2015年高考理科数学试题汇编(含答案):立体几何 小题范文

合集下载

2015年高考数学题分类汇编(文):立体几何

2015年高考数学题分类汇编(文):立体几何

1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cm C .3233cm D .4033cm 4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A)123π+ (B)136π (C) 73π (D) 52π5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件 9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )810.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A.8+ B.11+ C.14+ D .1511.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )错误!未找到引用源。

2015年高考数学真题分类汇编-专题10-立体几何-文

2015年高考数学真题分类汇编-专题10-立体几何-文

2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D 【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()A.8+ B.11+.14+.15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,.底面积为12332⨯⨯=,侧面积为所以该几何体的表面积为11+B.【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A(B()()【答案】B【解析】由题意知,该等腰直角三角形的斜边长为,所得旋转体为同底等高的全等圆锥,所以,其体积为213π⨯⨯=,故选B.【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.12.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材1112料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A 、89πB 、827πC【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.13.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B C D.2【答案】C【解析】四棱锥的直观图如图所示:AB,S A是四棱锥最长的棱,由三视图可知,SC⊥平面CDSA===,故选C.【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.14【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()(A )1+(B )1+(C )2+ (D )【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C . 【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运算能力.【2015高考上海,文6】若正三棱柱的所有棱长均为a ,且其体积为316,则=a .【答案】4【解析】依题意,3162321=⨯⨯⨯⨯a a a ,解得4=a . 【考点定位】等边三角形的性质,正三棱柱的性质.【名师点睛】正三棱柱的底面是正三角形,侧棱垂直于底面.柱体的体积等于底面积乘以高.边长为a 的正三角形的面积为243a . 15.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.【答案】8π3【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.16.【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】124【解析】由题意,三棱柱是底面为直角边长为1的A 1 C 1B 1 P等腰直角三角形,高为1的直三棱柱,底面积为12 如图,因为AA 1∥PN ,故AA 1∥面PMN ,故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等,三棱锥P -AMN 的底面积是三棱锥底面积的14,高为1 故三棱锥P -A 1MN 的体积为111132424⨯⨯= 【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力.【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.17.【2015高考安徽,文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,2,60PA AB AC BAC ===∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC的值.【答案】(Ⅱ)13PM MC = 【解析】A BC M N(Ⅰ)解:由题设AB =1,,2=AC 60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=. 由⊥PA 面ABC可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥,垂足为N ,过N 作PA MN //交PC 于M ,连接BM .由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【考点定位】本题主要考查锥体的体积公式、线面垂直的判定定理和其性质定理.【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.18.【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C A =B =,O ,M 分别为AB ,V A 的中点.(I )求证:V //B 平面C MO ;(II )求证:平面C MO ⊥平面V AB ;(III )求三棱锥V C -AB 的体积.【答案】(I )证明详见解析;(II )证明详见解析;(III(Ⅱ)因为AC BC =,O 为AB 的中点,所以OC AB ⊥.又因为平面V AB ⊥平面C AB ,且OC ⊂平面C AB ,所以OC ⊥平面V AB .所以平面C MO ⊥平面V AB .(Ⅲ)在等腰直角三角形ACB 中,AC BC ==所以2,1AB OC ==.所以等边三角形V AB 的面积VAB S ∆=.又因为OC ⊥平面V AB ,所以三棱锥C V -AB 的体积等于13VAB OC S ∆⨯⨯=又因为三棱锥V C -AB 的体积与三棱锥C V -AB 的体积相等,所以三棱锥V C -AB 考点:线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式.【名师点晴】本题主要考查的是线面平行、面面垂直和几何体的体积,属于中档题.证明线面平行的关键是证明线线平行,证明线线平行常用的方法是三角形的中位线和构造平行四边形.证明面面垂直的关键是证明线面垂直,证明线面垂直可由面面垂直得到,但由面面垂直得到线面垂直一定要注意找两个面的交线,否则很容易出现错误.求几何体的体积的方法主要有公式法、割补法、等积法等,本题求三棱锥的体积,采用了等积法.19.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;【解析】解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点,所以C D A ⊥O .又PO 垂直于圆O 所在的平面,所以C PO ⊥A .因为D O PO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1.又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =,故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以PB ==.同理C P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值.又因为OP =OB ,C C ''P =B ,所以C 'O 垂直平分PB ,即E 为PB中点.从而C C ''O =OE +E =+= 亦即C E +OE.O A BP解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB ==.同理C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+1122=+--2=+从而C 'O ==所以C E +OE . 【考点定位】1、直线和平面垂直的判定;2、三棱锥体积.【名师点睛】证明直线和平面垂直可以利用判定定理,即线线垂直到线面垂直;也可以利用面面垂直的性质定理,即面面垂直到线面垂直;决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解.20.【2015高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE 中,PE ===,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 2S h S ∆A ∆P A ⋅PE ===,所以点C 到平面D P A【考点定位】1、线面平行;2、线线垂直;3、点到平面的距离.【名师点晴】本题主要考查的是线面平行、线线垂直和点到平面的距离,属于中档题.证明线面平行的关键是证明线线平行,证明线线平行常用的方法是三角形的中位线和构造平行四边形.证明线线垂直的关键是证明线面垂直,证明线面垂直可由面面垂直得到,但由面面垂直得到线面垂直一定要注意找两个面的交线,否则很容易出现错误.点到平面的距离是转化为几何体的体积问题,借助等积法来解决.21.【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE . (Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 【答案】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .四面体EBCD 是一个鳖臑;(Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==,于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅ 【考点定位】本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.22.【2015高考湖南,文18】(本小题满分12分)如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点。

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。

2015年全国高考数学试卷理科含答案

2015年全国高考数学试卷理科含答案

2015年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数Z 满足=则=-Z ZZ,i 11+ (A )1 (B ) (C ) (D )2 (2)=-010sin 160cos 10cos 20sin (A )23-(B)23 (C)21- (D) 21 (3)设命题为则P n N n P n⌝>∈∃,2,:2(A )n n N n 2,2>∈∀ (B )n n N n 2,2≤∈∃ (C)n n N n 2,2≤∈∀ (D)nn N n 2,2=∈∃(4)投篮测试中,每人投3次,至少2次命中才能通过测试,已知某同学每次投篮命中的概率为0.6,且各次投篮是否命中相互独立,则该同学通过测试的概率为(A )0。

648 (B )0。

432 (C )0.36 (D )0。

312(5)已知),(00y x M 是双曲线C:1222=-y x 上的一点,的是双曲线C F F 21,两个焦点,若021<⋅MF MF ,则的取值范围是(A ))33,33(-(B ))63,63(- (C ))322,322(- (D ))332,332(- (6)《九章算术》是我国古代极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”,其意为:“在屋内角处堆放米(如图,米堆是一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的的体积和米堆放的米各为多少?”已知一斛米的体积约为1。

62立方尺,圆周率约为3,估算出米堆的米约为(A )14斛 (B )22斛 (C)36斛 (D )66斛 (7)设D 为所在平面内一点ABC ∆,CD BC 3=,则(A)AC AB AD 3431+-= (B )AC AB AD 3431-= (C)AC AB AD 3134+= (D )AC AB AD 3134-=(8)函数)cos()(ϕω+=x x f 的部分图像如图所示,则)(x f 的单调减区间为(A )Z k k k ∈+-,43,41)(ππ (B )Z k k k ∈+-,432,412)(ππ(C)Z k k k ∈+-,43,41)((D )Z k k k ∈+-,432,412)((9)执行右边的程序框图,如果输入的t=0。

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

 2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g (x )的图象性质类似如图:数形结合可得,不等式f (x )>0⇔x•g (x )>0⇔或,⇔0<x <1或x <﹣1. 故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O :定义法;5A :平面向量及应用. 【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行, ∴λ+=t (+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x ,y 满足约束条件,则z=x +y 的最大值为 .【考点】7C :简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值. 【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D 点时,z 最大,由得D (1,),所以z=x +y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n =﹣.【考点】8H :数列递推式.【专题】54:等差数列与等比数列.【分析】通过S n+1﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵a n+1=S n+1S n,∴S n+1﹣S n=S n+1S n,∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.祝福语祝你考试成功!。

2015年高考全国新课标1卷理科数学试题(含答案)

2015年高考全国新课标1卷理科数学试题(含答案)

-共 13 页,当前页是第- 2 -页-
(7)设 D 为 ABC 所在平面内一点 =3 ,则
( A)
=
+
(B)
=
(C)
=
+
(D)
=
【解析】本题考查平面向量,画出图形,
1 1 1 4 AD AC CD AC BC AC ( AC AB) AB AC 3 3 3 3
y y 可以看做是与原点连线的斜率,因此如果 最大值,也就是求斜率的最大值,通过图形观察可知在(1,3) x x
处有最大值是 3,因此
x 的最大值是 3. y
(16)在平面四边形 ABCD 中,∠A=∠B=∠C=75°,BC=2,则 AB 的取值范围是
【解析】如下图所示,延长 BA,CD 交于点 E,则可知
1 1 1 1 1 Tn ( 2 3 5 5 7
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值
(3)设命题 P: n N, n 2 > 2 n ,则 P 为 (A) n N, n 2 > 2 n (C) n N, n 2 ≤ 2 n (B) n N, n 2 ≤ 2 n (D) n N, n 2 = 2 n
【解析】本题考查命题的否定,条件和结论都需要否定,因此选择 C.
在 RtEBG 中,可得 BE = 2 故 DF =
2 2
在 RtFDG 中,可得 FG =
6 2 3 2 2

2015高考数学立体几何

2015高考数学立体几何

1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面4.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+5.【2015高考新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( ) (A )1 (B )2 (C )4 (D )86.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 、 123π+ D 、223π+7.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4+ C.2+ D .58.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1+(B)2 (C)1+(D)9.【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π正(主)视图11俯视图侧(左)视图2110.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π 错误!未找到引用源。

(B )43π错误!未找到引用源。

2015年高考理科数学试题汇编(含答案):立体几何-小题

2015年高考理科数学试题汇编(含答案):立体几何-小题

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B.22斛C.36斛D.66 斛【答案】B[蹄】领F析:泠司注底面兰忏计r. ill-x >-3^ = 8-r = —. 堆的冷程弋£ 1心:「二宀予=少・4 3 4 3 3 S320故堆液的卅约为~ .1,62^22.曲选乩考点:圆锥的体积公式(新课标1)(9)已知A,B是球O的球面上两点,/ AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A. 36 nB.64 nC.144 nD.256 n【答案】C【解析】如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O ABC的体积最1 12 1 3大,设球O的半径为R,此时V ABC Vc AOB R2 R R3 36,故R 6,则3 2 6球0的表面积为2S 4 R 144 ,故选C.(北京)4.设,是两个不同的平面,m是直线且m? . m // ”是“ // ”的A.充分而不必要条件件C.充分必要条件要条件B.必要而不充分条D.既不充分也不必【答案】B【解析】试题分析:因为,是两个不同的平面,m是直线且m?.若m // ”,则平面、可能相交也可能平行,不能推出// ,反过来若// , m ,则有m // ,则m // ”是“ //”的必要而不充分条件•考点:1.空间直线与平面的位置关系; 2.充要条件•(福建)7.若l,m是两条不同的直线,m垂直于平面,则“ I m ”是“ I / / 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析i若Z —血F因沖用垂直于平面"贝(2或[二CT i若]必匸又阳垂直于平面ec r J!1]I — rn :所UVT丄珂"是m 的曙要不充分条件,故选玄考点:空间直线和平面、直线和直线的位置关系.(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为 (材料利用率=原工件的体积)C 4(X/2 1)3D 12(72 1)3【解析】试題分析|冷祈题有可知•问題等价于圖推的內接桧芳悴的悴积貳最大值,设谊右悴体醐卷,宽・高分别为JCI y 1 h.農方体上底而截圆雒的截而半径7^a> ^Jx2- y' =(2a)2 = 4a2,如下圉所示,则可知农2 ■為_V* -L T*;=十=b二2 - 而长M的悴和V = ◎牡丄一 = la:h^ C —2Q^y=—.当且仅当X=1 . a= 2-2a =>£! = -时,等W成主此时利用率淖r ;'J ■ f ■/16-" ■—> 故选 A.-ffKpXl 9 乳【答案】A.考点:1•圆锥的内接长方体;2•基本不等式求最值.(四川)14•如图,四边形 ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点 M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。

2015年高考数学试卷附详细答案

2015年高考数学试卷附详细答案

2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2015届高考数学(理)二轮专题配套练习:立体几何(含答案)

2015届高考数学(理)二轮专题配套练习:立体几何(含答案)

立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.2.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________.3.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上), S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .3πC .2πD .32π4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件.6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|.②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦. ②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离:可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号).找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直.易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 找准失分点 ③是错误的;⑤是错误的.1.已知三条不同直线m ,n ,l 与三个不同平面α,β,γ,有下列命题: ①若m ∥α,n ∥α,则m ∥n ; ②若α∥β,l ⊂α,则l ∥β;③α⊥γ,β⊥γ,则α∥β; ④若m ,n 为异面直线,m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥β. 其中正确命题的个数是( ) A .0 B .1 C .2 D .32.设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .1124.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④5.一个几何体的三视图如图所示,则该几何体的表面积为()A .2+ 2B .3+ 2C .1+2 2D .56.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥AD B .平面P AB ⊥平面PBCC .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 7.对于四面体ABCD ,给出下列四个命题:①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD . 其中正确的是________.(填序号)8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号)10.三棱锥D -ABC 及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD 的长为________.1.43 2.22 3.D 4.相交 5.充分不必要 6.(1)64 (2)24 1.C 2.②③ 3.②④CABCAD 7.①④ 8.π3 9.①④ 10.4 2。

2015年高考数学《新高考创新题型》之7:立体几何(含精析)

2015年高考数学《新高考创新题型》之7:立体几何(含精析)

2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。

1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。

2015-2019全国卷高考数学分类汇编——立体几何

2015-2019全国卷高考数学分类汇编——立体几何
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
2018-1
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为
A. B. C. D.
18.(12分)
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
2017-1
16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是________。(填写所有正确结论的编号)
19.(12分)
如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:直线 平面PAB
(2)点M在棱PC上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值
2017-3
8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B. C. D.
16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

2015年高考全国卷2理科数学试题及答案解析(word精校版)

2015年高考全国卷2理科数学试题及答案解析(word精校版)

2015年高考全国卷2理科数学试题及答案解析(word 精校版)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( )(A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2}【答案】A【解析】由已知得{}21B x x =-<<,故{}1,0AB =-,故选A(2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( ) (A )-1 (B )0 (C )1 (D )2 【答案】B(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84 【答案】B(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12 【答案】C【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51.CBADD 1C 1B 1A 1(7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8(C )46 (D )10 【答案】C(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.2【考点】A8:复数的模.【专题】11:计算题;5N:数系的扩充和复数.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】2J:命题的否定.【专题】5L:简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.【考点】96:平行向量(共线).【专题】5A:平面向量及应用.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【考点】HA:余弦函数的单调性.【专题】57:三角函数的图像与性质.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】2:创新题型;53:导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g (0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)若x,y满足约束条件.则的最大值为3.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【考点】HT:三角形中的几何计算.【专题】15:综合题;2:创新题型;58:解三角形.【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD=•=•=1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i ﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =i ,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【专题】5I:概率与统计.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【考点】KH:直线与圆锥曲线的综合.【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】2:创新题型;53:导数的综合应用.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】N9:圆的切线的判定定理的证明.【专题】5B:直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

专题十 立体几何6.【2015高考福建,理17】 【答案】(Ⅰ)详见解析;(Ⅱ)23. 1GH AB GH=AB 2所以,且,又F 是CD 中点,1DF=CD 2所以,由四边形ABCD 是矩形得,AB CD AB=CD ,,所以GH DF GH=DF ,且.从而四边形HGFD 是平行四边形,所以//GF DH ,,又DH ADE GF ADE 趟平面,平面,所以GF ADE 平面.HGFB AC DEHG FB ACDEQ(Ⅱ)如图,在平面BEC 内,过点B 作EC BQ ,因为BE CE BQ BE ^^,所以. 又因为AB ^平面BEC ,所以AB ^BE ,AB ^BQ以B 为原点,分别以,,BE BQ BA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB ^平面BEC ,所以A=(B 0,0,2)为平面BEC 的法向量,设(x,y,z)n =为平面AEF 的法向量.又AE (2,0,-2)AF=(2,2,-1)=,由AE 0220,220,AF 0n x z x y z n ìì=-=镲眄+-=镲=îî,得,取2z =得=(2,-1,2)n .从而A 42cos ,A =,323|||A |n B n B n B 狁==´×所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. 24.【2015高考浙江,理17】试题解析:(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =, ∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=,得114A B A A ==,由11A D B D =,11A B B B =,得11A DB B DB ∆≅∆,由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =,14A B =,190DA B ∠=,得BD =,1143A F B F ==,由余弦定理得,111cos 8A FB ∠=-.【3.【2015高考山东,理17】 试题解析:(I)证法一:连接,DG CD ,设CD GF O =,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC = 所以四边形DFCG 为平行四边形 则O 为CD 的中点 又H 为BC 的中点 所以//OH BD又OH ⊂平面,FGH BD ⊂/平面,FGH 所以//BD 平面FGH .证法二:在三棱台DEF ABC -中, 由2,BC EF H =为BC 的中点因为 BD ⊂平面 ABED 所以 //BD 平面FGH (II )解法一:设2AB = ,则1CF = 在三棱台DEF ABC -中,G 为AC 的中点由12DF AC GC == , 可得四边形DGCF 为平行四边形, 因此//DG CF 又FC ⊥平面ABC 所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC ⊥∠= ,G 是AC 中点,所以,AB BC GB GC =⊥ 因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,,,0,0,1G B C D可得(),H F ⎫⎪⎪⎭故()22,,0,0,2,1GH GF ⎛⎫== ⎪⎪⎭设(),,n x y z = 是平面FGH 的一个法向量,则由0,0,n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩ 可得0x y z +=⎧⎪+=可得平面FGH 的一个法向量(1,n =- 因为GB 是平面ACFD 的一个法向量,()2,0,0GB =所以21cos ,2||||22GB n GB n GB n ⋅<>===⋅所以平面与平面所成的解(锐角)的大小为60 解法二:作HM AC ⊥ 于点M ,作MN GF ⊥ 于点N ,连接NH 由FC ⊥ 平面ABC ,得HM FC ⊥ 又FCAC C =所以HM ⊥平面ACFD 因此GF NH ⊥所以MNH ∠ 即为所求的角所以平面FGH 与平面ACFD 所成角(锐角)的大小为60 .7.【2015高考天津,理17】【答案】(I)见解析;;2-. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭.ND(I)证明:依题意,可得(0,0,1)n =为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭,由此可得,0MN n ⋅=,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD (II)1(1,2,2),(2,0,0)AD AC =-=,设1(,,)n x y z =为平面1ACD 的法向量,则1110n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩,即22020x y z x -+=⎧⎨=⎩,不妨设1z =,可得1(0,1,1)n =, 设2(,,)n x y z =为平面1ACB 的一个法向量,则2120n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩,又1(0,1,2)AB =,得2020y z x +=⎧⎨=⎩,不妨设1z =,可得2(0,2,1)n =-7.【2015高考湖北,理19】【答案】(Ⅰ)详见解析;(Ⅱ)22.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有BD =, 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 πtan tan 3BD DPF PD=∠===, 解得λ=所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =(解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点, 所以11(0,,)22E ,11(0,,)22DE =, 于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DEEF E =,所以PB DEF ⊥平面.因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,.(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量; 由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3, 则π1cos32||||BP DP BP DP λ⋅=⋅,解得λ=所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =5.【2015高考陕西,理18】【答案】(I )证明见解析;(II(II)由已知,平面1A BE ⊥平面CD B E ,又由(I )知,1OA BE ⊥,C BE ⊥O 所以1AOC ∠为二面角1--C A BE 的平面角,所以1OC 2A π∠=.如图,以O 为原点,建立空间直角坐标系, 因为11B=E=BC=ED=1A A ,//BC ED所以1E(A B -得2BC(-12A C(0,-,CD BE (==-. 设平面1BC A 的法向量1111(,,)n x y z =,平面1CD A 的法向量2222(,,)n x y z =,平面1BC A 与平面1CD A 夹角为θ,则11100n BC n AC ⎧⋅=⎪⎨⋅=⎪⎩,得111100x y y z -+=⎧⎨-=⎩,取1(1,1,1)n =,2210n CD n AC ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n =,从而12cos |cos ,|n n θ=〈〉== 即平面1BC A 与平面1CD A 1.【2015高考北京,理17】(Ⅲ)由(I )知AO ⊥平面EFCB ,则AO BE ⊥,若BE ⊥平面AOC ,只需BE OC ⊥,(2,EB a =-,0)-,又(,0)OC =--,22(2))0BE OC a ⋅=--+-=,解得2a =或43a =,由于2a <,则43a =. 2.【2015高考广东,理18】【答案】(1)见解析;(2;(3 【解析】(1)证明:∵ PD PC =且点E 为CD 的中点, ∴ PE DC ⊥,又平面PDC ⊥平面ABCD ,且平面PDC平面ABCD CD =,PE ⊂平面PDC ,∴ PE ⊥平面ABCD ,又FG ⊂平面ABCD , ∴ PE FG ⊥;(2)∵ ABCD 是矩形,∴ AD DC ⊥,又平面PDC ⊥平面ABCD ,且平面PDC平面ABCD CD =,AD ⊂平面ABCD ,∴ AD ⊥平面PCD ,又CD 、PD ⊂平面PDC , ∴ AD DC ⊥,AD PD ⊥,∴ PDC ∠即为二面角P AD C --的平面角, 在Rt PDE ∆中,4PD =,132DE AB ==,PE == ∴tan PE PDC DE ∠==即二面角P AD C --; (3)如下图所示,连接AC , ∵ 2AF FB =,2CG GB =即2AF CGFB GB==, ∴ //AC FG ,∴ PAC ∠为直线PA 与直线FG 所成角或其补角, 在PAC ∆中,5PA ==,AC ==由余弦定理可得222cos 2PA AC PC PAC PA AC +-∠===⋅,∴ 直线PA 与直线FG 4.【2015高考湖南,理19】试题解析:解法一 由题设知,1AA ,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直∴>=<21,cos n n 1212||||n n n n ⋅=⋅=,而二面角A QD P --的余弦值为37=37,解得4=m ,或者8=m (舍去),此时)0,4,6(Q ,设1(01)DP DD λλ=<≤,而1(0,3,6)DD =-,由此得点)6,36,0(λλ-P ,(6,32,6)PQ λλ=--,∵//PQ 平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1,0)n =,∴PQ 30n ⋅=,即023=-λ,亦即λ=23,从而)4,4,0(P ,于是,将四面体ADPQ 视为以ADQ ∆为底面的三棱锥ADQ P -,则其高4=h ,故四面体ADPQ 的体积11166424332ADQV Sh =⋅=⨯⨯⨯⨯=.解法二 (1)如图c ,取1A A 的中点R ,连结PR ,BR ,∵1A A ,1D D 是梯形11A AD D 的两腰,P 是1D D 的中点,∴AD PR //,于是由BC AD //知,BC PR //,∴P ,R ,B ,C 四点共面,由题设知,AB BC ⊥,1BC A A ⊥,∴BC ⊥平面11ABB A ,因此1BC AB ⊥①, ∵tan ABR ∠=AR AB =36=11tan AB A A=11A AB ∠,∴tan tan ABR ∠=11A AB ∠,因此 1ABR BAB ∠+∠=111A AB BAB ∠+∠=90,于是1AB BR ⊥,再由①即知1AB ⊥平面PRBC ,又PQ ⊂平面PRBC ,故1AB PQ ⊥;(2)如图d ,过点P 作1//PM A A 交AD 于点M ,则//PM 平面11ABB A ,∵1A A ⊥平面ABCD ,∴OM ⊥平面ABCD ,过点M 作MN QD ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠为二面角A QD P --的平面角,∴3cos 7PNM ∠=,即MN PN =37,从而PM MN =③ 连结MQ ,由//PQ 平面11ABB A ,∴AB MQ //,又ABCD 是正方形,所以ABQM 为矩形,故6==AB MQ ,设t MD =,则MN ==④,过点1D 作11//D E A A 交AD 于点E ,则11AA D E 为矩形,∴1D E =16A A =,113AE A D ==,因此3=-=AE AD ED ,于是1623D E PM MD ED ===,∴t MD PM 22==,再由③④得=,解得2=t ,因此4=PM ,故四面体ADPQ 的体积11166424332ADQV Sh =⋅=⨯⨯⨯⨯=.。

2015年高考数学立体几何专题试卷(新课标)

2015年高考数学立体几何专题试卷(新课标)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2015年高考数学立体几何专题试卷(新课标)1.(本小题满分12分)如图,四棱锥P ABCD -中,PAB ∆是正三角形,四边形ABCD 是矩形,且平面PAB ⊥平面ABCD ,2PA =,4PC =.(Ⅰ)若点E 是PC 的中点,求证://PA 平面BDE ;(Ⅱ)若点F 在线段PA 上,且FA PA λ=,当三棱锥B AFD -的体积为43时,求实数λ的值.【答案】(Ⅰ)证明见解析;(Ⅱ).32 【解析】试题分析:(Ⅰ)将证明线面平行转化为线线平行,通过做辅助线可证明出EQ //PA ,线面平行的判定定理可证出//PA 平面BDE ;(Ⅱ)如图所示作辅助线,通过题意可先分3431=⋅⋅==∆--FM S V V ABD ABD F AFD B 将问题转化为求BC ,由面面垂直的性质定理得PO ⊥平面ABCD ,进而FM ⊥平面ABCD ,得到BC ⊥平面PAB ,故2223BC PC PB =-=,进而确定332=FM ,再由2323====33FM FA PO PA λλλ⇒⇒ 试题解析:(Ⅰ)如图,连接AC ,设ACBD Q =,又点E 是PC 的中点,则在PAC ∆中,中位线EQ //PA , 3分又EQ ⊂平面BDE ,PA ⊄平面BDE .试卷第2页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以//PA 平面BDE 5分(Ⅱ)依据题意可得:2PA AB PB ===,取AB 中点O ,所以PO AB ⊥,且3PO =又平面PAB ⊥平面ABCD ,则PO ⊥平面ABCD ; 6分作//FM PO 于AB 上一点M ,则FM ⊥平面ABCD , 因为四边形ABCD 是矩形,所以BC ⊥平面PAB ,则PBC ∆为直角三角形8分所以2223BC PC PB =-=,则直角三角形ABP ∆的面积为1=232ABP S AB AD ∆⋅=412323==3333B AFD F ABD ABD V V S FM FM FM --∆==⋅=⇒ 10分由//FM PO 得:2323====33FM FA PO PA λλλ⇒⇒ 12分考点:1、线面平行问题与线线平行问题的互化;2、面面垂直与线面垂直问题的互化;3、综合分析能力.2.(本小题满分12分)如图几何体中,四边形ABCD 为矩形,36,2,AB BC BF CF DE EF ======4,//EF AB ,G 为FC 的中点,M 为线段CD上的一点,且2CM =.(Ⅰ)证明:AF//面BDG ;(Ⅱ)证明:面BGM ⊥面BFC ; (Ⅲ)求三棱锥F BMC -的体积V.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】(Ⅰ)(Ⅱ)证明见解析;(Ⅲ)三棱锥F BMC -的体积为322. 【解析】 试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键. (3)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(Ⅰ)连接AC 交BD 于O 点,则O 为AC 的中点,连接OG ,因为点G 为CF 中点,所以OG 为AFC ∆的中位线,所以//OG AF , 2分 AF ⊄面BDG , OG ⊂面BDG , ∴//AF 面BDG 5分(Ⅱ)连接FM ,2BF CF BC ===,G 为CF 的中点, BG CF ∴⊥,2CM =,4DM ∴=,//EF AB ,ABCD 为矩形, 7分//EF DM ∴,又4EF =,EFMD ∴为平行四边形, 8分 2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥, MG BG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC . 10分(Ⅲ)11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯,因为3GM BG ==,22BM =,所以122122BMG S =⨯⨯=,所以22233F BMC BMC V S -=⨯=. 12分 考点:(1)线面平行的判定;(2)面面垂直;(3)几何体的体积3.(本小题满分12分)如图,AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,四边形ABCD 为矩形,且1,2==AD AB ,平面ABCD ⊥平面ABE .(1)求证:BE ⊥平面DAE .CABDE FGMO试卷第4页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)当点E 在AB 的什么位置时,四棱锥ABCD E -的体积为33. 【答案】(1)详见解析 (2)点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33. 【解析】试题分析:第(1)问先证明线线垂直,再证明线面垂直;第(2)问探求点E 在»AB 的什么位置时,四棱锥E ABCD -的体积为33,从研究BAE α∠=的大小着手思考,通过体积建立关系求出α的大小. 试题解析:(1)因为四边形ABCD 为矩形,所以DA AB ⊥, 又平面ABCD ⊥平面ABE ,且平面ABCD I 平面ABE AB =, 所以DA ⊥平面ABE ,而BE ⊆平面ABE ,所以DA ⊥BE .又因为AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,所以AE BE ⊥. 因为DA AE A =I ,所以BE ⊥平面DAE .(2)因为平面ABCD ⊥平面ABE ,过点E 作EH AB ⊥交AB 于点H ,则EH ⊥平面ABCD .在Rt BAE △中,记BAE α∠=(02πα<<),因为2AB =,所以2cos AE α=,sin 2cos sin sin 2HE AE αααα=⋅==,所以11221sin 2sin 2333E ABCD ABCD V S HE αα-=⨯=⨯⨯⨯=.由已知33E ABCD V -=,所以23sin 233α=,即3sin 22α=. 因为02πα<<,所以23πα=,即6πα=;或223πα=,即3πα=.于是点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………考点:立体几何中的线面关系和四棱锥体积. 4.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 是正方形,⊥SA 底面ABCD ,AB SA =,点M 是SD 的中点,SC AN ⊥且交SC 于点N .(Ⅰ)求证:平面⊥SAC 平面AMN ; (Ⅱ)求二面角M AC D --的余弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)33. 【解析】试题分析:方法1:(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴又底面ABCD 是正方形,DA DC ⊥∴ ⊥∴DC 平面SAD , AM DC ⊥∴ 又AD SA = ,M 是SD 的中点,SD AM ⊥∴,⊥∴AM 面SDC AM SC ⊥∴ ,然后再根据线面垂直的判定定理,即可得出结果.(Ⅱ)取AD 的中点F ,则SA MF //.作AC FQ ⊥于Q ,连结MQ .⊥SA 底面A B C D , ⊥∴MF 底面A B C D AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角,解三角形即可求出结果.解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,利用空间向量在立体几何中的应用,即可求出结果.试题解析:证明(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴ 又底面ABCD 是正方形,DA DC ⊥∴⊥∴DC 平面SAD , AM DC ⊥∴又AD SA = ,M 是SD 的中点,SD AM ⊥∴, ⊥∴AM 面SDC AM SC ⊥∴试卷第6页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………由已知SC AN ⊥, ⊥∴SC 平面AMN . 又⊂SC 面SAC ,∴面⊥SAC 面AMN 6分 (Ⅱ)取AD 的中点F ,则SA MF //. 作AC FQ ⊥于Q ,连结MQ .⊥SA 底面ABCD , ⊥∴MF 底面ABCD AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角设aAB SA ==,在MFQRt ∆中221a SA MF ==,a FQ 42=,a FQ MF MQ 4622=+= 33cos ==∠∴MQ FQ FQM 11分 所以二面角M AC D --的余弦值为3312分 解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,由于AB SA =,可设1===AS AD AB , 则()(),0,1,0,0,0,0B A ()()()1,0,0,0,0,1,0,1,1S D C ,⎪⎭⎫⎝⎛21,0,21M 3分 ⎪⎭⎫⎝⎛=∴21,0,21AM ,()1,1,1--=CS 4分0=∙CS AM , CS AM ⊥∴又AN SC ⊥ 且A AM AN = ⊥∴SC 平面AMN .又⊂SC 平面SAC 所以,平面SAC ⊥平面AMN 6分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)⊥SA 底面ABCD AS ∴是平面ABCD 的一个法向量,()1,0,0=AS 7分 设平面ACM 的一个法向量为()z y x n ,,=()0,1,1=AC ,⎪⎭⎫ ⎝⎛=21,0,21AM ,则⎪⎩⎪⎨⎧=∙=∙00AM n AC n 得()1,1,1--=n 9分 33,cos ->=<∴n AS 11分 ∴二面角M AC D --的余弦值是3312分. 考点:1.线面垂直的判定;2.面面垂直的判定. 5.(本小题满分13分)如图,三棱柱111ABC A B C -中,侧棱垂直底面,︒=∠90ACB ,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:1DC ⊥平面BDC ;(2)若12AA =,求三棱锥1C BDC -的体积. 【答案】(1)见解析 (2)13【解析】试题分析:对应第一问,关键是要掌握线面垂直的判定,把握线线垂直的证明方法,第二问注意椎体的体积公式的应用.试题解析:(1)由题设知1,BC CC BC AC ⊥⊥,1AC CC C =,∴BC ⊥平面11ACC A . (2分) 又∵1DC ⊂平面11ACC A ,∴1DC BC ⊥. (3分)由题设知1145o ADC A DC ∠=∠=,∴190oCDC ∠=,即1C D DC ⊥. (4分)∵DCBC C =,∴1DC ⊥平面BDC . (6分)(2) ∵12AA =,D 是棱1AA 的中点,112AC BC AA ==试卷第8页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴1,1AC BC AD === (7分) ∴222CD AD AC =+=,12DC = (9分)∴1CDC Rt ∆的面积11122122S CD DC =⋅=⨯⨯= (10分) ∴311131311=⨯⨯=⋅=-BC S V CDC B (11分) ∴3111==--CDC B BDC C V V ,即三棱锥1C BDC -的体积为13. (13分)考点:线面垂直的判定,椎体的体积. 6.(本题满分12分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,PA AB = ,点E 是PD 的中点,作EF PC ⊥交PC 于F .(Ⅰ)求证:PB ∥平面EAC ; (Ⅱ)求证:PC ⊥平面AEF ; (Ⅲ)求二面角A PC D --的大小. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)60︒. 【解析】 试题分析:(Ⅰ)连结BD ,与AC 交于G .由中位线可得EG ∥PB .根据线面平行的判定定理可证得PB ∥平面EAC .(Ⅱ)由PA ⊥底面ABCD 可证得PA CD ⊥,又因为ABCD 是正方形,根据线面垂直判定定理可证得CD ⊥平面PAD ,从而可得CD AE ⊥.根据等腰三角形中线即为高线可得AE PD ⊥,根据线面垂直判定定理可证得AE ⊥平面PCD ,从而可得AE PC ⊥又EF PC ⊥可得PC ⊥平面AEF .(Ⅲ)以点A 为坐标原点建立空间直角坐标系. 设1AB =,可得各点的坐标,从而可得各向量坐标.根据向量垂直数量积为0可得面APC 和面DPC 的法向量.根据数量积公式可得两法向量夹角的余弦值,可得两法向量夹角. 两法向量夹角与二面角相等或互补.由观察可知所求二面角为锐角.试题解析:解:(Ⅰ)连结BD ,与AC 交于G , ∵ABCD 是正方形,∴则G 为BD 的中点 ∵E 是PD 的中点, ∴EG ∥PB∵EG ⊂平面EAC ,PB ⊄平面EAC ∴PB ∥平面EAC 3分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)∵PA ⊥底面ABCD ,CD ⊂平面ABCD ∴PA CD ⊥∵CD AD ⊥,PA AD A = ∴CD ⊥平面PAD 4分 ∵AE ⊂平面PAD , ∴CD AE ⊥∵E 是PD 的中点,PA AD = ∴AE PD ⊥ ∵PD CD D =∴AE ⊥平面PCD 6分 而PC ⊂平面PCD , ∴AE PC ⊥又EF PC ⊥,AE EF E =PC ⊥平面AEF 8分(Ⅲ)如图建立空间直角坐标系,点A 为坐标原点,设1AB =则(0,0,1),(1,1,0),(0,1,0),(1,0,0)(0,0,1)(1,0,1)AP AC DC PD ====-=- 9分 设平面APC 的法向量是111(,,)m x y z =,则0,0AP m AC m ⋅=⋅=, 所以10z =,110x y +=,即(1,1,0)m =- 10分 设平面DPC 的法向量是222(,,)n x y z =,则0,0DC n PD n ⋅=⋅= 所以20y =,220x z -=,即(1,0,1)n = 11分11cos ,222m n m n m n⋅<>===⋅⋅,即面角A PC D --的大小为60︒. 12分考点:1线面平行;2线面垂直;3空间向量法解决立体几何问题.7.如图,一简单几何体的一个面ABC 内接于圆O ,,G H 分别是,AE BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .试卷第10页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:GH ∥平面ACD ;(2)若2,1AB BC ==,23tan =∠EAB ,试求该几何体的V. 【答案】(1)证明见解析;(2)1V =. 【解析】试题分析:(1)证明线面垂直需通过证明面面垂直,根据题意,G H 分别是,AE BC 的中点,连接,GO OH ,利用三角形的中位线性质,易证:平面GOH ∥平面ACD ;(2)方法一:将所求几何体分割为两个三棱锥,E ABC E ACD --,同时三棱锥E ABC -的底面积为ABC S ∆,高为EB ,三棱锥E ACD -的底面积为ACD S ∆和高DE ,进而求得两个三棱锥的体积,进而求得所求三棱锥的体积:1V =;方法二:所求体积为四棱锥A BCDE V -,根据题意底面积为矩形BCDE 的面积,高为AC ,利用椎体的体积公式得到所求. 试题解析:(1)证明:连结,GO OH ∵,GO AD OH AC ∥∥.∴GO ∥平面,ACD OH ∥平面ACD ,又GO 交HO 于O ∴平面GOH ∥平面ACD ∴GH ∥平面ACD(2)法一:∵ACD E ABC E V V V --+= ∵2,1AB BC ==∵23tan =∠EAB ∴3,322=-==BC AB AC BE .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………ACD E ABC E V V V --+=21133213131=⨯⨯⨯⨯=⋅=∆-DE S V ACD ACD E .21313213131=⨯⨯⨯⨯=⋅=∆-EB S V ACB ACB E∴12121=+=+=--ACD E ABC E V V V法二:∵DC ⊥平面ABC ∴DC AC ⊥ 又∵AC BC ⊥ ∴AC ⊥平面BCDE ∵2,1AB BC ==. ∵23tan =∠EAB ∴3,322=-==BC AB AC BE ∴ 13313131=⨯⨯⨯=⋅⋅=-AC S V BCDE BCDE A 矩形 考点:1.直线和平面平行的判定定理;2.椎体的体积.8.(本小题共14分)如图,将矩形ABCD 沿对角线BD 把△ABD 折起,使A 点移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:BC ⊥D A 1;(2)求证:平面CD A 1⊥平面BC A 1;(3)若AB=10,BC=6,求三棱锥BCD A -1的体积. 【答案】(1)、(2)详见解析;(3)48.【解析】试题分析:(1)由题意可知O A 1⊥平面BCD ,所以BC ⊥O A 1,又由已知可知BC CO ⊥,由线面垂直的判定定理可得D A 1⊂平面CD A 1,所以D A BC 1⊥;(2)欲证平面CD A 1⊥平面BC A 1,需证BC A D A 11平面⊥,又因为D A 1⊥B A 1.由(1)知BC ⊥D A 1,所以BC A D A 11平面⊥;(3)转换顶点可得11A BCD D A BC V V --=,代入计算即可. 试题解析:(1)因为1A 在平面BCD 上的射影O 在CD 上,试卷第12页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以O A 1⊥平面BCD. 又BC ⊂平面BCD , 所以BC ⊥O A 1.又BC ⊥CO ,CO O O A =⋂1,⊂CO 平面CD A 1,O A 1⊂平面CD A 1,所以BC ⊥平面CD A 1. 又D A 1⊂平面CD A 1, 所以D A BC 1⊥.(5分) (2)因为矩形ABCD , 所以D A 1⊥B A 1. 由(1)知BC ⊥D A 1.又⊂=⋂BC B B A BC ,1平面BC A B A BC A 111,平面⊂, 所以BC A D A 11平面⊥. 又CD A D A 11平面⊂,所以平面CD A BC A 11平面⊥.(10分) (3)因为BC A D A 11平面⊥, 所以C A D A 11⊥.因为CD=10,61=D A ,所以81=C A . 所以48686213111=⨯⨯⨯⨯==--BC A D BCD A V V .(14分) 考点:空间线线垂直、线面垂直的判定性质,多面体体积.9.如图,四棱柱1111ABCD A B C D -的底面为菱形,AC ,BD 交于点O ,1AO ⊥平面ABCD ,12AA BD ==,22AC =.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)证明:1AC ⊥平面11BB D D ; (2)求三棱锥1A C CD -的体积. 【答案】(1)见解析;(2)23【解析】试题分析:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD ,又因为1AO ⊥平面ABCD ,所以1A O BD ⊥.因为1AC A O O ⋂=,所以BD ⊥平面1A AC ,所以1BD A C ⊥. 2分由已知12AA =,22AC =,又1,AO OC AO AC =⊥,所以112AC A A ==, 所以22211A A A C AC +=,所以11A C A A ⊥,因为11B B A A ∥,所以11A C B B ⊥, 4分 因为1BD B B B ⋂=,所以1AC ⊥平面11BB D D . 6分 (2)连接11A C ,因为11AA CC ∥且11AA CC =,所以四边形11ACC A 是平行四边形, 所以11A C AC ∥, 8分 所以三棱锥1A C CD -的体积111113A C CD C ACD A ACD ACD V V V S AO ---∆===⨯ 10分11112222234123AC BD AO =⋅⋅⋅⋅=⋅⋅⋅=. 12分 考点:本题考查线面垂直的判定,求棱锥的体积点评:解决本题的关键是掌握线面垂直的判定定理,10.(本题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,四边形ABCD 为平行四边形,60DAB ∠=︒,24AB PA AD ===,试卷第14页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若E 为PC 中点,求证:PA ∥平面BDE (2)求三棱锥D BCP -的体积 【答案】(1)见解析;(2)4 【解析】 试题分析:(1)连结AC 交BD 于点O ,连结OE , ∵ABCD 为平行四边形,∴O 是AC 的中点, 又∵E 是PC 的中点, ∴OE ∥PA又PA ⊄平面BDE,OE ⊂平面BDE ∴PA ∥平面BDE (2)13D PBC P DBC DBC V V S PD --∆==⋅ 又22124sin 6023,232DBC S PD PA AD ∆=⨯⨯==-= ,所以4D PBC V -= 考点:本题考查线面平行的判定,求棱锥的体积点评:解决本题的关键是在平面BDE 中找出与PA 平行的线。

2015高考数学(新课标I版)分项汇编专题10立体几何(含解析)理

2015高考数学(新课标I版)分项汇编专题10立体几何(含解析)理

专题10 立体几何一.基础题组1. 【2013课标全国Ⅰ,理6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).A.500π3cm3 B.866π3cm3 C.1372π3cm3 D.2048π3cm3【答案】:A2. 【2012全国,理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6 B.9 C.12 D.18【答案】B3. 【2011全国新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【答案】D4. 【2006全国,理7】已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )(A )16π (B )20π (C )24π (D )32π 【答案】C5. 【2005全国1,理2】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为( )A .8π2B .8πC .4π2D .4π 【答案】B6. 【2005全国1,理4】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33 C .34 D .23【答案】A7. 【2010新课标,理14】正视图为一个三角形的几何体可以是__________.(写出三种) 答案:三棱锥、圆锥、四棱锥(答案不唯一)8. 【2014课标Ⅰ,理19】(本小题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.AA 1B1CC 1【答案】(Ⅰ)详见解析;(Ⅱ)17z yOAA 1BB 1CC 19. 【2013课标全国Ⅰ,理18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.10. 【2008全国1,理18】(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.11. 【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015-2017高考数学(理)真题立体几何的位置关系含答案详解

2015-2017高考数学(理)真题立体几何的位置关系含答案详解

1.【2014高考广东卷.理.7】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定2.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则()A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n3.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是()(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面4.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥ ”是“//l α的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.【2014辽宁理4】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是() A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥7.【2016新课标2理数】,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有. (填写所有正确命题的编号)8.【2017江苏,15】如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .9.【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A -PB -C 的余弦值. 10.【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥,1111A C A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F.(第15题)ADBC EF11.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.12.【2014北京理第17题】(本小题满分13分)如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.13.【2015高考北京,理17】如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE⊥平面AOC ,求a 的值.14.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.15.【2014江苏,理16】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===, 求证(1)直线//PA 平面DEF ; (2)平面BDE⊥平面ABC.AB CD E A 1B 1C 11.【2014高考广东卷.理.7】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定 【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,14//l l ;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此1l .4l 的位置关系不确定,故选D .2.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则()A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C . 考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.3.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是()(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.4.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥”是“//l α的必要不充分条件,故选B . 【考点定位】空间直线和平面、直线和直线的位置关系.【名师点睛】本题以充分条件和必要条件为载体考查空间直线、平面的位置关系,要理解线线垂直和线面垂直的相互转化以及线线平行和线面平行的转化还有平行和垂直之间的内部联系,长方体是直观认识和描述空间点、线、面位置关系很好的载体,所以我们可以将这些问题还原到长方体中研究.5. 【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质. 6.【2014辽宁理4】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是() A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 【答案】B 【解析】【名师点睛】本题考查空间直线与直线、直线与平面、平面与平面的平行关系及垂直关系.解题分关键是熟记相关性质定理、判定定理等,首先利用举反例排除错误选项,是解答此类问题的常用方法.本题属于基础题,覆盖面较广,难度不大.7.【2016高考新课标2理数】,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有. (填写所有正确命题的编号) 【答案】②③④ 【解析】试题分析:对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④. 考点:空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.8.【2017江苏,15】如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B = ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.(3)证明线线垂直,需转化为证明线面垂直.9.【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(第15题)ADBC EF(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得A ,P ,B ,(C .所以(PC = ,CB = ,PA = ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n,即00x y z ⎧+-=⎪=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则0PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m,即00x z y =⎪=⎩, 可取(1,0,1)=m .则cos ,||||⋅==<>n m n m n m , 所以二面角A PB C --的余弦值为. 是解题的关键.10.【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥,1111A C A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F.【答案】(1)详见解析(2)详见解析 【解析】试题解析:证明:(1)在直三棱柱111ABC A B C -中,11//AC A C 在三角形ABC 中,因为D,E 分别为AB,BC 的中点. 所以//DE AC ,于是11//DE A C又因为DE ⊄平面1111,A C F A C ⊂平面11A C F 所以直线DE//平面11A C F(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C 因为11A C ⊂平面111A B C ,所以111AA ⊥A C又因为111111*********,,A C A B AA ABB A A B ABB A A B AA A ⊥⊂⊂= ,平面平面 所以11A C ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111A C B D ⊥又因为1111111111111C F,C F,B D A A C A A F A A C A F A ⊥⊂⊂= F ,平面平面 所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.A C F ⊥平面 考点:直线与直线、平面与平面位置关系11.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.试题解析:(I )由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故//AC EF .因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得04DO B ===.由//EF AC 得14OH AE DO AD ==.所以1OH =,3D H DH '==. 于是1OH =,22223110D H OH D O ''+=+==,故D H OH '⊥.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.(II )如图,以H 为坐标原点,HF的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC = ,()3,1,3AD '= .设()111,,m x y z = 是平面ABD '的法向量,则00m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩ ,即11111340330x y x y z -=⎧⎨++=⎩,所以可以取()4,3,5m =- .设()222,,n x y z = 是平面'ACD 的法向量,则00n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 12.【2014高考北京理第17题】(本小题满分13分)如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长【答案】(1)详见解析;(2)2. 【解析】因为⊄AB 平面PDE ,所以//AB 平面PDE ,因为⊂AB 平面ABF ,且平面 ABF 平面PDE FG =, 所以FG AB //.(2)因为⊥PA 底面ABCDE ,所以AB PA ⊥,AE PA ⊥,如图建立空间直角坐标系xyz A -,则)0,0,1(),0,0,0(B A ,)2,0,0(),0,1,2(P C ,)1,1,0(F ,)0,1,1(=BC ,设平面ABF 的法向量为),,(z y x =n ,则⎪⎩⎪⎨⎧=∙=∙00AF AB n n ,即⎩⎨⎧=+=00z y x ,令1=z ,则1-=y ,所以)1,1,0(-=n , 设直线BC 与平面ABF 所成的角为α,则21|||||,cos |cos =⋅=><=BC BC n n α, 因此直线BC 与平面ABF 所成的角为6π,设点),,(w v u H ,因为点H 在棱PC 上,所以可设)10(<<=λλPC PH , 即)2,1,2()2,,(-=-λw v u ,所以λλλ22,,2-===w v u , 因为向量n 是平面ABF 的法向量,所以0=∙AH n , 即0)22,,2()1,1,0(=-∙-λλλ,解得32=λ,所以点H 的坐标为)32,32,34(, 所以2)32()32()34(222=++=PH . 考点:空间中线线、线面、面面的平行于垂直,用向量法求线面角,即空间距离.13. 【2015高考北京,理17】如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE ⊥平面AOC ,求a 的值.【答案】(1)证明见解析,(2)-,(3)43a = 【解析】予以取舍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )
A.14斛
B.22斛
C.36斛
D.66斛
【答案】B
考点:圆锥的体积公式
(新课标1)(9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为
A .36π B.64π C.144π D.256π
【答案】C
【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326
O ABC C AOB V V R R R --==
⨯⨯==,故6R =,则球O 的表面积为 24144S R ππ==,故选C .
B
O
A C
(北京)4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】B
【解析】
试题分析:因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.
考点:1.空间直线与平面的位置关系;2.充要条件.
(福建)7.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】B
考点:空间直线和平面、直线和直线的位置关系.
(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为
(材料利用率=新工件的体积
原工件的体积
)()
A.
8

B.
16

【答案】A. 【解析】
考点:1.圆锥的内接长方体;2.基本不等式求最值.
(四川)14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。

设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为 .
【答案】25
【解析】 试题分析:建立坐标系如图所示.设1AB =,则1
1(1,,0),(,0,0)22AF E =.设
(0,,1)(01)M y y ≤≤,则
z
y x F
M E
Q P
D C B A
考点:1、空间两直线所成的角;2、不等式.
13.(浙江)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .
【答案】87.
考点:异面直线的夹角.
(浙江)8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )
A. A DB α'∠≤
B. A DB α'∠≥
C. A CB α'∠≤
D. A CB α'∠≤
【答案】B.
【解析】
试题分析:根据折叠过程可知'A CB ∠与α的大小关系是不确定的,而根据二面角的定义

得A DB α'∠≥,当且仅当AC BC =时,等号成立,故选B
考点:立体几何中的动态问题
(安徽)(5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()
(A)若α,β垂直于同一平面,则α与β平行
(B)若m,n平行于同一平面,则m与n平行
(C)若α,β不平行,则在α内不存在与β平行的直线
(D)若m,n不平行,则m与n不可能垂直于同一平面
【答案】D
考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.。

相关文档
最新文档