。

(2)程序编制简单。

PLC采用梯形图语言进行连线,该方式和继电器运作原理相似。

梯形图语言的优点就是操作者可以直接看到程序内容,即使并不具备专业编程知识的操作人员也能够迅速掌握操作方式。

PLC在变频调速控制系统中的应用

PLC在变频调速控制系统中的应用

PLC在变频调速控制系统中的应用摘要:随着我国工业自动化程度的不断提高,PLC已广泛应用于变频器调速控制系统,并发挥着越来越重要的作用。

将PLC与变频器通过PROFIBUS-DP连接构成网络,通过软件进行人机交互,在变频器中设置不同的输出频率,通过PLC 编程进行变频器的输出频率控制,从而达到控制交流电机转速的目的。

工作人员只需要在PLC人机界面上进行操作即可实现电动机转向及转速的控制,还可以通过组态软件实现电动机的实施监控。

关键词:PLC技术;变频器;节能;控制系统引言现代社会各行各业的生产都离不开机电设备。

随着工业4.0时代工业改革浪潮的兴起,机电设备的智能化改造成为各企业提升其生产制造水平的重要路径。

变频调速技术的应用,证实了变频调速在机械传动体系中的功能和价值。

在变频调速的无级调速、消除机械冲力、保护机电设备功能、减少维护成本、提升节电效果以及提升性能等优势基础上,进一步联合了PLC编程技术,形成了基于PLC 可编制控制程序控制的变频调速技术,极大地提升了机电设备中的智能化应用水平。

1 PLC概述PLC是一种可编程形式的逻辑控制器,其主要功能是按照相应的控制要求对内部储存程序进行编制,借助于计算机进行编程的逻辑运算,并借助编程代码来输出或输入指令,这样便可达到相应的管理控制效果。

通过这样的控制方式,可以让生产过程的控制更加轻松,也可以让各种机械运作过程的管理与控制更加精确。

将PLC应用到矿井提升机中的变频调速系统内,便可有效控制整体系统的稳定运行,以此来显著提高矿井提升机自身的工作效率,满足当今矿井生产中对于提升机的实际应用需求。

由此可见,在矿井提升机的变频调速控制中,PLC所发挥出的作用至关重要。

2 PLC在变频调速控制系统中的应用2.1数据采集PLC可以采集水泵的运行电流、输出频率、输出功率、启动次数、故障次数以及累计运行时间,通过以上数据能及时地掌握每台水泵的运行情况及运行状态,可任意通过ModbusRTU通讯方式,将多功能电力仪表、温湿度等运行的实时数据进行采集,实时采集的数据通过以太网通讯方式传送至触摸屏进行显示,并传送至智慧水务平台,相关数据可以作为值班人员判定现场情况的依据。

PLC控制电机变频调速试验系统的设计与实现

PLC控制电机变频调速试验系统的设计与实现

PLC控制电机变频调速试验系统的设计与实现一、引言在现代工业控制系统中,电机变频调速技术广泛应用于各个领域。

传统的电机调速方法存在效率低下、能耗高以及响应速度慢等问题,而采用PLC(可编程逻辑控制器)控制电机变频调速系统能够有效解决这些问题。

本文将详细介绍。

二、系统设计与结构1. 系统硬件结构PLC控制电机变频调速试验系统的主要硬件包括电机、PLC、变频器、传感器以及人机界面(HMI)。

其中,电机通过变频器实现变频调速,PLC负责控制变频器的工作,并通过传感器获取电机的运行状态反馈,同时可以通过人机界面设置系统的参数。

2. 系统软件设计系统软件设计主要包括PLC程序设计、HMI设计以及变频器参数设置。

PLC程序设计主要实现电机的启动、停止、正反转和变频调速功能,根据传感器的反馈信息进行接口逻辑控制。

HMI设计提供了人机交互界面,操作者通过HMI可以方便地设置电机的调速参数、监控电机的状态以及实时显示电机的运行数据。

变频器参数设置是为了适应不同负载情况下的电机工作需求,通过设置不同的参数来调整变频器的输出频率,从而实现电机的精确控制。

三、系统实现步骤1. 建立PLC程序首先,根据具体的电机变频调速要求,编写PLC程序实现电机的启动、停止、正反转以及变频调速功能。

根据传感器的反馈信息进行逻辑判断,实现电机与变频器之间的联动控制。

2. 设计HMI界面根据实际需求,设计HMI界面,包括设置电机的调速参数、显示电机的运行状态和实时数据等功能。

通过HMI界面提供的操作按键与PLC进行通讯,实现电机的控制与监测。

3. 配置变频器参数根据不同的负载情况,对变频器进行相应的参数设置。

根据电机的额定功率、转速等参数,结合实际需求,合理设置变频器的输出频率。

四、系统工作原理当PLC接收到用户输入的启动指令后,根据设定好的逻辑控制程序,发送启动指令给变频器,通过变频器控制电机的启动。

同时,传感器会实时监测电机的转速、电流、温度等工作状态,并将这些信息反馈给PLC。

PLC实现变频调速器多电机控制

PLC实现变频调速器多电机控制

PLC实现变频调速器多电机控制【摘要】本文主要介绍了PLC在工业控制中的应用以及变频调速器在电机控制中的作用。

结合实际案例,详细阐述了PLC如何实现变频调速器对多台电机的控制,并介绍了多电机控制系统的搭建过程。

在PLC程序设计与调试部分,结合具体步骤和注意事项,指导读者如何正确进行系统的调试与运行。

文章最后讨论了PLC技术在多电机控制中的优势,以及未来发展前景。

通过本文的介绍,读者能够全面了解PLC在变频调速器多电机控制方面的应用和原理,为相关行业从业人员提供了有益的参考和指导。

【关键词】PLC、变频调速器、多电机控制、工业控制、程序设计、调试、优势、发展展望1. 引言1.1 背景介绍本文将探讨如何利用PLC实现变频调速器多电机控制,介绍其原理和搭建方法,从而为工业自动化生产提供更可靠、高效的控制方案。

1.2 研究意义多多电机控制系统的搭建,实现了多电机的同步运行和相互协调,提高了工业生产效率和质量。

通过PLC实现变频调速器多电机控制,可以实现对多个电机的统一控制,并且可以灵活调整电机的运行速度和功率,满足不同生产场景的需求。

PLC技术在多电机控制中的优势在于其稳定性高、可编程性强、易于维护和升级等特点,能够有效提高生产线的可靠性和自动化水平,降低生产成本,提升企业竞争力。

未来随着工业自动化水平的不断提高,PLC技术在多电机控制领域的应用也将不断拓展和深化。

可以预见的是,基于PLC的多电机控制系统将更加智能化和网络化,能够实现远程监控和管理,实现生产过程的数字化转型。

随着数据处理和人工智能技术的发展,PLC技术在多电机控制中的优势将更加凸显,为工业生产带来更大的效益和升级。

深入研究和应用PLC实现变频调速器多电机控制的技术,对提升工业生产效率和质量,推动工业智能化进程具有重要的研究意义和实践价值。

2. 正文2.1 PLC在工业控制中的应用PLC在工业控制中的应用十分广泛,它可以用于各种工业领域中,包括制造业、能源行业、交通运输等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南工程学院应用技术学院毕业设计说明书题目:用PLC和变频器实现电机的变频调速和远程控制专业班级:自动化0481学生姓名:学号:完成日期:2008年6月指导教师:评阅教师:2008年 6月湖南工程学院应用技术学院毕业设计(论文)诚信承诺书本人慎重承诺和声明:所撰写的《用PLC和变频器实现电机的变频调速和远程控制》是在指导老师的指导下自主完成,文中所有引文或引用数据、图表均已注解说明来源,本人愿意为由此引起的后果承担责任。

设计(论文)的研究成果归属学校所有。

学生(签名) 2008年6 月8 日湖南工程学院应用技术学院毕业设计(论文)任务书设计(论文)题目:用PLC和变频器实现电机的变频调速和远程控制姓名王松涛专业自动化班级0481 学号200413110103指导老师赵葵银职称教授教研室主任赵葵银李晓秀一、基本任务及要求:随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流调速取代直流调速已成为现代电气传动的主要发展方向之一。

电机由变频器来控制,变频器带有PROFIBUS-DP 通讯接口,通过PROFIBUS网络由主站对变频器进行远程控制,可在触摸屏上生成组态画面实现远程控制,也可通过工业以太网在上位机PC实现远程控制。

具体要求有:1. 采用西门子的可编程控制器、触摸屏及有关的应用软件,实现对电动机调节控制。

2. 在触摸屏上生成组态画面由触摸屏来实现远程控制。

3. 采用PROFIBUS-DP总线,通过组态王生成画面由PC机来实现远程控制二、进度安排及完成时间:1、(2~4周)接受任务、准备资料、拟定方案,写出开题报告2、(5周)根据题目要求及已知条件,确定控制方案及所选用的控制器件3、(6~7周)控制程序的设计4、(8周)毕业实习,撰写毕业实习报告5、(9~12周)程序的现场调试6、(13~14周)相关图纸的设计7、(15周)完成设计、撰写论文8、(16周)修改完善论文,准备答辩目录摘要 (I)Abstract: ........................................................ I I 第1章绪论.. (1)1.1 概论 (1)1.2 设计论文的主要内容和要求 (1)1.3相关技术的发展展望 (2)1.3.1变频调速系统的发展展望 (2)1.3.2 组态软件 (3)1.3.2.1. 发展概况 (3)1.3.3变频器的应用与发展概况 (7)1.3.4.PLC的应用与发展概况 (8)1.4 变频调速理论 (10)1.4.1 异步电动机调速方式 (10)1.4.2 变频调速原理 (10)1.4.3 变频调速的特点及发展 (11)第2章确定设计方案和系统的构成 (13)2.1 方案确定 (13)2.2 主电路的设计 (14)2.3 网络系统组成及说明 (14)2.3.1 系统说明 (15)2.3.2 以太网络及组成 (16)2.3.3 系统DP拓扑结构及说明 (17)2.3.4 工业通讯网络SIMATIC NET性能 (20)2.3.5 Profibus-DP现场总线 (20)第3章系统硬件设计 (22)3.1 变频调速单元的构成及其功能 (22)3.1.1 变频调速单元的构成 (22)3.1.2 变频器的选择与参数设定 (23)3.2 PLC的选型与功能说明 (26)3.2.1 西门子PLC的基本组成 (26)3.2.2 S 7-400PLC及其相关模块 (27)3.3 MP270B触摸屏 (28)3.4 系统设计元器件汇总表(见附录3) (29)第4章系统软件设计 (30)4.1 Step7及其特点 (30)4.1.1 Step7应用 (30)4.1.2 使用STEP7完成一个项目 (30)4.2软件设计 (32)4.2.1 系统硬件组态 (32)4.2.2 创建网络组态 (33)4.2.3 PLC程序设计 (34)4.2.4 梯形图及功能说明 (34)4.3 组态王软件控制系统的设计 (44)4.3.1 组态王软件控制 (44)4.3.2 建立本系统工程应用项目的基本方法 (45)第5章系统调试及结果 (47)5.1 系统操作中的注意事项 (47)5.1.1 系统上电 (47)5.1.2 变频器的操作注意事项 (47)5.1.3 画面操作中的注意问题 (47)5.2 系统调试及结果 (48)第6章总结 (52)参考文献 (53)致谢 (55)附录 (56)附录A:变频调速控制电气图 (56)附录B:多功能PLC网络控制屏电气图 (57)附录C:系统设计元器件明细表 (58)用PLC和变频器实现电机的变频调速和远程控制摘要:在本设计任务中,为了实现能源的充分利用和生产的需要,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用高功能性v/f控制的通用变频器西门子SIMTIC MANGER,此变频器能很好的解决转速之间的切换和启动问题。

系统中由PLC完成数据的采集和对变频器、电机等设备的控制任务。

基于S7-400 PLC的编程软件SimaticS7-CFC采用模块化的程序设计方法,大量采用功能模块重用,减少软件的开发和维护。

利用组态软件Wince,Protool/Pro良好的人机界面和通信能力和Profibus总线技术,使工程师、操作人员可以在中央控制室的工控机上方便的浏览现场的工业流程、实现变频器的参数设置、故障诊断和电机的启动和停止的控制;同时可以在现场进行电机的启动、停止及增减速等的操作。

关键词: PLC;变频器;变频调速;组态软件Realize the electrical machinery frequency conversion velocity modulation and the long-distance control with PLC and the frequency changerAbstract:In this system, we need to adjust the speed of electromotor. In order to make full use of energy and satisfy the need of Production, considering the adjustment of speed, starting, running and braking. We use the SIMOVERT MASTERDRIVES of Siemens transducer. Whose functions of adding or decreasing speeding with high S form and torque promoting can solve the adjustment of speed and starting .In this system, PLC is used to collect data from fields and control equipments such as electromotor and transducer. Because the STEP7 as S7 400 PLC ’s Programming software adopts the modularization design method of structure and code reusing, subsequently decrease the exploitation and maintenance of software .By the virtue of HMI and strong communication ability, User can browse the flowchart of Production adjust the speed of electromotor, fault diagnose, start and stop theelectromotor.Key words:PLC; Transducer; AC frequency conversion for speed adjustment;Configuration software第1章绪论1.1 概论科学技术的发展,对于改变社会的生产面貌,推动人类文明向前发展,具有极其重要的意义。

电气自动化技术是多种学科的交叉综合,特别在电力电子、微电子及计算机技术迅速发展的今天,电气自动化技术日新月异。

随着电力电子技术、微电子技术和计算机控制技术的飞速发展,交流变频调速技术的发展也十分迅速。

电动机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境,推动技术进步的一种主要手段。

变频调速以其优异的调速性能和起制动平稳性能、高性能、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。

本次设计是以电梯控制技术为背景,针对以前的拖曳电梯的一些缺点,采用现在流行的PLC 控制技术、变频调速技术、现场总线技术来实现电梯的各种控制。

在本课题的系统中,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用高功能性控制的通用变频器,此变频器的S型加减速功能和转矩提升功能,能很好的解决转速之间的切换和启动问题。

系统中由PLC完成数据的采集和对变频器、电机等设备的控制任务。

基于S7-400 PLC的编程软件采用模块化的程序设计方法,大量采用功能模块重用,减少软件的开发和维护。

利用组态软件良好的人机界面和通信能力及PROFIBUS总线技术,使工程师、操作人员可以在中央控制室的工控机上方便的浏览现场的工业流程、实现变频器的参数设置、故障诊断和电机的启动和停止的控制;同时可以在现场进行电机的启动、停止及增减速等的操作。

1.2 设计论文的主要内容和要求用变频器来实现电动机的启动和调速1控制,变频器带有PROFIBUS-DP通讯接口,通过PROFIBUS网络由主站对变频器进行远程控制,可在触摸屏上生成组态画面实现远程控制,也可通过工业以太网在上位机PC实现远程控制。

具体要求有:1. 采用西门子的可编程控制器、触摸屏及有关的应用软件,实现对电动机转速或频率调节控制;2. 在触摸屏上生成组态画面由触摸屏来实现远程控制;3. 采用PROFIBUS-DP总线,通过组态王生成画面由PC来实现远程控制。

PROFIBUS是德国国家标准DIN19245和欧洲标准EN50170的现场总线标准,是一种国际化、开放式、不依赖于设备生产的现场总线,是一种用于工厂自动化车间级监控和现场设备通信网络,从而为实现工厂综合自动化和现场设备智能化提供了可行的新控制技术。

相关文档
最新文档