运筹学上机答案.doc

合集下载

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学上机作业答案

运筹学上机作业答案

人力资源分配问题第一题(1)安排如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0x10=0,x11=0。

(2)总额为320,一共需安排20个班次;因为在13:00—14:00,14:00—15:00,16:00—17:00,分别存在2,9,5个工时的剩余,(例如11:00—12:00)安排了8个员工而在14:00-15:00剩余了九个所以可以安排一些临时工工作3个小时的班次,使得总成本更小。

(3)在18:00—19:00安排6个人工作4小时;在11:00—12:00安排8个人,13:00—14:00安排1个人,15:00—16:00安排1个人,17:00—18:00安排4个人工作3小时。

总成本最低为264元。

生产计划优化问题第二题产品1在A1生产数量为1200单位,在A2上生产数量为230单位,在B1上不生产,B2上生产数量为858单位,B3上生产数量为571单位;产品2在A1上不生产,在A2上生产数量为500单位,在B1上生产数量为500单位;产品3在A2上生产数量为324单位,在B2上生产数量为324单位。

最大利润为2293.29元。

第三题设Xi为产品i最佳生产量。

(1)最优生产方案唯一,为X1=1000、X2=1000、X3=1000、X4=1000、X5=1000、X6=55625、X7=1000. (2)如上图所示,产品5的单价价格为0-30时,现行生产方案保持最优。

(3)由于环织机工的影子价格为300,且剩余变量值为零,而其他几种资源的影子价格为0,剩余变量均大于0,所以应优先增加环织工时这种资源的限额,能增加3.33工时,单位费用应低于其影子价格300才是合算的。

(4)因为产品2对偶价格= -3.2<0 ,950>933.33,3.2*(1000-950)=160;所以当产品2的最低销量从1000减少到950时,总利润增加160元。

运筹学教材习题答案

运筹学教材习题答案

教材习题答案部分有图形的答案附在各章PPT文档的后面,请留意。

第1章线性规划第2章线性规划的对偶理论第3章整数规划第4章目标规划第5章运输与指派问题第6章网络模型第7章网络计划第8章动态规划第9章排队论第10章存储论第11章决策论第12章对策论习题一1.1 讨论下列问题:(1)在例1.1中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为0.8,设备B有7台,利用率为0.85,其它条件不变,数学模型怎样变化.(2)在例1.2中,如果设x j(j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(3)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(4)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(5)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.1.2 工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-22所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:【解】设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。

(完整word版)运筹学》习题答案 运筹学答案汇总

(完整word版)运筹学》习题答案  运筹学答案汇总

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解( )BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?( )BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是( )DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的 B .不增不减的 C .增加的 D .难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A ,B ,C 三相邻结点的距离分别为15km ,20km,25km ,则( )。

DA.最短路线—定通过A 点B.最短路线一定通过B 点C.最短路线一定通过C 点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈 C .存在三个圈 D .不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于 600 700300 500 400锅炉房12312.在计算最大流量时,我们选中的每一条路线( )。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

运筹学习题参考解答(机械2版)

运筹学习题参考解答(机械2版)

X2
A
8 B 7 6 5
C
6 , z * 12
T
4 3 2 1
(4)Min z=- x1+3 x2 s.t: 4x1 + 7x2≥ 56 (A) 3x1-5x2≥15 (B) x1,x2≥0 由于可行域无界,从图中可知,目标函数无界。
0 1
2 3
4 5 x1
8 E
1 A 0 B 5 4. 以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解 Max z=2 x1+ x2 - x3 s.t: x1+ x2 +2x3 ≤6 x1+ 4 x2 -x3 ≤4 x1 ,x2 ,x3 ≥0 化为标准形 Max z=2 x1 + x2 -x3 s.t: x1+ x2 +2x3 +x4=6 x1+ 4 x2 -x3 + x5=4 x1 ,x2 ,x3 ,x4,x5≥0
4 x3 2 x4 Maxz 3x1 x2 4 x3
x3 2 x 4 x5 51 2 x1 3x 2 x3 3x 2 x 2 x 2 x x x 7 1 2 3 3 4 6 s.t : 2 x1 4 x 2 3x3 3x3 2 x 4 15 , x3 , x 4 , x5 , x 6 0 x1 , x 2 , x3
0 8 0 0 0
T
6 0 0 24 0 0 对应B3的基本解为:
T
T
18 0 0 0 48 0 同时又为基本可行解 对应B4的基本解为:
0 4 对应B5的基本解为:
10 3
0 0 0 同时又为基本可行解

《运筹学》试题及参考答案

《运筹学》试题及参考答案

《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。

运筹学上机答案汇编

运筹学上机答案汇编

河北工业大学管理学院2012年6月目录一线性规划 (3)二整数规划问题 (7)三目标规划 (9)四 运输问题...................................................................................11 五 指派问题...................................................................................12 六 图与网络分析...........................................................................13 七 网络计划.. (15)实验内容(一) 线性规划问题: 用EXCEL 表求解下面各题,并从求解结果中读出下面要求的各项,明确写出结果。

例如:原问题最优解为X*=(4,2)T 1、5010521≤+x x 121≥+x x 42≤x 213m ax x x z +=①原问题的最优解(包括决策变量和松弛变量)、最优值;②对偶问题的最优解;③目标函数价值系数的变化范围;④右端常数的变化范围。

用EXCEL求解结果:敏感性报告:① X=(1x ,2x ,3x ,4x ,5x )T =(2,4,-0.2,0,-1)T max Z=14② Y=(1y ,2y ,3y )=(0.2,0,1)③ -1≤δ1C ≤0.5, δ2C ≥-1 ④ δ1b ≥-10, δ2b ≤5, -4≤δ3b ≤12、⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++=0,,42010132400851030010289.223max 321321321321321x x x x x x x x x x x x x x x z (1)求解:① 原问题的最优解(包括决策变量和松弛变量)、最优值;② 对偶问题的最优解;③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

运筹学课后答案

运筹学课后答案

运筹学课后答案3.1 与一般线性规划的数学模型相比,运输问题的数学模型具有什么特征?答: 1、运输问题一定有有限最优解。

2、约束系数只取0或1。

3、约束系数矩阵的每列有两个1, 而且只有两个1。

前m 行中有一个1,或n 行中有一个1。

4、对于产销平衡的运输问题,所有的约束都取等式。

3.2 运输问题的基可行解应满足什么条件?将其填入运输表中时有什么体现?并说明在迭代计算过程中对它的要求。

解:运输问题基可行解的要求是基变量的个数等于m+n-1。

填入表格时体现在数字格的个数也应该等于m+n-1。

在迭代过程中,要始终保持数字格的个数不变。

3.3 试对给出运输问题初始基可行解的西北角法、最小元素法和V ogel 法进行比较,分析给出的解之质量不同的原因。

解:用西北角法可以快速得到初始解,但是由于没有考虑运输价格,效果不好;最小元素法从最小的运输价格入手,一开始效果很好,但是到了最后因选择余地较少效果不好; V ogel 法从产地和销地运价的级差来考虑问题,总体效果很好,但是方法较复杂。

3.4 详细说明用位势法(对偶变量法)求检验数的原理。

解:原问题的检验数也可以利用对偶变量来计算 :其中,ui 和vj 就是原问题约束对应的对偶变量。

由于原问题的基变量的个数等于m+n-1。

所以相应的检验数就应该等于0。

即有:由于方程有m+n-1个, 而变量有m+n 个。

所以上面的方程有无穷多个解。

任意确定一个变量的值都可以通过方程求出一个解。

然后再利用这个解就可以求出非基变量的检验数了。

3.5 用表上作业法求解运输问题时,在什么情况下会出现退化解?当出现退化解时应如何处理? 解:当数字格的数量小于m+n-1时,相应的解就是退化解。

如果出现了退化解,首先找到同时划去的行和列,然后在同时划去的行和列中的某个空格中填入数字0。

只要数字格的数量保持在m+n-1个的水平即可。

3.6 一般线性规划问题具备什么特征才能将其转化为运输问题求解,请举例说明。

运筹学上机实验(1)参考答案汇总

运筹学上机实验(1)参考答案汇总

一、利用工具栏中的“规划求解”求解如下线性规划问题1.1某工厂可以生产产品A 和产品B 两种产品。

生产单位产品A 和B 所需要的机时、人工工时的由下表给出。

这两种产品在市场上是畅销产品。

该工厂经理要制订季度的生产计划,其目标产品A 产品B 资源总量机器(时)8 6 120人工(时)5 10 100产品售价(元)500 8001.2 该工厂根据产品A 和产品B 的销售和竞争对手的策略,调整了两种产品的售价。

产品A 1.2 由于某些原因,该工厂面临产品原料供应的问题。

因此,工厂要全面考虑各种产品所需材料的资源数量及可用资源的总量、产品的售价等因素。

有关信息在下表中给出。

产品A 产品B 资源总量机器(时)8 6 120人工(时)5 10 100原材料(公斤 8 11 130产品售价(元)500 8001.3 随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额1.3 随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额要考虑资源的成本。

工厂的各种产品所需要的机时、人工工时、原材料的资源数量及可用和各种资源的价格等因素。

有关信息在下表中给出。

产品A 产品B 资源总量资源价格(元/单位)机器(时)8 6 1205人工(时)5 10 10020原材料(公斤 11 8 130 1产品售价(元)500 8001.4 学习了MBA 课程后,该企业的经理明白了产品的成本包括变动成本和固定成本。

如果生1000元的固定成本,如果生产产品B ,工厂要花费800元的固定成本。

假设其它情况不变,请利润最大化的生产方案。

提示:设x1,x2分别为产品A 、B 的生产量,引入变量y1,y2做为控制变量,分别表示生产A 、只取0或1的变量,1为生产,0为不生产),控制方法见下列线性规划模型(如:x1≤My1,相牵制,A 生产时,x1>0,y1就必须为1,目标函数中才能扣除成本,否则y1为0,x1就为0了,max z =600x 1+400x 2-{(6x 1+8x2⨯5+(10x 1+5x 2⨯20+(11x 1+8x 2⨯1}-1000⎧6x 1+8x 2≤120⎪10x +5x≤10012⎪⎪⎪11x 1+8x 2≤130⎨⎪x 1≤My 1⎪x 2≤My 2⎪⎪y 1, y 2为0或1⎩x 1, x 2, y 1, y 2≥0注:其中M 代表任意大的数,可用一很大数代替例题例题1.6 1.7 通过求解例假设,该原材料在市场上容易买到,是买方市场。

运筹学课后习题解答_1.(DOC)

运筹学课后习题解答_1.(DOC)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北工业大学管理学院
2012年6月
目录
一线性规划 (3)
二整数规划问题 (7)
三目标规划 (9)
四 运输问题...................................................................................11 五 指派问题...................................................................................12 六 图与网络分析...........................................................................13 七 网络计划.. (15)
实验内容
(一) 线性规划问题: 用EXCEL 表求解下面各题,并从求解结果中读出下面要求的各项,明确写
出结果。

例如:原问题最优解为X*=(4,2)T
1、
5010521≤+x x 1
21≥+x x 42≤x 2
13m ax x x z +
=
①原问题的最优解(包括决策变量和松弛变量)、最优值;
②对偶问题的最优解;
③目标函数价值系数的变化范围;
④右端常数的变化范围。

用EXCEL求解结果:
敏感性报告:
① X=(1x ,2x ,3x ,4x ,5x )T =(2,4,-0.2,0,-1)T max Z=14
② Y=(
1y ,2y ,3y )=(0.2,0,1)
③ -1≤δ1C ≤0.5, δ2C ≥-1 ④ δ1b ≥-10, δ2b ≤5, -4≤δ3
b ≤1
2、
⎪⎪⎩⎪⎪

⎧≥≤++≤++≤++++=0
,,42010132400851030010289.223max 3213213213213
21x x x x x x x x x x x x x x x z (1)求解:① 原问题的最优解(包括决策变量和松弛变量)、最优值;
② 对偶问题的最优解;
③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。

用EXCEL 求解结果:
敏感性报告:
① X=(1x ,2x ,3
x ,4x ,
5
x ,
6
x )T =(22.5,23.2,7.3,-0.03,-0.27,-0.05)T
max Z=135.27 ② Y=(
1y ,2y ,3y )=(0.03,0.27.0.05)
③ -1.45≤δ1C ≤0.33 -0.78≤δ2C ≤0.21 -0.15≤δ
3
C ≤1.6
④ -36.67≤δ1b ≤165.71 -122.9≤δ2b ≤44 -397.65≤δ
3
b ≤220
(2)对产品I进行改进,改进后系数列向量为(9,12,4)T,价值系数为4.5
①原问题的最优解(包括决策变量和松弛变量)、最优值;
②对偶问题的最优解;
③目标函数价值系数的变化范围;
④右端常数的变化范围;
⑤对原问题的最优解有什么影响。

用EXCEL求解结果:
敏感性报告:
① X=(1x ,2x ,3
x ,4x ,
5
x ,
6
x )T =(22.79,25.29,0,0, -0.37, -0.01)T
Z=153.16 ② Y=(
1y ,2y ,3y )=(0,0.37,0.01)
③ -0.46≤δ1C ≤0.3 -0.125≤δ2C ≤12.625 δ
3
C ≤0.18
④ δ1b ≥44.26 -238.46≤δ2b ≤55.23 -286.67≤δ
3
b ≤620
⑤ 对原问题解的影响:
产品一产量增加0.29,产品二产量减少2.09,产品三产量减少7.3 总利润增加17.89。

(二)整数规划:写出下面问题的最优解和最优值 (1)
⎪⎪⎩
⎪⎪

⎧≥≤++-≤+-≤-++=且为整数0,,5
5
6544264max 32132121213
21x x x x x x x x x x x x x z 用EXCEL 求解结果:
(2)
⎪⎪

⎪⎪

⎧=≥+≥++≤+-++=10,,133********min 321323213213
21或x x x x x x x x x x x x x x z 用EXCEL 求解结果:
(三)目标规划 (1)
⎪⎪
⎪⎩⎪⎪⎪⎨⎧=≥-=-+=-+=-=-+++++++=+-+-++
-+
-+
-
+
+--+-4,3,2,1,0,,104570
80
)
53()35(min 2144133222111213233234211i d d x x d d d d d x d d x d d x x d d P d d P d P d P z i
i
求解:① 问题的解,并判断是满意解还是最优解; 用EXCEL 求解结果:
② 若目标函数变为+
++---+++++=4332232211)53()35(min d P d d P d d P d P z ,问原解有什么
变化;
用EXCEL 求解结果:
③ 若第一个约束条件的右端项改为120,原解有什么变化。

用EXCEL 求解结果:
(四)运输问题
(1)求解下面运输问题,并求出最优解和最优值
销地
I II III 产量
产地
期初40 80 120 2
I正常500 540 580 2
I加班570 610 650 3
II正常M 600 640 4
II加班M 670 710 2
III正常M M 550 1
III加班M M 620 3
销量 3 4 4
用EXCEL求解结果:
最优解是:(期初)生产1销往一,生产1销往二;(一正常)生产2运往销地一;(一加班)不生产;(二正常)生产3运往销地二;(二加班)不生产;(三正常)生产1运往销地三;(三加班)生产3运往销地三。

总成本是:5330
(2)求解下面运输问题,并求出最优解和最优值
销地
甲乙丙丁戊产量
产地
1 8 6 3 7 5 20
2 6 M 8 4 7 30
3 5 3 9 6 8 30
销量25 25 20 10 20
用EXCEL求解结果:
(五)指派问题
分配甲乙丙丁四人去完成五项任务,每人完成各项任务时间如下表,由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每人完成一项,试确定花费时间最少的指派方案。

任务
A B C D E
人员
甲25 29 31 42 37
乙39 38 26 20 33
丙34 27 28 40 32
丁24 42 36 23 45
虚拟人
用EXCEL求解结果:
(六)图与网络分析
1、最短路径:写出下图从v1到v7最短路径及路长(1)
用EXCEL求解结果:
V1
V2
2
V3
5
2
6
1
4
4
3
V4 4
1
V5
1
V7
2
V6
2、最大流量
(1)写出下图的最大流量(弧上数字为容量和当前流量)
用EXCEL求解结果:
图的最大流量是:18
(2)如下图,从三口油井①②③经管道将油输至缩水处理厂⑦⑧,中间经过④⑤⑥三个泵站。

已知图中弧旁数字为各管道通过的最大能力(吨/小时),求从油井每小时能输送到处理厂的最大流量。

用EXCEL求解结果:
v7
10
v1v8
v2v5
v4
v6
10
10
14 5
5
4
7
5
4
9
13
6
v3
1
2
3
4
5
6
7
8
20
10
50
20
15
20
30
10
10
50
20
30
(七)网络计划
寻找下列网络计划的关键路线,并写出工程总时间。

(1)
用EXCEL 求解结果:
1
2
3 4 5 6 7
8
9 10
A 3
B 2 C
5 D 4
E 7
F 8
G 6
H 2 J 5
K 2
I 4
L
6
(2)
用EXCEL求解结果:
A
6
D
16
F
5
H
6
G
9
B
12
C
12
E
12
I
8
J
7
2
1 3
4
5
6
7
8 9。

相关文档
最新文档