初三(第二次月考)数学试卷

合集下载

九年级数学第二次月考试题

九年级数学第二次月考试题

初三数学第二次月考试题一、仔细选一选(每小题3分,共30分)1、如图1,圆.和圆.的位置关系是 ( )(A)外离. (B)相切. (C)相交. (D)内含.2.如图2,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =20,CD =16,那么线段OE 的长为 ( )(A)10. (B)8. (C)6. (D)4.3.下列说法正确的是 ( )(A)正五边形的中心角是108°. (B)正十边形的每个外角是18°.(C)正五边形是中心对称图形. (D)正五边形的每个外角是72°.A.①②B. ②③C. ①③D. ①②③5. ⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.无法确定6.已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( ) A.内切 B.相交 C.外离 D.外切7. 两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )A.2B.7C.2或7D.2或4.58.化简)22(28+-得( ) A .—2 B .22- C .2 D . 224-9. 下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy ≠),则y x =6或y x =-1。

D.若分式1232-+-x x x 值为零,则x =1,210. 下列图形中,不是旋转图形的是 ( )二、 认真填一填(每小题3分,共24分)11、如图4,⊙O 的半径OD 为5cm,直线l ⊥OD ,垂足为O ,则直线l 沿射线OD 方向平移______cm 时与⊙O 相切. 12、如图5,∠C 是⊙O 的圆周角,∠C =38°,∠OAB =______度. 13、两圆的半径分别为3cm 和4cm,圆心距为5cm,则两圆的位置关系为______. 14、如图6,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线. 15、如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于 16、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

九年级第二次月考 (数学)(含答案)092318

九年级第二次月考 (数学)(含答案)092318

九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 若−(−2)表示一个数的相反数,则这个数是( )A.12B.−12C.2D.−22. 2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为( )A.3×105B.3×106C.3×107D.3×1083. 某几何体由一些大小相同的小正方体组成,如图是它的俯视图和主视图,那么组成该几何体的小正方体的个数最少为( )A.4个B.5个C.6个D.7个4. 下列运算正确的是( )A.(a +3)2=a 2+9B.a 8÷a 2=a 4C.a 2+a 2=2a 2D.a 2⋅a 3=a 65. 如图,AB//CD ,∠B =85∘,∠E =27∘,则∠D 的度数为( )−(−2)12−122−22021515718333×1053×1063×1073×1084567(a +3)2+9a 2÷a 8a 24+a 2a 22a 2⋅a 2a 3a 6∘∘A.45∘B.48∘C.50∘D.58∘6. 若某一样本的方差为s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2],样本容量为5,则下列说法:①当x =9时,y =6;②该样本的平均数为7;③x ,y 的平均数是7;④该样本的方差与x ,y 的值无关.其中不正确的是( )A.①②B.②④C.①③D.③④7. 关于x 的一元二次方程x 2+4x +c =0没有实数根,则c 应满足的条件是( )A.c ≤4B.c ≥4C.c <4D.c >48. 某工程队承接了80万平方米的荒山绿化任务,为了迎接汛期的到来,实际工作时每天的工作效率比原计划提高了20%,结果提前25天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下列方程中正确的是()A.80x −80(1+20%)x =25B.80(1+20%)x −80x =25C.80×(1+20%)x −80x =25D.80x −80×(1+20%)x =25 9. 心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c(a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的45∘48∘50∘58∘=[s 215(5−7)2+(7−7)2+(8−7)2+(x−7)2+](y−7)25x =9y =67x y 7x y x +4x+c =0x 2cc ≤4c ≥4c <4c >48020%25x −=2580x 80(1+20%)x −=2580(1+20%)x 80x −=2580×(1+20%)x 80x −=2580x 80×(1+20%)xs t minA.8minB.13minC.20minD.25min10. 在△ABC 中,AB =AC ,若∠A =60∘,则△ABC 为( )A.钝角三角形B.直角三角形C.等边三角形D.等腰不等边三角形二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 已知一次函数y =kx −b ,请你补充一个条件________,使y 随x 的增大而减小.12. 不等式组{2x <5,x −1<0的解集是________.13. 有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是________.14. 如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分的面积为________.15. 如图,在直角坐标系中,直线y =−√3x +3分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且∠BAO =30∘, AO=2 .将△ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为________.8min13min20min25min △ABC AB =AC ∠A =60∘△ABC ()y =kx−b y x {2x <5,x−1<0B C △DEF AB =10,DO =46y =−x+33–√x y M N A B y x ∠BAO =30∘AO =2△ABO O AB MN A16. 计算:(1)(3√2)2−|−4|−(−13)−2+(−4−2)0;(2)(1−xx +3)÷x 2−9x 2+6x +9 . 17. 某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100)b .A 课程成绩在70≤x <80这一组的是:70 71 71 71 76 76 77 7878.5 78.5 79 79 79 79.5c .A ,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8m 84.5B 72.27083根据以上信息,回答下列问题:(1)直接写出表中m 的值________(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A“或“B“),理由是________;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 18. 某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC 前一座楼房楼顶A 处所观测到电视塔最高点B 的仰角为65∘,电视塔最低点C 的仰角为30∘,楼顶A 与电视塔的水平距离AD 为90米,求商丘电视塔BC 的高度.(结果精确到1米,参考数据√2≈1.41,√3≈1.73,sin65∘≈0.91,cos65∘≈0.42,tan65∘≈2.14)19. 如图,在平面直角坐标系中,已知矩形ABCD ,AB//y 轴,反比例函数y =kx (x >0)的图象过矩形的两个顶点A ,C .(1)若AB =4,A(1,6),①求反比例函数的解析式及点C 的坐标;②求证:点D 在直线OB 上;(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 2300A B 60a A 640≤x <5050≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100b A 70≤x <80707171717676777878.578.579797979.5c A B A 75.8m 84.5B 72.27083(1)m(2)A 76B 71A B(3)A 75.8BC A B 65∘C 30∘A AD 90BC 1≈1.412–√≈1.733–√sin ≈0.9165∘cos ≈0.4265∘tan ≈2.1465∘ABCD AB//y y =(x >0)k x A C(1)AB =4A(1,6)C D OB甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x 件服装,选择甲店则需要y 1元,选择乙店则需要y 2元,请分别求出y 1,y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同? 21. 已知二次函数y =2(x −1)(x −m−3)(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方? 22. 如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD ,(1)求证:点E 是^BD 的中点;(2)当BC =12,且AD:CD =1:2时,求⊙O 的半径.23.【问题发现】(1)如图(1),在等腰直角三角形ABC 中,∠BAC =90∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作等腰直角三角形AMN ,∠MAN =90∘,连接CN.①CNBM =________;②CN 与BM 的位置关系是________.【深入探究】(2)如图(2),在△ABC 中,∠BAC =90∘,∠ABC =30∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作Rt △AMN ,使∠AMN =∠ABC ,∠MAN =∠BAC ,连接CN .(1)中的①②结论是否仍然成立?请说明理由.【拓展延伸】(3)如图(3),在正方形ADBC 中,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作正方形AMEF ,点N 为正方形AMEF 的中心,连接CN ,若BC =8,CN =2,请直接写出正方形AMEF 的面积.23280426055x y 1y 2y 1y x5y =2(x−1)(x−m−3)m (1)m x(2)m y x △ABC AB =AC AB AC BC D E BDE BDˆBC =12AD :CD =1:2⊙O(1)(1)ABC ∠BAC =90∘M BC B C AM AMN ∠MAN =90∘CN =CN BM CN BM(2)(2)△ABC ∠BAC =90∘∠ABC =30∘M BC B C AM Rt △AMN ∠AMN =∠ABC ∠MAN =∠BAC CN (1)(3)(3)ADBC M BC B C AM AMEFN AMEF CN BC =8,CN =2AMEF参考答案与试题解析九年级第二次月考 (数学)试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】D【考点】相反数【解析】此题暂无解析【解答】解:−(−2)=2,2为−2的相反数.故选D.2.【答案】D【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】由三视图判断几何体简单组合体的三视图【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.【解答】4.【答案】C【考点】同底数幂的乘法同底数幂的除法完全平方公式合并同类项【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】三角形的外角性质平行线的性质【解析】根据平行线的性质以及三角形的外角的性质解答即可.【解答】解:如图,因为AB//CD,所以∠1=∠B=85∘.因为∠E=27∘,所以∠D=85∘−27∘=55∘.故选D.6.【答案】D【考点】算术平均数【解析】先根据方差的定义及其计算公式得出:这组数据为5、7、8、α、y 且这组数据的平均数为7,继而知x +y =15,再逐一判断即可.【解答】解:s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2]∴这组数据为5、7、8、x 、y ,且这组数据的平均数为7,∴5+7+8+x +y =35,∴x +y =15,①当x =9时,y =6,此说法正确;②这组数据的平均数为7,故此说法正确;③x 、y 的平均数为152=7.5,故此说法错误;④该样本的方差与x ,y 的值有关,故此说法错误;故选D .7.【答案】D【考点】根的判别式【解析】根据根的判别式即可求解.【解答】解:根据题意,可得:Δ=42−4c <0,解得:c >4.故选D.8.【答案】C【考点】由实际问题抽象为分式方程【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前25天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解答】解:设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,依题意,得:80x1+20%−80x =25,即80(1+20%)x −80x =25.故选C .9.B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点(0,43)、(20,55)、(30,31),把以上三点坐标代入s =at 2+bt +c(a ≠0)得:{43=c,55=202a +20b +c,31=302a +30b +c,,解得{a =−110,b =135,c =43;,则函数的表达式为:s =−110t 2+135t +43,∵a =−110<0,则函数有最大值,当t =−b2a =13时,s 有最大值,即学生接受能力最强.故选B .10.【答案】C 【考点】等边三角形的性质【解析】先根据△ABC 中,AB =AC 得出∠B =∠C ,再根据三角形内角和定理即可得出∠B 的度数,进而得出结论.【解答】解:在△ABC 中,AB =AC ,故△ABC 是等腰三角形,又∠A =60∘,所以△ABC 是等边三角形.故选C .二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】k <0【考点】一次函数的性质此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数y=kx−b中,当k<0时,y随x的增大而减小.故答案为:k<0.12.【答案】x<1【考点】解一元一次不等式组【解析】分别解出两个不等式,再求不等式组的解集.【解答】解:由{2x<5①,x−1<0②,可得①x<52;②x<1.综合①②可得其解集为x<1.故答案为:x<1 .13.【答案】13【考点】概率公式列表法与树状图法【解析】画树状图(两把钥匙能分别打开这两把锁表示为A、a和B、b,第三把钥匙表示为c)展示所有6种等可能的结果数,找出任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数,然后根据概率公式求解.【解答】解:画树状图为:(两把锁分别表示为A,B,对应的两把钥匙分别表示为a,b,第三把钥匙表示为c),共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,∴任意取出一把钥匙去开任意的一把锁,一次打开锁的概率=26=13.故答案为:13.14.【答案】48求阴影部分的面积三角形的面积扇形面积的计算【解析】此题暂无解析【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE−DO=10−4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)⋅BE=12(10+6)×6=48,故答案为:48.15.【答案】(1,√3)或(−1,−√3).【考点】一次函数图象上点的坐标特点坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】计算出OM=√3,ON=3,即可确定∠NMO=60∘,然后利用AB与直线MN垂直画出图形,直线AB交y轴交于点C,作AD⊥x轴于D,则∠OCB=60∘,再解直角三角形求AD、OD,从而确定A点坐标.【解答】解:当x=0时,y=−√3x+3=3,则N(0,3),(√3,0),当y=0时,−√3x+3=0,解得x=√3,则M在Rt△OMN中,√ON2+OM2=2√3,由勾股定理得MN=∴∠NMO=60∘,在Rt△ABO中,∵∠BAO=30∘,AO=2,∴∠OBA=60∘,∴OB=2√33,∵AB与直线MN垂直,∴直线AB与x轴的夹角为30∘,如图1,直线AB交y轴于点C,交MN于G,作AD⊥x轴于D,GH⊥x轴于H,∴∠MGH=30∘,∴∠BGH=60∘∴∠OCB=60∘,∵∠OBA=60∘,∴△OBC是等边三角形,∴∠BOC=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(1,√3);如图2,直线AB交y轴于点C,作AD⊥x轴于D,同理:∠OCB=60∘,∵∠ABO=60∘,∴∠COB=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(−1,−√3).综上所述,A点坐标为(1,√3)或(−1,−√3).故答案为:(1,√3)或(−1,−√3).三、解答题(本题共计 8 小题,每题 5 分,共计40分)16.【答案】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x【考点】实数的运算分式的化简求值【解析】【解答】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x2(x+3)(x−3)=3x+3⋅(x+3)=3x−3 .17.【答案】78.75B,该学生的成绩小于A课程的中位数,而大于B课程的中位数(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.【考点】中位数频数(率)分布直方图用样本估计总体【解析】此题暂无解析【解答】解:(1)共60个数,中位数为从小到大排序后第30个数与第31个数的平均数,第30和31个数分别为78.5和79,所以中位数为78.75,即m=78.75.故答案为:78.75.(2) 76<78.75,71>70 ,该学生的成绩小于A课程的中位数,而大于B课程的中位数,故B课程名次更靠前.故答案为:B;该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.18.【答案】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∘∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.【考点】解直角三角形的应用-仰角俯角问题【解析】在Rt△ADB中,由锐角三角函数的定义可求出BD的长,同理在Rt△ADC中由锐角三角函数的定义可求出CD的长,进而解答即可.【解答】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∴DB=AD⋅tan65∘≈90×2.14=192.6,同理,在Rt△ADC中,∵∠DAC=30∘,AD=90m,∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.19.【答案】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合【解析】左侧图片未提供解析.【解答】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.20.【答案】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.【考点】一次函数的应用二元一次方程组的应用——行程问题(1)设甲店每件租金x元,乙店每件租金y元,根据甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元,列出方程组解答即可;(2)根据题意列出函数解析式即可;(3)根据题意列出方程,进而解答即可.【解答】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.21.【答案】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.【考点】抛物线与x轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.22.【答案】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.【考点】圆心角、弧、弦的关系等腰三角形的判定与性质【解析】(1)要证明点E 是^BD 的中点只要证明BE =DE 即可,根据题意可以求得BE =DE ;(2)根据题意可以求得AC 和AB 的长,从而可以求得⊙O 的半径.【解答】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.23.【答案】1,CN ⊥BM (2)(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.【考点】相似三角形的性质相似三角形的判定解直角三角形正方形的性质勾股定理等腰直角三角形全等三角形的判定全等三角形的性质【解析】此题暂无解析【解答】解:(1)△ABC,△AMN均为等腰直角三角形,∴AB=AC,AM=AN.又∵∠BAM=90∘−∠CAM,∠CAN=90∘−∠CAM,∴∠BAM=∠CAN,∴△ABM≅△ACN,∴CN=BM,∠ACN=∠ABM=45∘,∴CNBM=1,∠ACN+∠ACB=90∘,∴CN⊥BM.故答案为:1;CN⊥BM.(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

初三九年级数学第2次月考测试题

初三九年级数学第2次月考测试题

九年级第二次月考数 学 试 卷(说明:全卷共8页,考试时间90分钟,满分120分)一.选择题(本题共5小题,每小题3分,共15分,每小题给的四个答案中,有且只有一个是正确的,将你认为正确的选项填在题后的括号内) 1.下列运算正确的是( )A .236a a a =÷B .()0)1(101=-+--C .ab b a 532=+D .()222b a b a +=+2.四边形的两条对角线相等,则顺次连接四边形各边中点所得的四边形是( )A .梯形B .矩形C .菱形D .正方形3.直线x y 2=与双曲线xky =的一个交点坐标为(2,4),则它们的另一个交点坐标是( )A .(-2,-4)B .(-2,4)C .(-4,-2)D .(2,-4)4.我们从不同的方向观察同一个物体,可以看到不同的平面图形.如图,是一个由小正方体组成的几何体,它的左视图是 ( )ABC D班 号姓名:试室座号:密封线内不要答题5.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞赛游戏,游戏规则如下:在20个商标牌中,有5个商标的背面注明了一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖,参与这个游戏的观众有三次翻牌的机会,翻过的牌不能再翻.某观众前两次翻牌均获得若干奖金,则该观众第三次翻牌获奖的概率是 ( )A .41B .51C .61D .203 二.填空题(本题共5小题,每小题4分,共20分,请把你认为正确的答案写在横线上) 6.长城总长约为6310000米,用科学记数法表示约是 米(保留两个有效数字). 7.如图是一根木杆在一天上午不同时刻的影子,则它们按时间先后顺序是 . 8.函数x y 21-=中自变量x 的取值范围是 . 9.已知□ABCD 中,∠A 比∠B 小20°,那么∠C 等于 度.10.如图,CB ,CD 分别的钝角△AEC 和锐角△ABC 的中线,且AC =AB ,给出下列结论:①AE =2AC ; ②CE =2CD ;③∠ACD =∠BCE ; ④CB 平分∠DCE ,请写出正确结论的序号 .三.解答题(本题共5小题,每小题6分,共30分) 11.化简:91322-÷-x x x x(第7题)ABEC(第10题)12.解不等式组,并把解集在数轴上表示出来: ()⎪⎩⎪⎨⎧<---x x x 24332113.在如图所示的方格图中,我们称每个小正方形的顶点为“格点” ,以格点为顶点的三角形叫做“格点三角形”. (1)在图中(每个小正方形的边长都是1)作一个面积为3 的格点钝角三角形ABC ; (2)再在图中作格点等腰直角三角形DEF ,使△DEF 的三边 都不与小正方形的边重合.14.解方程:0242=-+x x≤315.如图,已知正方形ABCD 中,P 为DC 上一点,连接BP ,过A ,C 两点作AE ⊥BP ,CF ⊥BP ,垂足为E .F ,请问BE 与CF 的大小有什么关系?并说明理由.四.(本题共4小题,每小题7分,共28分) 16.一次函数b kx y +=的图象与反比例函数xny =的图象相交于A (3,2), B (m ,-3)两点,求这两个函数的表达式.P密封线内不要答题17.甲骑自行车,乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程y 与时间x的函数关系的图象如图所示,根据图象解决下列问题:(1)谁先出发?先出发多长时间?谁先到达终点?先到多少时间? (2)分别求出甲,乙两人的行驶速度.18.已知,如图正方形ABCD 中,AB =2,P 是BC 边上与B .C 不重合的任意点,DQ ⊥AP 于Q ,当点P 在BC 上变动时,线段DQ 也随之变化,设AP =x ,DQ =y . 求y 与x 之间的函数关系式,并指出x 的取值范围.分)CDP班 号姓名:试室座号:密封线内不要答题19.下图是某篮球队队员年龄结构直方图,根据图中的信息解答下列问题:(1)该队队员年龄的平均数. (2)该队队员年龄的众数和中位数.五.解答题(本题共3小题,每小题9分,共27分)20.某商场购进甲、乙两种服装后,都加上进价的40%后标价出售.“国庆”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装各1件,共付182元,两种服装标价之和为210元.问这两种服装的标价各是多少?年龄17 18 21 23 2421.已知:如图, 在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E ,连接DE 交AC 于F . (1) 求证:四边形ADCE 为矩形. (2) 求证:DE ∥AB ,DE =AB .(3) 当△ABC 满足什么条件时,四边形ADCE 是一个正方形?简述你的理由.ABCDE NFM22.如图:在梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,BD 平分∠ABC求证:(1) AE ⊥BD (2) EF =21( BC -AB )A BCDEF密封线内不要答题。

初三第二次数学月考试卷

初三第二次数学月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √3B. πC. -2D. 2/32. 已知等差数列{an}的公差d=2,且a1=1,则a10的值为()A. 19B. 20C. 21D. 223. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 120°C. 30°D. 45°4. 已知函数f(x)=x²-4x+3,则f(2)的值为()A. -1B. 0C. 1D. 35. 若等比数列{an}的公比q=1/2,且a1=8,则S5的值为()A. 31B. 32C. 33D. 346. 在△ABC中,若AB=AC,则∠BAC是()A. 锐角B. 直角C. 钝角D. 无法确定7. 已知二次函数y=ax²+bx+c的图象开口向上,且a=1,b=2,则c的取值范围是()A. c<0B. c=0C. c>0D. c≠08. 若方程x²-3x+2=0的两根为x1和x2,则x1+x2的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点A(2,3),点B(-1,2),则线段AB的长度为()A. √5B. √10C. √15D. √2010. 若等差数列{an}的前n项和为Sn,公差d=3,且S5=45,则a1的值为()A. 3B. 6C. 9D. 12二、填空题(每题5分,共25分)11. 已知等差数列{an}的公差d=2,且a1=1,则a10=__________。

12. 在△ABC中,∠A=60°,∠B=45°,则∠C=__________°。

13. 已知函数f(x)=x²-4x+3,则f(2)=__________。

14. 若等比数列{an}的公比q=1/2,且a1=8,则S5=__________。

九年级第二次月考数学试卷

九年级第二次月考数学试卷

九年级第二次月考数学试卷九年级第二次月考数学试卷题号一二三四总分分数一. 仔细填填:(每小题3分,共30分)1. 分式,当_ __________时分式的值为零.2.若函数y=(m + 1)是反比例函数,则m的值等于.3. 用科学记数法表示:1纳米=米(1厘米=103纳米).4. ①约分: _________;②计算:(-2 y 3)-3= .5. 若点A(-2,y1).B(-1, y2).C(1, y3)在反比例函数y=的图象上,则.. 的大小关系:.6. 如果一个三角形的三边的比是,则这是三角形.7. 一项工程,甲单独做_小时完成,乙单独做y小时完成,则两人一起完成这项工程需要_______ ___小时.8. 某电路中,电压是定值,当R=3时I=2,用电阻R表示电流I的函数式.9. 如果梯子底端离建筑物9m,那么15m长的梯子可达到建筑物的高度是.10.已知个一命题的原命题是〝等边三角形是锐角三角形〞,它的逆命题是.二. 精心选选:(每小题3分,共30分)11.下列说法最正确的是( ).A.分式的分子要含有字母B.式子:是分式C.当A=0时,分式的值为0(A.B为整式) D.是分式方程12. 把分式中的.同时扩大2倍,那么分式的值().A.扩大2倍 B.缩小2倍C.改变为原来的D.不改变13.下列各式计算正确的是().A. B.C. D.(-3)-2 =914.若变量与成正比例,变量又与z成反比例,则与的关系是( ) .A.成反比例B.成正比例 C.y与成正比例D.与成反比例15.一次函数与反比例函数的图象交点的个数为( ).A.0个B.1个C.2个D.无数个16.如图(1),A.C分别是反比例函数y=图象上两点.若Rt△AOB与Rt△COD的面积分别为S1,S2,则S1与S2的大小关系是( ).A.S1_gt;S2 B.S1=S2=1; C.S1_lt;S2 D. S1=S2=217.下列解方程正确的是( ).A.去分母得:2(_+2)+3_=1B.去分母得:4(_+3)-_+2(_-3)=(_-3)(_+3)C.3(_+2)-2(_-3)=3_+4 去括号得: 3_+6-2_-6=3_+4D.去分母得:_(_-5)+2-(_2-25)=018.函数y=a(_-3)与在同一坐标系中的大致图象是( ).19.直角三角形的两直角边分别为6.8,则斜边上的高是( ).A.6B.8C.4.8D.4820.观察下列各组数:①3,4,5;②1,,2;③5,6,7;④7,8,13其中可以作为三角形的三边的有多少组( ).A.3B.2C. 1D. 0三. 用心算算:(每小题6分,共24分)21. a + 2-22.23.已知一位女士在一家商场购买东西后回家,她先向东走30米,再向北走40米,又向东走50米,最后向北走80米回到家,问她家离商场的直线距离是多少米?(画出草图,再解答)24.已知反比例函数的图像与一次函数y=k_+m的图像相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)写出点P(-1,5)关于_轴的对称点B的坐标,并判断点B否在一次函数y=k_+m的图像上;四. 用心想想:(每题8分,共16分)25.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=17m,BC=8m,求这块地的面积.26.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,先遣队的行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?。

初三下学期第二次月考(数学)试题含答案

初三下学期第二次月考(数学)试题含答案

初三下学期第二次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分48分)1.(4分)1. 下列实数中,比1大的数是( )A. -2B. -12C. 12D. 22.(4分)2. 如图是一个由5个相同的小正方体组成的立体图形,其左视图是( )3.(4分)3. 若△ABC ∽△DEF ,相似比为3∶1,且△ABC 的面积为18,则△DEF 的面积为( )A. 2B. 3 C .6 D. 94.(4分)4. 如图,AD 是⊙O 的直径,若∠B =40°,则∠DAC 的度数为( )4题图A. 30°B. 40°C. 50°D. 60°5.(4分)5. 下列命题为真命题的是( )A. 直角三角形的两个锐角互余B. 任意多边形的内角和为360°C. 任意三角形的外角中最多有一个钝角D. 一个三角形中最多有一个锐角6.(4分)6. 估计3(3+2)-2×18的值应在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间7.(4分)7. 我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题,原题如下:“九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为x 个、y 个,则可列方程组为( )A. ⎩⎪⎨⎪⎧x +y =999119x +47y =1000B. ⎩⎪⎨⎪⎧x +y =999911x +74y =1000C. ⎩⎪⎨⎪⎧x +y =1000119x +47y =999D. ⎩⎪⎨⎪⎧x +y =1000911x +74y =999 8.(4分)8. 根据如图所示的程序计算函数y 的值,若输入x 的值为43,则输出y 的值为( )8题图A. 173B. 133C. 103D. 539.(4分)9. 如图,菱形OABC 在第一象限内,顶点O ,C 在x 轴上,∠AOC =60°,反比例函数y =k x (x >0)的图象经过点A ,交BC 于点D ,若△AOD 的面积为23,则k 的值为( )9题图A. 4 3B. 33C. 4D. 2310.(4分)10. 如图,某建筑物CE 上挂着“巴山渝水,魅力重庆”的宣传条幅CD ,王同学利用测倾器在斜坡的底部A 处测得条幅底部D 的仰角为60°,沿斜坡AB 走到B 处测得条幅顶部C 的仰角为50°.已知斜坡AB 的坡度i =1∶2.4,AB =13米,AE =12米(点A 、B 、C 、D 、E 在同一平面内,CD ⊥AE ,测倾器的高度忽略不计),则条幅CD 的长度约为( )(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,3≈1.73)10题图A. 12.5米B. 12.8米C. 13.1米D. 13.4米11.(4分)11. 若数a 使关于x 的分式方程a x -1-x -21-x=3有正数解,且使关于y 的不等式组⎩⎪⎨⎪⎧2y -a >y -112y +a ≤4有解,则所有符合条件的整数a 的个数为( ) A. 1 B. 2 C. 3 D. 412.(4分)12. 如图,在等腰三角形纸片ABC 中,∠ABC =120°,BC =6,点D 、E分别在边AC 、BC 上,连接DE ,将△CDE 沿DE 翻折使得点C 恰好落在点B 处,则AE 的长为( )12题图A. 372B. 152C. 37D. 67二、 填空题 (本题共计6小题,总分24分)13.(4分)13. 计算:(15-π )0+|-5|=________. 14.(4分)14. 重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.15.(4分)15. 现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率是________.16.(4分)16. 如图,在边长为4的正方形ABCD 中,分别以AD 、DC 为直径作半圆,则图中阴影部分的面积为________.(结果保留π)16题图17. 17.(4分)疫情之下,中华儿女共抗时艰.重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从A 地沿相同路线出发徒步前往B 地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在A 地,于是原路原速返回A 地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的函数关系如图所示,则当乙到达B 地时,甲距A 地的路程是________米.17题图18.(4分)18. 如图,在矩形ABCD 中,AB =3,BC =1,将△ABD 沿射线DB 平移得到△A ’B ’D ’,连接B ’C ,D ’C ,则B ’C +D ’C 的最小值是 ..18题图 三、 解答题 (本题共计8小题,总分78分)19.(10分)19. 计算:(1)(a +b )(a -b )-(a -b )2; (2)ba b a b ab a b a b a b -+÷+--+-22222. 20.(10分)20. 如图,△ABC 是⊙O 的内接三角形,∠ABC 的平分线交⊙O 于点D ,连接OA 、OC ,过点D 作DE ∥AC 交BC 的延长线于点E .(1)求证:DE 为⊙O 的切线;(2)若DE =12AC ,求∠ACB 的大小.21.(10分)21. 为了让学生掌握知识更加牢固,某校九年级物理组老师们将物理实验的教学方式由之前的理论教学改进为理论+实践,一段时间后,从九年级随机抽取15名学生,对他们在教学方式改进前后的物理实验成绩(百分制)进行整理、描述和分析(成绩用x 表示,共分成4组:A . 60≤x <70,B . 70≤x <80,C . 80≤x <90,D . 90≤x ≤100),下面给出部分信息:教学方式改进前抽取的学生的成绩在C 组中的数据为:80,83,85,87,89. 教学方式改进后抽取的学生成绩为:72,70,76,100,98,100,82,86,95,90,100,86,84,93,88.教学方式改进前抽取的学生成绩频数分布直方图21题图教学方式改进前后抽取的学生成绩对比统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校九年级学生的物理实验成绩在教学方式改进前好,还是改进后好?请说明理由(一条理由即可);(3)若该校九年级有300名学生,规定物理实验成绩在90分及以上为优秀,估计教学方式改进后成绩为优秀的学生人数是多少?22.(10分)22. 定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算.例如55263→5526+12=5538, 5538→553+32=585,585→58+20=78,78÷13=6,所以55263是“一刀两断”数.3247→324+28=352,35+8=43,43÷13=3……4,所以3247不是“一刀两断”数.(1)判断5928是否为“一刀两断”数:________(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;(2)对于一个“一刀两断”数m =1000a +100b +10c +d (1≤a ≤9,0≤b ≤9,0≤c ≤9,0≤d ≤9,a ,b ,c ,d 均为正整数),规定G (m )=|b 2-c a -d|.若m 的千位数字满足1≤a ≤4,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数m 中,G (m )的最大值.23.(10分)23. 在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程. 在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y =|2x +b |+kx (k ≠0)中,当x =0时,y =1;当x =-1时,y =3.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y =12x -1的图象如图所示,结合你所画的函数图象,直接写出不等式|2x +b |+kx ≤12x -1的解集.23题图24. 24.(10分)新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒.市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了12a %,销量比第一周增加了2a %,医用酒精的售价保持不变,销量比第一周增加了a %,结果口罩和医用酒精第二周的总销售额比第一周增加了65a %,求a 的值.25.(10分)25. 如图,已知抛物线L :y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0),OB =OC =3OA .(1)求抛物线L 的函数表达式;(2)连接AC 、BC ,在抛物线L 上是否存在一点N ,使S △ABC =2S △OCN ?若存在,求出点N 的坐标;若不存在,请说明理由.25题图26.(8分)26. 如图1,在Rt △OAB 中,∠AOB =90°,OA =OB ,D 为OB 边上一点,过D 点作DC ⊥AB 交AB 于C ,连接AD ,E 为AD 的中点,连接OE 、CE . 观察猜想(1)①OE 与CE 的数量关系是 ;②∠OEC 与∠OAB 的数量关系是 ;类比探究(2)将图1中△BCD 绕点B 逆时针旋转45°,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;拓展迁移(3)将△BCD绕点B旋转任意角度,若BD,OB=3,请直接写出点O、C、B在同一条直线上时OE的长.26题图1 26题图2 26题备用图答案一、 单选题 (本题共计12小题,总分48分)1.(4分)1. D2.(4分)2. D3.(4分)3. A ∵△ABC ∽△DEF ,相似比为3∶1,∴S △ABCS △DEF=9.∵S △ABC = 18,∴S △DEF =2.4.(4分)4. C 【解析】如解图,连接 CD ,∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠DAC =90°-∠D ,又∵∠D =∠B =40°,∴∠DAC =90°-40°=50°.4题解图5.(4分)5. A 【解析】6.(<27<6.即原式的值在5和6之间,故选B.7.(4分)7. C8.(4分)8. A 【解析】∵输入x 的值为43,且43>1,∴y =12x +5=12×43+5=173.9.(4分)9. D 【解析】如解图,过点A 作AE ⊥x 轴于点E ,连接AC .∵四边形OABC 是菱形,∴AO ∥BC ,OA =OC .∴S △AOC =S △AOD =23,∵∠AOC =60°,∴△AOC 是等边三角形.∵AE ⊥OC ,∴S △AOE =12S △AOC =3=k 2, ∴k =2 3.9题解图10.(4分)10. B 【解析】如解图,过点B 作BH ⊥AE 交EA 的延长线于点H ,过点B作BF ⊥CE 于点F .∵AB =13米,坡度i =1∶2.4,∴设BH =x 米,则AH =2.4x 米,在Rt △ABH 中,x 2+(2.4x )2=132,解得x =5,∴BH =5米,AH =12米.易得四边形BHEF 为矩形,∴BF =EH =12+12=24米.在Rt △BCF 中,∵∠CBF =50°,∴CF =BF ·tan50°≈28.56米.∴CE =CF +EF =CF +BH ≈33.56米,在Rt △AED 中,∵∠DAE =60°,∴DE =AE ·tan60°≈20.76米,∴CD =CE -DE =33.56-20.76=12.80≈12.8米.10题解图11.(4分)11. B 【解析】解关于x 的分式方程得x =1+a 2,∵分式方程有正数解且x ≠1,∴1+a 2>0且1+a 2≠1,解得a >-1,且a ≠1.解关于y 的不等式组得a -1<y ≤8-2a ,∵关于y 的不等式组有解,∴a -1<8-2a ,解得a <3.综上,-1<a <3,且a ≠1.∴所有符合条件的整数a 的值为0,2,共两个,故选B.12.(4分)12. C 【解析】如解图,过点E 作EF ⊥AB ,交AB 的延长线于点F .∵将△CDE沿DE 翻折使得点C 恰好落在点B 处,∴点E 为BC 的中点,即BE =CE .∵BC =6,∠ABC =120°,∴∠EBF =60°,BE =3.在Rt △BEF 中,BF =12BE =32,∴EF =332,∴AF =AB +BF =152.在Rt △AEF 中,AE =AF 2+EF 2=37.12题解图二、 填空题 (本题共计6小题,总分24分)13.(4分)13. 6 【解析】原式=1+5=6. 14.(4分)14. 3.7369×10415.(4分)15. 15 【解析】根据题意列表如下: 123451 (1,1) (2,1) (3,1) (4,1) (5,1)2 (1,2) (2,2) (3,2) (4,2) (5,2)3 (1,3) (2,3) (3,3) (4,3) (5,3)4 (1,4) (2,4) (3,4) (4,4) (5,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)由表格可知,共有25种等可能的结果,其中抽出的两张卡片上所写数字相同的结果有5种,∴P (抽出的两张卡片上所写数字相同)=525=15.16.(4分)16. 12-2π 【解析】如解图,设两半圆在正方形内部交于点O ,两半圆的圆心分别为E 、F ,连接 EO ,OF ,易得四边形 EOFD 为正方形,∴OE =OF =2,∴S阴影=S 正方形ABCD -S 正方形EOFD -S 半圆=4×4-2×2-12π×22=16-4-2π=12-2π.16题解图17.(4分)17. 160 【解析】由题意知,甲先于乙1分钟出发,从题图中可看出,甲的速度为80米/分钟,甲出发第5分钟后,甲、乙之间的路程为16米,设乙的速度为m 米/分钟,则有5×80-(5-1)m =16,解得m =96,故两人相遇时,乙所用的时间为80÷(96-80)=5(分钟) ,而甲走了6分钟.∵(80+96)×6>864,∴乙到达B 地时,甲还未到达A 地,故A 、B 两地之间的路程为864米,则乙从A 地到达B 地,共需要864÷96=9(分钟);而甲从A 地出发到返回A 地需要6×2=12(分钟),因此,当乙到达B 地时,甲还需走2分钟才能到达A 地,此时,甲距A 地的路程是80×2=160(米).18.(4分)18. 7【解析】如解图,作点C 关于BD 的对称点G ,连接DG ,D ′G ,则第 一次第 二 次CD ′=GD ′,CD =DG ,∵AB =3,BC =1,∴∠CDB =30°,∴∠CDG =60°,CG ⊥DB ,∴△CDG 是等边三角形,∴CG =CD =AB =3,以D ′G ,B ′D ′为邻边作平行四边形B ′D ′GH ,连接CH ,则D ′G =B ′H ,HG ∥B ′D ′,∴B ′H =GD ′=CD ′,CG ⊥GH ,∴CD ′+CB ′=HB ′+CB ′,∴当C ,B ′,H 三点在同一直线上时,B ′C +D ′C 的值最小,最小值等于CH 的长,∵在Rt △ADB 中,BD =2AD =2BC =2,∴ B ′D ′=BD =2,∴在平行四边形B ′D ′GH 中,HG =2,∴在Rt∴CGH 中,CH 22CG HG +22(3)2+7,∴B ′C +D ′C 7.18题解图三、 解答题 (本题共计8小题,总分78分) 19.(10分)19. 解:(1)原式=a 2-b 2-(a 2+b 2-2ab )……………………………………………………(3分)=2ab -2b 2;…………………………………………………………………(5分)(2)原式=ba -b +(a +b )(a -b )(a -b )2 ·a -b a +b ………………………………………………(7分)=ba -b+1…………………………………………………………………………(8分)=b +a -ba -b…………………………………………………………………………(9分)=aa -b. …………………………………………………………………………(10分)20.(10分)20. (1)证明:如解图①,连接OD ,记OD 与AC 交于点N .∵DB 平分∠ABC , ∴∠ABD =∠DBC , ∴∠AOD =∠DOC .∴OD ⊥AC . …………………………………………………………………………(3分)又∵DE ∥AC , ∴OD ⊥DE .∵OD 是⊙O 的半径,∴DE 为⊙O 的切线;………………………………………………………………(5分)20题解图①(2)解:由(1)知CN =12AC .如解图②,当DE =12AC 时,DE ∥CN ,DE =CN . ………………………………………(7分)∴四边形NDCE 是平行四边形, 又∵OD ⊥AC , ∴四边形NDCE 为矩形.∴∠ACB =∠E =90°. ……………………………………………………………………(10分)20题解图②21.(10分)21. 解:(1)a =87,b =88,c =100;…………………………………………………………(3分)【解法提示】由频数分布直方图和教学方式改进前成绩在C 组中的数据为80,83,85,87,89,可得a =87;将教学方式改进后的学生成绩按从小到大顺序排列是70,72,76,82,84,86,86,88,90,93,95,98,100,100,100,∴教学方式改进后抽取的学生成绩的中位数为88,即b =88;∵教学方式改进后抽取的学生成绩中100出现的次数最多,∴c =100.(2)教学方式改进后学生成绩好,理由如下(写出其中一条即可):理由:①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好;②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好;…………………………………………………………………………………………(6分)(3)300×715=140(人),答:估计教学方式改进后成绩为优秀的学生有140人.……………………………(10分)22.(10分)22. 解:(1)是;………………………………………………………………………………(2分) 证明:设任意一个能被13整除的n 位数前n -1 位数字为P ,个位数字为Q ,则这个n 位数可表示为10P +Q =13k (k 为正整数),∴Q =13k -10P ,∴10P +Q →P +4Q =P +4(13k -10P )=52k -39P =13(4k -3P ), ∴10P +Q 是“一刀两断”数.∴任意一个能被 13整除的数是“一刀两断”数;…………………………………(4分) (2)∵m =1000a +100b +10c +d ,m 能被65整除,∴m 既能被13整除又能被5整除.∴d =0或d =5. ………………………………(6分) 当d =0时,100a +10b +c +4d 13=100a +10b +a 13=101a +10b 13=7a +10(a +b )13 ,∴a +b 是13的倍数.∵1≤a ≤9,0≤b ≤9,∴a +b =13.又∵1≤a ≤4, ∴⎩⎪⎨⎪⎧a =4b =9.∴m =4940. …………………………………………………………………………(7分) 当d =5时,100a +10b +c +4d 13=100a +10b +a +2013=101a +10b +2013=7a +10(a +b +2)13,∴a +b +2是13的倍数,∴a +b +2=13,∴a +b =11. ∵1≤a ≤4,∴⎩⎪⎨⎪⎧a =2b =9或⎩⎪⎨⎪⎧a =3b =8或 ⎩⎪⎨⎪⎧a =4b =7. ∴m =2925或m =3835或m =4745. ……………………………………………………(9分)∴G (4940)=774 ,G (4745)=45, G (3835)=612, G (2925)=793.∴G (m )的最大值为45. …………………………………………………………………(10分)23.(10分)23. 解:(1)∵在函数y =|2x +b |+kx (k ≠0)中,当x =0时,y =1;当x =-1时,y =3,∴⎩⎪⎨⎪⎧1=|0+b |+03=|-2+b |-k ,解得⎩⎪⎨⎪⎧k =-2b =1或⎩⎪⎨⎪⎧k =0b =-1(舍去), ∴这个函数的表达式为y =|2x +1|-2x ;………………………………………………(3分)(2)画出函数图象如解图;………………………………………………………………(5分)23题解图函数的性质(写出其中一条即可):①函数y =|2x +1|-2x 在x <-12时,y 随x 的增大而减小;②函数y =|2x +1|-2x 在x >-12时,y 的值不变;………………………………………(7分)(3)由函数图象可得:|2x +b |+kx ≤12x -1的解集为x ≥4. ……………………………(10分)24.(10分)24. 解:(1)设第一周销售口罩x 袋,则销售医用酒精(x -100)瓶,依题意,得20x +15(x -100)=9000, 解得x =300.答:第一周销售口罩300袋;……………………………………………………………(4分)(2)依题意得,20(1-12a %)×300(1+2a %)+15×(300-100)(1+a %)=9000(1+65a %),……………(8分)整理得0.6a 2-12a =0, 解得a 1=20,a 2=0(舍去).答:a 的值为20. …………………………………………………………………………(10分)25.(10分)25. 解:(1)∵A (-1,0),OB =OC =3OA ,∴B (3,0),C (0,-3),将点A 、B 、C 代入抛物线L :y =ax 2+bx +c ,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴y =x 2-2x -3;…………………………………………………………………………(4分) (2)存在.设点N 的坐标为(n , n 2-2n -3). ∵S △ABC =2S △OCN , ∴12×4×3=2×12×3×|n|, ∴|n |=2, ∴n =±2.当n =2时,n 2-2n -3=-3. ∴N (2,-3),当n =-2时,n 2-2n -3=5. ∴N (-2,5).综上所述,符合条件的点N 的坐标为(2,-3)或(-2,5). ……………………………(10分)26.(8分)26. 解:(1)①OE =CE ;……………………………………………………………………(1分)②∠OEC =2∠OAB ;…………………………………………………………………(2分) 【解法提示】①∵∠AOB =90°,E 为AD 的中点, ∴OE =12AD ,∵∠ACD =90°,E 为AD 的中点, ∴CE =12AD ,∴OE =CE .②∵∠AOB =90°,E 为AD 的中点, ∴OE =AE , ∴∠OAE =∠AOE , ∴∠OED =2∠OAE , 同理可得∠DEC =2∠EAC ,∴∠OED+∠DEC=2(∠OAE+∠EAC),∴∠OEC=2∠OAB.(2)成立.………………………………………………………………………………(3分)证明:①如解图①,过点E作EF⊥AB交BO的延长线交于点F,EF与AO交于点G,∵△OAB为等腰直角三角形,∴∠ABO=45°,又∵EF⊥BE,∴∠F=45°,∴EF=BE,易知△AEG、△OFG、△BCD均为等腰直角三角形,∵E为AD的中点,∴DE=AE=GE,∴FG=BD,∴OF=BC,又∵∠F=∠CBD=45°,∴△EFO≌△EBC,∴OE=CE.26题解图①②∵△EFO≌△EBC,∴∠OEF=∠CEB,∴∠OEC=∠OEB+∠CEB=∠OEB+∠OEF=90°,∵∠OAB=45°,∴∠OEC=2∠OAB; ………………………………………………………………………(5分)(3)OE或.………………………………………………………………(8分)【解法提示】∵在等腰直角△BCD中,BD,∴BC=1,OC,由(2)可证△OEC是等腰直角三角形,OE=2如解图②,当点C在点O、B中间时,OC=OB-BC=3-1=2,OC.∴OE=2如解图③,当点B在点O、C中间时,OC=OB+BC=3+1=4,∴OE=.综上所述,OE或图②图③26题解图。

第一学期九年级数学第二次月考试卷(含解析)

第一学期九年级数学第二次月考试卷(含解析)

第一学期九年级数学第二次月考试卷(含解析)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm4.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个5.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或66.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y =23x +D .y =x 2+1x+1 7.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定8.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-9.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限10.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7511.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个12.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2313.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0 B .1 C .2D .314.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣115.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 二、填空题16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .17.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.18.抛物线286y x x =++的顶点坐标为______. 19.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.22.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.23.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).24.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.25.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).26.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.27.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.32.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?33.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.34.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A 、N 是位于直线BM 同侧的不同两点.若点M 到x 轴的距离为d ,△MNB 的面积为2d ,且∠MAN =∠ANB ,求点N 的坐标.35.如图,在直角三角形ABC 中,∠C =90°,点D 是AC 边上一点,过点D 作DE ⊥BD ,交AB 于点E ,若BD =10,tan ∠ABD =12,cos ∠DBC =45,求DC 和AB 的长.四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.37.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.38.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________39.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B 【解析】 【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90° ∴AO=CO=BO=DO, ∴∠OCD=∠ODC=β,A 、BDC DCA β∠=∠=∠,故A 选项正确;B 、在Rt △ADC 中,cos ∠ACD=DCAC , ∴cos β=2a AO,∴AO=2cos a ,故B 选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BCa∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DCDB , ∴ cos β=a BD∴cos a BD β=,故D 选项正确.故选:B. 【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.4.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.5.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.6.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y =12x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意; C. y 23x +D. y =x 2+1x+1不是二次函数,不符合题意. 故选:B .【点睛】 本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.7.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.8.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 9.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B .10.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.11.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,13.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .14.C解析:C【解析】【分析】根据二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题.【详解】解:∵二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点,当二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点时,(﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x +c 的图象与轴有两个公共点,其中一个为原点时,则c =0,y =x 2﹣2x =x (x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0);由上可得,c 的值是1或0,故选:C .【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.15.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2,∴∠ODC =30°,CD=∴∠COD =60°,∴阴影部分的面积=260418236023π⨯-⨯⨯π-, 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 17.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.18.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.19.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.20.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 21.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 22.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.23.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分解析:51 -【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=512-AB.故答案为:51 -.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则512ACBC-=,正确理解黄金分割的定义是解题的关键.24.-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.25.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE =15(5﹣2)×180°=108°,BC =CD =DE ,得出 BC =CD =DE ,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,∴∠BAE =15(n ﹣2)×180°=15(5﹣2)×180°=108°,BC =CD =DE , ∴BC =CD =DE ,∴∠CAD =13×108°=36°; 故答案为:36°.【点睛】 本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.28.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 29.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 30.【解析】【分析】x (x ﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题;(2)31.(1)2【解析】【分析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,,∴cosA=cos45°=2,∴BC=AB sin A【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.32.(+17)cm.【解析】【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠BAD=203cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+203+2=203+17(cm).答:此时灯罩顶端C到桌面的高度CE是(203+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF 的长是解题的关键.33.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=OB CD EB DE=,∴348CD =,∴CD=BC=6,在Rt△ABC中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.34.(1)y=x2+2x﹣3;(2)存在,点P坐标为⎝⎭或⎝⎭;(3)点N的坐标为(﹣4,1)【解析】【分析】(1)分别令y=0 ,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(12,32-),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,。

人教版九年级上册数学第二次月考试卷含答案

人教版九年级上册数学第二次月考试卷含答案

人教版九年级上册数学第二次月考试题一、单选题1.下列标志既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将一元二次方程2220x x --=通过配方后所得的方程是()A .()222x -=B .()212x -=C .()213x -=D .()223x -=3.二次函数2(1)3y x =-+图象的顶点坐标是()A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--4.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是()A .23(3)2y x =+-B .23(3)2y x =++C .23(3)2y x =-+D .23(3)2y x =--5.下列图形中,旋转60 后可以和原图形重合的是()A .正三角形B .正方形C .正五边形D .正六边形6.某厂一月份的总产量为500吨,三月份的总产量达到为720吨,若平均每月增长率是x ,则可以列方程()A .500(12)720x +=B .2720(1)500x +=C .()25001720x+=D .2500(1)720x +=7.如图,ABC 内接于O ,若O 的半径为6,60A ∠= ,则BC 的长为()A .B .C .D .8.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是().A .0个B .1个C .2个D .1个或2个9.已知二次函数2()y x h =-+,当2x <-时,y 随着x 的增大而增大,当2x >-时,y 随x 的增大而减小,当0x =时,y 的值为()A .2B .2-C .4D .4-10.如图,直线y y 轴交于点P ,将该直线绕着点P 逆时针旋转90 所得的直线对应的函数解析式为()A .13y x =+B .13y x =-+C .33y x =+D .33=-+y x 二、填空题11.方程2160x -=的解为___________.12.二次函数22()1y x =-+的最小值为___________.13.已知点(,2)A a -和(3,)B b 关于原点对称,则2020()a b +的值为___________.14.如图,在O 中,直径AB CD ⊥于点M ,10,2AB BM ==,则CM 的长为___________.15.已知关于x 的方程的20x px q ++=两根为123,1x x =-=-,则p =___________,q =___________.16.如图,AB 是O 的直径,78AOE ∠= ,点C 、D 是弧BE 的三等分点,则AOD ∠=___________.17.如图,二次函数2(0)y axbx c b =++≠的图象的左半部分与x 轴交于A 点,与y 轴交于点C ,点A 坐标(1,0)-,对称轴为直线1x =,下面的四个结论:①0ab <②0a b c ++<③420a b c ++>④当0y >时,13x -<<,其中正确的结论的有___________.三、解答题18.解方程:(1)21x -=-(2)2(53)106x x +=+19.已知二次函数242y x x =++,求这个函数图象的顶点坐标、对称轴以及函数的最小值.20.如图,某教室矩形地面的长为8m ,宽为6m ,现准备在地面正中间铺设一块面积为224m 的地毯,四周未铺地毯的条形区域的宽度都相同,求地毯长和宽分别是多少米?21.如图,ABC 的顶点坐标分别为(2,5),(4,1)A B --,和(1,3)C -.(1)请在直角坐标系中作出ABC 关于原点对称的A B C '''V 并写出点A 、B 、C 的对称点A B C '''、、的坐标.(2)请在直角坐标系中作出将ABC 绕着点B 顺时针旋转90 的111A B C △.22.已知:如图,O 是APC ∠的角平分线PB 上的一点,O 与PA 相交于E ,F 点,PC 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.23.如图,在OAB 中,OB AB =,将OAB 绕点O 逆时针旋转得到OCD ,使点C 落在直线AB 的延长线上.(1)求证://OD AC ;(2)连接BD ,判断四边形OABD 的形状,并说明理由.24.如图,O 的内接四边形ABCD 两组对边的延长线分别交于点M ,N .(1)当M N ∠=∠时,求证ADC ABC ∠=∠;(2)当42M N ∠=∠= 时,求A ∠的度数;(3)若,DMC BNC αβ∠=∠=且αβ≠,请你用含有α、β的代数式表示A ∠的度数.25.如图,抛物线2y x bx c =++与x 轴交于(1,0),(3,0)A B -两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点D ,使ACD △的周长最小?若存在,请求出D 点的坐标,若不存在请说明理由;(3)设抛物线上有一个动点E ,当点E 在抛物线上滑动到什么位置满足8E A B S ,并求出此时E 点的坐标.参考答案1.A 2.C 3.A 4.C 5.D 6.D 7.B 8.D 9.D10.D 11.4±12.1.13.114.415.4316.112°.17.①③④18.(1)11x =,21x =-;(2)135x =-,215x =-19.对称轴2x =-;顶点坐标为(-2,-2);最小值2y =-20.长为6米,宽为4米.21.(1)作图见解析;()2,5A '-,()4,1B '-,()1,3C '-;(2)作图见解析.22.EF=GH ,证明见解析23.(1)证明过程见解析;(2)四边形ABDO 是平行四边形;证明见解析.24.(1)证明见详解;(2)48°;(3)90°-2αβ+.25.(1)y =x 2-2x -3;(2)(1,-2);(3)(,4)或(,4)或(1,-4)。

天津市嘉诚中学2022-2023学年九年级下学期第二次月考数学试题

天津市嘉诚中学2022-2023学年九年级下学期第二次月考数学试题

天津市嘉诚中学2022-2023学年九年级下学期第二次月考数学试题一、单选题1.计算1(5)5-÷的结果等于( )A .25-B .1-C .1D .25245︒的值等于( )A .12B C D .13.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( ). A .84610⨯B .84.610⨯C .94.610⨯D .104.610⨯5.如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A .B .C .D .63的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间7.化简21211a a a a -+--结果为( ) A .11a a +- B .1a -C .aD .18.如图,在平面直角坐标系中,四边形OABC 为菱形,()0,0O ,()4,0A ,60AOC ∠=o ,则对角线交点E 的坐标为( )A .(B .)C .)D .(9.方程组2421m n m n -=-⎧⎨-=⎩的解为( )A .32m n =-⎧⎨=-⎩B .32m n =-⎧⎨=⎩C .32m n =⎧⎨=-⎩D .32m n =⎧⎨=⎩10.若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =21m x +(m 为常数)的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 111.如图,在菱形ABCD 中,已知4AB =,60ABC ∠=o ,60EAF ∠=o ,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE CF =;②EAB CEF ∠=∠;③ABE EFC ∆∆:;④若15BAE ∠=o ,则点F 到BC 的距离为2.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,抛物线()20y ax bx c a =++≠的顶点为()2,0M .下列结论:(1)0ac <;(2)20a b +=;(3)若关于x 的方程20ax bx c t ++-=有两个不相等的实数根,则0t >;(4)若221122ax bx ax bx +=+,且12x x ≠,则122x x +=.其中正确的结论有( ).A .1个B .2个C .3D .4个二、填空题13.计算23()()a a -⋅-的结果等于.14.计算(23的结果等于.15.不透明袋子中装有13个球,其中有2个红球、5个黄球和6个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是蓝球的概率是. 16.已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.17ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =.三、解答题18.如图,在每个小正方形的边长为1的网格中,点A ,点B 均落在格点上,AB 为O e 的直径.(1)AB 的长等于______;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB 为斜边、面积为5的Rt PAB V ,并简要说明点P 的位置是如何找到的(不要求证明).19.解不等式组45215118x x x x +≥-⎧⎪⎨+>-⎪⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.20.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.21.如图,已知:AB 是O e 的直径,点C 在O e 上,CD 是O e 的切线,AD CD ⊥于点D ,E 是AB 延长线上一点,CE 交O e 于点F ,连接OC 、AC .(1)求证:AC 平分DAO ∠. (2)若105DAO ∠=︒,30E ∠=︒ ①求OCE ∠的度数;②若O e 的半径为EF 的长.22.数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈ 1.73≈)23.一艘游轮从甲地出发,途经乙地前往丙地,路线图如图①所示.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km /h ,离开甲地的时间记为t (单位:h ),两艘轮船离甲地的路程s (单位:km )关于t 的图象如图②所示(游轮在停靠前后的行驶速度不变).货轮比游轮早1.6h 到达丙地. 根据相关信息,解答下列问题:(1)填表:(2)填空:①游轮在乙地停靠的时长为h;②货轮从甲地到丙地所用的时长为h,行驶的速度为km/h;③游轮从乙地出发时,两艘轮船相距的路程为km.(3)当0≤t≤24时,请直接写出游轮离甲地的路程s关于t的函数解析式.24.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.25.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B 在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米 2.如图所示的几何体是由5个完全相同的小正方体搭成的,它的主视图是( )A .B .C .D . 3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -= 5.一元二次方程2560x x +-=根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能判定6.关于一次函数24y x =+,下列说法正确的是( )A .图象经过第一、三、四象限B .图象与y 轴交于点()0,2-C .函数值y 随自变量x 的增大而增大D .当1x >-时,2y <7.如图为商场某品牌椅子的侧面图,120DEF ∠=︒,DE 与地面平行,50ABD ∠=︒,则E C B ∠的度数为( )A .120︒B .110︒C .100︒D .90︒8.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35,今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,那么可列方程为( )A .()31075x x +-= B .()31075x x +-= C .()51073x x +-= D .()51073x x +-= 9.某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与优弧AMB 所在圆相切于点A ,B .若该圆半径是9cm ,45P ∠=︒,则优弧AMB 的长是( )A .11cm πB .45cm 4πC .27cm 8πD .27cm 4π 10.如图1,ABC V 中,9043B AB BC ∠=︒==,,.点D 从点A 出发沿折线A B C --运动到点C 停止,过点D 作DE AC ⊥,垂足为E .设点D 运动的路径长为x ,CDE V 的面积为y ,若y 与x 的对应关系如图2所示,则b a -的值为( ).A .436B .163C .103D .196二、填空题11.已知点A 的坐标为()21,,将点A 向上平移4个单位长度,得到的点A '的坐标为. 12.某学校从“立定跳远,抛掷实心球,100米短跑,跳绳”四个项目中抽取两项进行测试,恰好抽到“立定跳远”和“100米短跑”的概率为.13.验光师通过检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.125米调整到0.4米,则近视眼镜的度数减少了度.14.如图,在ABC V 中,分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN ,交AC 于点D ,连接BD ,若BD 平分ABC ∠,35AD BD ==,,则AB 的长为.15.如图,在Rt ABC △中,90BAC ∠=︒,D 是BC 上一点,AB AD =,将ACD V 沿AC 折叠得到ACE △,连接BE ,BE 与AD 相交于点F ,若5BD =,2CD =,则BF 的长为.三、解答题16.计算: (1)()32024125162-+--÷-; (2)213124x x x +⎛⎫+÷ ⎪+-⎝⎭. 17.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.18.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A .法律知识讲座;B .国际象棋讲座;C .花样剪纸讲座;D .创意书签设计讲座.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“花样剪纸讲座”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场讲座时间为60分钟.由下面的活动日程表可知,B和D两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排A,C二场报告,补全此次活动日程表,并说明理由.19.小亮和妈妈去超市买凳子,善于观察的小亮发现售货员把凳子整齐叠放在一起,如图所示,每增加一个凳子,叠在一起的凳子增加的高度是一样的.凳子的数量n(单位:个)与叠放在一起的凳子的总高度h(单位:cm)的关系如表:根据以上信息,回答下列问题:(1)判断叠放的凳子总高度h 与凳子的数量n 之间符合什么函数关系?请用待定系数法求h 与n 的函数关系式;(2)若将该种凳子竖直叠放在层高不超过96cm 超市货架上,最多能叠放多少个?20.如图1是某公交车的站台,主要由顶棚,站牌,底座构成.图2是其截面示意图,站牌截面是矩形ABCD ,边AD 平行于地面MN ,边CD 竖直于地面MN ,顶棚AE 与站牌上端AD 的夹角22DAE ∠=︒,底座CF 与地面的夹角60CFM ∠=︒.经测量195cm AE =,49cm,166.7cm,76cm AD CD CF ===.(1)求站牌边缘点D 与棚顶边缘点E 的水平距离;(2)求棚顶边缘点E 到地面的距离.(结果精确到1cm )(参考数据:sin 220.374,cos220.926,tan 220.404︒≈︒≈︒≈ 1.73≈)21.如图,AB 为O e 的直径,D 为O e 上一点,连接AD ,BD ,过D 点作DC AB ⊥交O e 于点C ,过点A 作AE BD P 交BC 延长线于点E .(1)求证:AE BE =;(2)若tan 2ADC ∠=,6CE =,求AB 长.22.【发现问题】如图1,是沈阳“伯官桥”,它是中国首座“六跨中承式飘带形提篮拱桥”,也是全国施工难度最大的一座桥梁工程,造型别致,每段都是抛物线形状,宛如河上的一条飘带.【提出问题】如果将该拱桥的一段抽象成二次函数的图形,该图象对应的函数关系式是什么?【分析问题】如图2,是拱桥其中一段的横截面,虚线部分表示水面,桥墩跨度AB 为40米,在距离A 点水平距离为d 米的地方,拱桥距离水面的高度为h 米.小亮对d 与h 之间的关系进行了探究,经过多次测量,取平均值得到了d 和h 的几组对应值,如下表【解决问题】(1)请在下面的平面直角坐标系中画出表格中数据对应的函数图象,并直接写出h 与d 之间的函数关系式.(2)当拱桥距离水面的高度为18.6米时,此时据距离A 点水平距离是多少?(3)今年是伯官桥建成十周年整,为了庆祝,决定在伯官桥上挂设彩灯,如图3,共挂三串彩灯,第一串彩灯EF 平行于水面挂设,彩灯两端E ,F 皆在抛物线上;另外两串彩灯CE DF,都垂直于水面挂设,且距离水面2.0米,求挂设的三串彩灯CE EF DF ,,长度和的最大值.23.【问题初探】(1)在数学活动课上,姜老师给出如下问题:如图1,AD 平分BAC ∠,M 为AB 上一点,N 为AC 上一点,连接线段DM DN ,,若180BAC NDM ∠+∠=︒.求证:DM DN =.①如图2,小文同学从已知一边一角构造全等进行转化的视角给出如下思路:在AC 上截取AE AM =,连接DE ,易证ADM ADE ≌V V ,将线段DM 与DN 的数量关系转化为DE 与DN 的数量关系.②如图3,小雅同学也是从已知一边一角构造全等的视角进行解题给出了另一种思路,过D点向BAC ∠的两边分别作垂线,垂足分别为点E ,F ,易证ADE ADF ≌△△,得到DE DF =,接下来只需证FDM EDN ≌V V ,可得DM DN =.请你选择一名同学的解题思路,写出证明过程【类比分析】(2)姜老师发现之前两名同学都采用了一边一角构造全等的视角,为了更好的感悟这种视角,姜老师将共顶点的两个相等的角,变成了不共顶点的两个相等的角提出了如下问题,请你解答.如图4,在ABC V 中,AB AC =,BD 平分ABC ∠交AC 与点D ,在线段BC 上有一点E ,连接AE 交BD 与点F ,若CAE ABD ∠=∠.求证:AD CE =.【学以致用】(3)如图5,在ABC V 中,AB AC AD BC =⊥,,垂足为点D ,在CB 的延长线上取一点E ,使E A B B A C ∠=∠,在线段EB 上截取EF AB =,点G 在线段AE 上,连接FG ,使EFG EAB ∠=∠,若95AD =,65EG =,BF GFBA 的面积.。

初三第二次月考——数学试卷

初三第二次月考——数学试卷

初三第二次月考——数学试卷卷 一一、选择题:(本题有12小题,每小题4分,共48分。

每小题只有一个选项是正确的,不选、错选、多选均不给分) 1、计算:(+2)+(-1)的结果是( ) A 、-1 B 、1 C 、2 D 、3 2、已知:如图1,在△ABC 中,∠ADE =∠C ,则下列等式成立的是( ) A 、AD AB =AE AC B 、 AE BC =ADBD C 、DE BC =AE AB D 、 DE BC =AD AB3、下列图形中,不可能围成正方体的有( )个A 、1B 、2C 、3D 、44、计算111---x x x 的结果是( )A 、 x -1B 、 1-xC 、1D 、-15、下列图案中既是中心对称图形,又是轴对称图形的是()A .B .C .D . 6、抛物线24y x x =+的对称轴是( )A 、x =-2B 、x =4C 、x =2D 、x =-47、有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼板3块,分别写有“20”, “08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励。

假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )A 、16B 、14C 、13D 、128、扇形的半径为30cm ,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为( )A、10 cm B、20 cm C、10π cm D、20π cm 9、钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。

则你认为( )A 、只有小敏回答正确B 、只有小聪回答正确ABCD E 图1C 、小敏、小聪回答都不正确D 、小敏、小聪回答都正确图210、如图2,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以AC 为直径的圆交AB 于D ,则AD 的长为( )A 、59B 、512C 、516D 、 4 11、现规定一种新的运算“*”:b a b a *=,如23239*==,则132*=( ) A 、18 B 、8 C 、16 D 、3212、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A 、106元B 、108元C 、118元D 、105元卷 二二、填空题:(本题有6小题,每小题5分,共30分) 13、在函数y x =-12中,自变量x 的取值范围是___________________。

初三第二次月考数学试卷

初三第二次月考数学试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2/3B. -5/2C. √4D. √-12. 已知a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值是()A. 2B. 4C. 6D. 83. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)4. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. ab > 0D. ab < 05. 在△ABC中,∠A = 45°,∠B = 30°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°6. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 3/xD. y = x + 27. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 09. 下列函数中,图象是一条直线的是()A. y = x^2B. y = 2x + 1C. y = √xD. y = x^310. 在一次函数y = kx + b中,若k > 0,b < 0,那么该函数的图象位于()A. 第一、二、四象限B. 第一、三、四象限C. 第一、二、三象限D. 第二、三、四象限二、填空题(每题5分,共25分)11. 已知x^2 - 5x + 6 = 0,则x的值为______。

12. 如果sinα = 1/2,那么∠α的度数是______。

初三第二次月考数学试卷

初三第二次月考数学试卷

数 学 月 考 试 卷 分数 一.填空题〔每题3分,共30分〕 1.抛物线y = x 2-2x+3的顶点坐标是 . 2.如果函数c bx ax y ++=2中,a>0,b>0,c=0,那么它的图象不经过第 象限. 3.把抛物线221x y =向左平移3个单位,再向下平移2个单位后,所得抛物线的解析式为______. 4、抛物线c x x y +-=82的顶点在x 轴上,那么c 的值为 . 5、抛物线822--=x x y 与x 轴、y 轴分别交于点C B A 、、,那么ABC S ∆= .6. 等腰梯形ABCD 外切于圆,且中位线MN 的长是12cm,那么梯形ABCD 的周长是 .7.如图,AC 是⊙O 的直径,∠ACB=25° ,PB 、PC 是⊙O 的切线,C 、B 为切点, 那么∠E= .8.两圆内切时,圆心距为3,其中一个圆半径为8,那么另一个圆的半径为 .9. 假设两圆既存在内公切线,又存在外公切线,那么这两圆的位置关系为 .10. 如图,PA 切⊙O 于点A,PO 交⊙O 于点B,PDC 为割线,如果PB=OB=6,DC=3,那 么PA+PC= .二.选择题〔每题3分,共30分〕1.二次函数y=ax 2+bx+c 的图象如下图,对称轴x=1,以下结论中,正确的选项是〔 〕A .a ·c>0B .b<0C .b 2-4ac<0D .2a+b=02.在直角坐标系中,函数y= -3x 与y=x 2-1的图象大致是〔 〕A .B .C .D .班级姓名考号3.函数y=ax 2+bx+c 的图象如下图,那么此函数的 解析式是〔 〕A .y= - x 2+2x+3B .y =x 2-2x-3C .y= - x 2-2x+3D .y = -x 2-2x-34.P 〔2,-2〕在反比例函数y =x k 的图象上,那么 函数的解析式为〔 〕A .y=x 2-B .x y 4-=C .x y 2=D .xy 4= 5.以下四个函数中,y 随x 的增大而减小的是〔 〕A .y=2xB .y=)0(1>x xC .y=x+1D .y=x 2〔x>0〕. 6. 如图,自圆外一点P 引两条割线PAB 和PCD, 连结AD 、BC 相交于E,那么以下各式中成立的是〔 〕.(A)PA ·AB=PC ·PD (B) AE ·BE=CE ·DE(C) PB ·AB=PD ·CD (D) PA ·BC=PC ·AD7.在以下命题中,正确的为〔 〕〔A 〕两圆相切,其公切线必垂直连心线;〔B 〕两圆相交,连心线与外公切线相交;〔C 〕连心线是两圆公共的对称轴; 〔D 〕两圆无公共点,两圆外离时.8.两圆相切,圆心距为7cm,小圆半径为3cm,那么大圆半径为〔 〕.〔A 〕10cm 〔B 〕4cm 〔C 〕10cm 或4cm 〔D 〕8cm9.两圆的半径分别为12和 4,外公切线长为 15,那么两圆的位置关系是( )(A)内切 (B)相交 (C)外切 (D)外离10.两圆的内公切线长为3,半径分别为2√3 和√3 ,那么内公切线与连心线的夹角为( ).(A)30º (B)45º (C)60º (D)90º 三.解做题〔每题10分〕1.假设二次函数y=mx 2-(m-2)x-1的图象与x 轴的交点坐标为A 〔a,0〕、B(b,0), 且a+b=ab,试求m 的值.2.如图,在平面直角坐系中,直线y=x与反比例函数的图象在第一象限相交于点A,OA的长度是22.〔1〕求点A的坐标;〔2〕求此反比例函数的解析式.四.计算.〔1题8分,2题10分〕1. :如图,两圆内切于P,大圆弦PC、PD分别交于小圆于A、B两点,PA=3,AC=2,PB=2,求PD的长.2.⊙O1、⊙O2的半径分别为15cm和5cm,它们外切于点T,外公切线AB与⊙O1和⊙O2分别切于点A、B,求外公切线的长AB.五.解做题〔此题12分〕二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点:〔1〕求这个函数的解析式〔2〕求函数图顶点的坐标〔3〕画出函数图象六. 证实题〔此题10分〕⊙O 1和⊙O 2相交与点B 和C,A 是⊙O 1上另一点,AT 是⊙O 1的切线,又 直线AB 与AC 交⊙O 2于点D 和E.求证:AT ∥DE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玉溪第十中学初三年级上学期第三次月考检测
九年级数学试卷
一、 细心选一选,慧眼识金! (本大题共8小题,每小题3分,共24分)
(将答案填在最后的表格内)
1.在下列图形中,既是轴对称图形又是中心对称图形的是( )
2.下列计算中,正确的是( ) A .39±= B .
()222
=-
C .()3333
=- D .523=+ 3.下列说法错误的是( )
A .必然事件发生的概率为1
B .不确定事件发生的概率为0.5
C .不可能事件发生的概率为0
D .随机事件发生的概率介于0和1之间
4.一元二次方程04
1
2
=+
+x x 根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根
C .只有一个实数根
D .无法确定
5.若半径分别为4和7的两圆相切,则两圆的圆心距可能是( )
A. 3
B. 11
C. 11或3
D. 7
6.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,将△AOB 绕点O
按逆时针方向旋转到△COD 的位置,则旋转的角度为( )
A .30°
B .45°
C .90°
D .135°
7.某商品原售价100元,经过连续两次提价后售价为121元,若每次提价的百分率是x ,根据题意,下面列出的方程正确的是( ) A .100(1+x)=121 B .100(1-x)=121 C .100(1+x)2=121 D .100(1-x)2=121
学校 班级 姓名 考场 考号 座位号
※※※※※
※※※※※※
※※※※※
※※※※
※※ 装 ※※※ 订 ※※※ 线 ※※※※※※※※※※※※※※※※※※※※
A
B
C
D
O
A .
B .
C .
D .
8.如图,在一块菱形菜地ABCD 中,对角线AC 与BD 相交于点O ,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是( ) A .1
B .1
2
C .1
3
D .14
二、开动脑筋,耐心填一填!(本大题共7小题,每小题3分,共21分) 9.已知3是关于x 的方程x 2-5x+c=0的一个根,则c
的值
为 .
10.如果圆锥底面圆的直径为8,母线长度为12,则这个圆锥的侧面展开扇形的圆心角的度数是 .
11.已知⊙1O 与⊙2O 的半径分别是方程0342=+-x x 的两实根,
121+=t O O ,若这两个圆相切,则t= . 12.如图,将一把两边都带有刻度的直尺放在半圆形 纸片上,使其一边经过圆心O ,另一边所在直线 与半圆相交于点D 、E ,量出半径cm OC 5=,弦
cm DE 8=,则这把直尺的宽度为 .
13.如图,△ABC 是⊙O 的内接三角形,∠C=30°,弦AB=2,则⊙O 的
直径长为
.
14.如图,在⊙O 中,若∠AOB=110°,则弦AB 所对的圆周角度数为 .
15.如图,⊙A 、 ⊙B 、 ⊙C 、 ⊙D 两两不相交,且半径都是2cm ,则图中阴影部分的面积是 .
三、开心做一做,你一定是学习中的强者 (本大题共9
小题,共55分)
16.(本小题5
分)计算:
2
20
1(1)7(2013)3π-⎛⎫-
--+-+ ⎪⎝⎭
17.(本题6分,每小题3分)解方程:
(1)022=-+-x x x )( (2)027122
=++x x
D
A
C B
.O 第13题图
第14题图
第15题图
18.(本小题6分)已知关于x 的一元二次方程2
250x x a --=
(1)如果此方程有两个不相等的实数根,求a 的取值范围; (2)当a 为何值时,方程的两个根互为倒数,求出此时方程的解.
19.(本小题6分)大半圆和小半圆相切于点C ,大半圆的弦AB 与小半圆
的半径相切于点P ,且A B ∥CD ,AB=4cm ,求阴影部分的面积.(结
果保留π)
20.(本小题6分)端午节吃粽子是中华民族的传统习俗.据了解,甲厂
家生产了A ,B ,C 三个品种的盒装粽子,乙厂家生产了D ,E 两个品
种的盒装粽子.端午节前,某商场在甲、乙两个厂家中各选购一个品
种的盒装粽子销售.
(1)请用树状图或列表法写出所有选购方案;
(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的B
品种粽子被选中的概率是多少?
21.(本小题6分)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30o ,在点A 处有一栋居民楼,OA=300m ,如果火车行驶时,周围250m 以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向行驶时,居
民楼是否会受到噪音的影响?如果火车行驶的速度为72km/h ,居民楼受噪音影响的时间约为多少秒?
学校 班级 姓名 考场 考号 座位号
※※※※※※※※※※※※※※※※※※※※※※ 装 ※※※ 订 ※※※ 线 ※※※※※※※※※※※※※※※※※※※※
22.(本小题6分)如图,已知点E 在△ABC 的边AB 上,∠C =90°,∠BAC
的平分线交BC 于点D ,且D 在以AE 为直径的⊙O 上. (1)求证:BC 是⊙O 的切线;
(2)已知∠B =30°,⊙O 的半径为6,求线段AD 的长.
23.(本小题7分)如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,OF AC ⊥于点F.
(1)请探索OF 和BC 的关系并说明理由;
(2)若30D ∠= ,1BC =时,求圆中阴影部分的面积.(结果保留π)
24.(本小题7分)如图,平面直角坐标系中,已知点P (-2,-1),点T
(t,0)是x 轴上的一个动点.

1)求点P 关于原点的对称点Q (2)当t 为何值时,△OTQ
友情提示:请同学们做完试卷后,再认真仔细地检查一遍,预祝你考出好成绩!
B。

相关文档
最新文档