《变量之间的关系》综合练习
知识点详解北师大版七年级数学下册第三章变量之间的关系综合练习试题(含详细解析)
北师大版七年级数学下册第三章变量之间的关系综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了15,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x2、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快3、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。
队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。
设行进时间为t(单位:min ),行进的路程为s (单位:m ),则能近似刻画s 与t 之间的函数关系的大致图象是( )A .B .C .D .4、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②5、在圆周长计算公式2C r π=中,对半径不同的圆,变量有( ) A .,C rB .,,C r πC .,C r πD .,2,C r π6、一列火车从A 站行驶3公里到B 处以后,以每小时90公里的速度前进.则离开B 处t 小时后,火车离A 站的路程s 与时间t 的关系是( ) A .s =3+90tB .s =90tC .s =3tD .s =90+3t7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .8、如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系9、下表是某报纸公布的世界人口数据情况:表中的变量( )A .仅有一个,是时间(年份)B .仅有一个,是人口数C .有两个,一个是人口数,另一个是时间(年份)D .一个也没有10、某居民小区电费标准为0.55元/千瓦时,收取的电费y (元)和所用电量x (千瓦时)之间的关系式为0.55y x ,则下列说法正确的是( ) A .x 是自变量,0.55是因变量B .0.55是自变量,x 是因变量C.x是自变量,y是因变量D.y是自变量,x是因变量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图表示的是某种摩托车的油箱中剩余量y(升)与摩托车行驶路程x(千米)之间的关系.由图象可知,摩托车最多装__升油,可供摩托车行驶___千米,每行驶100千米耗油___升.2、地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________3、城市绿道串连起绿地、公园、人行横道和自行车道改善了城市的交通环境,引导市民绿色出行截至2019年年底,某市城市绿道达2000千米,该市人均绿道长度y(单位:千米)随人口数x的变化而变化,指出这个问题中的所有变量________________.4、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.5、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是_________;(2)无人机在75米高的上空停留的时间是_________分钟;(3)在上升或下降过程中,无人机的速度为_________米/分;(4)图中a表示的数是_________;b表示的数是_________;(5)图中点A表示_________.三、解答题(5小题,每小题10分,共计50分)1、下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?2、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?3、已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥1 2,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题: ①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .4、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O点表示________;A点表示________;B点表示________.(2)从图中可知,小明家离体育馆________m,父子俩在出发后________min相遇.(3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?5、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.-参考答案-一、单选题1、D【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×15÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.2、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.3、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.4、A【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.5、A【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,进而得出答案.【详解】解:在圆周长计算公式C=2πr中,对半径不同的圆,变量有:C,r.故选:A.【点睛】此题主要考查了常量与变量,正确把握变量的定义是解题关键.6、A【分析】根据路程、速度、时间之间的关系可得关系式.【详解】解:火车离A站的距离等于先行的3公里,加上后来t小时行驶的距离可得:s=3+90t,故选:A.【点睛】本题考查了函数关系式,解题的关键是理解路程、速度、时间之间的关系.7、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.8、B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.9、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.10、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.二、填空题1、10 500 2【分析】根据图象可知,当x=0时,对应y的数值就是摩托车最多装多少升油,当y=0时,x的值就是摩托车行驶的千米数;根据摩托车油箱可储油10升,可以行驶500km即可得出每行驶100千米消耗汽油升数.【详解】解:由图象可知,摩托车最多装10升油,可供摩托车行驶500千米,每行驶100千米耗油2升.故答案为:10,500,2.【点睛】此题主要考查了利用函数图象解决问题,从图象上获取正确的信息是解题关键.2、h=156t-.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=156t-.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.3、人均绿道长度y,人口数x【分析】根据常量与变量的定义进行填空即可.【详解】解:这个问题中的所有变量是该市人均绿道长度y 与人口数x ,故答案为:人均绿道长度y ,人口数x .【点睛】本题考查了常量与变量,掌握常量与变量的定义是解题的关键.4、210S x x =-【分析】先用x 表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x ,所以长方形的长为(10-x ),所以长方形的面积S 与宽x 的关系式是:()21010S x x x x =-=-. 故答案为:210S x x =-.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键.5、操控无人机的时间t ; 无人机的飞行高度h ; 5; 25; 2; 15; 在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留时间为1275-=分钟即可;(3)根据“速度=路程÷时间”计算即可;(4)根据速速、时间与路程的关系式,列式计算求解即可;(5)根据点的实际意义解答即可.【详解】解:(1)横轴代表的是无人机被操控的时间,纵轴是无人机飞行的高度,所以自变量是操控无人机的时间t ;因变量是无人机的飞行高度h ;(2)无人机在75米高的上空停留时间为1275-=分钟;(3)在上升或下降过程中,无人机的速度为:75502576-=-米/分; (4)图中a 表示的数为:50=225分钟;图中b 表示的数为75121525+=分钟; (5)图中点A 表示,在第6分钟时,无人机的飞行高度为50米.【点睛】本题考查变量之间的关系在实际中的应用,根据图象学会分析是解题重点.三、解答题1、(1)两个变量;(2)用x 表示年份,用y 表示世界人口数,那么随着x 的变化,y 的变化趋势是增大.【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x 表示年份,用y 表示世界人口总数,那么随着x 的变化,y 的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.2、(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2) 3.4 1.6y n =+;(3)需要61个铁环【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.3、 (1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12,图象最低点为(2,1),再代入即可【详解】(1)设11k y x = ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x 增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键4、(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度为3x=180米/秒,∴从B点到O点的所需时间=900180=5(分),而小明从体育馆到点B用了15分钟,∴小明从点O到点B,再从点B到点O需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.5、 (1)大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【解析】【分析】(1) 观察函数的图象,找出最高点和最低点表示的时间即可;(2) 在函数的图象上找出光合作用强度上升和下降的部分即可;【详解】(1) 函数的图象可得:大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.。
变量之间的关系练习题附答案
变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。
北师大版七年级数学下学期 第3章 变量之间的关系 单元练习题 含解析
第3章变量之间的关系一.选择题(共20小题,满分40分,每小题2分)1.(2分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r 2.(2分)下列函数中,表示是同一函数的是()A.y=x与y=B.y=x与y=()2C.y=x与y=D.y=x与y=3.(2分)下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1 B.2 C.3 D.44.(2分)已知f(x)=10x+1,如:当x=3时,f(3)=3×10+1=31,则当f(x)=21时,x的值为()A.﹣2 B.3 C.2 D.75.(2分)函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1 D.x≤且x≠﹣1 6.(2分)已知函数,当y=6时,x的值是()A.B.C.D.7.(2分)下列图象中,表示y不是x的函数的是()A.B.C.D.8.(2分)根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x的值是7,则输出y的值是()A.1 B.﹣1 C.2 D.﹣29.(2分)邮购一种图书,每册定价36元,另加书价的4%作为邮费,若购书x册,则付款y(元)与x(册)的函数解析式为()A.y=36x+4%x B.y=36(1+4%)xC.y=36.04x D.y=35.96x10.(2分)一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8 D.y=0.5x+8 11.(2分)某水果商店规定:如果购买苹果不超过10千克,那么每千克售价3元;如果超过10千克,那么超过的部分每千克降低10%,某单位购买48千克水果,则应付的钱数为()A.129.6元B.132.6元C.141元D.144元12.(2分)如图所示,在一个玻璃器中,放有一个正方形铁块,用同样的速度向容器注水,则下列函数的图象,能表示水面的高度h与注水时间t的关系式的是()A.B.C.D.13.(2分)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的关系用图象表示应为()A.B.C.D.14.(2分)在等式①x=|y|;②y=|x|;③x2+y2﹣1=0;④5x﹣2y=0;⑤,y是x 的函数的有()A.2个B.3个C.4个D.5个15.(2分)在某次试验中,测得两个变量x和y之间的4组对应数据如下表:x 1 2 3 4y0 3 8 15 则y与x之间的关系满足下列关系式()A.y=2x﹣2 B.y=3x﹣3 C.y=x2﹣1 D.y=x+116.(2分)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.17.(2分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等18.(2分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x0 1 2 3 4 5y10 10.5 11 11.5 12 12.5 下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm19.(2分)早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.20.(2分)如右图,在▱ABCD中,直线l⊥LBD.将直线l沿BD从B点匀速平移至D点,在运动过程中,直线l与▱ABCD两边的交点分别记为点E、F.设线段EF的长为y,平移时间为t则下列图象中,能表示y与t的函数关系的图象大致是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)21.(2分)函数的主要表示方法有、、三种.22.(2分)已知f(x)=,那么f(3)=.23.(2分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.24.(2分)某计算程序编辑如图所示,当输入x=时,输出的y=3.25.(2分)为了加强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t时,水价为每吨2.2元;超过10t时,超过部分按每吨2.8元收费,该市每户居民5月份用水xt(x>10),应交水费y元,则y关于x的关系式.26.(2分)如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.27.(2分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.28.(2分)某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.29.(2分)如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A 处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于.30.(2分)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.y=①x=(0,1,2,…10)②(x>10,且x为整数)三.解答题(共3小题,满分40分)31.(14分)随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.32.(12分)为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.33.(14分)如图,在矩形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,(1)当x=3时,y=;当x=12时,y=;当y=6时,x=;(2)分别求当0<x<4、4≤x≤10、10<x<14时,y与x的函数关系式.参考答案与试题解析一.选择题(共20小题,满分40分,每小题2分)1.【解答】解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.2.【解答】解:A、y=x与y=中,第二个函数x≠0,故不是表示同一函数;B、y=x与y=()2中,第二个函数x≥0,故不是表示同一函数;C、y=x与y==x,故表示同一函数;D、y=x与y=的值域不同,故不是表示同一函数;故选:C.3.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.4.【解答】解:∵f(x)=10x+1,f(x)=21,∴10x+1=21,解得x=2.故选:C.5.【解答】解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.6.【解答】解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.7.【解答】解:A、C、D对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有B选项对于x的每一个确定的值,有两个y与之对应,不符合函数的定义.故选:B.8.【解答】解:若输入x的值是2,则输出y的值是1,∴1=﹣2×2+b,解得b=5,∴当x=7时,y==﹣1,故选:B.9.【解答】解:由题意得;购买一册书需要花费(36+36×4%)元∴购买x册数需花费(36+36×4%)x元即:y=(36+36×4%)x=36(1+4%)x,故选:B.10.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.11.【解答】解:由题意可知:3×10+(48﹣10)×3×0.9=132.6元,故选:B.12.【解答】解:在未淹住正方形铁块时,水面高度会比较快速的上升,而超过铁块后,速度会减慢.故选:D.13.【解答】解:由题意得,s=400﹣100t,且0≤x≤4,故选:C.14.【解答】解:∵对于x的每一个取值,y都有唯一确定的值,∴②y=|x|;④5x﹣2y=0;⑤当x取值时,y有唯一的值对应;故选:B.15.【解答】解:观察发现,当x=1时,y=12﹣1,当x=2时,y=22﹣1,当x=3时,y=32﹣1,当x=4时,y=42﹣1,∴y与x之间的关系满足下列关系式为y=x2﹣1.故选:C.16.【解答】解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.17.【解答】解:A、小明中途休息的时间是:60﹣40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选:B.18.【解答】解:A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选:C.19.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.20.【解答】解:①当点E在AB上运动时,设直线BD交直线l于点H,∠DBC=α,∠DBA=β,则HF=BF sinα=sinα•t,BH=cosα•t,则EH=BH tanβ=cosαtanβ•t,FE=EH+FH=(sinα+cosαtanβ)•x,为一次函数;②当直线l在AC之间运动时,EF为常数;③当直线l在CD上运动时,同理可得:EF的表达式为一次函数,故选:D.二.填空题(共10小题,满分20分,每小题2分)21.【解答】解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.22.【解答】解:当x=3是,f(3)==,故答案为.23.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.24.【解答】解:当x≥3时,y=3即,解得x=12;当x<3时,y=3即3x+5=3,解得:x=﹣.故答案为:12或﹣.25.【解答】解:∵该市每户居民5月份用水xt(x>10),∴应交水费y元关于x的关系式为:y=10×2.2+2.8(x﹣10)=2.8x﹣6.故答案为:y=2.8x﹣6.26.【解答】解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:27.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④28.【解答】解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.29.【解答】当点P在BC段时,对应图2,x≤3的部分,故BC=3;当点P在CD段时,对应图2,3<x≤8的部分,故DC=5;故长方形ABCD的面积等于CB×CD=3×5=15,故答案为15.30.【解答】解:①∵一次购买10张一下(含10张),每张门票180元,∴当x=(0,1,2,…10)时,该旅游团门票费用y(元)与人数x的函数关系式为:y =180x;②∵根据题意得:y=180×10+180×0.6×(x﹣10)=108x+720,∴当x>10,且x为整数时,该旅游团门票费用y(元)与人数x的函数关系式为:y=108x+720.故答案为:①180x,②108x+720.三.解答题(共3小题,满分40分)31.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.所以爸爸出发后18分钟或22分钟时,两人相距0.4千米.故答案为18或22.32.【解答】解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;(2)超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4)=1.9x﹣4.9.33.【解答】解:(1)如图1,∵点R运动的路程为x,△MNR的面积为y,∴当x=3时,y=MN×RN=×6×3=9,如图2,当x=12时,y=RM×MN=×2×6=6,根据以上计算可以得出当y=6时,x=2或12,故答案为:9,6,2或12;(2)当0≤x<4时,R在PN上运动,y=MN×RN=×6×x=3x;当4≤x≤10时,R在QP上运动,y=MN×PN=×6×4=12;当10<x≤14时,R在QM上运动,y=MN×RM=×6×[4﹣(x﹣10)]=42﹣3x.。
北师大版七年级数学下册第三章 变量之间的关系 综合压轴题练习题(无答案,Word版)
北师大版七年级数学下册第三章变量之间的关系综合压轴题练习1、某城市规定:出租车起步价允许行驶的最远路程为3 千米.超过3 千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8 千米,付了17 元”;乙说:“我乘这种出租车走了18 千米,付了35 元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3 千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x 千米,请写出付费w 元与x 的函数关系式.2、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1y2 与x 之间的函数关系图象如图所示:(1)根据图象,直接写出y1,y2 与x 之间的函数关系;(2)分别求出当x=3,x=5,x=8 时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S 关于x 的函数关系式.3、如图,在正方形ABCD 中,对角线的长为2,动点P 沿对角线BD 从点B 开始向点D 运动,到达点D 后停止运动.设BP=x,△PBC 的面积为S,试确定S 与x 之间的函数表达式,并写出x 的取值范围.(2)某用户想月所缴水费控制在 20 元至30 元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为 m 吨,请用含 m 的代数式表示该用户月所缴水费.5、某市电信局推出上网包月制三种类型,见下表.若不包月或包月后超出的时间,则按每6、下图表示甲、乙两名选手在一次自行车越野赛中,各时间段的平均速度 v (千米/小时) 随时间 t (分)变化的图象(全程),根据图象提供的信息:(1)求这次比赛全程是多少千米;(2)求比赛开始后多少分钟两人相遇.7、上网费包括网络使用费(每月38 元)和上网通信费(每时2 元),某电信局对拨号上网用户实行优惠,具体优惠政策如下:(2)若小敏家8 月份上网90 小时,应缴上网费多少元?8、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3 时,每立方米收费1.0 元,并加收0.2 元的城市污水处理费;超过7m3 的部分每立方米收费1.5 元,并加收0.4 元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3 时,y 与x 之间的函数关系式;(2)写出用水多于7m3 时,y 与x 之间的函数关系式.9、某市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费:每月用电不超过100 度时,按每度0.37 元计费;每月用电超过100 度时,其中超过部分按每度0.50 元计费.(1)用电x 度时,应交电费y 元,当x≤100 和x>100 时,分别写出y 关于x 的关系式.(2)小王家第一季度交纳电费如下:10、如图①,在长方形ABCD 中,AB=10cm,BC=8cm、点P 从A 出发,沿A、B、C、D路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象;(1)根据图②中提供的信息,求a、b 及图②中c 的值;(2)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式;(3)点P 出发后几秒,△APD 的面积S1 是长方形ABCD 面积的14?11、如图,有一边长为5cm 的正方形ABCD 和等腰Rt△PQR,QR=8cm,点B、C、Q、R 在同一条直线上,当C、Q 两点重合时,△PQR 以1cm/秒的速度向左开始匀速运动,设与正方形重合部分的面积为S cm2.(1)求S 与运动时间t(秒)的函数关系式,并指出自变量的取值范围;(2)求S 的最大值.12、如图在矩形ABCD 中,AB=8cm,Bc=6cm,动点P,Q 分别从A,B 向B、C 运动,运动速度为1cm/s,当P、Q 一点停止运动则另一点停止运动.设△PBQ 的面积为y,点P、Q 运动时间为x(s).(1)求y 与x 的函数关系;(2)当x 为多少时,五边形APQCD 的面积最小,并求最小面积.13、如图,长方形ABCD 中,AB=6,CB=8,点P 以2 个单位/s 的速度从A 沿AB 向B 运动,同时点Q 以1 个单位/s 的速度从C 沿CB 向B 运动,当其中的一个点到达终点时,另一个点随之停止运动,设运动时间为t s.(1)当QB=2PB 时,求t 的值;(2)在(1)的条件下,求图中阴影部分的面积.14、四边形ABCD 中,AD∥BC,AB=CD=5,AD=7,BC=13,S 四边形ABCD=40,P 是一动点,沿AD,DC 由A 经D 点向C 点移动,设P 点移动的距离为x.(1)当P 点在AD 上运动时,求△PAB 的面积y 与x 的函数关系式并画出图象;(2)当P 点继续沿DC 向C 点运动时,求四边形ADPB 的面积y 与x 的函数关系式.15、如图①,在长方形ABCD 中,AB=10cm,BC=8cm.点P 从A 出发,沿A、B、C、D 路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象.(1)当点P 在AB 上运动时,△APD 的面积会点P 在BC 上运动时,△APD 面积不点P 在CD 上运动,△APD 面积会(填“增大”或“减小”或“不变”)(2)根据图②中提供的信息,求a、b 及图②中c 的值;(3)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式.。
北师大版数学七年级下学期 第3章 变量之间的关系 单元练习卷 含解析
第3章变量之间的关系一.选择题(共10小题)1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.购某种三年期国债x元,到期后可得本息和y元,已知y=kx,则这种国债的年利率为()A.k B.C.k﹣1 D.3.下列函数中,自变量x的取值范围为x>1的是()A.B.C.D.y=(x﹣1)0 4.能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤25.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣76.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.7.定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y=2⊕x(x ≠0)的图象是()A.B.C.D.8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.9.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟10.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二.填空题(共9小题)11.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是.12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是(只填序号).13.一个蓄水池储水100m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是.14.底面半径为r,高为h的圆柱,两底的面积之和与它们的侧面积相等,h与r的函数关系为.15.请写出一个图象经过点(1,4)的函数解析式:.16.某下岗职工购进一批货物,到集贸市场零售,已知卖出的货物数量x与售价y的关系如表所示:质量x(千克)1 2 3 4 5售价y(元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 写出用x表示y的公式是.17.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.18.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.19.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点.设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为.三.解答题(共4小题)20.求函数y=的自变量x的取值范围.21.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.22.下图是桂林冬季某一天的气温随时间变化的图象:请根据图象填空:在时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃(所有结果都取整数).23.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3 ﹣﹣2 ﹣﹣1 ﹣0 1 2 3 …y… 1 2 1 0 1 2 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.参考答案与试题解析一.选择题(共10小题)1.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.购某种三年期国债x元,到期后可得本息和y元,已知y=kx,则这种国债的年利率为()A.k B.C.k﹣1 D.【分析】由题意可列出关系式求解.【解答】解:因为三年期国债x元,到期后可得本息和y元,已知y=kx,则其3年的利息为:kx﹣x,则这种国债的年利率为:故选:D.3.下列函数中,自变量x的取值范围为x>1的是()A.B.C.D.y=(x﹣1)0【分析】根据被开方数大于等于0,分母不等于0对各选项分别列式计算即可得解.【解答】解:A.中x≥1,此选项不符合题意;B.中x>1,此选项符合题意;C.中x≠1,此选项不符合题意;D.y=(x﹣1)0中x≠1,此选项不符合题意;故选:B.4.能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.5.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.7.定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y=2⊕x(x ≠0)的图象是()A.B.C.D.【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【解答】解:∵p⊕q=,∴y=2⊕x=,故选:D.8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.【分析】根据极差的定义,分别从t=0、0<t≤10、10<t≤20及20<t≤24时,极差y2随t的变化而变化的情况,从而得出答案.【解答】解:当t=0时,极差y2=85﹣85=0,当0<t≤10时,极差y2随t的增大而增大,最大值为43;当10<t≤20时,极差y2随t的增大保持43不变;当20<t≤24时,极差y2随t的增大而增大,最大值为98;故选:B.9.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟【分析】由图象可知上坡路程和下坡路程,上坡速度和下坡速度问题即可求解.【解答】解:观察图象可知上坡路程为36百米,下坡路程为96﹣36=60百米,上坡时间为18分,下坡时间为46﹣18﹣8﹣8=12分,∴v上坡==2百米,v下坡==5百米,∴返回的时间=++8=45.2分钟.故选:D.10.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.二.填空题(共9小题)11.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是π.【分析】根据题意可知S,r是两个变量,π是一个常数(圆周率),是常量.【解答】解:在S=πr2中π是一个常数(圆周率),即π是常量,S,r是两个变量.故填π.12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是③(只填序号).【分析】根据对称轴是y轴,排除①②选项,再根据④不是偶函数,即可确定答案.【解答】解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;②y=是反比例函数,函数图象的对称轴不是y轴,错误;③y=x2是抛物线,对称轴是y轴,是偶函数,正确;④y=(x﹣1)2+2对称轴是x=1,错误.故属于偶函数的是③.13.一个蓄水池储水100m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是y=100﹣0.5t(0≤t≤200)..【分析】根据余水量=原有水量﹣用水量,时间应≥0,用水量不能超过原有水量得出.【解答】解:依题意有y=100﹣0.5t,时间应≥0,用水量不能超过原有水量,∴0.5t≤100,解得t≤200.∴0≤t≤200.故函数关系式是y=100﹣0.5t(0≤t≤200).故答案为:y=100﹣0.5t(0≤t≤200).14.底面半径为r,高为h的圆柱,两底的面积之和与它们的侧面积相等,h与r的函数关系为r=h.【分析】根据圆柱两底的面积之和与它们的侧面积相等得出h与r的函数关系.【解答】解:由题意得2πr2=2πrh,即r=h.则h与r的函数关系为r=h.15.请写出一个图象经过点(1,4)的函数解析式:y=4x.【分析】只要满足要求即可:1是函数,2过点(1,4).【解答】解:因为函数的图象过点(1,4),所以可设y=kx,所以4=k,即k=4,所以y=4x.16.某下岗职工购进一批货物,到集贸市场零售,已知卖出的货物数量x与售价y的关系如表所示:质量x(千克)1 2 3 4 5售价y(元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 写出用x表示y的公式是y=2.1x.【分析】有表可知4+0.2﹣2﹣0.1=2.1,6+0.3﹣4﹣0.2=2.1,所以2.1为常量,则y 是x的2.1倍,据此即可确定x与y的关系.【解答】解:由表可知:2.1为常量,∴x表示y的公式是:y=2.1x.17.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2 千米/分钟.【分析】根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.【解答】解:由纵坐标看出路程是2千米,由横坐标看出时间是10分钟,小明的骑车速度是2÷10=0.2(千米/分钟),故答案为:0.2.18.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP 先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∵图象右端点函数值为5,∴AB=BC=5∴PA=3,AP=PC=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1219.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点.设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为(,).【分析】如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【解答】解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:观察图象可知,当点P与A重合时,PE+PB=3,∴AE=EB=1,AD=AB=2,在Rt△AED中,DE=,∴PB+PE的最小值为,∴点H的纵坐标为,∵AE∥CD,∴=2,∵AC=2,∴PC=2×=,∴点H的横坐标为,∴H(,).故答案为:(,).三.解答题(共4小题)20.求函数y=的自变量x的取值范围.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.【解答】解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.21.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是 3 千米;(2)小明在图书馆看书的时间为 1 小时;(3)小明去图书馆时的速度是15 千米/小时.【分析】根据函数的图象y随t的变化可知,因为图象的纵坐标最大为3,故小明家离图书馆的距离是3千米;小明在图书馆看书的时间为72﹣12=60分=1小时;小明从0分钟到12分钟时到达图书馆,故其速度为3÷=15千米/小时.【解答】解:(1)根据图象可知y随t的变化而变化小明家离图书馆的距离是3千米;(2)路程不变,时间为72﹣12=60分钟,故小明在图书馆看书的时间为1小时;(3)根据速度=路程/时间可知小明去图书馆时的速度是15千米/小时.22.下图是桂林冬季某一天的气温随时间变化的图象:请根据图象填空:在 4 时气温最低,最低气温为﹣2 ℃,当天最高气温为 5 ℃,这一天的温差为7 ℃(所有结果都取整数).【分析】首先要搞清楚横、纵坐标所表示的意义,然后根据图中的特殊点的意义来进行解答.【解答】解:由图知:当t=4h时,T值最小,且T=﹣2℃;当t≈14h时,T值最大,且T=5℃;故这一天的温差是5﹣(﹣2)=7℃.23.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3 ﹣﹣2 ﹣﹣1 ﹣0 1 2 3 …y… 1 2 1 0 1 2 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1<y2,x1<x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.【分析】(1)描点连线即可;(2)①A与B在y=﹣上,y随x的增大而增大,所以y1<y2;C与D在y=|x﹣1|上,观察图象可得x1<x2;②当y=2时,2=|x﹣1|,则有x=3或x=﹣1;③由图可知﹣1≤x≤3时,点关于x=1对称,当y3=y4时x3+x4=2;④由图象可知,0<a<2;【解答】解:(1)如图所示:(2)①A(﹣5,y1),B(﹣,y2),A与B在y=﹣上,y随x的增大而增大,∴y1<y2;C(x1,),D(x2,6),C与D在y=|x﹣1|上,观察图象可得x1<x2;故答案为<,<;②当y=2时,x≤﹣1时,有2=﹣,∴x=﹣1;当y=2时,x>﹣1时,有2=|x﹣1|,∴x=3或x=﹣1(舍去),故x=﹣1或x=3;③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,∴﹣1≤x≤3时,点P,Q关于x=1对称,则有y3=y4,∴x3+x4=2;④由图象可知,0<a<2;。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2022年鲁教版(五四制)六年级数学下册第九章变量之间的关系专题练习练习题(含详解)
六年级数学下册第九章变量之间的关系专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是( )A .若所缴电费为2.75元,则用电量为6千瓦·时B .若用电量为8千瓦·时,则应缴电费4.4元C .用电量每增加1千瓦·时,电费增加0.55元D .所缴电费随用电量的增加而增加2、用圆的半径r 来表示圆的周长C ,其式子为C =2πr,则其中的常量为( )A .rB .πC .2D .2π3、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x 小时后,产生电费y (元)与时间(小时)之间的函数关系式是( )A . 1.05y x =B .0.7y x =C . 1.5y x =D .3000 1.5y x =+4、设路程为()s km ,速度为()v km h ,时间为()t h ,当50s =时,50t v =,在这个函数关系式中( )A .路程是常量,t 是s 的函数B .速度是常量,t 是v 的函数C .时间是常量,v 是t 的函数D .50s =是常量,v 是自变量,t 是v 的函数5、骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A .沙漠B .体温C .时间D .骆驼6、李师傅到单位附近的加油站加油,如图是所用加油机上的显示屏所显示的内容,其中的常量是( )A .金额B .数量C .单价D .金额和数量7、小明家到学校5公里,则小明骑车上学的用时t 与平均速度v 之间的函数关系式是( )A .5t =vB .5v t =+C .5t v =D .5v t= 8、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( )A .物体B .速度C .时间D .空气9、一辆汽车以50 km/h 的速度行驶,行驶的路程s km 与行驶的时间t h 之间的关系式为s =50 t ,其中变量是( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量10、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系:下列说法一定错误的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5 cmD.所挂物体质量为7kg时,弹簧长度为13.5cm第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、一个梯形的高为8厘米,上底长为5厘米,当梯形下底x(厘米)由长变短时,梯形的面积y(厘米)也随之发生变化,请写出y与x之间的关系式________.2、某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如表:由表格中y与t的关系可知,当汽车行驶_____小时,油箱的余油量为0.3、某电影院第x排的座位数为y个,y与x的关系如表格所示,第10排的座位数为___.4、如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.动点P从A出发,以1厘米/秒的速度沿A→B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),当t=____________时,S△ADP=S△BQD.5、甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发__秒.6、某电器进价为250元,按标价的9折出售,则此电器的利润y(元)与标价x(元)之间的关系式是_________________________.7、购买单价为每支1.2元的铅笔,总金额y(元)与铅笔数n(支)的关系式可表示为y=_____,其中,_____是常量,_____是变量x=,那么输出值y=______.8、按下面的运算程序,输入一个实数3三、解答题(3小题,每小题10分,共计30分)1、某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s(km)与跑步时间t(min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2 km/min,根据图像提供的信息,解答下列问题:(1)a= km;(2)组委会在距离起点甲地3km处设立一个拍摄点P,该运动员从第一次过P点到第二次过P 点所用的时间为24min.①求AB所在直线的函数表达式;②该运动员跑完全程用时多少min?2、下表是小华做观察水的沸腾实验时所记录的数据:(1)时间是8分钟时,水的温度为_____;(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;(3)在_____时间内,温度随时间增加而增加;_____时间内,水的温度不再变化.3、一销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1)设每件降低x(元)时,销售员获利为y(元),试写出y关于x的函数关系式.(2)当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?-参考答案-一、单选题1、A【解析】【分析】电量从1千瓦·时到2千瓦·时,电费增加了1.1-0.55=0.55元,从2千瓦·时到3千瓦·时,电费增加了1.65-1.1=0.55元,从3千瓦·时到4千瓦·时,电费增加了2.20-1.65=0.55元,故用电量每增加1千瓦·时,电费增加0.55元,据此可回答问题.【详解】A. 若所缴电费为2.75元时,电费为2.75÷0.55=5千瓦·时,故本选项错误;B. 若用电量为8千瓦·时,电费为8×0.55=4.4元,故本选项正确;C. 用电量每增加1千瓦·时,电费增加0.55元,故本选项正确;D. 随着用电量增加,电费在逐渐增长,故本选项正确.所以选A.【点睛】本题考查用表格表示变量之间的关系,解决本类题的关键是要观察表格,因变量是如何随着自变量改变的.2、D【解析】【分析】由常量与变量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可求得答案.【详解】∵C=2πr,π是圆周率,∴2π是常量,C与r是变量.故选:D.此题考查了常量与变量.注意掌握常量与变量的定义是解此题的关键,注意π是圆周率,是常量.3、A【解析】【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得: 1.50.7 1.05y x x =⨯=,故选A .【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.4、D【解析】【分析】函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数,结合选项即可作出判断.【详解】 解:在50t v=中,速度和时间是变量,路程S 是常量,t 是v 的函数. 故选D .【点睛】本题考查了函数关系式的知识,注意等式左边的那个字母表示自变量的函数.5、B【分析】根据自变量和因变量的概念,即可得到答案.【详解】∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故选B.【点睛】本题主要考查函数的因变量和自变量的概念,掌握因变量是随着自变量的变化而变化的,是解题的关键.6、C【解析】【分析】根据常量与变量的概念可直接进行求解.【详解】解:∵在一个变化过程中,数值始终不变的量是常量,∴其中的常量是单价;故选C.【点睛】本题主要考查了常量与变量,熟练掌握“在一个变化过程中,数值始终不变的量称为常量,数值发生变化的量称为变量”是解题的关键.7、D【解析】根据速度,时间与路程的关系得出5vt=,变形即可.【详解】解:根据速度,时间与路程的关系得5vt=∴5vt =.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出5vt=是解题关键.8、C【解析】【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.9、C【解析】在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意得:s=50 t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量.故选C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.10、B【解析】【分析】根据变量与常量,函数的表示方法,结合表格中数据的变化规律逐项进行判断即可.【详解】解:A.x与y都是变量,且x是自变量,y是因变量,是正确的,因此选项A不符合题意;B.弹簧不挂重物时的长度,即当x=0时y的值,此时y=10cm,因此选项B是错误的,符合题意;C.物体质量x每增加1kg,弹簧长度y增加0.5cm,是正确的,因此选项C不符合题意;D.根据物体质量x每增加1kg,弹簧长度y增加0.5cm,可得出所挂物体质量为7kg时,弹簧长度为13.5cm,是正确的,因此选项D不符合题意;故选:B.【点睛】本题考查常量与变量,函数的表示方法,理解和发现表格中数据的变化规律是解决问题的关键.二、填空题1、y=4x+20【解析】【分析】根据梯形的面积公式求出y 与x 之间的关系式即可.【详解】解:根据梯形的面积公式得:()584202x y x +=⨯=+, 故答案为:420y x =+.【点睛】本题主要考查了梯形的面积公式,求两个变量之间的函数关系式,解题的关键在于能够熟练掌握梯形的面积公式.2、15【解析】【分析】由表格可知油箱中有油120升,每行驶1小时,耗油8升,则可求解.【详解】解:由表格可知,每行驶1小时,耗油8升,∵t=0时,y =120,∴油箱中有油120升,∴120÷8=15小时,∴当行驶15小时时,油箱的余油量为0,故答案为:15.【点睛】本题考查了变量与常量,注意贮满120L 油的汽车,最多行驶的时间就是油箱中剩余油量为0的时的t 的值.3、41【解析】【分析】根据表格可以发现,当x每增加1时,y增加2,由此求解即可得到答案.【详解】解:第1排,有23个座位第2排,有25个座位第3排,有27个座位第4排,有29个座位由此可以发现,当x每增加1时,y增加2∴y=2(x-1)+23把x=10代入上式中得y=2×(10-1)+23=41故答案为:41.【点睛】本题主要考查了用表格表示两个量的关系,解题的关键在于能够根据表格发现两个量的关系规律,由此求解.4、107s或4s【解析】【分析】分两种情况:(1)当点Q在CB上时,如图1所示,(2)当点Q运动至BA上时,如图2所示,分别根据三角形的面积公式即可列出关于t的方程,解方程即可.【详解】解:分两种情况:(1)当点Q在CB上时,如图1所示:S△ADP=12AD×AP=2t,S△BQD=12BQ×DC=52(4﹣2t),则2t=52(4﹣2t),解得:t=107;(2)当点Q运动至BA上时,如图2所示:S△ADP=12AD×AP=2t,S△BQD=12BQ×DA=2(2t﹣4),则2t=2(2t﹣4),解得:t=4;综上可得:当t=107s或4s时,S△ADP=S△BQD.故答案为:107s或4s.【点睛】本题主要考查了三角形的面积、变量之间的关系和简单的一元一次方程的解法,正确分类、善于动中取静、灵活应用运动变化的观点是解题的关键.5、15【解析】【详解】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:1300100300=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,设丙比甲晚出发a秒,则(50+45﹣a)×6=(50+45)×4+100,a=15,则丙比甲晚出发15秒.6、y=0.9x-250【解析】【分析】根据利润=售价-成本列出关系式即可.【详解】解:∵利润=售价-成本,∴y=0.9x-250.故答案为:y=0.9x-250.【点睛】本题考查了用关系式表示的变量之间的关系,正确理解题意、列出相应的关系式是关键.7、y=1.2n(n为自然数) 1.2 n、y【解析】【详解】由题意可得:(1)y 与x 间的函数关系是: 1.2y n =;(2)其中常量是:1.2;(3)变量是:n 、y. 故答案为(1) 1.2y n =;(2)1.2;(3)n 、y.8、9【解析】【分析】先根据图表列出函数关系式,然后计算当3x =时y 的值.【详解】当3x =时,(1)25(31)259y x .故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.三、解答题1、(1)5千米.(2)直线AB 解析式为s =-t +.60分. 【解析】【详解】试题分析:(1)根据路程=速度×时间,即可求出a 值;(2)①根据点O 、A 的坐标,利用待定系数法即可求出线段OA 的函数表达式,根据一次函数图象上点的坐标特征可求出第一次经过点P 的时间,进而可得出第二次经过点P 的时间,再根据点A 的坐标及(39,3),利用待定系数法即可求出AB 所在直线的函数表达式;②根据一次函数图象上点的坐标特征,求出AB 所在直线的函数表达式中当s =0时t 的值,此题得解.试题解析:解:(1)∵从甲地跑到乙地时的平均速度是0.2 km /min 用时25分钟,∴a =0.2×25=5(千米).故答案为5.(2)①设线段OA 的函数表达式为s =mt +n ,将O (0,0)、A (25,5)代入s =mt +n 中,得:0255n m n =⎧⎨+=⎩,解得:150m n ⎧=⎪⎨⎪=⎩,∴线段OA 的函数表达式为s =15t (0≤t ≤25),∴当s =15t =3时,t =15.∵该运动员从第一次过P 点到第二次过P 点所用的时间为24min ,∴该运动员从起点到第二次经过P 点所用的时间是15+24=39(min ),∴直线AB 经过点(25,5),(39,3).设AB 所在直线的函数表达式为s =kt +b ,将(25,5)、(39,3)代入s =kt +b 中,得:255393k b k b +=⎧⎨+=⎩,解得:17607k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 所在直线的函数表达式为s =﹣17 t +607. ②该运动员跑完赛程用的时间即为直线AB 与x 轴交点的横坐标,∴当s =0时,﹣17t +607=0,解得:t =60,∴该运动员跑完赛程用时60分钟.点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)①根据点的坐标,利用待定系数法求出AB 所在直线的函数表达式;③根据一次函数图象上点的坐标特征,求出该运动员跑完全程所用时间.2、(1)100℃(2)温度,时间,时间,温度;(3)0至8分钟,8至12分钟.【解析】【详解】试题解析:(1)第8分钟时水的温度为100℃;(2)反映的温度随着时间的变化而变化的,时间是自变量,温度是因变量;(3)观察表格发现在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.故答案为(1)100℃;(2)温度,时间,时间,温度;(3)0至8分钟,8至12分钟.3、(1)21600(040)y x x =-≤≤;(2)企业购进60件,销售员利润1200元.【解析】【分析】(1)根据题意每件降低x 元时代表企业在40件的基础上多要x 件,而此时销售员每件可获利为40-x ,由获利=件数⨯每件获利即可得关系式 ;(2)每件降低20元,证明在40件的基础上多要20件,再代入(1)的关系式可得销售员此时获利.【详解】解:(1)根据题意每件降低x 元时代表企业在40件的基础上多要x 件,而此时销售员每件可获利为40-x ,则销售员可获利:2(40)(40)1600y x x x =+-=- ,因题意规定销售员为不亏本的前提,所以自变量0x 40≤≤,综上可知函数关系式为21600(040)y x x =-≤≤;(2)每件降低20元,证明在40件的基础上多要20件,即此时企业需要购进60件,根据(1)的关系式,当x=20时,销售员获利21600201200y =-=.【点睛】本题主要考查了找函数关系式,正确得出y 与x 的函数关系是解题关键.。
北师大版七年级下数学第三章《变量之间的关系》练习题1
《变量之间的关系》练习题一、选择题(每小题3分,共24分)1、2021年春节期间,许多在西安市的外地员工都响应政府号召留在西安过春节,滞留的小豪在西安给远在北京的妻儿打电话,电话费随着通话时间的变化而变化,在这个过程中,自变量和因变量分别是()。
A、小豪和妻儿B、小豪和电话费C、电话费和通话时间D、通话时间和电话费2、下列哪幅图可以大致刻画出苹果成熟后从树上下落过程中(落地前)的速度变化情况()。
3、汽车离开甲站10km后,以60k/h的速度匀速前进了th,则汽车离开甲站所走的路程s(km)与时间t (h)之间的关系式是()A、s=10+60tB、s=60tC、s=60t -10D、s=10-60t4、一个蓄水池有水50m3,打开放水闸门匀速放水,水池中的水量和放水时间的关系如下表,下面说法不正确的是()。
放水时间(min)1234……水池剩余水量(m3)48464442……A、放水时间是自变量,水池剩余水量是因变量B、每分钟放水2m3C、放水25min后,水池中的水全部放完D、放水10min后,水池中还有水28m35、张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则比较符合题意的图象是()。
6、如图,用每片长6cm的纸条,重叠1cm粘贴成一条纸带,纸带的长度y(cm)与纸片的张数x之间的关系式是()。
A、y=6x+1B、y=4x+1C、y=4x+2D、y=5x+17、如图(1),在长方形ABCD中,动点P从点A处出发,沿ABCD方向运动至点D处停止,设点P出发时的速度为每秒bcm,a秒后点P改变速度,以每秒1cm向点D运动,直到停止,图(2)是△APD的面积S(cm2)与时间x(s)的图象,则b的值是()。
8、一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图所示的折线图描述了他上班途中整个过程的情景,下列四种说法:①李师傅上班的 单位距他家2000米;②李师傅路上耗时20分钟;③自行车发生故障时离家的距离为1000米;④李师傅修车用了15分钟。
七年级数学下册第三章《变量之间的关系》单元测试卷(含答案)
七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.某工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A. y=30−14x B. y=30+14x C. y=30−4x D. y=14x2.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A. B.C. D.3.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m34.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积()A. 从20cm2变化到64cm2B. 从64cm2变化到20cm2C. 从128cm2变化到40cm2D. 从40cm2变化到128cm25.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h千米处的温度t为()A. t=20−6ℎB. ℎ=20−6tC. t=20−ℎ6D. ℎ=20−t66.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.7.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.8.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系().A. B.C. D.9.如图所示图象(折线ABCDE)描述了汽车沿笔直路线行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个10.如图的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中,正确的是()A. y=4n−4B. y=4nC. y=4n+4D. y=n2二、填空题(本大题共5小题,共20.0分)11.河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有行驶路程s(千米)050100150200...剩余油量Q(升)4035302520...则该汽车每行驶100千米的耗油量为__________升.12.如图所示是关于变量x,y的程序计算,若开始输入的x值为6,则最后输出因变量y的值为.13.如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的图象如图2所示,则长方形ABCD的周长等于____.14.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).15.某书定价25元,如果一次购买20本以上,超过20本的部分打八折(原价的80%),试写出付款金额y(单位:元)与购书数量x(单位:本,x>20)之间的关系式:________________.三、解答题(本大题共10小题,共100.0分)16.(8分)某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共______米,从家出发到学校,小明共用了______分钟;(2)小王吃早餐用了______分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?17.(10分)某通信公司在某地的资费标准为包月18元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.如表所示是超出部分国内拨打的收费标准.时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果打电话超出25分钟,需付多少电话费?(3)某次打电话超出部分的费用是54元,那么小明的爸爸打电话超出几分钟?18.(10分)某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入−支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.19.(10分)某车间的甲、乙两名工人分别同时生产同一种零件,他们一天生产零件的个数y与生产时间t(时)的关系如图所示.(1)根据图象填空: ①甲、乙两人中,先完成一天的生产任务;在生产过程中,因机器故障停止生产小时; ②当t=时,甲、乙生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.20.(10分)我市为了提倡节约,用水x吨,自来水收费实行阶梯水价y元,收费标准如下表所示:(1)___________是因变量.(2)若用水量达到15吨,则需要交水费_____________元.(3)用户5月份交水费54元,则所用水为________吨.(4)当x>18时,y与x的关系式是_______________.21.(8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用−支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)−3000−2000−1000010002000…(1)在这个变化过程中,________是自变量;________是因变量;(2)观察表中数据可知,每月乘客量达到________人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?22.(10分)在梯形ABCD中,BC//AD,∠A=90°,AB=2,BC=3,AD=4,点E为AD的中点、点F为CD上一点.过点F作FG⊥AD于点G,且FG=1,点P 为BC上的一个动点(不与点B、C重合),设BP为x,四边形PEFC的面积为y,求y与x之间的关系式并写出x的取值范围.23.(10分)小强买了一张100元的乘车IC卡,如果用x表示他乘车的次数,那么卡内的余额y(元)如表所示:(2)利用上述关系式计算小强乘了25次车后,卡内的余额还有多少元?(3)小强用这张IC卡最多能乘多少次车?24.如果用t示时间,y表示电话费,那么随t的变化,y的变化趋势是______;(2)丽丽打了6分钟电话,那么电话费需付多少元?(3)你能写出y与t之间的关系式吗?25.(12分)端午节小明来到奥体中心观看比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题:(假设骑自行车和步行的速度始终保持不变)(1)从图中可知,小明家离奥体中心_________米,爸爸在出发后________分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离.(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.答案1.A2.D3.D4.B5.A6.C7.C8.D9.B10.B11.1012.4213.1614.y=20−2t15.y=20x+10016.解:(1)1000,25;(2)10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000−500)÷5=100米/分钟.17.解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量,电话费是因变量.(2)0.36×25=9(元),即如果打电话超出25分钟,需付18+9=27(元)的电话费.(3)54÷0.36=150(分钟).故小明的爸爸打电话超出150分钟.18.解:(1)在这个变化关系中,自变量是每天的乘车人数x(人);变量是每天利润y(元);(2)当y=0时,x=300因此要不亏本,该公交车每天乘客人数至少达到300人;(3)200+100×500−40050=400元,因此当一天乘客人数为500人时,利润是400元;(4)y=100×x−30050=2x−60019.解:(1) ①甲;甲;2. ②3或5.5.(2)甲在4∼7时的生产速度最快,甲在这段时间内每小时生产零件的个数为40−107−4=10.20.(1)收费标准;(2)31.5;(3)23;(3)y=3x−15.21.解:(1)每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.22.解:∵BC=3,BP=x,∴PC=3−x,∵AD=4,E为AD的中点,∴DE=12AD=2,∵BC//AD,FG⊥AD,∠A=90°,AB=2,∴S四边形PEFC =S梯形PEDC−S△EFD=12(3−x+2)×2−12×2×1=5−x−1=4−x,∴y=4−x,0<x<3.23.解:(1)由题意可得:y=100−1.6x;(2)当x=25时,y=100−1.6×25=60(元);(3)令y=0,100−1.6x=0解得:x=62.5x是整数位62.答:这张IC卡最多能乘62次.24.解:(1)时间;电话费;时间;电话费;y随着t的增大而增大;(2)每增加1分钟,电话费增加0.6元,则y=0.6t,当t=6时,y=0.36(元),(3)y=0.6t(t≥0).25.解:(1)3600;15;(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15⋅x+3x⋅15=3600,解得x=60(米/分),∴15x=15×60=900(米),即父亲与小明相遇时距离体育馆还有900米;(3)∵从B点到O点的速度为3x=180(米/秒),=5(分),∴返回时,从B点到体育馆所需的时间=900180而小明从体育馆到点B用了15分钟,∴小明从点A到点B,再从点B到点A需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.。
北师大版数学七年级下学期第三章《变量之间的关系》单元测试题 含答案
北师大版七年级数学下册第三章《变量之间的关系》单元测试题时间:100分钟 满分:120分班级____________姓名____________成绩________________题号 一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项) 1. 圆的周长公式为C=2πr,下列说法正确的是( )A. 常量是2B. 变量是C 、π、rC. 变量是C 、rD. 常量是2、r2. 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是( ).A .弹簧不挂重物时的长度为0 cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为23.5 cm3. 一辆汽车以平均速度60 km /h 的速度在公路上行驶,则它所走的路程s(km )与所用的时间t(h )之间的关系式为 ( ) A .s =60 t B .s=t 60 C .s=60tD .s =60t 4. 某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是( )A .若所缴电费为2.75元,则用电量为6千瓦·时B .若用电量为8千瓦·时,则应缴电费4.4元C .用电量每增加1千瓦·时,电费增加0.55元D .所缴电费随用电量的增加而增加5. 一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱体,桶口的半径是杯口半径的2倍,如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )6. 小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面图像与上述诗的含义大致相吻合的是( )A.B.C.D.7. 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.8. 对于关系式y=2x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示;其中正确的是 ( )A.①②③ B.①②④ C.①③⑤ D.①②⑤9. 如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降10. 如图,折线OEFPMN描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3分钟时汽车的速度是40千米/时B.第12分钟时汽车的速度是0千米/时C.从第9分钟到第12分钟,汽车的速度从60千米/时减少到0千米/时D.从第3分钟到第6分钟,汽车停止11. 如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时12.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A. BC D.二.填空题(本大题共6小题,每小题4分,共24分)13..香蕉数量(千克) 0.5 1 1.5 2 2.5 3 3.5 …售价(元) 1.5 3 4.5 6 7.5 9 10.5 ….14.点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 10h/厘米30 29 28 27 26 25(1)蜡烛未点燃前的长度是________厘米;(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式______________________;(3)这根蜡烛能燃烧的时间为_____________分;15.某市的出租车收费按里程计算,3km内(含3km)收费5元,超过3km,每增加1km 加收1元,则路程x ≥3时,车费y (元)与x (km )之间的关系式是_____. 16.如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n 根火柴棍时,若摆出的正方形所用的火柴棍的根数为S ,则S=(用含n 的代数式表示,n 为正整数).17.在小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的关系,大约 秒时,小明追上了小强,小强在这次赛跑中的速度是 。
2022学年北师大版七年级数学下册第三章《变量之间的关系》测试卷附答案解析
2022-2023学年七年级数学下册第三章《变量之间的关系》测试卷【全卷满分120分考试时间120分钟】一、单选题(每题3分,共30分)1.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s (米)与散步所用时间t (分)之间的函数关系,根据图象,下列信息错误的是()A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟2.某水果销售商有100千克苹果,当苹果单价为15元/千克时,能全部销售完,市场调查表明苹果单价每提高1元,销售量减少6千克,若苹果单价提高x 元,则苹果销售额y 关于x 的函数表达式为()A .()100y x x =-B .()1006y x x =-C .()()10015y x x =-+D .()()100615y x x =-+3.在关系式37y x =--中,当自变量5x =-时,因变量y 的值为()A .8-B .8C .22-D .224.下列关于圆的周长C 与半径r 之间的关系式2C r π=中,说法正确的是()A .C 、r 是变量,π是常量B .r 、π是变量,2是常量C .C 、r 是变量,2是常量D .C 、r 是变量,2π是常量5.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂的物体的重量()kg x 间有下表的关系:下列说法不正确的是()/kg x 012345/cmy 2020.52121.52222.5A .弹簧不挂重物时的长度为0cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .随着所挂物体的重量增加,弹簧长度逐渐变长D .所挂物体的重量每增加1kg ,弹簧长度增加0.5cm6.若等腰三角形的周长为60cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是()A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)7.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃20-10-0102030声速/()m/s 318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声速为342m/sD .当温度每升高10℃,声速增加8m/s8.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (单位:千米),甲行驶的时间为t (单位:小时),s 与t 之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A .4B .3C .2D .19.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A .B .C .D .10.小明从家骑自行车上学,先以0.4千米/分的速度匀速骑行5分钟,途经超市时,买文具用了5分钟,为按时到校,再以0.5千米/分的速度骑行2分钟到学校.设小明骑自行车的速度为v (千米/分),离家路程为s (千米),上学时间为t (分).下列图象能表达这一过程的是()A .B .C .D .二、填空题(每题3分,共30分)11.某水库的水位在某段时间内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时的函数关系式为_____.12.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份201520162017…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.13.出租车的收费标准为:5km 以内(含5km )起步价为8元,超过5km 后每1km 收1.5元,如果用()5km s s ≥表示出租车行驶的路程,y 表示的是出租车应收的车费,请你表示y 与s 之间的表达式___________.14.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销决定:买1支毛笔就赠送1本书法练习本.某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (x ≥10)本,则付款金额y(元)与练习本个数x(本)之间的函数关系式是_____.15.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,x y,则y关于x的函数关系式是_______.节链条总长度为cm16.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量(kg)012345弹簧的长度(cm)1010.51111.51212.5在弹簧能承受的范围内,如果物体的质量为x kg,那么弹簧的长度y cm可以表示为_____.17.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.则体育场离张强家_____千米,张强在体育场锻炼了_____分钟,张强从早餐店回家的平均速度是_____千米/小时.18.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方.月用水量不超过12方部分超过12方不超过18方部分超过18方部分收费标准(元/方)2 2.5319.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y 随温度x 的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是_____.(把你认为正确说法的序号都填上)三、解答题(共60分)21.探索计算:弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 01234567弹簧的长度/cm1212.51313.51414.51515.5(1)当所挂物体的质量为3kg 时,弹簧的长度是;(2)在弹性限度内如果所挂物体的质量为x kg ,弹簧的长度为y cm ,根据上表写出y 与x 的关系式;(3)当所挂物体的质量为5.5kg 时,请求出弹簧的长度;(4)如果弹簧的最大长度为20cm ,那么该弹簧最多能挂质量为多少的物体?22.下表是某河流在汛期一天中涨水的情况,警戒水位为25米.时间/时04812162024超警戒水位/米0.2+0.25+0.35+0.5+0.7+0.9+ 1.0+(1)上表反映了________与时间之间的关系,其中____是自变量,______是因变量;(2)估计上午10时的水位是_______;(3)从0时到24时,水位从_______上升到_____;(4)从__时到__时,水位上升最快;(5)假设第二天持续下雨(基本与当天降水量一样),则第二天12时超警戒水位__米.23.据统计,某公交车每月的支出费用为3000元,每月利润(利润=票款收入-支出费用)(元)与每月的乘车人数(人)的变化关系如下表所示(公交车票价固定不变).每月的乘车人数/人600900120015001800…每月利润/元-1800-1200-6000600…(1)在这个变化过程中,自变量是,因变量是;(2)观察表中数据可知,每月乘车人数达到人以上时,该公交车才不会亏损;(3)由表中数据可推断出该公交车的票价为元;(4)求每月乘车人数为5000人时的每月利润.24.宝兰客专是首条贯通丝绸之路经济带的高铁线,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作,人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y (千米),图中的折线表示y与x之间的关系,根据图象,解答下列问题:(1)西宁与西安相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,它的速度是千米/小时;(3)求动车的速度;(4)动车行驶多长时间与普通列车相距140千米?25.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:min )之间有如下关系(其中220x ):提出概念所用的时间x 257101213141720学生对概念的接受能力y47.853.556.359.059.859.959.858.355.0(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是5min 时,学生的接受能力是多少?(3)根据表格中的数据回答:当提出概念所用的时间是几分钟时,学生的接受能力最强?(4)根据表格中的数据回答:当x 在什么范围内时,学生的接受能力在增强?当x 在什么范围内时,学生的接受能力在减弱?26.甲、乙两车早上从A 城车站出发匀速前往B 城车站,在整个行程中,两车离开A 城的距离s 与时间t 的对应关系如图所示:(1)A ,B 两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B 城车站这一时间段,在何时间点两车相距40km ?27.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.28.小华在暑假社会实践过程中,以每千克0.5元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示,请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式?(2)小华从批发市场共购进多少千克西瓜?(3)小华这次卖瓜赚了多少钱?参考答案:1.A .2.D3.B4.D5.A6.D7.D8.B9.C10.D 11.60.3y x =+12.年份,入学儿童人数2018.13.y =1.5s +0.514.5200y x =+##=200+5y x 15. 1.81y x =+16.y =10+0.5x 17. 2.515318.2019.增大;68.6.20.①③④21.(1)解:由表可知当所挂物体的质量为3kg 时,弹簧的长度是13.5,故答案为:13.5;(2)由表可知:弹簧原长为12cm ,所挂物体每增加1kg 弹簧伸长0.5cm ,∴弹簧总长y (cm )与所挂重物x (kg )之间的函数关系式为0.512y x =+;(3)当 5.5x =kg 时,代入0.512y x =+,解得14.75y =cm ,即弹簧总长为14.75cm .(4)当20y =cm 时,代入0.512y x =+,解得16x =,即所挂物体的质量为16kg .22.(1)解:上表反映了超警戒水位随着时间的变化而变化,其中时间是自变量,超警戒水位是因变量;(2)解:估计上午10时超警戒水位0.4米,则估计上午10时的水位是:250.425.4+=(米),故答案为:25.4米;(3)解:0时水位:250.225.2+=(米)24时水位:25126+=(米),即从0时到24时,水位从25.2米上升到26米,故答案为:25.2米,26米;(4)解:观察表格得,在0至4时,警戒水位上升:()0.250.20.05+-+=(米),在4至8时,警戒水位上升:()0.350.250.1+-+=(米),在8至12时,警戒水位上升:()0.50.350.15+-+=(米),在12至16时,警戒水位上升:0.7(0.5)0.2+-+=(米),在16至20时,警戒水位上升:0.9(0.7)0.2+-+=(米),在20至24时,警戒水位上升: 1.0(0.9)0.1+-+=(米),即从12时到20时,水位上升的最快,故答案为:12,20;(5)解:观察表格得,第一天12时超警戒水位0.5+米,24时警戒水位 1.0+米,假若第二天持续下雨(基本与第一天降水情况一样),则估计第二天12时超警戒水位10.5 1.5++=(米),故答案为: 1.5+.23(1)解:在这个变化过程中,每月乘车人数是自变量,每月的利润是因变量,故答案为:每月乘车人数,每月的利润;(2)解:观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到1500人以上时,该公交车才不会亏损,故答案为:1500;(3)解:由表中数据可知,当每月乘车人数为1500人时,每月利润为0元,则题中票款收入=支出费用,而每月固定支出费用为3000元,从而得到票价为300021500=元,故答案为:2;(4)解:由表中数据可知,每月的乘车人数每增加300人,每月的利润可增加600元,当每月的乘车人数为1500人时,每月利润为0元,则当每月乘车人数为5000人时,每月利润为()500015006007000300-⨯=元,故答案为:7000元.24.(1)由0x =时,1260y =,知西宁到西安两地相距1260千米,由3x =时,0y =,知两车出发后3小时相遇,(2)由图象知14x =时,普通列车到达西安,即普通列车到达终点共需14小时,普通列车的速度是12609014=(千米/小时),(3)设动车的速度为x 千米/小时,根据题意,得:33901260x +⨯=,答:动车的速度为330千米/小时;(4)①相遇前动车行驶与普通列车相距140千米,()()81260140330903-÷+=(小时),∴动车行驶83小时与普通列车相距140千米;②相遇后动车行驶与普通列车相距140千米,42126033011÷=(小时),10(1260140)(33090)3+÷+=(小时)∴动车行驶103小时与普通列车相距140千米;综上,动车行驶83小时或103小时与普通列车相距140千米.25.(1)解:提出概念所用的时间x 和对概念的接受能力y 两个变量;提出概念所用时间x 是自变量,对概念的接受能力y 是因变量.(2)解:当5x =时,53.5y =,答:当提出概念所用时间是5min 时,学生的接受能力是53.5.(3)解:当13x =时,y 的值最大是59.9,答:提出概念所用时间为13分钟时,学生的接受能力最强.(4)解:由表中数据可知:当213x ≤<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <≤时,y 值逐渐减小,学生的接受能力逐步减弱.26(1)解:由图象可知A 、B 两城之间距离是300km ;(2)解:由图象可知,甲的速度=3005=60(km/h ),乙的速度=3003=100(km/h ),∴甲、乙两车的速度分别是60km/h 和100km/h ;(3)解:设乙车出发x h 追上甲车,由题意:60(x +1)=100x ,解得:x =1.5,∴乙车出发1.5h 追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40km 时甲车行驶了m h ,①当甲车在乙车前时,得:60m -100(m -1)=40,解得:m =1.5,此时是上午6:30;②当甲车在乙车后面时,100(m-1)-60m=40,解得:m=3.5,此时是上午8:30;③当乙车到达B城后,300-60m=40,解得:m=13 3,此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40km.27.解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).28.(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76-64)÷1.2=10(千克)∴小华从批发市场共购进50千克西瓜.(3)76-50×0.8=76-40=36(元).即小华这次卖瓜赚了36元钱.。
七年级数学下册《变量之间的关系》练习题附答案(北师大版)
七年级数学下册《变量之间的关系》练习题附答案(北师大版)班级:___________姓名:___________考号:___________一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器2.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数3.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 34下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各表达式中的( )m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+16.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A.b=d2B.b=2dC.b=12d D.b=d+257.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24xB.y=-2x+24C.y=2x-24D.y=12x-128.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(时)之间的函数关系式及自变量的取值范围是( )A.s=120﹣30t(0≤t≤4)B.s=30t(0≤t≤4)C.s=120﹣30t(t>0)D.s=30t(t=4)9.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )11.某学校组织团员举行“伏羲文体旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是( )A.33分钟B.46分钟C.48分钟D.45.2 分钟12.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱二、填空题13.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t表示时间,T表示温度,则_____是自变量,_____是因变量.14.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .15.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系式为,自变量是,因变量是.16.弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为 .17.有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水高度y(米)与注水时间x(小时)之间的函数图象如图,若要使甲、乙两个蓄水池蓄水深度相同,则注水时间应为小时.18.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.三、解答题19.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.20.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.21.下列是三种化合物的结构式及分子式⑴请按其规律,写出下一种化合物的分子式....⑵每一种化合物的分子式中H的个数m是否是分子式中C的个数n的函数?如果是,请你其写出关系式.22.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?23.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.请你根据图象解决下列问题:⑴谁先出发?先出发多少时间?谁先到达终点?先到多少时间?⑵分别求出甲、乙两人的行驶速度;⑶在什么时间段内,两人均行驶在途中(不包括起点和终点)?请你根据图中的情形,分别求出关于行驶时间x与行程y之间的函数关系式,根据图象回答:①两人相遇;②甲在乙的前面;③甲在乙后面.24.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:【信息读取】(1)甲、乙两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达乙地,求此时普通列车还需行驶多少千米到达甲地?25.小刚周末骑单车从家出发去少年宫,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的深圳书城,买到书后继续前往少年宫,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小刚从家到深圳书城的路程是多少米?(2)小刚在书城停留了多少分钟?(3)买到书后,小刚从书城到少年宫的骑车速度是多少米/分?(4)小刚从家到少年宫的整个过程中,骑车一共行驶了多少米?参考答案1.C2.A3.A4.C5.B6.C.7.A8.A.9.A10.D11.D12.D13.答案为:t 是自变量,T 是因变量.14.答案为:答案是:x 和y ;3和7;y=3x ﹣7.15.答案为:s=45t ;t ;s.16.答案为:y=0.5x+12.17.答案为:3518.答案为:2,276,4.19.解:∵离地面距离每升高1 km ,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =22﹣6h ;(1)把h =1km 代入T =22﹣6h =16把h =2km 代入T =22﹣6h =22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T =22﹣6h ,其中22,6是常量,T ,h 是变量.20.解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系; 其中x 是自变量,y 是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.21.解:⑴ C4H10;⑵m=2n+2.22.解:(1)根据题意,每行程x,耗油0.1x,即总油量减少0.1x则油箱中的油剩下50﹣0.1x∴y与x的函数关系式为:y=50﹣0.1x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值50即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30L汽油.23.解:⑴甲比乙早10分钟出发,乙比甲早5分钟到达;⑵ V甲=12km/t V乙=24km/t ;⑶当10<t<25两人均在途中,y甲=12x, y乙=24x-4①t=20两人相遇②10<t<20甲在乙前面③20<t<25,甲在乙后面.24.解:(1)由图象可得甲、乙两地相距1400千米,两车出发后4小时相遇,故答案为:1400,4;(2)由图象可知普通列车到达终点共需14小时,普通列车的速度是:1400÷14=100千米/小时故答案为:14,100;(3)动车的速度为:1400÷4﹣100=350﹣100=250千米/小时即动车的速度为250千米/小时;(4)t=1400÷250=5.6动车到达乙地时,此时普通列车还需行驶:1400﹣100×5.6=840(千米)即此时普通列车还需行驶840千米到达甲地.25.解:(1)根据函数图象,可知小刚从家到深圳书城的路程是4000米;(2)30﹣20=10(分钟).所以小刚在书城停留了10分钟;(3)小刚从书城到少年宫的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟小刚从书城到少年宫的骑车速度是:2250÷5=450(米/分);(4)6000+(6000﹣4000)+(6250﹣4000)=6000+2000+2250=10250(米).答:小刚从家到少年宫的整个过程中,骑车一共行驶了10250米.第11 页共11 页。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)(1)
一、选择题1.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )A.B.C.D.3.圆的面积公式S=πr2中的变量是()A.S,πB.S,π ,r C.S,r D.πr24.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低5.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为()A.8:30 B.8:35 C.8:40 D.8:456.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.7.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.678.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.9.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 10.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的()A.最高气温是10 ℃,最低气温是2 ℃B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃D.最高气温是10 ℃,最低气温是-2 ℃11.下列各曲线中表示y是x的函数的是()A.B.C.D.12.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③二、填空题13.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.17.函数y=23xx-+中自变量x的取值范围是________.18.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:所售豆子数量/千克00.51 1.52 2.53 3.54总售价/元012345678(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.19.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.20.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣12,则输出的结果为_____三、解答题21.在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=x,上下底的和为y,写出y与x之间的函数关系式.22.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间257101213141720(x)对概念的47.853.556.359.059.859.959.858.355.0接受能力(y)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是5分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x与售价y之间的关系如下表所示:质量x/千克1234…售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y与x的关系式;(2)求x=2.5时,y的值;(3)当x取何值时,y=126?25.某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400…(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为_______________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?26.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是℃,温度是0℃时的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为时;(2)从图象中还能获取哪些信息?(写出1~2条即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.2.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.3.C解析:C【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可【详解】解:在圆的面积计算公式S=πr2中,变量为S,r.故选C.【点睛】本题考查变量和常量,圆的面积S随半径r的变化而变化,所以S,r都是变量,其中r是自变量,S是因变量.4.C解析:C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.5.C解析:C【解析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.6.C解析:C【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C.7.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.8.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.9.A解析:A观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.D解析:D【解析】试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x值与y值:为4时,-2℃.D正确.故选D.11.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.12.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.二、填空题13.y=23-0007x【解析】【分析】每升高l00m降低07℃则每上升1m降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式【详解】每升高l00m降低07℃则每上升1m降低0007℃解析:【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为:y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.①②③【分析】分析图象x=2时y值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③【分析】分析图象,x=2时y值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.17.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.18.所售豆子数量和总售价总售价总售价所售豆子数量56【分析】根据表中数据售价与所售数量成正比例关系售价=所售豆子的数量×单价【详解】(1)表反映的变量是所售豆子数量和售价售价是因变量售价随所售豆子数量的解析:所售豆子数量和总售价总售价总售价所售豆子数量 5 6【分析】根据表中数据,售价与所售数量成正比例关系.售价=所售豆子的数量×单价.【详解】(1)表反映的变量是所售豆子数量和售价,售价是因变量,售价随所售豆子数量的变化而变化的;(2)5;(3)根据题意设解析式为y=kx,则0.5k=1,解得k=2,∴y=2x,当y=12时2x=12,解得x=6.故答案为所售豆子数量和总售价;总售价;总售价;所售豆子数量;5;6.【点睛】函数的意义是本题考查的重点.明确变量及变量之间的关系是解好本题的关键.19.【分析】本题采取分段收费根据20本及以下单价为25元20本以上超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式再进行整理即可得出答案【详解】解:根据题意得:y=整理得:y=;故答案为y=解析:25x(0x20) y{20x100(x>20)≤≤=+【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【详解】解:根据题意得:y=,整理得:y=;故答案为y=.20.-15【详解】∵-2<<1∴x=时y=x-1=故答案为解析:-1.5【详解】∵-2<12-<1, ∴x=12-时,y=x-1=13122--=-, 故答案为32-. 三、解答题21.428y x =-+【分析】首先解直角三角形求得腰长,然后根据等腰梯形的周长即可求得y 与x 之间的函数关系式.【详解】解:如图∵底角为30°,高AH=x ,∴在RT △ABH 中,AB=2x ,∵梯形为等腰梯形,梯形的周长为28,上下底的和为y ,∴12(28-y )=2x , ∴y=-4x+28.【点睛】 此题考查了等腰梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.22.(1)提出概念所用的时间x 和对概念接受能力y 两个变量;(2)当时间是5分钟时,学生的接受能力是53.5;(3)当提出概念13分钟时,学生的接受能力最强59.9(4)当2≤x≤13时,y 值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y 值逐渐减小,学生的接受能力逐步降低【分析】(1)根据x,y 表示的意义以及函数的概念即可判定;(2)学生的接受能力最强,即y 的值最大,即可确定x 的值;(3)根据表格信息即可直接写出;(4)根据表格可以得到y 的值超过13分钟以后越来越小,即可解题.【详解】解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为5分钟时, 学生的接受能力是53.5;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强,当x在13分钟至20分钟的范围内,学生的接受能力逐步降低,∴当提出概念13分钟时,学生的接受能力最强为59.9;(4)当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13≤x≤20时,y值逐渐减小,学生的接受能力逐步降低.【点睛】本题主要考查了变量的定义,以及正确读表,中等难度,正确理解表中的变量的意义是解题的关键.23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.(1) y=8x+0.4x=8.4x;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y与x的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.25.(1)y =0.4x (x ≥0且x 为整数).(2)y =0.15x +200(x ≥0且x 为整数).(3)若学校每月复印页数在1200页左右,应选择乙复印社.【分析】(1)待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.(2)根据乙复印社每月收费=承包费+按每页0.15元的复印费用,可得相应的函数解析式;(3)先画出函数图象,找到交点坐标,即可作出判断.【详解】(1)设解析式为y=kx+b ,将(100,40),(200,80)代入得1004020080k b k b +⎧⎨+⎩==, 解得0.40k b ==⎧⎨⎩. 故y=0.4x (x >0且为整数);(2)乙复印社每月收费y (元)与复印页数x (页)的函数关系为:y=0.15x+200(x≥0且为整数).(3)在同一坐标系中画出两函数图象,如下图,由图形可知每月复印页数在1200左右应选择乙复印社.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的作图能力.注意自变量的取值范围不能遗漏.26.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.。
新北师大版七下第三章《变量之间的关系》测试卷(含答案) (4)
第四章 变量之间的关系变量的概念自变量 因变量变量之间的关系变量的表达方法表格法 关系式法速度时间图象 图象法路程时间图象一、变量、自变量、因变量、常量。
1、在某一变化过程中,不断变化的量叫做变量(可以取不同数值的量叫做变量)。
2、如果一个变量 y 随另一个变量 x 的变化而变化,则把 x 叫做自变量,y 叫做因变量。
( 3、在某个变化过程中,数值始终不变的量叫做常量。
4、自变量与因变量的确定: (1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
(4)对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,我们就是说 x 是自变量 y 是应变量。
二、表格 1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量; (2)分清哪一个量为自变量,哪一个量为因变量; (3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系 (1)列表时首先要确定各行、各列的栏目; (2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位; (4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式 1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径: (1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式; (3)根据实际问题中的基本数量关系写出变量之间的关系式; (4)根据图象写出与之对应的变量之间的关系式。
(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)
一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.5.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.676.某品牌电饭锅成本价为 70 元,销售商对其销售与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是 ( )A.定价是自变量,销量是因变量B.销量是自变量,定价是因变量C.定价为 110 元时,销量为 110 个D.定价越高,销量越大7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量9.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.10.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.11.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑_______米,直线__________表示小明的路程与时间的关系,大约_______秒时,小明追上了小强,小强在这次赛跑中的速度是________ .14.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.17.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.18.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了______cm 3.19.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需________分钟到达终点B .20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:x kg012345所挂物体的质量()y cm182022242628弹簧长度()(1)在这个变化的过程中,自变量是;因变量是;(2)写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:日期12345678电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.24.近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元) 38 37 36 35 (20)每天销量(千克) 50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x之间的关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?25.星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.26.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为3=-.y x(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.2.B解析:B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.B解析:B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.4.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.5.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.6.A解析:A【解析】(1)观察、分析题中数据可知,在这个问题中,电饭锅的销售量是随着销售定价的变化而变化的,所以“定价是自变量,销售量是因变量”,所以A中说法正确,B中说法错误;(2)观察所给数据可知:“当定价为110元时,销售量为100个”,所以C中说法错误;(3)观察、分析所给数据可知:“销售量开始时随着定价的升高而变大,但随后随着定价的继续升高而变小”,所以D中说法错误.故选A.7.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.8.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.9.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.10.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。
北师大版七年级数学下册第三章变量之间的关系单元综合练习题3(附答案)
北师大版七年级数学下册第三章变量之间的关系单元综合练习题3(附答案)1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:m 1 2 3 4v 0.01 2.9 8.03 15.1则m与v之间的关系最接近于下列各关系式中的( )A.v=2m-1 B.v=m2-1 C.v=3m-3 D.v=m+1 2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低4.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是( )A.B.C.D.5.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x 6.如果用总长为60 m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是().A.a B.SC.p D.p,a7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( )A .①③B .②③C .③D .①②8.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是( )A .在8时至14时,风力不断增大B .在8时至12时,风力最大为7级C .8时风力最小D .20时风力最小9.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表: 香蕉数量(千克) 0.5 1 1.5 2 2.5 3 3.5 … 售价(元)1.534.567.5910.5…上表反映了两个变量之间的关系,其中,自变量是________,因变量是________. 10.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .11.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.12.每张电影票的售价为10元,某日共售出x 张票,票房收入为y 元,在这一问题中,_____是常量,_____是变量.13.球的表面积S 与半径R 之间的关系是S=4πR 2 . 对于各种不同大小的圆,请指出公式S=4πR 2中常量是________ ,变量是________14.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为________. (填“常量”或“变量”)15.在圆周长公式2πC r =中,C 随着r 的变化而变化,此问题中,______是常量,______和______是变量.16.摄氏温度C 与华氏温度F 之间的对应关系为5(32)9C F =-,则其中变量是________,常量是________.17.已知变量y 与x 的部分对应值如表格所示,则y 与x 的关系式是________.18.某种树木的分枝生长规律如下表所示,则预计到第6年时,树木的分枝数为__.19.“十一”期间,小明和父母一起开车到距家200 km 的景点旅游,出发前,汽车油箱内储油45 L ,当行驶150 km 时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式; (2)当x =280 km 时,求剩余油量Q 的值.20.某电影院地面的一部分是扇形,座位按下列方式设置:排数 1 2 3 4座位数60 64 68 72(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由;(4)若某排有136座,则该排的排数是多少?21.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人. 22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度y(cm)与白纸的张数x(张)的关系可以用下表表示:(1)表格中:a= ,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是____________.25.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?26.日常生活中,我们经常要烧开水,下表是对烧水的时间与水的温度的描述:时间(分)1 2 3 4 5 6 7 8 9 10 11 12 13温度(℃)25 29 32 43 52 61 72 81 90 98 100 100 100(1)上表反映了哪些变量之间的关系?(2)根据表格的数据判断:在第15分钟时,水的温度为多少?(3)随着加热时间的增加,水的温度是否会一直上升?27.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.28.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.参考答案1.B【解析】【分析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.【详解】解:当m=4时,A、v=2m-2=6;B、v=m2-1=15;C、v=3m-3=9;D、v=m+1=5.故选B.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.2.C【解析】【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选:C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.4.A【解析】【分析】根据足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落,进行判断即可.【详解】解:A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.【点睛】此题主要考查函数的图象的知识点,根据函数图象的意义,注意纵横坐标变化得出是解决问题的关键.5.A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.6.C【解析】【分析】根据篱笆的总长确定,即可得到周长是常量、一边长及面积是变量.【详解】解:根据题意长方形的周长p=60m,所以常量是p,故选C.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.7.C【解析】【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【详解】①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故选C.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.8.D【分析】首先弄清横轴、纵轴表示的实际含义,然后观察图象即可得出.【详解】解:A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不到4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.9.香蕉数量售价【解析】【分析】首先根据表格,可得上表反映了两个变量(香蕉数量和售价)之间的关系;然后根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【详解】∵香蕉的售价随着香蕉数量的变化而变化,∴上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价.故答案为:香蕉数量,售价.【点睛】本题主要考查了函数的概念,在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.10.37.2【解析】【分析】根据图表可计算出上坡的速度以及下坡的速度,又已知返回途中的上下坡的路程正好相反,故可计算出共用的时间.【详解】由图可得,去校时,上坡路的距离为2000米,所用时间为18分,∴上坡速度=3600÷18=200米/分,下坡路的距离是9600-3600=6000米,所用时间为30-18=12分,∴下坡速度=6000÷ 12=500米/分;∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小明从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2分钟.故答案为37.2.【点睛】本题主要考查学生的读图获取信息的能力,解题时需要注意去学校时的上坡,返回家时是下坡,而去学校时的下坡,返回家时是上坡.11.时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.12.电影票的售价电影票的张数,票房收入.【解析】【分析】根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为:电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.13.4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR 2中常量是4π,变量是S 和R.故答案是: 4π;S 和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.14.常量.【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可.【详解】解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为:常量.【点睛】此题主要考查了常量,关键是掌握常量定义.15.2π r C【解析】【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量可直接得到答案.【详解】解:根据定义,数值发生变化的量称为变量,数值始终不变的量称为常量,所以在2πC r 中,2π是常量,r 和C 是变量.故答案为:2π;r ;C【点睛】本题考查常量和变量的定义,理解定义是解答此题的关键.16.C,F5,329- 【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】 5(32)9C F =-,则其中的变量是C,F,常量是5,329-, 故答案为C,F; 5,329-; 【点睛】此题考查常量与变量,解题关键在于掌握其定义17.210y x =+【解析】【分析】本题考查用关系式法表示变量之间的关系,用关系式表示的变量间关系经常是根据题目中的已知条件和两个变量之间的关系,利用公式、变化规律或者数量关系得到等式.【详解】x 每增加1,y 增加2,易得当x =0时y =10,所以y =2x +10.【点睛】在做此类题时,如果发现x 增加1时,y 增加的数值固定,那么y=kx+b ,k 就是这个固定的值,b 为x=0时y 对应的值.18.8【解析】【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和.【详解】根据所给的具体数据发现:从第三个数据开始,每一个数据是前面两个数据的和,则第6年的时候是3+5=8个.故答案为8.【点睛】本题考查了图形的变化类问题,仔细观察树枝的分叉的个数后找到规律是解题的关键.19.(1)该车平均每千米的耗油量为0.1(L/km),Q=45-0.1x;(2)当x=280 km时,剩余油量Q的值为17 L.【解析】【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量-平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)将x=280代入Q关于x的函数关系式,求出Q值即可;【详解】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17L.【点睛】本题考查了列函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.20.(1)排数与座位数在变化.自变量是排数,因变量是座位数;(2)第5排有76座,第6排有80座;(3)第n排有60+4×(n-1)座,理由见解析;(4)该排的排数是20.【解析】【分析】(1)根据变量的定义得出变化的量,再根据座位数随着排数的变化而变化,从而确定自变量和因变量.(2)从具体数据中,不难发现:后一排总比前一排多4,由此得出第5排、第6排的座位数即可;(3) 根据(2)中的规律,第n排有60+4(n-1)个,再化简即可.(4)根据第n排的座位数列出方程即可.【详解】(1)排数与座位数在变化.其中自变量是排数,因变量是座位数.(2) ∵后一排总比前一排多4个座,∴第5排有76个座,第6排有80个座.(3) 第n排有(4n+56)个座;理由如下:∵第1排有60座,即60+4×(1-1);第2排有64个座,即60+4×(2-1);第3排有68个座,即60+4×(3-1);…;第n排有60+4×(n-1) 个座.∴第n排有60+4×(n-1)=(4n+56)个座.(4) ∵第n排有(4n+56)个座,∴4n+56=136.解得n=20.∴该排的排数是20.【点睛】本题主要考查了函数的定义,列函数关系式,以及解一元一次方程,本题的关键规律是“后一排总比前一排多4个座”.21.(1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;(2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3) ∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4) ∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.22.(1)a=37 ,b=88(2)y=17x+3(3)需要59张白纸.【解析】【分析】(1)根据题意知:2张白纸粘合有1个粘合部分,故可求出粘合后的长方形长度;5张白纸粘合有4个粘合部分,故可求出粘合后的长方形长度;(2)依题意可知y与x的关系式为y=17(x-1)+20即可求出;(3)设需要n张,根据周长公式及y与x的关系式即可列方程进行求解.【详解】(1)根据题意知:2张白纸粘合有1个粘合部分,故a=20×2-3=375张白纸粘合有4个粘合部分,故b=5×20-4×3=88(2)依题意可知y与x的关系式为y=17(x-1)+20=17x+3(3)设需要n张,则2(8+17n+3)=2028解得n=59故需要59张白纸.【点睛】此题主要考查函数的关系式,解题的关键是根据题意找到规律进行关系式的推导. 23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.y=-x+8【解析】【分析】根据梯形的面积公式,可得函数解析式.【详解】解:梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的表达式是:24=(x+y)×6÷2,即y=-x+8.故答案为:y=-x+8.【点睛】本题考查了函数关系式,利用了梯形的面积公式,题目较为简单.25.(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为:(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实26.(1)烧水的时间与水的温度;(2)100 ℃;(3) 水的温度不会一直上升【解析】【分析】(1)根据表中数据是对烧水的时间与水的温度的描述,即可得出变量;(2)根据表格可得在11分钟后温度保持不变,都为100℃,从而得出第15分钟时,水的温度.(3)根据表格可得100℃水达到烧开状态,水温不再升高;【详解】(1) ∵表中数据是对烧水的时间与水的温度的描述,∴上表反映了烧水的时间与水的温度两个变量之间的关系.(2) 根据表格的数据判断:在第15分钟时,水的温度为100 ℃.(3) 随着加热时间的增长,水的温度不会一直上升,因为在11分钟时水温升高到100℃,水达到烧开状态,水温不再升高.【点睛】此题主要考查了函数的表示方法,关键是认真观察表格,从表中得到正确信息.27.(1)半径r体积V;(2)V=4πr2;(3) 圆柱的体积由16πcm3变化到256πcm3.【解析】【分析】(1)根据函数间两变量的变化关系,可得答案;(2)根据圆柱的体积公式,可得函数解析式;(3)根据自变量与函数值的关系,可得答案.【详解】解:(1)在这个变化过程中,自变量是r,因变量是V.(2)圆柱的体积V与底面半径r的关系式是V=4πr2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm3变化到256πcm3.故答案为:(1)r,V;(2)V=4πr2;(3)16π,256π.【点睛】本题考查了函数关系式,利用圆柱的体积公式得出函数关系式是解题关键.28.(1)y=9x(0<x≤2);(2)△ABE的面积是18cm2.【分析】根据三角形的面积公式,可得答案.【详解】(1)由图2可知E点的速度为3,∴y=12×3x×AD=9x,即y=9x(0<x≤2);(2)当E点停止后,BE=6,∴x=2时,y=9×2=18.∴△ABE的面积是18cm2.【点睛】本题考查了函数关系式,三角形的面积公式是解题关键.。
北师大版七年级下数学第三章变量之间的关系单元综合练习题
北师大版七年级数学下册第三章变量之间的关系单元综合练习题1.某科研小组在网上获取了声音在空气中传播的速度y 与空气温度x 关系的一些数据(如下表):下列说法错误的是( )A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声音5s 可以传播1740mD .温度每升高10℃,声速提高6m/s. 2.2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v 为110千米/时,若用s (千米)表示小亮家汽车行驶的路程,行驶时间用t (小时)表示,下列说法正确的是( ) A .s 是自变量, t 是因变量B .s 是自变量, v 是因变量C .t 是自变量, s 是因变量D .v 是自变量, t 是因变量3.在某次试验中,测得两个变量x 和y 之间的4组对应数据如下表: x 12 3 4 y0 3 8 15 则y 与x 之间的关系满足下列关系式( )A .22y x =-B .33y x =-C .21y x =-D .1y x =+4.函数y=22x x x+的图象为( ) A . B .C.D.5.甲、乙两同学从A地出发,骑自行车在同一条公路上行驶到距A地60千米的B地,他们距出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图中提供的信息,符合图象描述的说法是()A.乙在行驶过程中休息了一会儿B.甲在行驶过程中没有追上乙C.甲比乙先出发1小时D.甲行驶的速度比乙行驶的速度快6.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s与时间t的关系的大致图象是()A.B.C.D.7.如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大8.若一辆汽车以50 km/h的速度匀速行驶,行驶的路程为s(km),行驶的时间为t(h),则用t表示s的关系式为( )A.s=50+50t B.s=50t C.s=50-50t D.以上都不对9.一根弹簧长8 cm,它所挂物体的质量不能超过5 kg,并且所挂的物体每增加1 kg,弹簧就伸长0.5 cm,则挂上物体后弹簧的长度y(cm)与所挂物体的质量x(kg)(0≤x≤5)之间的关系式为( )A.y=0.5(x+8) B.y=0.5x-8 C.y=0.5(x-8) D.y=0.5x+810.如图是用火柴棒拼成的图案,需用火柴棒的根数m随着拼成的正方形的个数n的变化而变化,在这一变化过程中,下列说法中错误的是( )A.m,n都是变量B.n是自变量,m是因变量C.m是自变量,n是因变量D.m随着n的变化而变化11.梯形的上底长是2,下底长是8,则梯形的面积y与高x之间的关系式是______,自变量是____,因变量是______.12.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40- 6t.当t=4时,Q=__,从关系式可知道这台拖拉机最多可工作__小时.13.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.14.在函数121yx=--中,自变量x的取值范围是________ .15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.16.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.17.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.18.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.19.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份2015 2016 2017 …入学儿童人数2520 2330 2140 …(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.20.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.21.如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积3Vcm也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积V与半径r的关系式;cm.(3)当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少322.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?23.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?24.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.。
北师大版数学七年级下册 第3章《变量之间的关系》单元测试题
北师大版七年级下册第3章《变量之间的关系》单元测试题(满分100分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.42.在关系式y=2x﹣7中,下列说法错误的是()A.x的数值可以任意选择B.y的值随x的变化而变化C.用关系式表示的不能用图象表示D.y与x的关系还可以用列表法表示3.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量4.如图,向容器甲中匀速的注水,下面哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A.B.C.D.5.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如下表所示,则下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5 A.弹簧不挂重物时长度为0cmB.X与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm7.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分)11.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.12.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.13.甲骑自行车、乙骑摩托沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是(填“甲”或“乙”)②甲的行驶速度是(公里/分)③乙的行驶速度是(公里/分)14.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.15.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.三.解答题(共7小题,满分52)17.如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层,第二层,……,第n层,第n层的小正方体的个数记为S,解答下列问题:(1)填写表格:n1234…S1…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?18.甲开汽车,乙骑自行车从M地出发沿同一条公路匀速前往N地,乙先行1小时后,甲再出发,设乙行驶的时间为x(h),甲、乙两人之间的距离为y(km),y与x的函数关系如图所示.(1)求甲、乙两人的速度及M、N两地的距离;(2)甲、乙两人何时相距25km?19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.如图,长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个长度单位匀速运动,达到C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动.在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示.求:(1)AB、BC的长;(2)a,b的值.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.如图,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?23.随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.参考答案一.选择题(共10小题)1.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.2.【解答】解:A、x的数值可以任意选择;正确;B、y随x的变化而变化;正确;C、用关系式表示的不能用图象表示,错误;D、y与x的关系还可以用列表法表示,正确;故选:C.3.【解答】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.4.【解答】解:由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,故选:C.5.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.6.【解答】解:由表格,得A、弹簧不挂重物时的长度为0cm,错误,故A符合题意B、x与y都是变量,且x是自变量,y是x的函数,正确,故B不符合题意;C、物体质量每增加1kg,弹簧长度y增加0.5cm,正确,故C不符合题意;D、所挂物体质量为7kg时,弹簧长度为20+7×0.5=23.5cm,正确,故D不符合题意;故选:A.7.【解答】解:由函数图象可得,他们都骑了20km,故选项A不合题意;两人在各自出发后半小时内的速度相同,故选项B不合题意;甲先到达目的地,故选项C符合题意;相遇后,甲的速度大于乙的速度,故选项D不合题意;故选:C.8.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.9.【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.10.【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.二.填空题(共6小题)11.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.12.【解答】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为电影票的售价,电影票的张数,票房收入.13.【解答】解:(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度==0.2(公里/分);(3)乙10分钟行驶了4公里,则甲的速度==0.4(公里/分).故答案为甲;0.2;0.4.14.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.215.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.16.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④三.解答题(共7小题)17.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:3,6,10;(2)第n层时,S=1+2+3+…+n=n(n+1),当n=10时,S=×10×11=55.18.【解答】解:(1)设甲的速度为akm/h,乙的速度为bkm/h,,解得,,则M、N两地的距离是:(2.5﹣1)×75=112.5km,答:甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km;(2)∵甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km,∴当t=1或t=4.5﹣1=3.5时,两人相距25km,(t﹣1.5)×(75﹣25)=25,得t=2,答:甲、乙两人1h,2h或3.5h相距25km.19.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.20.【解答】解:(1)从图象可知,当点P在BC上运动时,3秒钟到C,所以BC=2×3=6,从图象可知,当3≤t≤15时,△ABP面积不变为30,∴AB•BC=30,即×6×AB=30,∴AB=10,∴长方形的长为AB=10,宽为BC=6;(2)有(1)可知DC=AB=10,AD=BC=6,∴a==,b==1.21.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.22.【解答】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了55分钟,最高时速是85千米/时;(3)35分钟到55分钟保持匀速,达到85千米每小时;(4)先匀加速行驶至第10分钟,然后匀减速行驶至第25分钟,接着停下5分钟,再匀加速行驶至第35分钟,然后匀速行驶第55分钟,再匀减速行驶至停止.23.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.30﹣22=8,30﹣18=12.∵小军骑车速度为每分钟0.2千米,0.2×2=0.4千米,∴第三种情况:爸爸已经到B地,孩子离B地还有0.4千米,(6﹣0.4)÷0.2=28(分钟),28﹣10=18(分钟)故答案为8或12或18.。
第三章 变量之间的关系——2022-2023学年北师大版数学七年级下册单元练习
第三章 变量之间的关系一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在圆周长的计算公式2πC r =中,变量有( )A.C ,πB.C ,rC.π,rD.C ,2π2.在用图象表示变量之间的关系时,下列说法最恰当的是( )A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量3.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量有( )①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个 4.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是( )A.()0.20100Q t t =≤≤B.()200.20100Q t t =-≤≤C.()0.2020t Q Q =≤≤D.()200.2020t Q Q =-≤≤5.2020年国庆假期与中秋假期叠加,出现了少有的8天长假.国庆节当天,小亮一家自驾出游,已知汽车以60 km/h 的速度行驶,行驶的路程为s (km),行驶的时间为t (h).在这个变化过程中,常量是( )A.速度B.路程C.时间D.三者均为变量6.小李骑车沿直线旅行,先前进了1000米,休息了一段时间,又原路返回800米,再前进1200米,则他离起点的距离s 与时间t 的关系示意图是( ) A. B.C. D.7.移动电话在南京地区的通话收费标准:前3分钟(不足3分钟按3分钟计)为0.2元;3分钟后每分钟收0.1元,则一次通话x分钟(3)x>与这次通话的费用y元之间的函数关系式是( )A.0.10.2=- D.0.10.5y xy x=+= C.0.10.1=+ B.0.1y xy x8.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,在返回途中去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1千米D.张强从早餐店回家的平均速度是2千米/小时9.赵先生手中有一张记录他从出生到24周岁期间的身高情况表(如下):A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到12岁平均每年增高12.5 cmD.赵先生的身高从0岁到24岁平均每年增高5.1 cm10.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中错误的是( )A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小华到学校的时间是7:55D.小明跑步的平均速度是100米/分二、填空题(每小题4分,共20分) 11.一个长方体的底面是一个边长为10cm 的正方形,如果高为h (cm)时,体积为()3cm V ,则V 与h 的关系为_______;12.在一定高度,一个物体自由下落的距离s (m )与下落时间t (s )之间变化的关系式是212s gt =(g 为重力加速度,g 取29.8m /s ),在这个变化过程中,________是自变量,_________是因变量.13.小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(和路程)数据如下表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米抵达纪念馆,则小韦家到纪念馆的路程是______千米.T (℃)随时间t (h )变化的图像,则由图像可知,该天的最高气温与最低气温之差为___________℃.15.甲、乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地甲、乙之间的距离y(米)与甲出发的时间x(分钟)之间的部分图象如图所示.当甲返回到A地时,乙距离B地_________米.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分)之间的关系如图所示,根据图象解答下列问题:(1)在这个变化过程中,自变量、因变量是什么?(2)洗衣机的进水时间是多少分?清洗时洗衣机中的水量是多少升?(3)时间为10分时,洗衣机处于哪个过程?17.(8分)国庆节期间,小林和爸爸去丽江旅游度假,准备登玉龙雪山,已知人所能到达的地方最高为4680米.在此之前小林和父亲做了充足的功课,通过查阅资料得知:距离地面越高,温度越低,并且两者有下表关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?(2)结合表格判断随着高度h的变化,温度T是怎样变化的;(3)估算玉龙雪山的4680米高地处的温度是多少℃.(结果精确到0.1)18.(10分)有一捆粗细均匀的电线,为了确定其长度,从中剪下1 m,称得它的质量是2 kg.(1)写出这捆电线的长度l与质量m之间的关系式;(2)如果这捆电线剪下1 m后的质量为b kg,请写出这捆电线的总长度.19.(10分)小华骑电动车从家出发去西安交大,当他骑了一段路时,想起要买一本书,于是原路返回刚经过的新华书店,买到书后继续前往交大,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小华家离西安交大的距离是多少?(2)买到书后,小华从新华书店到西安交大骑车的平均速度是多少?(3)本次去西安交大途中,小华一共行驶了多少米?20.(12分)如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积3cmV也随之发生变化.(1)在这个变化中,自变量是________,因变量是________;(2)写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径r从1cm到10cm变化时,圆柱的体积增加了多少?21.(12分)“龟兔赛跑”的故事同学们都非常熟悉,下图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解答下列问题.(1)填空:折线OABC表示赛跑过程中_________的路程与时间的关系,线段OD表示赛跑过程中___________的路程与时间的关系,赛跑的全程是__________米.(2)兔子起初每分跑多少米?乌龟每分爬多少米?(3)兔子醒来后,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分,请算算兔子在途中一共睡了多少分.答案以及解析1.答案:B解析:在圆周长的计算公式2πC r =中,变量有C 和r ,故选:B.2.答案:C解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量. 故选:C.3.答案:C 解析:汽车匀速行驶在高速公路上,∴①行驶速度是常量,②行驶时间,③行驶路程,④汽车油箱中的剩余油量是变量.故选C.4.答案:B解析:由题意得:流出的油量是0.2t 升,油流完需要200.2100÷=(分钟), 则剩余油量:()200.20100Q t t =-≤≤,故选:B.5.答案:A解析:因为在这个变化过程中,速度不变,路程s 随时间t 的变化而变化,所以速度是常量,时间和路程是变量.故选A.6.答案:C解析:前进了1000米图象为一条线段,休息了一段时间,离开起点的S 不变,又原路返回800米,离开起点的S 变小,再前进1200米,离开起点的S 逐渐变大,纵观各选项图象,只有C 选项符合.故选:C.7.答案:C解析:由题意,得0.20.1(3)y x =+-,即0.10.1y x =-,故选C.8.答案:D解析:由纵坐标看出,体育场离张强家2.5千米,故选项A 不合题意;由横坐标看出,301515-=(分钟),张强在体育场锻炼了15分钟,故选项B 不合题意;由纵坐标看出,2.5 1.51-=(千米),体育场离早餐店1.5千米,故选项C 不合题意;由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了956530-=分钟0.5=小时,1.50.53÷=(千米/小时),故本选项符合题意.故选:D.9.答案:C解析:A 项,因为100-48=52,13010030-=,14013010-=,15014010-=,1581508-=,1651587-=,1701655-=,170.41700.4-=,52>30>10=10>8>7>5>0.4,所以赵先生的身高增长速度总体上先快后慢,A 项正确;B 项,因为赵先生21岁的身高为170 cm ,24岁的身高为170.4 cm ,所以赵先生的身高在21岁以后基本不长了,B 项正确;C 项,因为(15048)128.5-÷=(cm ),所以赵先生的身高从0岁到12岁平均每年增高8.5 cm,C 项错误; D 项,因为(170.448)24 5.1-÷=(cm ),所以赵先生的身高从0岁到24岁平均每年增高5.1 cm,D 项正确.故选C.10.答案:C解析:A :由图象可知,小明吃早餐用时1385-=Error! Digit expected.(分钟),此选项不合题意,B :小华到学校的平均速度是()1200138240÷-=x(米/分),此选项不合题意,C :小华到学校的时间是7:53此选项符合题意,D :小明跑步的平均速度是()()12005002013100-÷-=((1200-500)÷(20-13)=100(米/分)),此选项不合题意11.答案:100V h =解析:V 与h 的关系为100V h =;故答案为:100V h =.12.答案:时间t ;距离s解析:由题意,在一定高度,一个物体自由下落的距离s (m )与下落时间t (s )之间变化的关系式是212s gt =(g 为重力加速度,g 取29.8m /s ),在这个变化过程中,距离s 随时间t 的变化而变化.所以时间t 是自变量,距离s 是因变量.13.答案:212解析:解:在高速公路上行驶的速度为平均每小时:200.2100÷=(千米),在高速公路上行驶的路程为:1002200⨯=(千米),所以小韦家到纪念馆的路程是:72005212++=(千米).14.答案:12解析:由纵坐标可以看出最高气温是10℃,最低气温是-2℃,所以该天的最高气温与最低气温之差为10(2)12--=(℃).15.答案:70解析:本题考查函数图象的应用.由图象可得,甲的速度为60160÷= (米/分钟),乙的速度为()100766040÷--= (米/分钟),设,A B 两地距离为S 米, ()26074071S =⨯+⨯- ,解得330S =,所以甲返回A 地用时33026011⨯÷= (分钟),则甲返回到A 地时,乙行驶的路程为()40111400⨯-= (米), 400-33070= (米),即当甲返回到A 地时,乙距离B 地70米.16.答案:(1)自变量是时间x ,因变量是水量y .(2)洗衣机的进水时间是4分,清洗时洗衣机中的水量是40升.(3)由图象可知,0~4分是进水过程,4-15分是清洗过程,15分后是排水过程,故可得时间为10分时,洗衣机处于清洗过程.17.答案:(1)表格反映了温度T 和距离地面的高度h 两个变量之间的关系,距离地面的高度h 是自变量.(2)结合表格可知,随着高度h 的增大,温度T 逐渐减小.(3)由表格发现距离地面的高度每上升1km ,温度下降6℃,所以山顶距离地面4.68km 的高处的温度是20 4.6868.1-⨯≈-℃.因此玉龙雪山的4680米高地处的温度大约是-8.1℃.18.答案:(1)由题知,2m l =. (2)设这捆电线的总长度为L m ,则22b L +=, 所以这捆电线的总长度为22b + m. 19.答案:(1)4800米(2)450米/分(3)6800米解析:(1)根据函数图象,可知小华家到西安交大的路程是4800米;(2)小华从新华书店到西安交大的路程为480030001800-=米,所用时间为28244-=分钟,小华从新华书店到西安交大骑车的平均速度是18004450÷=米/分;(3)根据函数图象,小华一共行驶了48002(40003000)6800+⨯-=(米).20.答案:(1)在这个变化过程中V 随r 的增大而增大,r ∴为自变量,V 为因变量.故答案诶:r ,V .(2)22π3πV Sh r h r ===.(3)1r =时,()233π3πcm S r ==,10r =时,()233π300πcm S r ==, ()3300π3π297πcm ∴-=.∴圆柱的体积增加了()3297πcm .21.答案:(1)兔子;乌龟;1500(2)结合图象得出兔子起初每分跑700米.15003050÷=(米/分),所以乌龟每分爬50米.(3)因为48千米48000=米,所以4800060800÷=(米/分).150********-÷=()(分),300.51228.5+-⨯=(分).所以兔子在途中一共睡了28.5分.解析:(1)因为乌龟是一直跑的,而兔子中间有休息的时间,所以折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OD 表示赛跑过程中乌龟的路程与时间的关系.由图可知赛跑的全程是1500米.。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)
一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd3.是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C .D .5.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-6.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( )A .B .C .D .7.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A .B .C .D .8.已知两个变量x 和y ,它们之间的3组对应值如下表,则y 与x 之间的函数关系式可能是( )A .y=3xB .y=x-4C .y=x 2-4D .y=3x9.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( ) A .B .C .D .10.在关于圆的面积的表达式S=πr 2中,变量有( ) A .4个B .3个C .2个D .1个11.柿子熟了,从树上落下来.下面的( )图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.12.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.二、填空题13.如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线0M为抛物线的一部分),则下列结论:①BC=BE=5cm;②=;③当0<t≤5时,y=t2;④矩形ABCD的面积是10cm2.其中正确的结论是________ (填序号).17.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.18.某市家庭电话月租费为25元,市内通话费平均每次为0.2元.若莹莹家上个月共打出市内电话a次,那么上个月莹莹家应付话费y与a之间的关系为__;若莹莹家上个月共打出市内电话100次,那么莹莹家应付话费__元.19.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(小时)之间的关系式是__________,自变量t的取值范围是__________.20.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃05101520声速y/(m/s)331334337340343上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.三、解答题21.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准:时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(2)如果用x表示超出套餐部分的拨打时间,y表示超出套餐部分的电话费,那么y与x的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)23.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.24.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.25.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?26.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.2.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.3.C解析:C 【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降. 【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加 故答案选:C 【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.4.B解析:B 【分析】根据油箱内余油量=原有的油量-t 小时消耗的油量,可列出函数关系式,得出图象. 【详解】解:由题意得,油箱内余油量Q (升)与行驶时间t (小时)的关系式为: Q=40-5t (0≤t≤8), 结合解析式可得出图象:故选:B . 【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.5.C解析:C 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.6.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.7.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.9.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.10.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 11.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.12.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.二、填空题13.15℃【解析】【分析】由于图象是表示的是时间与体温的关系而在10-14时图象是一条线段根据已知条件可以求出这条线段的函数解析式然后利用解析式即可求出这位病人中午12时的体温【详解】∵图象在10-14解析:15℃.【解析】【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【详解】∵图象在10-14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=-,b=39.05,∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.v02st【分析】因为在公式s=v0t+2t2(v0为已知数)中再结合函数的概念即可作出判断【详解】解:因为在公式s=v0t+2t2(v0为已知数)所以v02是常量st是变量【点睛】本题考查了变量与解析:v0、2 s、t【分析】因为在公式s=v0t+2t2(v0为已知数)中,再结合函数的概念即可作出判断.【详解】解:因为在公式s=v0t+2t2(v0为已知数),所以v0、2 是常量,s、t是变量.【点睛】本题考查了变量与常量的识别,属于简单题,熟悉变量之间的定义是解题关键.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;常量与变量:在某一变化过程中始终保持不变的量叫常量;不断变化的量叫变量.16.①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段可以判断出当点P到达点E时点Q到达点C从而得到BCBE的长度再根据MN是从5秒到7秒可得ED的长度然后表示出AE的长度根据勾股定理求出AB解析:①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【详解】解:①根据图②可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,故①正确;②∵从M到N的变化是2秒,∴DE=2,∴AE=5−2=3,∴,∴,故②错误;③如图,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=,∴当0<t≤5时,y=BQ•PF=t•t=,故③正确;④∵AB=4cm,BC=5cm,∴S矩形ABCD=4×5=,故④错误.故答案为:①③.【点睛】本题考查的是动点问题的函数图象,能根据题意得出矩形的边长是解答此题的关键.17.(1)甲(2)8【分析】根据图象中的特殊点读出总路程和时间判断运动类型并利用速度公式计算和判断运动的快慢【详解】(1)在通过路程相同的情况下甲所用时间短速度快所以甲先到达终点;(2)乙的速度:v 乙=解析:(1)甲 (2)8【分析】根据图象中的特殊点,读出总路程和时间,判断运动类型并利用速度公式计算和判断运动的快慢.【详解】(1)在通过路程相同的情况下,甲所用时间短,速度快,所以甲先到达终点;(2)乙的速度:v 乙=100=12.5S m S 乙乙 =8m/s. 故答案为(1)甲;(3)乙的速度是8m/s.【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题的关键. 18.y=25+02a45【分析】根据题意莹莹家的电话费用是月租费+通话费即y=25+02a 若上个月共打出电话100次根据所求函数关系式计算即可【详解】∵应付话费=月租费+通话费∴y=25+02a ;将a=解析:y=25+0.2a 45【分析】根据题意,莹莹家的电话费用是月租费+通话费,即y=25+0.2a ,若上个月共打出电话100次,根据所求函数关系式计算即可.【详解】∵应付话费=月租费+通话费,∴y=25+0.2a ;将a=100代入上式,则话费=25+0.2×100=45(元).【点睛】本题考查了根据实际问题列一次函数关系式,解题的关键是根据题意,找出等量关系,然后列出含有x 、y 的式子,最后整理变形为一次函数的一般形式.19.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为 解析:100.5y t =- 020t ≤≤【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量,∴0.5t ⩽10,解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤20.气温声速25【解析】气温是自变量声速是因变量设函数解析式y=kx+b ∵该函数图象经过点(0331)和(5334)∴解得∴该函数关系式为y=x+331当y=346时x=25即当气温x 为25℃时声速y 达解析:气温 声速 25【解析】气温是自变量, 声速是因变量设函数解析式y=kx+b ,∵该函数图象经过点(0,331)和(5,334),∴3315334b k b ⎧⎨+⎩==, 解得35331k b ⎧⎪⎨⎪⎩==.∴该函数关系式为y=35x+331 . 当y=346时,x=25即当气温x 为25 ℃时,声速y 达到346 m/s.故答案为:25故答案为:气温 声速 25点睛:主要考查了函数关系式以及函数值的相关知识,解答本题的关键是:读懂表格数据,用待定系数法求函数解析式,本题难度不大,是一道基础题. 三、解答题21.(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x ;(3)195元;(4)150分钟.【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x 的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量; (2)由题意可得:y=0.36x ;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟).答:小明的爸爸打电话超出150分钟.【点睛】本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.22.①2月份每千克销售价是3.5元;② 7月份每千克销售价是0.5元;③ 1月到7月的销售价逐月下降;④ 7月到12月的销售价逐月上升.(答案不唯一,合理均可)【分析】分析得出图象是蔬菜的销售价与月份之间的关系:2月、7月的售价可以根据图中虚线直接得出,同时可以得出售价相差多少;根据图象的上升趋势和下降趋势可以分析哪些月份售价上升、哪些月份售价下降;根据图象的最低点和最高点可以得出售价最高和最低;根据图象的对称性可以得出哪些月份售价相同.【详解】观察图象可得:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同(答案不唯一,合理的答案均可)【点睛】本题考查根据图象与变量之间的关系,掌握图象与变量之间的关系是解题关键.23.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟). 即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表:(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键25.(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.26.(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 变量之间的关系【巩固基础训练】 题型发散1.选择题,把正确答案的代号填入题中的括号内.(1)如图6—6,一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的关系用图象表示为 ( )(2)一段导线,在O ℃时的电阻为2Ω(电阻单位),温度每增加1℃,电阻增加0.008Ω,那么电阻R(Ω)表示为温度t(℃)的关系式是 ( )(A)R=0.008t (B)R=2+0.008t (C)R=2.008t (D)R=2t+0.008(3)如图6—7,是自行车行驶路程与时间的关系图,则整个行驶过程的平均速度是 ( )(A)20 (B)40 (C)15 (D)25 2.填空题.(1)若某长方体底面积是60(2cm ),高为h(cm),则体积V(3cm )与h 的关系式为________若h 从lcm 变化到lOcm 时,长方体的体积由______3cm 变化到_______3cm . (2)设甲、乙两人在—次赛跑中,路程s 与时间t 的关系如图6—8所示,那么可以知道:①这是—次_______米赛跑;②甲、乙两人先到达终点的是_________;③乙在这次赛跑中的速度为____________m/s.3.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫汐,合称潮汐.下面是某港口从0时到10时的水深情况.根据图象(图6-9)回答:(1)在_________时到_______时,港口的水深在增加;(2)大约在______时,深度最深大约________m.纵横发散1.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h).(1)s与t之间的关系式是什么?(2)用表格表示当t从2时变到10时(每次增加1)时,s相应的值;(3)t逐渐增加时,s怎样变化?说说你的理由;(4)当t=0时,s=?这说明什么?2.科学家认为二氧化碳(CO)的释放量越来越多是全球变暖的原因之一.下表是21950~1990年全世界所释放的二氧化碳量(单位:百万吨):(1)上表反映的是哪两个变量之间的关系?(2)表中哪个是自变量,哪个是因变量?(3)说一说这两个量之间的关系.3.圆的半径改变时,圆的周长也随之改变,这个改变可按公式r=来计算,lπ2其中l是圆的周长,r是圆的半径,π常数,一般取π=3.14.(1)这个变化过程中,自变量、因变量分别是哪些量?(2)求半径为1、2、5、10时圆的周长.转化发散1.某港受潮汐的影响,近日每天24时港内的水深变化大体如图6—10所示.一艘货轮于上午7时在该港口码头开始卸货,计划当天卸完后离港.已知这艘货轮卸完货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航行安全,只有当船底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给条件,回答下列问题:(1)要使该船能在当天卸完货,并安全出港,则出港时水深不能少于_____m.(2)卸货时间最多只能用_________h.2.根据图6—11回答下列问题:(1)上图反映的是哪两个变量之间的关系?(2)A、B点分别代表了什么?(3)说一说速度是怎样随时间变化的?综合发散1.下页这张曲线图(图6—12)表示某人骑摩托车旅行情况,他上午8:00离开家,请仔细观察曲线图,回答以下问题:(1)他从家到达终点共骑了多少千米?何时到达终点?(2)摩托车何时开得最快?(3)摩托车何时第一次停驶?此时离家多远?(4)摩托车第二次停驶了多长时间?(5)摩托车在11:00到12:00这段时间内的平均速度是多少?(6)求摩托车在全部行驶时间内的平均速度?2.如图6—13所示为某质点在20s内的速度与时间之间的关系图,判定下列两个命题哪个是正确的?(1)初速度为10cm/s;(2)质点的最高速度为20cm/s.【提高能力测试】题型发散1.选择题,把正确答案的代号填入题中的括号内.(1)李老师骑自行车上班,最初以某一速度匀速行驶,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,但仍保持匀速行驶,结果准时到校.在课堂上,李老师请学生画出表示自行车行驶路程s(km)与行驶时间;(h)关系的示意图,同学们画出的示意图有如下四种(图6—14),你认为哪幅图能较好地刻画李老师行驶的路程与时间的变化关系( )(2)某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如用s表示此人离家的距离,t 为时间,在下面给出的四个表示s与t的关系的图象(图6—15)中,符合以上情况的是( )(3)某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B 地后跑步回A地,乙则是先跑步到B地,后骑自行车回A地(骑自行车速度快于跑步速度),最后两人恰好同时回到A地;已知甲骑自行车比乙骑自行车的速度快,若学生离开A地的距离S与所用时间t的关系用图象表示(实线表示甲的图象,虚线表示乙的图象),则图6—16中正确的是( )2.填空题.(1)如图6—17,ABCD底边BC上的高为6cm,当边DC边向右平移时,平行四边形的面积发生了变化.①这个变化过程中,自变量、因变量各是多少?②如果底边长为x(cm),平行四边形的面积y(2cm )可以表示为________; ③当底边从12cm 增加到20cm 时,面积增加了多少?(2)假定甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图6—18所示.看图填空:①这是一次________赛跑;②甲、乙两人中先到达终点的是_________; ③乙在这次赛跑中的速度是_____________m /s .(3)在地球某地,温度T(℃)与高度d(m)的关系可以近似用T=10-150d来表示,根据这个关系式,当高度d 的值是400时,T 的值为_______ 纵横发散1.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离 与时间的变化情况(如图6—19所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量? (2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少公里?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?2.正方体的体积随着棱长的变化而变化,其变化过程由公式3aV 来计算,其中V是正方体的体积,a是正方体的棱长.(1)这个变化过程中,自变量和因变量分别是什么?(2)求棱长为1,2,3,4,5时正方体的体积.(3)正方体的体积是怎样随棱长而变化的?转化发散1.某银行用图6—20描绘了一周内每天的储蓄额的变化情况:(1)图中表示的两个量,哪个是自变量?哪个是因变量?(2)这一周内,哪天的储蓄额最多?哪天的储蓄额最少?(3)哪些天的储蓄额大约是相同的?(4)这一周的日储蓄额平均是多少?2.某气象研究中心观测一场沙尘暴从发生到结束的全过程.开始时平均增速2km /h.4h后,沙尘暴经过开阔荒漠地,风速变为平均增速4km/h.一段时间内风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少1km/h,最终停止.结合风速与时间的图象(图6-21),回答下列问题.(1)在纵轴(y)的( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?综合发散1.某机动车出发前油箱内有油42L行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图6—22所示,根据图6—22回答问题.(1)机动车行驶几小时后加油?(2)中途中加油____________L;(3)如果加油站距目的地还有240km,车速为40km/h,要达到目的地,油箱中的油是否够用?并说明原因.2.图6—23所示为某山脉的横断面,A和B都位于海平面上.(1)山脉的最高点高于海平面多少米?(2)山脉中坡度最陡的是哪一段?(3)以2km为单位,计算这横断面的面积;(4)这山脉的横断面的平均高度为多少千米?参考答案题型发散1.(1)(C) (2)(B) (3)(C)2.(1)V=60h ,长方体体积由360cm 变化到3600cm .(2)①100;②甲;③85.12100=. 3.(1)在0时到3时、9时到10时,水深在增加. (2)大约在3时,大约6m . 纵横发散 1.(1)S=45t . (2)(3)时间t 逐渐增加时,这辆汽车行驶的路程s 就逐渐增加; (4)当t=0时,s=0,这说明汽车原地不动.(停止状态)2.(1)表中反映的是全世界释放的二氧化碳量随年代推移的变化情况;(2)表中年代是自变量,全世界所释放的二氧化碳量是因变量;(3)每隔10年,二氧化碳的释放量都在增加3.(1)自变量,自变量是半径r ,因变量是周长l ;(2)r=1时,l=2πr=2×3.14×1=6.28;r=2时,l=2πr=2×3.14×2=12.56;r=5时,l=2πr=2×3.14×5=31.4;r=10时,l=2π=2×3.14×10=62.8.转化发散1.(1)出港时水深不能少于6m ;(2)卸货时最多只能用9h .2.(1)速度随时间变化的情况;(2)A 点表示第9min 时速度是20km /h ,B 点表示第15min 时速度是0;(3)从0到3min ,速度从0km /h 增加到20km /h;3min 到9min ,速度保持20km /h ;9min 到12min ,速度从20km /h 增加到60km /h ;12min 到15min ,速度从60km /h 降低到0.综合发散1.(1)他从家到达终点共骑了240km ,大约14:30到达终点;(2)可以计算每一个时间段的速度,经比较可知:10:30至11:00与13:30至14:00这两个时间段摩托车开得最快;(3)摩托车10:00时第一次停驶,此时离家100km ; (4)第二次停驶时间为12:00至13:00,共1h ;(5)摩托车在11:00到12:00这段时间内共前进了约30km ,所以平均速度是30km /h ;(6)摩托车在全部行驶时间内共前进240km ,花了6.5-0.5-1=5(h),所以摩托车在全部行驶时间内的平均速度为48km /h .2.(1)、(2)都正确.【提高能力测试】 题型发散1.(1)(C) (2)(C) (3)(B)2.(1)①底边BC 是自变量,面积y 是因变量;②y=6x ;③248cm . (2)提示①从纵轴可以看出终点是100m 的地方. ②从横轴可以看出甲到的时间是12s , ③用速度公式:时间路程速度=. 解 ①100m 赛跑.②甲先到达终点.③s m /8125100=. (3)322. 纵横发散1.(1)时间与距离,时间是自变量,距离是因变量; (2)10时和13时,分别离家10km 和30km ; (3)到达离家最远的时间是12时,离家30km ; (4)11时到12时,他行驶了13km ; (5)他可能在12时到13时间休息,吃午餐; (6)共用了2时,因此平均速度为15km /h .2.(1)棱长是自变量,体积是因变量 (2)当a=1时,1133===a V ;当a=2时,11 / 11 8233===a V ;当a=3时,27333===a V ;当a=4时,64433===a V ;当a=5时,125533===a V (3)正方体的体积随棱长的增加而增加,并且增加的更快.转化发散1.(1)自变量是日期,因变量是储蓄额 (2)14日的储蓄额最高,11日的储蓄额最低 (3)13日和15日的储蓄额相同,16日和17日的储蓄额相同 (4)日平均储蓄额为38万元2.(1)如图16'-所示.(2)共经历57h .综合发散1.(1)5h 后加油.(2)中途加油24L .(3)因为汽车每小时耗油(42—12)÷5=6L ,所以240÷40×6=36L ,正好到达.2.(1)山脉的最高点高于海平面约4500m ;(2)山脉中坡度最陡的是从左往右第二段;(3)将横断面分割成三角形和长方形,可计算得这横断面的面积为220km ;(4)这山脉的横断面的平均高度为2000m .。