基于DSP的SVC控制系统设计(论文)
基于DSP的最小应用系统设计实现毕业设计论文.doc
基于DSP的最小应用系统设计实现摘要语音信号处理就是研究如何能更加有效地产生、传输和获取语音信息的学科。
本论文首先介绍了语音信号处理的发展概况及国内外研究现状,并对未来发展做了展望,分析了语音特征参数的物理意义以及如何对其进行提取。
在硬件部分本文主要围绕TMS320VC5402为核心,给出一个语音处理系统的设计方案。
首先对DSP系统的组成简要说明了一下,然后给出了设计的基本框架,接下来分别就音频转换模块、电源电压转换模块等主要部分做了详细说明,最后对其它附属电路简要介绍。
在设计中应用到了数字信号处理器(DSP)技术。
在软件部分本文首先对TI公司的DSP开发工具CCS作了介绍,接着对DSP软件开发流程进行了简要的叙述,然后就详细的分别对DSP的初始化、音频采集、TMS320VC5402的并行引导装载程序进行了分析与设计。
本文所涉及内容属于一个语音识别系统的一部分,在研究过程中对于语音处理的发展与研究现状进行了深入了解,对于TMS320VC5402芯片的性能参数以及软硬件相关知识掌握较详细,熟悉了DSP系统的设计与开发流程。
关键词:语音信号处理;特征参数;数字信号处理器;ISD4004;SPIAbstractSpeech signal processing is a subject to study how to produce,transmit and obtain speech information effectively.The thesis starts with a literature review about the development of speech signal processing and provides an expectation for the future.Next.an analysis is carried out on production mechanism of speech signal,setting up a simple and feasible mathematic model to analyze the physical significance of speech characteristic parameter and how to determine it.From the aspect of its hardware,a designing project of the speech processing system is established on the basis of TMS320VC5402.The project first gives a brief introduction about the composition of DSP system and then displays its basic framework.Next ,all elaboration is provided for the parts like selection of chip,module of audio frequency switch,extended memorizer, UART data communication and power voltage switch.The technology of DSP is applied in the designing process.From the aspect of software.the thesis starts with an introduction about CCS.and then about DSP software developing flow.At last,a detailed elaboration is given respectively to the designing and analysis of initialization of DSP collection of audio frequency and parallel boot load procedure of TMS320VC5402 The study in the thesis touches upon a part of a speech identification system.A profound exploration has been conducted on the areas like development and research statement of speech processing,capability parameter of TMS320VC5402 chip, knowledge about software and hardware,as well as the designing and developing flow of DSP system.Key words:speech signal processing,characteristic parameter, Digital signal processor, information storage devices 4004 (ISD4004),Serial Peripheral Interface(SPI目录摘要 (I)Abstract........................................................... I I 第1章绪论. (1)1.1引言 (1)1.2系统设计的意义 (2)1.3 系统设计的目的 (2)1.4 系统采用的实现方法 (3)第2章 DSP控制技术和开发环境介绍 (4)2.1 DSP核心芯片TMS320C5402引脚的介绍 (4)2.1.1 概述 (4)2.1.2TMS320C5402主要性能参数 (4)2.1.3TMS320C5402引脚功能说明 (4)2.2 CCS开发环境和建立工程 (7)2.2.1 CCS简介 (7)2.2.2 CCS的组成 (7)2.2.3 CCS的主要功能 (8)2.3 ISD4004 介绍 (9)2.3.1 性能简述和引脚图 (9)2.3.2 引脚描述 (9)2.4 SPI(串行外设接口) (11)2.4.1协议介绍 (11)2.4.2 信息管理 (11)2.4.3 ISD4004与DSP的SPI时序配合 (13)2.4.4ISD4004语音芯片的内部信息寻址机制 (14)第三章系统硬件设计 (15)3.1系统硬件总体框图 (15)3.2硬件电路图 (15)3.4 PCB设计 (18)第四章系统软件设计 (19)4.1程序流程图 (19)4.2系统关键程序设计 (20)4.2.1 TMS320VC5402 McBSP初始化程序 (20)4.2.2ISD4004录音子程序 (21)4.2.3 ISD4004放音子程序 (24)第五章系统测试 (26)5.1 测试内容 (26)第六章总结 (28)参考文献 (29)附录 (30)附录一系统硬件PCB 3D视图 (30)附录二软件设计主程序 (31)致谢 (35)第1章绪论1.1引言语音,作为一种典型的非平稳随机信号,是人类交流信息最自然、最有效、最方便的手段,在人类文明和社会进步中起着重要的作用。
基于DSP的交流伺服控制系统
目 录
• 引言 • dsp芯片及控制技术 • 交流伺服系统组成与工作原理 • 基于dsp芯片实现交流伺服控制策略 • 硬件电路设计与实现 • 软件编程与调试技巧分享 • 总结与展望
01 引言
背景与意义
交流伺服控制系统的发展
随着工业自动化的推进,交流伺服控制系统在机械制造、 航空航天等领域的应用越来越广泛,对系统的性能要求也 越来越高。
电机
交流伺服系统的执行元件,通 常采用永磁同步电机或感应电 机。
传感器
用于实时监测电机的位置和速 度等参数,为控制器提供反馈
信号。
工作原理及特点分析
工作原理
交流伺服系统通过控制器对电机进行精确的位置、速度和加速度控制。控制器 根据设定值和反馈信号计算出控制量,通过功率变换器驱动电机转动。传感器 实时监测电机的状态并反馈给控制器,形成闭环控制。
dsp在交流伺服控制中应用
交流伺服控制系统概述
交流伺服控制系统是一种高性能的电机控制系统,能够实现电机的精确位置、速度和转矩 控制。
DSP在交流伺服控制中的作用
作为控制系统的核心处理器,DSP芯片负责实现电机的控制算法,包括矢量控制、直接转 矩控制等,同时完成电机的状态监测和故障诊断等功能。
应用实例
通讯接口设计
根据实际需求,设计CAN、RS485等通讯接口电路,实现与上位机或其他设备的通讯功能。注意通讯接 口的电气特性和通讯协议,确保通讯的稳定性和可靠性。
pcb布局布线规则分享
布局规则
按照功能模块进行布局,将主电路、辅助电路、控制电路等分开布局,便于维修和调试。同时,注意元器件之间 的间距和散热问题。
实现过程
在dsp芯片上实现控制算法,包括算 法编程、调试和测试等步骤,确保算 法的正确性和实时性。
静止无功补偿器(SVC)仿真研究毕业论文
中国矿业大学本科生毕业设计姓名:张贵稀学号:21056373 学院:应用技术学院专业:电气工程及其自动化设计题目:静止无功补偿器(SVC)仿真研究专题:指导教师:马草原、王崇林职称:讲师、教授2009年6月徐州中国矿业大学毕业设计任务书学院应用学院专业年级电气05-1 学生姓名张贵稀任务下达日期:2009年3月9 日毕业设计日期:2009年3月9日至2009年6月5日毕业设计题目:静止无功补偿器(SVC)仿真研究毕业设计专题题目:毕业设计主要内容和要求:低功率因数是供电系统普遍存在的问题,已成为供电领域迫切需要解决的重要课题之一。
无功补偿是维持电网电压稳定,维护电力系统安全运行的重要手段。
无功补偿技术是当前研究的热点之一。
无功补偿技术主要包括大功率电子器件、无功电流检测方法、无功的补偿控制技术等主要内容。
基于本国国情,在我国较长一段时间内,静止无功补偿器(SVC)仍然占据重要地位,因此,本文选择以静止无功补偿器((SVC)为无功补偿研究对象。
本课题要求:1 熟悉SVC主电路的结构特点;2 分析SVC的工作原理,建立合适的模型;3 熟悉SVC的常规控制策略;4 利用PSCAD建立SVC的仿真模型并利用仿真模型分析SVC对负荷进行无功补偿的过程。
院长签字:指导教师签字:中国矿业大学毕业论文指导教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日中国矿业大学毕业论文评阅教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业论文评阅教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业设计答辩及综合成绩摘要电网功率因数偏低已成为当今供电领域迫切需要解决的重要课题之一。
1129 基于DSP的静止无功补偿系统设计
(1)
电容器提供的容性无功容量。TCR 能提供的感性无功 可由式(3)计算。TCR 的三相接线形式大都采用三角形 联接,因为这种形式比其他形式线电流中的谐波含量 要小。另外,实际工程中一般将每一相电抗分成两部 分,分别接在晶闸管对的两端。这样可以防止当电抗 器两端发生短路时,整个交流电压加到晶闸管上而导 致其损坏。 (2) Q c = 3U 2 B c = 3U 2ωC 2(π − α ) + sin 2α (3) Q L = 3U 2 B r = 3U 2 πωL TCR 的运行是会引起谐波电流的,通常需要给 SVC 系统安装无源滤波器组来尽量减少 SVC 对系统 的谐波电流注入。无源滤波器是由滤波电容器、电抗 器和电阻器适当组合的滤波装置, 与 TCR 并联起到滤 波作用。图 3 中的滤波器为单调谐滤波器,滤波器对 n 次谐波的阻抗为 1 (4) Z fn = R fn + j nωs L − nω C s 单调谐滤波器利用 L、C 谐振原理构成,当 L、C 满足式(5)时, 滤波器的对 n 次谐波的阻抗会非常小, n 次谐波大部分流入滤波器,从而达到滤除该次谐波的 目的。 1 (5) n= ωs LC 控制系统采用了以 TI 公司的 TMS320F2812 为核 心的一块 DSP 板,F2812 的工作主频为 150Mhz,完 全能满足 SVC 的实时控制要求。该电路板还外扩了 1 6 位 12 路同时采样, 每通道转换速率为 250KSPS 的 A D,以保证所采集电压电流信号的精度和速度。此外 还外扩了 4 通道 16 位的 DA 用来给脉冲触发板提供触 发角信号,对于平衡性负载只需要其中 1 个通道就可 以满足要求,对于不平衡负载则需要分相调节,此时 就需要 3 个通道。 外扩 4M 的 Flash 可为程序代码预留 出足够的空间, 而外扩的 256K 的 RAM 则可以提高代 码的运行效率。此外还有键盘和液晶显示,方便人机 界面的设计。作为一个完整的设备,SVC 除了主电路 和控制系统以外,还要具有监测、散热、保护等子系 统才能正常工作。 TCR 脉冲触发板采用模拟电路和 CPLD 来实现, 接收 DSP 控制板 DA 出来的 4V 到 6V 模拟电压信号, 发出对应触发角为 90°到 180°的脉冲信号。TCR 脉 冲触发板的同步信号来自于图 3 中的电压互感器,此 外还要采集晶闸管的中的电流信号来实现过流保护。
基于DSP的永磁同步电动机矢量控制系统研究 电气工程及其自动化专业毕业设计 毕业论文
诚信声明本人声明:1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料;3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。
作者签名:日期:年月日湖南工程学院毕业设计(论文)任务书————☆————设计(论文)题目:基于DSP的永磁同步电动机矢量控制系统研究姓名周琳系别应用技术学院专业电气工程及其自动化班级0786 学号200713010616指导老师颜渐德教研室主任谢卫才一、基本任务及要求:1)掌握矢量控制的基本原理。
2)掌握永磁同步电动机矢量控制系统。
3)利用MATLAB软件仿真,分析。
4)硬件设计及软件设计二、进度安排及完成时间:2月20日:布置任务,下达设计任务书2月21日——3月10日:查阅相关的资料(总参考文章15篇,其中2篇以上IEEE的相关文章)。
3月13日——3月25日:毕业实习、撰写实习报告3月27日——5月30日:毕业设计、4月中旬毕业设计中期抽查6月1日——6月7日:撰写毕业设计说明书(论文)6月8日——6月10日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP。
6月11日——6月12日:毕业设计答辩目录摘要 (I)ABSTRACT (II)第1章概述 (1)1.1永磁同步电动机的发展概况及应用前景 (1)1.1.1 永磁同步电动机发展概况 (1)1.1.2 永磁同步电动机特点及应用 (2)1.2永磁同步电动机控制系统的发展现状与趋势 (3)1.3课题研究的背景及本文的主要研究内容 (4)1.4本课题的研究意义 (5)第2章永磁同步电动机的结构及其数学模型 (7)2.1永磁同步电动机的结构 (7)2.2永磁同步电动机的数学模型 (8)2.2.1 永磁同步电机在静止坐标系(UVW)上的模型 (8)α-)上的模型方程 (10)2.2.2 永磁同步电机在两相静止坐标系(β2.2.3 永磁同步电机在旋转坐标系(d q-)上的数学模型 (12)第3章永磁同步电机矢量控制及空间矢量脉宽调制 (16)3.1永磁同步电机的控制策略 (16)3.1.1永磁同步电机外同步控制策略 (16)3.1.2 永磁同步电机自同步控制策略 (16)3.1.3 永磁同步电动机的弱磁控制 (19)3.2空间矢量脉宽调制(SVPWM) (19)3.2.1 空间矢量脉宽调制原理 (19)3.2.2 空间矢量脉宽调制实现 (22)3.3PI控制器的设计 (24)3.3.1 电流环PI控制器的设计 (24)3.3.2 速度环PI控制器的设计 (25)第4章系统仿真模型 (26)4.1MATLAB仿真工具箱简介 (26)4.2闭环控制系统仿真 (27)4.3仿真结果及分析 (31)第5章永磁同步电机控制器的硬件设计 (34)5.1功率变换单元的设计 (34)5.1.1 三相桥式主电路 (35)5.1.2 IR2130驱动器 (36)5.1.3 信号隔离电路 (38)5.2检测单元的设计 (38)5.2.1位置检测单元的设计 (38)5.2.2 电流检测电路 (40)5.2.3 电压检测电路 (40)5.3控制器的设计 (41)5.3.1 DSP的特点和资源 (42)5.3.2 系统设计中所用的DSP硬件资源 (43)5.4电平转换 (44)5.5保护电路的设计 (45)5.5.1 过流保护电路 (45)5.5.2 过压保护电路 (46)5.5.3 上电保护电路 (46)5.5.4 系统保护电路 (47)第6章永磁同步电机控制器的软件设计 (48)6.1DSP软件一般设计特点 (48)6.1.1 公共文件目标格式 (48)6.1.2 Q格式表示方法 (49)6.2控制系统软件的总体结构 (50)6.3控制系统子程序设计 (53)6.3.1 位置和速度计算 (53)6.3.2 速度、电流PI控制 (55)6.3.3 电流的采样与滤波 (56)6.3.4 坐标变换软件实现 (58)6.3.5 正余弦值的产生 (58)6.3.6 空间矢量PWM程序 (59)结束语 (60)参考文献 (61)致谢 (62)附录 (63)基于DSP永磁同步电动机矢量控制系统研究摘要:本论文在分析了PMSM的结构、数学模型的基础上采用弧公司专用于电机控制的TMS320F2407A型数字信号处理器作为核心,开发了全数字化的永磁同步电机矢量控制调速系统,主要完成了以下几个方面的工作:(1)本文查阅大量的文献资料,阐述了永磁同步电机的发展概况及应用以及其控制系统的发展现状,讨论了此课题的研究意义。
《DSP原理及应用》课程论文题目及要求
《DSP原理及应用》课程论文题目及要求
《DSP原理及应用》课程论文题目及要求
一、论文题目:
设计一个以DSP为主要部件的能实现一定功能的系统,完成一篇《基于DSP 的×××系统设计》课程论文。
二、论文格式和内容要求:
1.封面:
《DSP原理及应用》课程论文题目:基于DSP的×××系统设计
班级:
姓名(学号):
2.正文部分:
一、系统功能:用文字、图形描述系统实现的功能。
二、设计方案:说明系统采用的方案及采用该方案的原因。
三、硬件设计:给出用CAD软件绘制的硬件原理图并作简明扼要的说明。
四、软件设计:模块划分说明,程序流程图及带注释的程序清单。
五、系统测试:说明系统测试方案与测试的结果。
六、心得体会:设计调试过程中遇到的问题及解决办法;学习这门课程
的所获;对这门课程的教学建议等。
七、参考文献。
三、上交的材料:
1、课程论文的打印文档;
2、课程论文的电子文档(以“学号姓名论文题目”做主文件名)、以“学号”命名的CCS工程文件夹。
基于DSP的直流电机控制系统设计本科毕业论文
基于D S P的直流电机控制系统设计摘要:直流电机由于励磁磁场和电枢磁场完全解耦,可以独立控制,因此具备良好的调速性能,出力大、调速范围宽和易于控制,广泛应用于电力拖动系统中;而随着对电机控制要求的不断提高,普通的单片机越来越不能满足对电机控制的要求,DSP技术的发展正好为先进控制理论以及复杂控制算法的实现提供了有力的支持;本设计采用美国TI公司专门为电机数字化控制设计的16位定点DSP 控制器TMS320LF2407作为微控制器;该芯片集DSP信号高速处理能力及适用于电机控制优化的外围电路于一体,可以为高性能传动控制技术提供可靠高效的信号处理与控制硬件;电机的控制系统是由检测装置、主控制器、功率驱动器以及上位机组成,其中DSP控制器是电机控制系统的关键部分,负责对电机的反馈信号进行处理并输出控制信号来控制电机的转动;关键词:直流电机; DSP; PID控制器; PWMThe Design of DC Motor Control System Based on DSP Abstract:The DC motor armature magnetic field and the excitation completely decoupled, it can be independently controlled, so it has a good speed performance, contribute to a large power, widely speed range, and easy to control, so it is widely used in electric drive systems. With the motor control required for continuous improvement, common single MCU can't meet requirements of the motor control well, DSP technology just for the advanced control theory and complex control algorithm implementation provides a strong support.This design uses the American TI company specially for motor control design of digital 16 fixed-point DSP controller TMS320LF2407 as the controller. The chip set DSP signal the high processing capacity and used in motor control optimization the periphery of the circuit in a body, high performance driving control technology to provide reliable and efficient signal processing and control hardware. Motor control system is composed of detection devices, the main controller, power driver and PC componen ts, whichDSP controller is a key part of the motor control system , responsible for the motor feedback signal processing and output control sig n al to control the rotation of the motor.Keywords:DC motor, DSP, PID controller, PWM目录第1章绪论课题概述课题研究的背景电气传动是以电动机的转矩和转速为控制对象,按生产机械工艺要求进行电动机转速控制的自动化系统;根据电动机的不同,工程上通常把电气传动分为直流电气传动和交流电气传动两大类;纵观电气传动的发展过程,交流与直流两大电气传动并存于各个时期的各大工业领域内,虽然它们所处的地位和作用不同,但它们始终随着工业技术而发展的;特别是随着电力电子技术和微电子学的发展,在相互竞争中完善着自身,发生着变更;由于直流电机具有良好的线性调速特性,简单的控制性能,因此在工业场合应用广泛;近代,随着生产技术的发展,对电气传动在起制动、正反转以及调速能力、静态特性和动态响应方面都提出了更高的要求,所以计算机控制电力拖动控制系统已成为计算机应用的一个重要内容;直流调速系统在工农业生产中有着更为广泛的应用;随着计算机技术和电力电子技术的飞速发展,两者的有机结合使电力拖动控制技术产生了新的变化;电力电子技术、计算机技术和直流拖动技术的组合是技术领域的交叉,具有广泛的应用前景;有不少的研究者己经在用DSP作为控制器进行研究;直流调速控制系统的控制方法经历了机械式的、双机组式的、分立元件电路式的、集成电路式的、单片机式的发展过程;随着数字信号处理器DSP的出现,给直流调速控制提供了新的手段和方法;将计算机技术的最新发展成果运用在直流调速系统中,在经典控制的基础之上探讨一种新的控制方法,为计算机技术在电力拖动控制系统中的应用做些研究性的工作;用计算机技术实现直流调速控制系统,计算机的选型很多;经过选择,选取DSP芯片作为控制器;直流调速系统的内容十分丰富,有开环控制系统,有闭环控制系统;有单闭环控制系统,有双闭环控制系统和多闭环控制系统;有可逆调速系统,有不可逆调速系统等9;开展本课题研究的控制对象是闭环直流调速系统;研究的目的是利用计算机硬件和软件发展的最新成果,对控制系统升级进行研究;研究工作是在对控制对象全面回顾总结的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件环境的探讨,控制策略和控制算法的探讨等内容;目前,对于控制对象的研究和讨论很多,有比较成熟的理论,但实现控制的方法和手段随着技术的发展,特别是计算机技术的发展,不断地进行技术升级;这个过程经历了从分立元件控制,集成电路控制和单片计算机控制等过程;每一次的技术升级都是控制系统的性能有较大地提高和改进;随着新的控制芯片的出现,给技术升级提供了新的可能;电机控制是DSP应用的主要领域,随着社会的发展以及对电机控制要求的日益提高,DSP将在电机控制领域中发挥越来越重要的作用;课题研究的目的及意义长期以来,直流电机一直占据着速度控制和位置控制的统治地位;由于它具有良好的线性调速特性,简单的控制性能,高质高效的平滑运转的特性,尽管近年来不断受到其它电动机的挑战,但到目前为止,就其性能来说仍无其它电动机可比;在控制系统的构成上,本课题对硬件电路进行了设计,而这个硬件系统具有一定的通用性,也即可以将它作为一个硬件平台,在其它过程控制中应用;另外,由DSP的特点量身订做,可以在其它的控制系统中根据不同的要求进行外围电路的设计,进而来构成硬件系统,这样既便于设计思想的物化,又使得设计系统更加紧凑,不浪费资源;本直流电机控制系统采用经典的数字增量式PID控制算法,在本文中对数字增量式PID控制的理论、设计和实现进行了较为详细的论述; 课题研究的现状近些年来,随着现代电力电子技术、控制技术和计算机技术的发展,电机的应用技术也得到了进一步的发展,新产品、新技术层出不穷;除了人们己经熟悉的普通电机外,许多不同用途的特种电机也不断问世,如广泛应用于办公设备的无刷直流电机和高精度的步进电机、用于照相机的超声波电机、用于心脏血液循环系统的微型电机等等;另一方面,由于应用了电力电子技术,电机的控制技术变得更加灵活,效率也更高,如变频器控制的异步电机及伺服系统即是典型的例子1;在实际中,电机应用已由过去简单的起停控制、提供动力为目的应用,上升到对其速度、位置、转矩等进行精确的控制,使被驱动的机械运动符合预想的要求;例如在工业自动化、办公室自动化和家庭住宅自动化方面使用大量的电机,几乎都采用功率器件进行控制,将预定的控制方案、规划指令转变成期望的机械运动;这种新型控制技术己经不是传统的“电机控制”或“电气传动”而是“运动控制”;运动控制使被控机械实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制;因此现代电机控制技术离不开功率器件和电机控制器的发展5;电机的控制器经历了从模拟控制器到数字控制器的发展;由于模拟器件的一些参数受外界因素影响较大,并且它的精度也差;所有这些都使得模拟控制器的可重复性比较差,控制效果不理想,因此调速电机的控制器逐渐朝数字化方向发展;数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等优点;随着现有的工业电气传动、自动控制和家电领域对电机控制产品需求的增加用户也不断提高对电机控制技术的要求5;总是希望能在驱动系统中集成更多的功能,达到更高的性能;许多设备试图使用8位或是准16位的微处理器实现电机的闭环控制,然而它们的内部体系结构和计算功能都阻碍了这一要求的实现;例如,在很多领域如工业、家电和汽车,用户希望使用效率高且去掉霍尔效应传感器的电机;这种电机的控制可以通过使用先进的电机控制理论、采用高效的控制算法来实现;但是这可能超出上述微处理器的计算能力;使用高性能的数字信号处理器DSP来解决电机控制器不断增加的计算量和速度需求是目前较为普遍的做法;将一系列外围设备如模数转换器A/D、脉宽调制发生器PWM和数字信号处理器DSP集成在一起,就获得一个既功能强大又非常经济的电机控制专用的DSP芯片;近年来,各种集成化的一单片DSP的性能得到很大的改善,软件和开发工具越来越多,越来越好,价格却大幅度降低;低端产品的价格已接近单片机的价格水平,但却比单片机具有更高的性能价格比;越来越多的单片机用户开始选用DSP器件来提高产品性能,DSP器件取代高档单片机的时机己成熟13;首先,与单片机相比,DSP器件具有较高的集成度;DSP具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO缓冲器,提供高速、同步串口和标准异步串口;有的片内集成了A/D和采样/保持电路,可提供PWM输出;更为不同的是,DSP器件为精简指令器件,大多数指令都能在一个周期内完成,并且通过并行处理技术,使一个指令周期内可完成多条指令;同时DSP采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据;又配有内置高速硬件乘法器、多级流水线,使DSP 器件具有高速的数据计算能力;而单片机为复杂指令系统计算机CISC,多数指令要2-3个指令周期来完成;单片机采用冯.诺依曼结构,程序和数据在同一空间存取,同一时刻只能单独访问指令和数据、ALU只能做加法,乘法需要由软件来实现,因此占用较多的指令周期,也就是说速度比较慢;所以,结构上的差异使DSP器件比准16位单片机单指令执行时间快8-10倍,完成一次乘法运算快16-30倍;DSP器件还提供了高度专业化的指令集,提供了FFT快速傅立叶变换和滤波器的运算;此外,DSP器件提供了JTAG Joint Test Action Group接口,具有更先进的开发手段,批量生产测试更方便;其次,基于DSP芯片制造的电机控制器可以降低对传感器等外围器件的要求;通过复杂的算法达到同样的控制性能,降低成本,可靠性高,有利于专利技术的保密;现在各大DSP生产厂家都推出自己的内嵌式DSP电机控制专用集成电路;如占DSP市场份额45%的美国德州仪器公司,凭借自己的实力,推出了电机控制器专用DSP--TMS320C24x;新的TMS320C24x DSP采用TI公司TMS320C2xLP16位定点DSP核,并集成了一个电机事件管理器,后者的特点是可以最佳方式实现对电机的控制;该器件利用TI的可重用DSP核心技术,显示出TI的特殊能力一通过在单一芯片上集成一个DSP和混合信号外设件,制造出面向各种应用的DSP方案;TMS320C24x作为第一个数字电机控制器的专用DSP系列,可支持用于电机控制的指令产生、控制算法处理、数据交流和系统监控等功能;集成的DSP核、最佳化电机控制器事件管理器和单片式A/D设计等诸多功能块加在一起,就可以提供一个单芯片式数字电机控制方案;系列中的TMS320LF2407包括一个30MIPSDSP核、两个事件管理器、32位的中央算术逻辑单元、多达16通道的IO位A/D转换器、64K的I/0空间和一个32K字的闪速存储器,它利用TMS320的定点DSP软件开发工具和JTAG仿真支持,可使电机控制领域的研发人员方便地调试控制器和脱机使用;第三,DSP运算速度快,控制策略中可以使用先进的实时算法,如自适应控制、卡尔曼滤波、状态预估等,大大提高控制系统的品质;而且DSP 控制软件可用C语言或汇编语言编写或者二者嵌套使用;因此采用DSP 芯片制造的电机控制器便于用户的调试和应用;最后,在越来越多的场合,如电动汽车、纺织行业、水泵变频调速系统等,他们往往是规模比较大,时序、组合逻辑都很复杂的情况,这时如果同时运用DSP芯片和一些其它的可编程逻辑器件可以大大减小系统的体积、提高系统运算能力,实现复杂的实时控制;课题研究的内容本文主要研究基于DSP的直流电机控制系统,通过控制算法和调速方法的分析,利用电机调速、DSP芯片控制、上位机通信、按键模块等的基本原理及相关知识,实现对电机的速度控制;整个系统的基本思想就是利用DSP内部资源产生可控制的脉冲控制整流电压,改变串入主回路中的直流电动机的电磁转矩,实现电动机的转速调节;研究内容包括如下:1电机控制系统功能实现的分析;2控制算法与调速方法的分析与设计;3电机驱动、电源模块、按键模块、测速、显示模块的硬件设计与实现;4系统主程序、按键扫描、控制算法、测速、电机速度控制等程序的分析、设计与实现;5电机控制系统整机测试与实现;第2章系统总体设计系统的组成由图2-1可知,该设计包含DSP控制单元、功率驱动单元、检测单元、显示单元、通信单元五个部分;DSP控制单元:对来自上位机的给定信号和来自传感器的反馈信号按一定的算法进行处理,输出相应的PWM波,经过光电隔离部分,送给功率驱动单元;功率驱动单元:对来自DSP控制器的PWM信号进行功率放大后送给直流电动机的电枢两端,驱动电机与负载;速度检测单元:采集电机的速度信息,并送给主控制器;显示单元:将采集到的电机转速信息予以显示;通信单元:负责主控制器与上位机及外设的信息交换;图2-1 系统总体框图2. 2 DSP芯片选择直流电机的调速控制系统一般采用电机专用微处理器,其种类主要包括复杂指令集CISC处理器如工NTEL196MX系列单片微控制器,精简指令集RISC如日立公司SH704x系列单片微控制器,哈佛结构DSP处理器如TI公司T145320F24X系列DSP;一般用于直流电机控制的徽处理器性能要满足以下几个方面:1指令执行速度;2片上程序存储器、数据存储器的容量及程序存储器的类型;3乘除法、积和运算和坐标变换、向量计算等控制计算功能;4中断功能和中断通道的数目;5用于PWM生成硬件单元和可实现的调制范围以及死区调节单元;6用于输入模拟信号的A/D转换器;7价格及开发环境;DSP一般采用哈佛或者改进的哈佛结构,程序空间和数据空间分离,程序的数据总线和地址总线分离,数据的数据总线和地址总线分离;这种结构允许同时访问程序指令和数据,在同一机器周期里完成读和写,并行支持在单机器时钟内同时执行算术、逻辑和位处理操作,极大地提高了执行速度,并且电机控制专用DSP具备丰富的设备和接口资源;TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于国际领先地位,是公认的世界DSP霸主;本论文选择了TI公司的TMS320LF2407DSP作为直流电机控制系统的微处理器;TMS320LF2407 DSP 控制器介绍TMS320LF2407 DSP是专为数字电机控制和其它控制系统而设计的;是当前集成度最高、性能最强的运动控制芯片;不但有高性能的C2XX CPU 内核,配置有高速数字信号处理的结构,且有控制电机的外设;它将数字信号处理的高速运算功能,与面向电机的强大控制功能结合在一起,成为传统的多微处理器单元和多片系统的理想替代品12;TMS320LF2407的片内外设模块包括:事件管理模块EV、数字输入/输出模块I/O、模数转换模块ADC、串行外设模块SPI、串行通信模块SCI、局域网控制器模块CAN;1事件管理器EVA和EVBTMS320LF2407提供两个事件管理器EVA和EVB模块,每个模块包含两个通用GP定时器、3个全比较/PWM单元、3个捕获单元和一个正交编码脉冲电路;事件管理器位用户提供了众多的功能和特点,在运动控制和电机控制中特别有用;通用定时器:LF2407共有4个通用定时器,每个定时器包括:一个16位的定时器增/减计数的计数器TxCNT;一个16位的定时器比较寄存器TxCMPR;一个16位的定时器周期寄存器TxPR;一个16位的定时器控制寄存器TxCON;可选择的内部或外部输入时钟;各个GP定时器之间可以彼此独立工作或相互同步工作;与其有关的比较寄存器可用作比较功能或PWM波形发生;每个GP定时器的内部或外部的输入时钟都可进行可编程的预定标,它还向事件管理器的子模块提供时毕;每个通用定时器有4种可选择的操作模式:停止/保持模式、连续增计数模式、定向增/减计数模式、逢续增/减计数模式;当计数器值和比较寄存器值相等时,比较匹配发生,从而在定时器的PWM输出引脚TxPWM/TxCMP上产生CMP/PWM 脉冲,可设置控制寄存器GPTCON中的相应位,选择下溢、比较匹配或周期匹配时自动启动片内A/D转换器;比较单元:LF2407有6个比较单元,每个EV模块有3个;每个比较单元又有两个相关的PWM输出,比较单元的时基由通用定时器1 EVA模块和通用定时器3 EVB模块提供;每个比较单元和通用定时器1或通用定时器3,死区单元及输出逻辑可在两个特定的器件引脚上产生一对具有可编程死区以及输出极性可控的PWM输出;在每个EV模块中有6个这种与比较单元相关的PWM输出引脚,这6个特定的PWM输出引脚可用于控制三相交流感应电机和直流无刷电机;由比较方式控制寄存器所控制的多种输出方式能轻易地控制应用广泛的开关磁阻电机和同步磁阻电机;捕获单元:捕获单元被用于高速I/O的自动管理器,它监视输入引脚上信号的变化,记录输入事件发生时的计数器值,即记录下所发生事件的时刻;该部件的工作由内部定时器同步,不用CPU干预;LF2407共有6个捕获单元,CAP1,CAP2,CAP3可选择通用定时器1或2作为它们的时基,但CAP1和CAP2一定要选择相同的定时器作为它们的时基;CAP4,CAP5,CAP6可选择通用定时器3或4作为它们的时基,同样CAP4和CAP5也一定要选择相同的定时器作为它们的时基;每个单元各有一个两级的FIFO缓冲堆栈;当捕获发生时,相应的中断标志被置位,并向CPU发中断请求;若中断标志己被置位,捕获单元还将启动片内A/D转换器;正交编码脉冲QEP单元:常用的位置反馈检测元件为光电编码器或光栅尺,它直接将电机角度和位移的模拟信号转换为数字信号,其输出一般有相位差为90°的A、B两路信号和同步脉冲信号C;A、B两路脉冲可直接作为LF2407的CAP1/QEP1和CAP2/QEP2引脚的输入;正交编码脉冲电路的时基由通用定时器2或通用定时器4提供,但通用定时器必须设置成定向增/减计数模式,并以正交编码脉冲电路作为时钟源;2数字输入/输出模块I/ODSP器件的数子输入/输出引脚均为功能复用引脚;即这些引脚既可作为通用I/O功能双向数据输入/输出引脚,也可作特殊功能PWM输出、捕获输入、串行输入输出等引脚;数子I/O模块负责对这些引脚进行控制和设置;两种功能的选择由I/O复用控制寄存器MCRx,x=A,B,C来控制;当引脚作为通用I/O时,由数据和方向控制寄存器PxDATDIR,x=A,B,C,D,E,F指出各I/O引脚的数据方向输入还是输出和当前引脚对应的电平高或低;读通用I/O引脚的电平或向引脚输出电平,实际上是对相应的寄存器PxDATDIR进行读写操作;3模数转换器ADC模块在自动控制系统中,被控制或被检测的对象,如温度、压力、流量、速度等都是连续变化的物理量,通过适当的传感器如温度传感器、压力传感器、光电传感器等将他们转换为连续变化的电压或电流即模拟量;模数转换器ADC就是用来讲这些模拟电压或电流转换成计算机能够识别的数字量的模块;TMS320LF2407期间内部有一个10为的模数转换器ADC;该模块能够对16个模拟输入信号进行采样/保持和A/D转换,通道的转换顺序可以编程选择;4串行通信接口SCI模块2407器件的串行通信接口SCI模块是一个标准的通信异步接收/发送UART可编程串行通信接口;SCI支持CPU与其他异步串口采用标准不返回零NRZ模块进行异步串行数字通信;SCI有空闲线和地址位两种多处理器通信方式;两个输入/输出引脚:SCIRXDSCI接收数据引脚和SCITXDSCI发送数据引脚;SCI通过一个16位的波特率选择寄存器,可编程选择64K种不同速率的波特率;SCI支持半双工和全双工操作,发送器和接收器的操作可以通过中断或转换状态标志来完成;5串行外设接口SPI模块串行外设接口SPI模块是一个高速同步串行输入/输出I/O口,它能使可编程长度1—16位的串行位流以可编程的位传输速率输入或输出器件;SPI可作为一种串行总线标准,以同步方式实现两个设备之间的信息交换,即两个设备在同一时钟下工作;SPI通常用于DSP控制器与外部设备或其他控制器之间的通信,用SPI可以构成多机通信系统,SPI还可以作为移位寄存器、显示驱动器和模数转换器ADC等器件的外设扩展口;6CAN控制器模块LF24xx系列DSP控制器作为第一个具有片上CAN控制模块的DSP芯片,给用户提供一个设计分布式或网络化运动控制系统的无限可能;CAN总线是一种多主总线,通信介质可以是绞线、同轴电缆或光导纤维,通信速率可达1 Mbps,通信距离可达10km;CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,使网络内的节点个数在理论上不受限制;由于CAN 总线具有较强的纠错能力,支持差分收发,因而适合高干扰环境,并具有较远的传输距离;2407的CAN控制器模块是一个16位的外设模块,支持CAN2. 0B协议;CAN模块有6个邮箱MBOX0—MBOX5;有用于0,1,2和3号的邮箱的本地屏蔽寄存器和15个控制/状态寄存器;CAN模块既有可编程的位速率、中断方式和CAN总线唤醒功能;自动回复远程请求;自动再发送功能在发送时出错或仲裁是丢失数据的情况下;总线出错诊断和自测模式; 硬件方案论证测速传感器的选择方案一:使用测速发电机,输出电动势E和转速n成线性关系,即E=kn,其中k是常数;改变旋转方向时,输出电动势的极性即相应改变;方案二:采用霍尔传感器,霍尔元件是磁敏元件,在被测的旋转体上装一磁体,旋转时,每当磁体经过霍尔元件,霍尔元件就发出一个信号,经放大整形得到脉冲信号,送运算;方案三:在电机的转轴上套一码盘,利用光电对管测脉冲,每转一圈OUT端输出若干个脉冲;本设计中码盘每转一圈,输出4个脉冲经比较,方案一中的测速放电机安装不如方案二中霍尔元件安装方便,并且准确率也没方案二的高,并且方案二不需A/D转换,直接可以被DSP接收;但方案二的霍尔传感器的采购不是很方便,故采用方案三,它具有方案二的几乎所有的优点;方案三中可以采用定时的方法:是通过定时器记录脉冲的周期T,这样每分钟的转速:M=60/4T=15/T;0也可以采用。
基于DSP的永磁同步电机矢量控制系统的研究
基于DSP的永磁同步电机矢量控制系统的研究一、本文概述随着科技的快速发展和工业领域的日益进步,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的调速性能,在工业自动化、电动汽车、航空航天等领域得到了广泛应用。
永磁同步电机的控制策略复杂,需要精准的控制算法以实现其性能优化。
在此背景下,基于数字信号处理器(DSP)的永磁同步电机矢量控制系统成为了研究的热点。
本文旨在探讨基于DSP的永磁同步电机矢量控制系统的设计与实现。
文章将介绍永磁同步电机的基本原理和控制策略,为后续研究提供理论基础。
将详细阐述基于DSP的矢量控制系统的硬件和软件设计,包括DSP的选择、外围电路设计、控制算法的实现等。
文章还将探讨矢量控制算法的优化,以提高永磁同步电机的运行效率和稳定性。
通过本文的研究,期望能够为永磁同步电机矢量控制系统的设计与实践提供有益的参考,推动永磁同步电机在实际应用中的性能提升,为工业领域的发展做出贡献。
二、永磁同步电机的基本理论永磁同步电机(PMSM)是一种利用永磁体产生磁场的同步电机。
与传统的电励磁同步电机相比,PMSM省去了励磁线圈和相应的励磁电源,因此结构更为简单,效率更高。
PMSM的理论基础主要涉及电机学、电磁场理论和控制理论。
在电机学方面,PMSM的运行原理基于电磁感应定律和电磁力定律。
电机通过定子电流与转子永磁体产生的磁场相互作用,实现电能与机械能的转换。
定子的三相电流在电机气隙中产生旋转磁场,该磁场与转子上的永磁体磁场相互作用,从而产生转矩,驱动电机旋转。
在电磁场理论方面,PMSM的设计和优化需要考虑电磁场分布、绕组设计、磁路设计等因素。
通过合理的电磁设计,可以提高电机的效率、降低损耗、提高转矩密度和动态性能。
控制理论在PMSM的运行中起着至关重要的作用。
矢量控制(也称为场向量控制)是一种先进的控制策略,它通过独立控制电机的磁通和转矩,实现了对PMSM的高性能控制。
矢量控制将定子电流分解为励磁分量和转矩分量,通过调节这两个分量的大小和相位,可以实现对电机转速、转矩和功率的精确控制。
基于DSP的音频信号处理系统设计
基于DSP的音频信号处理系统设计音频信号处理系统是一种通过数字信号处理器(DSP)处理音频信号并输出经过处理后的音频信号的系统。
DSP是一种专门设计用于数字信号处理的处理器。
在音频信号处理系统中,DSP通常用于滤波、均衡、压缩、混响等处理。
本文将介绍基于DSP的音频信号处理系统的设计。
1. 系统框架基于DSP的音频信号处理系统主要包括DSP芯片、输入接口、输出接口、外部存储器和控制器等。
输入接口用于将音频信号输入到DSP芯片中,输出接口用于将经过处理后的音频信号输出。
外部存储器用于存储音频数据和处理器指令等数据。
控制器用于控制系统的运行和设置处理器的参数等。
2. 音频处理算法在音频信号处理系统中,常用的音频处理算法包括滤波、均衡、压缩、混响等。
这些算法可以通过DSP芯片实现。
(1) 滤波滤波是音频信号处理中最基本的操作之一。
它可以去除信号中的杂音和噪声,使得信号更加清晰。
滤波分为低通滤波、高通滤波、带通滤波和带阻滤波等。
在基于DSP的音频信号处理系统中,可以使用数字滤波器来实现滤波。
(2) 均衡均衡是一种使得音频信号响度均匀的处理方法。
在基于DSP的音频信号处理系统中,可以使用数字均衡器来实现均衡。
(3) 压缩(4) 混响3. 系统设计(1) DSP芯片的选择。
DSP芯片应该选择高性能、低功耗、易于编程的芯片。
(2) 输入接口的设计。
输入接口应该能够接受各种类型的音频信号,如模拟音频信号、数字音频信号等。
(4) 外存储器的设计。
外存储器应该具有足够的容量来存储音频数据和处理器指令等数据。
(5) 控制器的设计。
控制器应该具有友好的人机界面,使得用户能够方便地设置处理器的参数。
控制器还应该具有实时显示音频信号处理后的效果的功能。
4. 结论基于DSP的音频信号处理系统能够实现对音频信号的滤波、均衡、压缩和混响等处理。
系统设计需要考虑DSP芯片的选择、输入接口、输出接口、外存储器和控制器等方面。
在设计过程中,应该根据实际需求选择合适的处理算法,并采取合适的控制策略来实现优化处理效果。
基于DSP的SVC高速数据采集系统设计
摘 要 :数 据 采 集 处理 是 无 功补 偿 的 关键 步骤 。介 绍 了一 种 基 于 T 3 0 2 3 5的 S MS 2 F 8 3 VC数 据 采 集 系 统 . 出 了该 系统 给
的硬 件 电路 , 并介 绍 了 系统 的软 件 设 计 与 实现 。 该 系统 结 构 简 单 , 作 方便 , S C控 制 系统 中运 行 正 常 , 着 广 泛 操 在 V 有
通过 CI P J 控 制 A D转 换 器 进 行 模 / 转 换 , 在 转 换 结 束 D来 / 数 并 后 . 转 换 的结 果 送 到 D P中 。 S 把 S D P会 根 据 当前 的 电压 、 流 电
等 外 围 电路 _ l 】 。 D P芯 片 以 其 简 单 方 便 的外 部 接 口连 接 , 速 、 确 、 S 高 精 稳 定 的数据 处理 功能 . 成 方便 等特点 。 来 越多 的应用 于 自 集 越
竖
u
l 线I输 输出 总 入 l l
图 1 基 于 D P的 数 据 采 集 系 统 组 成 框 图 S
的应用前景。 关 键 词 :D P:S S VC;高速 :数 据 采 集
中 图分 类 号 : P l T 3
文 献标 识 码 : A
文 章 编 号 :1 7 — 2 6 2 1 ) 9 0 8 — 3 6 4 6 3 (0 1 l— o 2 0
De i n o i h s e d a a a q sto s s e fS sg fh g p e d t c uiii n y t m o VC a e n P b s d o DS
C NG e gy n, HU Xi-i HE Z n —a Z ul n,W ANG J n u
基于DSP的音频处理器毕业设计论文
基于DSP的音频处理器毕业设计论文音频处理器是一种用于处理和增强音频信号的设备或软件。
它可以对音频信号进行各种操作,如音频混合、均衡、压缩、时域和频域分析等。
基于DSP(数字信号处理)的音频处理器利用计算机算法和数字信号处理技术,可以实现更高级和更复杂的音频处理功能。
本文将设计一个基于DSP的音频处理器的毕业设计。
该音频处理器将基于数字信号处理技术,通过使用DSP芯片和相应的算法实现音频信号的处理和增强。
主要功能包括音频输入、音频处理、音频输出等。
首先,音频输入模块将负责接收外部音频信号。
可以使用麦克风或其他音频设备将音频信号输入到系统中。
音频输入模块应该对输入信号进行采样和转换,以将其转换为数字信号。
然后,音频处理模块将对接收到的音频信号进行各种处理。
可以设计不同的音频处理算法和技术,如均衡器、压缩器、时域和频域分析等。
这些算法可以通过DSP芯片的计算能力实现,并且可以根据需要进行编程和调整。
最后,音频输出模块将负责输出音频处理后的信号。
可以使用音频放大器和扬声器将处理后的音频信号播放出来。
音频输出模块也可以与其他音频设备进行连接和集成,如耳机、扬声器系统等。
在这个毕业设计中,还可以加入一些附加功能和创新点。
例如,可以设计一个图形界面用于控制和调整音频处理参数,增加系统的可操作性和用户友好性。
还可以设计一个实时音频分析和显示模块,以便用户可以看到音频信号的时域和频域特征。
总的来说,基于DSP的音频处理器是一个有挑战性和有趣的毕业设计课题。
通过使用数字信号处理技术和DSP芯片的计算能力,可以实现强大和高级的音频处理功能。
这个设计将有助于提高学生对音频信号处理和数字信号处理的理解和应用能力,并为将来的音频处理技术和设备开发提供基础。
基于DSP的SVC控制模块设计
列 X 9 14 Q14 6路 1 C 54T 4 , 2位 D A输 出 .6路 光 耦 隔 离 开 关 , 1
量 输 入 , 6路 开 关 量 输 出 ,4 S A 3路 过 零 检 测 , S 3 1 6 k R M, R 22
p p ri t d c st e h r wae cr u t n h ot r l me tt n o e S o t ls se b s d o MS 2 F 8 3 . a e r u e a d r i i a d t e s f n o h c wa e i e n a i ft VC C n r y t m a e n T mp o h o 3 0 2 3 5
器 。D P控 制 板 的任 务 是 输 出 T R 的控 制 角 电 压 给 T R 和 S C C T C 的触 发 电 路 。 因 此 . 制 板 上 除 了 所 选 用 的 D P芯 片 和 S 控 S 必 要 的存 储 器 外 , 要 具 备 足 够 的 A D输 入 、 / 输 出 、 还 / DA 开关 量 输 出通 道 等 外 围 电 路【 l 1 。
D SP
1 D P控 制模 块 设 计 S
11 D P控 制 模 块 组 成 结构 . S 根 据 T R 型 S C 控 制 器 的 任 务 要 求 ,V C V C控 制 板 的
图 l 控 制 板 硬 件 原 理 框 图
Fi .1 Ha d r lc i g a o o to a e g r wa e b o k d a r m fc n r lp n l
Fah 储 器 作 为 程 序 存 储 器 ,片 内 1 B 1 的 静 态 存 储 l 存 s 8k  ̄ 6位
基于DSP的电机控制系统设计与实现
基于DSP的电机控制系统设计与实现摘要随着电机在工业和家庭中的应用越来越广泛,电机控制技术变得越来越重要。
本文提出了一种基于数字信号处理器(DSP)的电机控制系统,旨在实现对电机的高效控制和稳定性。
首先介绍了电机控制系统的基本原理,包括电机的特性和工作原理,然后详细介绍了DSP的基本原理和应用。
接着,根据电机控制的需求,设计了一个基于DSP的电机控制系统,包括硬件设计和软件设计。
最后,进行了实验验证,结果表明该电机控制系统具有良好的控制性能和稳定性。
关键词:电机控制系统,数字信号处理器,硬件设计,软件设计,控制性能,稳定性。
AbstractWith the increasingly widespread use of motors in industry and home, motor control technology has become increasingly important. This paper proposes a motor control system based on digital signal processor (DSP), aiming to achieve efficient and stable control of the motor. Firstly, the basic principles of motor control system are introduced, including the characteristics and working principles of the motor, and then the basic principles and applications of DSP are detailed. Then, according to the requirements of motor control, a DSP-based motor control system is designed, including hardware design and software design. Finally, experiments are conducted to verify the performance and stability of the motor control system, and the results show that the motor control system has good control performance and stability.Keywords: Motor control system, digital signal processor, hardware design, software design, control performance, stability.正文引言电机作为一种重要的动力设备,在工业和家庭中被广泛应用。
基于双DSP的SVC数字调节器的设计与实现
基于双DSP的SVC数字调节器的设计与实现SDA置位为低电平,即送出一个确认信号(Acknowledgebit,以下简称“ACK'’).表明数据已经被其收到。
当CPU发出开始条件与实时时钟建立连接后,CPU首先通过SDA总线连续输出7位器件地址(固定为“0110010”)和1位读/写指令(”1”为读操作,”O”为写操作)来唤醒SD2300RAM系列。
3.7.3读写实时钟一、写实时钟SD2300CPL数据传输的写模式如图3.13,先送7位器件地址(ol10010),第8位送入写命令(“o’’),第9位是SD2300RAM系列的响应位(AcK),SD2300RAM系列进入写状态;接下来一个字节,高4位确定SD2300CPL的内部地址(0H廿H),低4位是传输模式(写状态时,传输模式定义为“0000”),第9位是SD2300CPL的响应位;开始写数据,每写完1个字节的数据之后,都经过1位的响应信号才能写下l字节的数据:如果要结束写数据过程,则在ACK后送出停止命令即可。
向实时钟里写入年月日流程图如图3,14。
图3.13SD2300RAM系列写数据示例(向4H地址写数据)基丁双DSP的SVC数字调节器的设计与实现图3.16SD2300RAM系列读数据示倒3.7.4秒中断初始化秒中断是通过将SD2300CPL的INTA引脚接至TMS320F2812的CAP5引脚实现的。
系统初始化时要对秒中断进行初始化。
首先,使CAP5引脚工作在中断方式。
其次,对用到的SD2300CPL实时钟引脚INTA进行初始化。
向SD2300CPL的控制寄存器1(内部地址EH)写入83H,可以使能INTA的周期性中断,波形模式为1Hz的时钟脉冲模式,即每秒产生~次中断。
当有中断产生时,为了满足实时控制的需求,只在中断子程序中置秒中断标志,在主程序中进行处理。
3.8本章小结本章主要介绍了数据采集电路、双机通讯电路、键盘、液晶及其实时钟各部分的硬件接口设计及其各部分硬件接口的初始化实现。
基于DSP的伺服控制系统设计与实现
synchronous motor will be able
motor.
This paper has described mathematical model of the
permanent
magnet AC
synchronous
motor.Introduce the voltage space
researched
motor controller in order to control the motor real—time、accurately and efficiently.In the base of digital
strategy of
signal
processing
technology,high-performance
to vector out the
control theory,realized the control
of the
permanent magnet
AC synchronous
servo
motor’S three closed—loop control,such as
Ⅱ
武汉理工大学硕士学位论文
currents,speed and location,and achieved the requestment of design.Finally the
technology,
hi曲-performance
motor control theory,as well as permanent magnetic material
manufacturing process
development,people’S
基于DSP的SVC控制系统
基于DSP的SVC控制系统
郑常宝;郑长勇
【期刊名称】《变频器世界》
【年(卷),期】2005(000)009
【摘要】本文给出了SVC的原理,介纠了SVC控制系统的设计。
介绍了DSP CPU板和信号调理电路的设计,详细叙述了求算无功的快速算法和抗积分饱和变参数PID算法。
文中给出了对系统的测试波形。
【总页数】4页(P119-121,131)
【作者】郑常宝;郑长勇
【作者单位】合肥工业大学教育部光伏系统工程研究中心;安徽大学电子科学与技术学院;安徽建造工业学院计算机系
【正文语种】中文
【中图分类】TM714.3
【相关文献】
1.基于DSP的SVC控制模块设计 [J], 吴骏;程增艳
2.基于DSP的SVC高速数据采集系统设计 [J], 程增艳;朱秀林;王军
3.基于DSPs的足球机器人控制系统的设计 [J], 张学习;杨宜民;李怀俊;曹志广;梅雪竹
4.基于DSP的嵌入式SVC控制装置的研究 [J], 张志文;曾海林;罗隆福;宁志毫;周宏宇
5.基于双DSPs架构的移动机器人运动控制系统的设计 [J], 李怀俊
因版权原因,仅展示原文概要,查看原文内容请购买。