湘潭大学-人工智能课件-机器学习

合集下载

人工智能机器学习ppt课件

人工智能机器学习ppt课件

人类的未来生活和工作,还将有机器人参与。机器人的自主学 习,更离不开人脸识别技术。
2015年3月16日,马云在德国参加活动时,为嘉宾演示了一项 “Smile to Pay”的扫脸技术。在网购后的支付认证阶段,通过 扫脸取代传统的密码,实现“刷脸支付”。
机器学习的基本概念
❖ 机器学习的两大学派
✓ 机器学习:人工智能的重要分支 构造具有学习能力的智能系统 知识、推理、学习 手段:统计,逻辑,代数……
阿法狗的核心技术还包括策略网络的训练和蒙 特卡洛树搜索。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习是人工智能的核心,通过使机器模
拟人类学习行为,智能化地从过去的经历中获 得经验,从而改善其整体性能,重组内在知识 结构,并对未知事件进行准确的推断。机器学 习在科学和工程诸多领域都有着非常广泛的应 用,例如金融分析、数据挖掘、生物信息学、 医学诊断等。生活中常见的一些智能系统也广 泛使用机器学习算法,例如电子商务、手写输 入、邮件过滤等。
归纳学习
❖归纳学习(Induction Learning)
✓ 归纳学习是目前研究得最多的学习方法,其学习目的 是为了获得新概念、构造新规则或发现新理论。
✓ 根据归纳学习有无教师指导,可把它分为 示例学习:给学习者提供某一概念的一组正例和反 例,学习者归纳出一个总的概念描述(规则),并 使这个描述适合于所有的正例,排除所有的反例。 观察发现学习:
✓ 统计机器学习 从大量样本出发,运用统计方法,发现统计规律 有监督学习、无监督学习、半监督学习 问题:分类,聚类,回归
机器学习的基本概念

湘潭大学 人工智能课件 模糊系统 Part1

湘潭大学 人工智能课件 模糊系统 Part1
R V×W
R 记为:V W
对于V×W中的元素(v,w),若(v,w)∈R,则称v与w有 关系R;
若(v,w) R,则称v与w没有关系R。
模糊关系的定义
例子: V×W上的关系
设:V={1班,2班,3班},W={男队,女队} 则V×W中有6个元素,即 V×W = { (1班,男队),(2班,男队),(3班,男队), (1班,女队),(2班,女队),(3班,女队) } 其中,每个元素是一代表队。 假设要进行一种双方对垒的循环赛,则每一个赛局 都是V×W中的一个子集,它构成了V×W上的一 个关系。
A = {0, 0, 0.1, 0.6, 1} B = {1, 0.5, 0.01, 0, 0}
其中:
μA(1)=0, μA(2)=0 , μA(3)=0.1 , μA(4)=0.6 , μA(5)=1 μB(1)=1, μB(2)=0.5 , μB(3)=0.01 , μB(4)=0, μB(5)=0
求A∩B, A∪B和¬ A
A∩B = (0.3∧0.6)/u1+(0.8∧0.4)/u2+(0.6∧0.7)/u3 = 0.3/u1+0.4/u2+0.6/u3
A∪B = (0.3∨0.6)/u1+(0.8∨0.4)/u2+(0.6∨0.7)/u3
= 0.6/u1+0.8/u2+0.7/u3 ¬ A = (1-0.3)/u1+(1-0.8)/u2+(1-0.6)/u3 = 0.7/u1+0.2/u2+0.4/u3
模糊集合上的运算定律
幂等律
交换律 结合律
A A A, A A A
A B B A, A B B A

人工智能机器学习课件

人工智能机器学习课件
20世纪80年代,机器学习成为了一个独立的学科领域, 并出现了许多经典的机器学习算法,如决策树、支持 向量机、朴素贝叶斯等。
进入21世纪后,随着大数据和深度学习技术的快速发 展,机器学习得到了广泛的应用和推广,成为了人工
智能领域最热门的研究方向之一。
机器学习的应用领域
计算机视觉
自然语言处理
数据挖掘
医学诊断
机器学习在计算机视觉领域有 着广泛的应用,如图像分类、 目标检测、人脸识别等。
机器学习也被广泛应用于自然 语言处理领域,如机器翻译、 情感分析、智能问答等。
机器学习可以帮助企业从海量 数据中挖掘出有价值的信息, 如用户行为分析、市场趋势预 测等。
机器学习在医学领域也得到了 广泛的应用,如疾病预测、医 学影像分析等。此外,机器学 习还可以应用于金融风控、智 能推荐、农业智能化等领域。
模型鲁棒性
模型对输入数据的微小变化应具有一定的稳定性, 以保证泛化能力。
迁移学习能力
将在一个任务上学到的知识迁移到其他相关任务 上的能力,有助于提高模型泛化性。
计算资源与效率问题
计算资源需求
深度学习模型通常需要大量的计算资源,包括高性能计算机、 GPU和TPU等。
模型训练时间
大型模型训练时间长,需要优化算法和分布式计算等技术来提高效 率。
详细讲解协同过滤、内容推荐、 混合推荐等推荐算法的原理和实
现。
实例分析
阐述用户画像的构建方法和精准 营销的策略,包括用户分群、个
性化推荐等。
用户画像与精准营销
介绍推荐系统的评估指标和优化方 法,如准确率、召回率、F1值等, 以及A/B测试等实验设计方法。
推荐系统评估与优化
通过具体案例,如电商推荐系统、 广告投放系统等,展示机器学习在 推荐系统与精准营销领域的实践应 用。

2024《机器学习》ppt课件完整版

2024《机器学习》ppt课件完整版

《机器学习》ppt课件完整版•引言•机器学习基础知识•监督学习算法目录•无监督学习算法•深度学习基础•强化学习与迁移学习•机器学习实践与应用引言机器学习的定义与目标定义目标机器学习的目标是让计算机系统能够自动地学习和改进,而无需进行明确的编程。

这包括识别模式、预测趋势以及做出决策等任务。

早期符号学习01统计学习阶段02深度学习崛起0301020304计算机视觉自然语言处理推荐系统金融风控机器学习基础知识包括结构化数据(如表格数据)和非结构化数据(如文本、图像、音频等)。

数据类型特征工程特征选择方法特征提取技术包括特征选择、特征提取和特征构造等,旨在从原始数据中提取出有意义的信息,提高模型的性能。

包括过滤式、包装式和嵌入式等,用于选择对模型训练最有帮助的特征。

如主成分分析(PCA )、线性判别分析(LDA )等,用于降低数据维度,减少计算复杂度。

数据类型与特征工程损失函数与优化算法损失函数优化算法梯度下降变种学习率调整策略模型评估与选择评估指标评估方法模型选择超参数调优过拟合模型在训练集上表现很好,但在测试集上表现较差,泛化能力不足。

欠拟合模型在训练集和测试集上表现都不佳,未能充分学习数据特征。

防止过拟合的方法包括增加数据量、使用正则化项、降低模型复杂度等。

解决欠拟合的方法包括增加特征数量、使用更复杂的模型、调整超参数等。

机器学习中的过拟合与欠拟合监督学习算法线性回归与逻辑回归线性回归逻辑回归正则化二分类问题核技巧软间隔与正则化030201支持向量机(SVM )决策树与随机森林剪枝决策树特征重要性随机森林一种集成学习方法,通过构建多棵决策树并结合它们的输出来提高模型的泛化性能。

Bagging通过自助采样法(bootstrap sampling)生成多个数据集,然后对每个数据集训练一个基学习器,最后将所有基学习器的输出结合起来。

Boosting一种迭代式的集成学习方法,每一轮训练都更加关注前一轮被错误分类的样本,通过加权调整样本权重来训练新的基学习器。

《人工智能应用概论》课件第3章-机器学习

《人工智能应用概论》课件第3章-机器学习
• 当有一个绿色的点时,该判断这个肿瘤是恶性的还是良性的呢?根据红蓝点我们训练出了一个逻辑回归模型,也 就是图中的分类线。这时,根据绿点出现在分类线的左侧,因此我们判断它的标签应该是红色,也就是说属于恶 性肿瘤。
• 逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量 较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。
常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori 算法和k-Means算法。
监督学习和无监督学习的区别:训练集目标是否被标注。他们都有训练 集,且都有输入和输出。
3.4 机器学习的分类 -– 半监督学习
半监督学习是介于监督学习与无监督学习之间一种机器学习方式,主要考虑如 何利用少量的标注样本和大量的未标注样本进行训练和分类的问题;
应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些 算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测, 如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM)等;
半监督学习从诞生以来,主要用于处理人工合成数据,无噪声干扰的样本数据 是当前大部分半监督学习方法使用的数据,而在实际生活中用到的数据却大部 分不是无干扰的,通常都比较难以得到纯样本数据。
5.2 机器学习示例 预测美国某大学某人是否是终身教授:
5.3 机器学习的常见应用
机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生 物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析 、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。
5.4 流行的开源机器学习框架

[课件]湘潭大学 人工智能 神经网络系统PPT

[课件]湘潭大学 人工智能 神经网络系统PPT

轴突:输出信号
突触:与另一个神经元相联系的特殊部位
神经网络
生物神经网络
神经元的基本工作机制(简化):
一个神经元有两种状态:兴奋和抑制; 平时处于抑制状态的神经元,其树突和胞体接收其他 神经元由突触传来的兴奋电位,多个输入在神经元中 以代数和的方式叠加; 如果输入兴奋电位总量超过某个阈值,神经元会被激 发进入兴奋状态,发出输出脉冲,并由突触传递给其 他神经元。 神经元被触发后进入不应期,在不应期不能被触发, 然后阈值逐渐下降,恢复兴奋性。
进化计算:是一种对人类智能的演化模拟方法,它
是通过对生物遗传和演化过程的认识,用进化算法去 模拟人类智能的进化规律的。
模糊计算:是一种对人类智能的逻辑模拟方法,它
是通过对人类处理模糊现象的认知能力的认识,用模 糊逻辑去模拟人类的智能行为的。
神经网络
人工神经网络( ANN)是反映人脑结构及功能的 一种抽象数学模型,是由大量神经元节点互连而 成的复杂网络,用以模拟人类进行知识的表示与 存储以及利用知识进行推理的行为。
适应与集成:自适应和信息融合能力;
硬件实现:快速和大规模处理能力。
神经网络
生物神经系统是人工神经网络的基础。人工神经网络是对人脑神经 系统的简化、抽象和模拟,具有人脑功能的许多基本特征。
1. 生物神经系统简介
2. 人工神经网络简介
神经网络
生物神经网络
神经元结构包括四个部分:
胞体:神经细胞的本体,维持细胞生存功能 树突:接收来自其他神经元的信号(输入)
简单地讲,它是一个数学模型,可以用电子线路 来实现,也可以用计算机程序来模 为: 物理结构,计算模拟,存储与操作,训练
人工神经网络的发展

湘潭大学 人工智能课件 机器学习共77页文档

湘潭大学 人工智能课件 机器学习共77页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
湘潭大学 人工智能课件 机器学习
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进

《人工智能概论》第5章 机器学习课件

《人工智能概论》第5章 机器学习课件

5.2 数据准备 5.2.2 数据标注
第五章 机器学习
高等学校人工智能通识课规划教材
第五章 机器学习
5.1 机器学习模型 5.2 数据准备 5.3 学习方式 5.4 模型评估 5.5 实验:房价预测 习题ຫໍສະໝຸດ .3 学习方式第五章 机器学习
5.3.1 有监督学习
有监督学习是指有求知欲的学生(计算机)从老师(环境)那里获取 知识、信息。老师提供对错知识(训练集)、告知最终答案的学习过 程。学生通过学习不断获取经验和技能(模型),对没有学习过的问 题(测试集)也能做出正确的解答(预测)。
5.3 学习方式
第五章 机器学习
5.3.3 概率图模型
1、隐马尔可夫模型 隐马尔可夫模型它在语音识别中取得了成功,后来被广泛用于各
种序列数据分析问题,如中文分词等自然语言处理。 (1)随机过程 从一个状态转移到另一个状态有多条路的过程称为随机过程。
5.3 学习方式
5.3.3 概率图模型
1、隐马尔可夫模型 (2)马尔科夫过程
3、条件随机场
CRF主要用于序列标注问题,比如用s、b、m、e的4个标签来做 字标注法的分词,目标输出序列本身会带有一些上下文关联,比如s后 面就不能接m和e等等。
5.3 学习方式 5.3.4 集成学习
1、基本思想
第五章 机器学习
5.3 学习方式
第五章 机器学习
5.3.4 集成学习
2、集成学习使用场景
5.3 学习方式
第五章 机器学习
5.3.1 有监督学习
2、线性回归
(1)基本原理:如果希望知道自变量x是怎样影响因变量Y的,以一 元线性回归为例,从数学角度,就是建立如下模型:
Y=β0+β1x1+ e

湘潭大学 人工智能课件 知识表示方法 part2

湘潭大学 人工智能课件 知识表示方法 part2

谓词逻辑法
谓词
在n元谓词 P(x1,x2,…,xn)中,若每个个体均为常量、变 元或函数,则称它为一阶谓词。 如果某个个体本身又是一个一阶谓词,则称它为二阶 谓词,如此类推。 个体变元的取值范围称为个体域。个体域可以是有限 的,也可以是无限的。例如用I(x)表示“x是整数”, 则个体域为所有整数,是无限的。 谓词与函数不同,谓词的真值是“T”或“F”,而函 数的值是个体域中的一个个体,无真值可言。
谓词逻辑法
谓词公式
例2:用谓词逻辑描述右图中的房子的概念
个体 :A , B 谓词 : SUPPORT( x,y ):表示 x 被 y支撑着 WEDGE ( x ):表示 x 是楔形块 BRICK( y ):表示 y 是长方块 其中 x , y是个体变元,它们的个体域{A,B} 房子的概念可以表示成一组合式谓词公式的合取式: SUPPORT(A,B) ∧WEDGE( A ) ∧BRICK( B )
谓词逻辑法
谓词
在谓词逻辑中,命题是用形如P(x1,x2,…,xn)的谓词来表 述的。一个谓词可分为谓词名与个体两个部分
个体: 是命题的主语,表示独立存在的事物或某个抽 象的概念
“x1,x2,…,xn”是个体,一般用小写字母表示
个体可以是个体常量、变元或函数
谓词名:表示个体的性质、状态或个体之间的关系
谓词逻辑法
置换与合一
置换 推理规则:用合式公式的集合产生新的合式公式
– 假元推理
W1 W1 W2
W2
– 全称化推理
(x) W(x) 任意常量A W(A)
寻找A对x的置 换,使W1(A) 与W1(x)一致
– 综合推理
W1(A) (x) [W1(x) W2(x)] W2(A)

人工智能第7章机器学习

人工智能第7章机器学习
奖励的目标。
常见算法
Q-学习、策略梯度方法、深度强 化学习等。
应用场景
强化学习适用于需要与环境进行交 互并做出决策的场景,如机器人控 制、游戏AI、自动驾驶等。
03
机器学习常用算法
线性回归
原理
通过最小化预测值与 真实值之间的平方误 差,求解最优参数,
得到线性模型。
应用场景
预测连续型数值,如 房价、销售额等。
02 近年来,随着大数据和计算能力的提升,机器学 习在各个领域的应用越来越广泛,成为推动人工 智能发展的重要力量。
机器学习的应用领域
计算机视觉
通过训练图像识别模型,实现对图像和视 频的理解和分析,应用于安防、自动驾驶 等领域。
医疗诊断
通过训练诊断模型,实现对医学影像和病 历数据的自动分析和诊断,应用于医疗健 康和远程医疗等领域。
编程。
机器学习的核心是数据驱动,通过对大量数据的 03 分析和挖掘,发现数据中的内在规律和模式,从
而实现对新数据的预测和决策。
机器学习的历史与发展
01 机器学习的起源可以追溯到20世纪50年代,当时 科学家们开始研究如何让计算机具有学习和识别 的能力。
02 在随后的几十年里,机器学习经历了从符号学习 到统计学习再到深度学习的发展历程,不断推动 着人工智能技术的进步。
循环神经网络(RNN)
循环神经网络是一种用于处理序列数据的神经网络,它能 够记忆之前的信息,并根据当前输入和之前的记忆进行预 测或分类。RNN在语音识别、自然语言处理等领域有着广 泛的应用。
深度学习在图像识别、自然语言处理等领域的应用
图像识别
深度学习在图像识别领域取得了显著的成果,通过训练深度卷积神经网络模型,可以实现对图像中物体、场景、 人脸等的自动识别和分类。目前,深度学习已经成为图像识别领域的主流方法。

人工智能培训课件

人工智能培训课件
任务
计算机视觉的主要任务包括图像和视频的获取、预处理、特征提取、目标检测与跟踪、图像分类与识别、场景理 解等。
图像处理与特征提取
图像处理
图像处理是计算机视觉的基础,包括图像的灰度化、去噪、增强、变换等操作,旨在改善图像的质量 和可读性,为后续的视觉任务提供更好的输入。
特征提取
特征提取是从原始图像中提取出有用的信息,如边缘、角点、纹理等,为后续的分类、识别等任务提 供特征描述。常用的特征提取方法包括SIFT、SURF、HOG等。
分类
根据学习方式的不同,机器学习 可以分为监督学习、无监督学习 、半监督学习和强化学习等。
深度学习的定义与原理
定义
深度学习是机器学习的一种分支,它使用神经网络模型来模拟人脑的学习过程 。深度学习模型由多个层次的神经元组成,每个神经元都有一个权重,用于将 输入信号转换为输出信号。
原理
深度学习的原理是通过反向传播算法来不断调整神经元之间的权重,以最小化 预测结果与实际结果之间的误差。当模型训练完成后,它可以用于预测新的数 据。
05
人工智能实践案例
人脸识别系统设计与实现
总结词
人脸识别技术是一种基于人的脸部特征信息 进行身份认证的生物识别技术。
详细描述
人脸识别系统包括人脸检测、人脸定位、人 脸特征提取和人脸匹配等步骤。在实现过程 中,需要选择合适的算法和模型,并进行大 量的训练和优化,以提高识别准确率和效率 。
智能推荐系统设计与实现
详细描述
自动驾驶系统包括感知、决策、控制等多个 模块,通过传感器、雷达等设备获取车辆周 围环境信息,再通过算法和模型进行决策和 控制,实现车辆的自主驾驶。在实现过程中 ,需要解决各种复杂场景下的自动驾驶问题
,并保证系统的可靠性和安全性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Artificial Intelligence (AI)
人工智能
第七章:机器 学习
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
阿法狗通过神经网络学习所有高水平围棋 棋谱,大概是历史上有的20万个左右职业棋谱, 从而获得了在盘面上如何落子的直觉。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习策略与基本结构
❖ 机器学习的主要策略:按照学习中使用推理的多 少,机器学习所采用的策略大体上可分为4种
✓ 机械学习:记忆学习方法,即把新的知识存储起来, 供需要时检索调用,而不需要计算和推理。
✓ 示教学习:外界输入知识与内部知识的表达不完全一 致,系统在接受外部知识时需要推理、翻译和转化。
✓ 类比学习:需要发现当前任务与已知知识的相似之处, 通过类比给出完成当前任务的方案。
✓ 示例学习:需要从一组正例和反例中分析和总结出一 般性的规律,在新的任务中推广、验证、修改规律。
机器学习策略与基本结构
人类的未来生活和工作,还将有机器人参与。机器人的自主学 习,更离不开人脸识别技术。
2015年3月16日,马云在德国参加活动时,为嘉宾演示了一项 “Smile to Pay”的扫脸技术。在网购后的支付认证阶段,通过 扫脸取代传统的密码,实现“刷脸支付”。
机器学习的基本概念
❖ 机器学习的两大学派
✓ 机器学习:人工智能的重要分支 构造具有学习能力的智能系统 知识、推理、学习 手段:统计,逻辑,代数……
阿法狗走的是通用学习的道路。它的估值函数,
不是专家攻关捣哧出来的。它的作者只是搭了一个 基本的框架(一个多层的神经网络),除了围棋最 基本的规则外,没有任何先验知识。你可以把它想 象成一个新生儿的大脑,一张白纸。然后,直接用 人类高手对局的3000万个局面训练它,自动调节它 的神经网络参数,让它的行为和人类高手接近。这 样,阿法狗就具有了基本的棋感,看到一个局面大 致就能知道好还是不好。
✓ 统计机器学习 从大量样本出发,运用统计方法,发现统计规律 有监督学习、无监督学习、半监督学习 问题:分类,聚类,回归
机器学习的基本概念
❖ 机器学习的定义
✓ 西蒙(Simon,1983):学习就是系统中的适应性变化, 这种变化使系统在重复同样工作或类似工作时,能够 做得更好。
✓ 明斯基(Minsky,1985):学习是在人们头脑里(心理 内部)有用的变化。
概念聚类:按照一定的方式和准则分组,归纳概念 机器发现:从数据和事例中发现新知识
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习的基本概念
❖ 机器学习的三要素
✓ 一致性假设:假设世界W与样本集Q具有某种相同 性质机器学习的条件。
✓ 样本空间划分:将样本集放到一个n维空间,寻找 一个决策面(等价关系),使得问题决定的不同对象 被划分在不相交的区域。
✓ 泛化能力:从有限样本集合中获得的规律是否对学 习集以外的数据仍然有效。泛化能力 决定模型对 世界的有效性。
归纳学习
❖归纳学习(Induction Learning)
✓ 归纳学习是目前研究得最多的学习方法,其学习目的 是为了获得新概念、构造新规则或发现新理论。
✓ 根据归纳学习有无教师指导,可把它分为 示例学习:给学习者提供某一概念的一组正例和反 例,学习者归纳出一个总的概念描述(规则),并 使这个描述适合于所有的正例,排除所有的反例。 观察发现学习:
阿法狗的核心技术还包括策略网络的训练和蒙 特卡洛树搜索。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习是人工智能的核心,通过使机器模
拟人类学习行为,智能化地从过去的经历中获 得经验,从而改善其整体性能,重组内在知识 结构,并对未知事件进行准确的推断。机器学 习在科学和工程诸多领域都有着非常广泛的应 用,例如金融分析、数据挖掘、生物信息学、 医学诊断等。生活中常见的一些智能系统也广 泛使用机器学习算法,例如电子商务、手写输 入、邮件过滤等。
归纳学习
❖归纳学习(Induction Learning)
✓ 归纳学习是应用归纳推理进行学习的一种方法。 ✓ 归纳学习的模式:
解释过程
实例空间
规划过程
规则空间
实验规划过程通过对实例空间的搜索完成实例选择,并将这些选中 拿到的活跃实例提交给解释过程。解释过程对实例加以适当转换,把活 跃实例变换为规则空间中的特定概念,以引导规则空间的搜索。
✓ 学习是一个有特定目的知识获取和能力增长过程,其 内在行为是获得知识、积累经验、发现规律等,其外 部表现是改进性能、适应环境、实现自我完善等。
✓ 机器学习是研究如何使用机器来模拟人类学习活动的 一门学科。
ቤተ መጻሕፍቲ ባይዱ
机器学习的基本概念
❖ 机器学习的任务 ✓根据有限样本集 Q ,推算这个世界 W 的模型, 使得其对这个世界为真。
❖ 学习系统的基本结构
环境
学习
知识库
执行
❖ 影响学习系统设计的要素
✓ 环境:环境向系统提供信息的水平(一般化程度)和 质量(正确性)
✓ 知识库:表达能力,易于推理,容易修改,知识表示 易于扩展。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
类似的深度学习是在近几年出现的,目
前,这项科技也有了一些应用,最简单的例 子就是通过深度学习识别猫。通过这项识别 验证,已经引申出了更多具有实际意义的应 用,比如识别某一个图片中是否有癌细胞, 某一个铁路沿线上的轨道是否存在磨损,甚 至军事作战中,对方的视线中是否有坦克, 都可以通过深度学习实现。谷歌的自动驾驶, 其中很重要的就是识别道路、交通信号灯、 路标等,这都是通过深度学习获得。
相关文档
最新文档