11、有理数的混合运算_练习2

合集下载

有理数混合运算练习题2篇

有理数混合运算练习题2篇

有理数混合运算练习题第一篇:有理数混合运算练习题1. 计算下列表达式的值:a) $3 + \frac{4}{5}$b) $-2 - \frac{7}{8}$c) $5 \times \left(-\frac{2}{3}\right)$d) $\frac{2}{3} \div (-\frac{1}{4})$2. 简化下列表达式:a) $3 \times \frac{5}{6} \times (-\frac{2}{5})$b) $-4 \div \left(\frac{3}{4}\right) \div 2$c) $\frac{2}{3} + \left(\frac{4}{5} -\frac{1}{10}\right)$d) $7 - \left(3 + \frac{2}{9}\right)$3. 求解下列方程:a) $3x + 2 = 14$b) $-\frac{3}{4}y - \frac{2}{3} = \frac{4}{5}y - \frac{1}{10}$c) $2z - \frac{1}{3} = \frac{5}{6}z + \frac{1}{4}$4. 综合运用有理数的运算法则,计算下列表达式:a) $\left(\frac{2}{5} - \frac{1}{3}\right) \times \left(-\frac{3}{4}\right) + \frac{5}{6}$b) $\frac{2}{3} - \left(\frac{1}{4} -\frac{3}{8}\right) \times \left(-\frac{3}{2}\right)$c) $-5 \times \left(3 - \frac{1}{5}\right) \div (-\frac{4}{5}) + 2$d) $\left(-\frac{1}{2}\right) \div \left(\frac{3}{4} + \frac{2}{3}\right) - \frac{5}{6}$5. 求解下列问题:a) 一辆公交车上有30人,下车后车上还剩下$\frac{4}{5}$ 的人数,公交车上有多少人下车了?b) 在某次考试中,小明得了 $\frac{3}{8}$ 的分数,他得到的分数是80分,满分是多少分?c) 一块地上的面积是 $\frac{2}{5}$ 平方米,如果将面积扩大到原来的3倍,新的面积是多少平方米?第二篇:有理数混合运算练习题1. 计算下列表达式的值:a) $-3 + \frac{4}{7}$b) $5 - \frac{3}{4}$c) $7 \times \left(-\frac{5}{6}\right)$d) $\frac{2}{3} \div (-\frac{1}{5})$2. 简化下列表达式:a) $2 \times \frac{3}{5} \times (-\frac{4}{7})$b) $-5 \div \left(\frac{2}{3}\right) \div (-\frac{1}{4})$c) $\frac{2}{5} + \left(\frac{3}{4} -\frac{1}{8}\right)$d) $8 - \left(2 + \frac{1}{6}\right)$3. 求解下列方程:a) $2x + 5 = 17$b) $-\frac{4}{5}y - \frac{1}{3} = \frac{2}{7}y -\frac{1}{5}$c) $3z - \frac{1}{4} = \frac{5}{6}z + \frac{2}{3}$4. 综合运用有理数的运算法则,计算下列表达式:a) $\left(\frac{1}{3} - \frac{2}{5}\right) \times\left(-\frac{4}{7}\right) + \frac{3}{4}$b) $\frac{5}{6} - \left(\frac{1}{4} -\frac{1}{3}\right) \times \left(-\frac{3}{2}\right)$c) $-4 \times \left(5 - \frac{1}{2}\right) \div\left(-\frac{2}{3}\right) + 3$d) $\left(-\frac{1}{5}\right) \div \left(\frac{3}{4} + \frac{1}{2}\right) - \frac{2}{3}$5. 求解下列问题:a) 一张纸的长度是30cm,在剪去 $\frac{2}{3}$ 的长度后,剩下多长?b) 一个班级有40人,其中 $\frac{5}{8}$ 的学生是男生,男生有多少人?c) 一件商品原价是200元,打了折扣后价格变为原来的$\frac{3}{5}$,打折了多少元?。

苏科版七年级上册有理数的混合运算集中训练(含答案)

苏科版七年级上册有理数的混合运算集中训练(含答案)

知识像烛光,能照亮一个人,也能照亮无数的人。

--培根练习1:有理数有理数的混合运算(1)1.计算:(1)18-2+(-2)×3; (2));71()7(35-⨯-÷- (3));3(6)31(4--⨯-+-(4));6()3()21()3(-÷---⨯- (5);)32(94223-⨯÷- (6);)2()4()21(22-÷-⨯- 2.计算:(1);)10(551522--⨯÷- (2)|;31|)2(642-⨯-÷+(3));1()3(|5|23-÷-+-- (4).5.745415.54575.0⨯-⨯+⨯+⨯参考答案知识像烛光,能照亮一个人,也能照亮无数的人。

--培根3)4(22)3(15)2(725)1.(241)6(8)5(1)4(3)3(75)2(10)1.(1------知识像烛光,能照亮一个人,也能照亮无数的人。

--培根练习2:有理数有理数的混合运算(2)1.计算:(1));34(2)21(3-÷--+ (2)).125.0()4(8)25.0(-⨯-⨯⨯-(3);7)1()48()28(⨯-++-÷- (4));121413121(72-+-⨯(5)81)4(2033--÷-; (6).)2(418223-⨯-÷- 2.计算:(1))6(30)43()4(2-÷+-⨯-; (2);3)32()6(|21|2⨯-+-⨯-(3);)2()6.1(5.02225-÷--⨯- (4).1)51(250|53|2--⨯÷+-参考答案知识像烛光,能照亮一个人,也能照亮无数的人。

--培根23)4(251616)3(9)2(17)1.(22)6(0)5(24)4(0)3(1)2(4)1.(1------知识像烛光,能照亮一个人,也能照亮无数的人。

有理数混合及合并同类项计算题练习

有理数混合及合并同类项计算题练习

一、有理数的混合运算1.(﹣1)2×2+(﹣2)3÷4.2..3..4.﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)35.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)6. ﹣22﹣÷(﹣2)37.(﹣1)2+[20﹣(﹣2)3]÷(﹣4)8..9..10.11..12.18×()﹣(﹣24)×()13..14.15. ﹣32﹣(﹣3)2×(﹣2)﹣[(﹣2)×(﹣1)]216. [2832003+(﹣283)2003﹣10]×(﹣2)÷×(﹣1)2002 17.18. ﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.19.(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×20.21.﹣32÷3+(﹣)×12﹣(﹣1)2010;22..;23.;24.;25..26.27..28.;29.;30.31.32..;33.﹣32+(﹣3)2+(﹣5)2×(﹣)﹣0.32÷|﹣0.9|.34.(﹣2×5)3﹣(﹣1)×(﹣)2﹣(﹣)2.35.1×﹣(﹣)×2+(﹣)÷136. ﹣22+(﹣2)4×()3﹣|0.28|÷(﹣)237.(﹣+)×18+3.95×6﹣1.45×6..38.39..40. [(﹣1)2005+(﹣﹣)×24]÷|﹣32+5|.二、合并同类项1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(5a2+2a-1)-4(3-8a+2a2).10、-3x2y+3xy2+2x2y-2xy2;11、2(a-1)-(2a-3)+3.12、(5x2y-7xy2)-(xy2-3x2y);13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、1-3(2ab+a)十[1-2(2a-3ab)]22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]. 23、3a 2-9a+5-(-7a 2+10a-5);24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2). 25、(5a-3a 2+1)-(4a 3-3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab] 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a )-(-3a+b ); 31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2]. 33、(2a 2-1+2a )-3(a-1+a 2);34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y三、化简求值及其它73、化简、求值21x 2-2212- (x + y )⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和. 83、 求3x 2+x -5与4-x +7x 2的差. 84、计算5y+3x+5z 2与12y+7x-3z 2的和 85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差1x2-xy+y,求多项式M86、多项式-x2+3xy-1y与多项式M的差是-287、当3(x2-2xy)-[3x2-2y+2(xy+y)]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b)]-2ab2},其中a=-2,1b=3,c=-41(B-A);89、已知A=a2-2ab+b2,B=a2+2ab+b2(1)求A+B;(2)求490、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知2222A x xy yB x xy y=-+=+-,求3A-B44,593、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.94、已知2a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.-95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.有理数的混合运算41.[2﹣(+﹣)×24]÷5×(﹣1)200942. ﹣14﹣[﹣2+(1﹣0.2÷)×(﹣3)].43.44..45. ﹣5+[﹣﹣(1﹣0.2÷)×(﹣3)2]46. ﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);;47.48. 3×(﹣1)10+(﹣22)×|(﹣2)3|÷4÷2﹣|(﹣3)2|÷(﹣3)2×(﹣1)11;49. ;.50.51. [1]×24]÷(﹣5);52. (﹣10)+8×(﹣2)2﹣(﹣4)×(﹣3);53. ﹣0.252÷(﹣0.5)3+(﹣)×(﹣1)10;54. ﹣3×(﹣)2﹣4×(1﹣)﹣8÷()2;55.(﹣2)3﹣1×(﹣)﹣(﹣2)×(﹣1)×(﹣4).;56.;57.58. ﹣24+|6﹣10|﹣3×(﹣1)2009.59. |﹣1.3|+;60. (﹣13)+(+12)+(﹣7)+(+38);;61.(+163)﹣[(+63)+(﹣259)+(﹣41)].62.;63.;64..65.66.﹣22﹣(﹣22)+(﹣2)2+(﹣2)3﹣3267. 22+(﹣4)+(﹣2)+4;68.(﹣8)+(+0.25)﹣(﹣9)+(﹣);;69.70. (﹣)÷(﹣﹣);71. ﹣9÷;72. ﹣14﹣×[2﹣(﹣3)2].73.74.75.。

北师大版七年级数学上册 2.11 有理数混合运算专题 练习(含答案)

北师大版七年级数学上册  2.11 有理数混合运算专题 练习(含答案)

2019-2020有理数混合运算专题(含答案)一、解答题1.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 2.计算: ()()241110.5123⎡⎤---⨯⨯--⎣⎦3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.5.计算:(1)6(4)(2)-+--- (2)310.1252(8)73⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(3)(-225)-(+4.7)-(-0.4)+ (-3.3) (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)(12-59+712)×(-36) (7)113(5)77(7)12()3322-⨯+⨯--÷-(8)—2391224⨯6.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.7.计算:()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭.8.计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)313+(-237)+523+(-847); (3)(-103)+(+134)+(-97)+(+100)+(-114); (4)(-212)+(-0.38)+(-12)+(+0.38); (5)(-9512)+1534+(-314)+(-22.5)+(-15712);(6)[(+1317)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+417)].9.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).10.计算:(1)2+(-8)-(-7)-5; (2)312+223+12⎛⎫-⎪⎝⎭-13⎛⎫- ⎪⎝⎭;(3)(-3)×6÷(-2)×12;(4)34⎛⎫-⎪⎝⎭×12⎛⎫-⎪⎝⎭÷124⎛⎫-⎪⎝⎭.11.计算(1)1142()(2)(2)(3)5353++----+(2)(﹣2)3×3﹣(﹣3)+6﹣|﹣5|12.计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13.计算:(1)-32-|(-5)3|×22()5--18÷|-(-3)2|; (2)3571()491236--+÷. 14.计算题:(1)(-20)-(+3)-(-5) (2) 51192533812812-+-- (3) |-3|×(-5)÷(-213) (4) 75336964-+-⨯() (5) (1)0572-+÷-⨯ (6)(159916-)×4 (7) 222222792777()()()-⨯-+⨯--⨯- (8) 22018112(1)()663--÷-⨯ 15.计算:(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017 16.计算:()()241110.4263⎡⎤---÷⨯--⎣⎦; 17.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++- 18.观察下列等式111111111,,,12223233434=-=-=-⨯⨯⨯将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ⑴.猜想并写出:()11n n =+ ;⑴.直接写出下列各式的计算结果: ⑴.111112233420162017++++=⨯⨯⨯⨯ ; ⑴. ()11111223341n n ++++=⨯⨯⨯⨯+ ; ⑴.探究并计算:1111144771020112014++++⨯⨯⨯⨯. 19.阅读下列材料:计算:112÷(13–14+112). 解:原式的倒数为(13–14+112)÷112 =(13–14+112)×12 =13×12–14×12+112×12 =2.故原式=12. 请仿照上述方法计算:(–142)÷(16–314+23–27). 20.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭参考答案1.(1)0;(2)8.【解析】试题分析:(1)先计算乘方,然后再计算乘除,最后计算加减即可;(2)先分别进行乘方、绝对值化简、乘法分配律,然后再按运算顺序进行计算即可.试题解析:(1)原式=16÷(-8)-18×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.2.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式=111[14]23--⨯⨯-=﹣1﹣16×(﹣3)=﹣1+1 2=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.3.(1)-12;(2) 11425;(3) 323;(4)1.【解析】【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=12-; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦=-3-2215252-+⨯() =-3-(-5+1125) =-3+5-1125=2-1125=14125; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭ =(13732-)×(-2)823-⨯-() =53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2=[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.4.(1)7;(2)9【解析】【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.【详解】(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.【点睛】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)-8;(2)-1;(3)-10;(4)-1;(5)-0.2;(6)-19;(7)0;(8)-119.5.【解析】【分析】(1)先去括号,再按照从左到右的顺序计算即可,特别要注意符号的变化; (2)先把小数化为分数,再按照从左到右的顺序计算即可;(3)先去括号,再按照有理数加减法进行计算即可;(4)先去括号和绝对值,再按照有理数加减法进行计算;(5)先确定积的符号,然后把除法转化为乘法,按照有理数乘法法则进行计算; (6)依据乘法分配律进行计算即可;(7)原式逆用乘法分配律计算即可得到结果;(8)把—23924写成1-1024,再依据乘法分配律进行计算即可. 【详解】(1)()()642-+---=-6-4+2=-10+2=-8; (2)()310.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=(-37)×18×(-73)×(-8)=1×(-1)=-1; (3)(-225)-(+4.7)-(-0.4)+ (-3.3)=-2.4-4.7+0.4-3.3=-2.4-4.7-3.3+0.4=-10.4+0.4=-10 (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=35+44-3=2-3=-1 (5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-3471=-75125⨯⨯ (6)(12-59+712)×(-36) =157-36--36+-362912⨯⨯⨯()()()=-18-(-20)-21=-18-21+20=-39+20=-19 (7)()1135777123322⎛⎫⎛⎫-⨯+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=-5×713+7×(-713)-12×(-713)=713×(-5-7+12)=0; (8)—2391224⨯=(1-1024)×12=124×12-10×12=0.5-120=-119.5【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算顺序,此题比较简单,但计算时要特别细心,不然很容易出错. 6.(1)−113(2)−32【解析】(1)()212582433-+-+÷-⨯=−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1)=−32.7.1 3 -.【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的即可.【详解】原式=14 1[2274]625 -+⨯+-⨯=14 125625 -+⨯⨯=2 13 -+=13 -.【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.(1)-6.7;(2)-2;(3)-9912;(4)-3;(5)-35;(6)0【解析】【分析】根据有理数的加法运算律进行运算即可.【详解】解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].=1.3-8=-6.7;(2)3+(-2)+5+(-8).=3+5+.=9+(-11).=-2;(3)原式=[(-103)+(-97)]++100.=-200++100=-99;(4)(-2)+(-0.38)+(-)+(+0.38).=+[(-0.38)+(+0.38)].=-3+0.=-3;(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).=-25+12.5+(-22.5).=-25+[12.5+(-22.5)].=-25+(-10)=-35;(6)+[(+2.5)+(+6)+(+)].=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).=+[-3.5+(+2.5)]+[(-6)+(+6)].=1+(-1)+0.=0.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法运算律是解答本题的关键.9.(1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653=8×|-7|+532×653=56+3 =59;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8)= (−14−12+23)×24-54×(-52)×(-8),=-14×24−12×24+23×24-54×52×8=-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.10.(1)-4;(2) 6;(3) 92;(4)-16.【解析】【分析】(1)根据有理数加减法法则进行计算即可.(2)根据有理数加法结合律和交换律进行计算即可.(3)、(4)根据有理数乘除法法则进行计算即可【详解】(1)原式=2-8+7-5=9-13=-4.(2)原式=312-12+223+13=3+3=6.(3)原式=3×6×12×12=9 2 .(4)原式=314429⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1 6.【点睛】本题考查了有理数的混合运算,熟练掌握并灵活运用运算法则是解题关键. 11.(1)-3 (2)-20【解析】试题分析:(1)根据有理数的加减法法则进行计算即可;(2)先计算乘方,然后进行乘法运算,最后按运算顺序进行计算即可.试题解析:(1)原式=11422235353-+-=14122235533+--=3-6=-3;(2)原式=-8×3+3+6-5=-24+9-5=-20.12.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0;(2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.13.(1) -31;(2)-26【解析】【分析】(1)根据幂的乘方、有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【详解】(1)-32-|(-5)3|×225-()-18÷|-(-3)2|=-9-125×425-18÷9=-9-20-2=-31,故答案为-31; (2)3571491236⎛⎫--+÷ ⎪⎝⎭=(3574912--+)×36=34-×3659-×36712+×36=-27-20+21=-26,故答案为-26.【点睛】本题主要考查了的乘方、有理数的乘除法和减法的基本性质. 14.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-39934;(7)0;(8)40. 【解析】 【分析】根据有理数的运算法则可解答本题. 【详解】解:(1)原式=(-20)+(-3)+5 =-23+5 =-18 (2)原式= 51925133881212--+-+()=-6+1 =-5(3)原式=3×(-5)35⨯-() =3⨯535⨯ =9 (4) =原式=7369-⨯+53363664⨯-⨯ =-28+30-27 =-25(5)()10572-+÷-⨯ =-1+0-14 =-15(6)原式=(-100+1416⨯) =-400+14=-39934(7)原式=227927-⨯-+- =227-⨯0 =0(8) ()201821121663⎛⎫--÷-⨯ ⎪⎝⎭=4-166⨯-⨯() =4+36 =40 【点睛】本题考查了有理数的加、减、乘、除、乘方的运算及它们的混合运算,正确理解运算法则及运算顺序是解题的关键. 15.0【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则分别计算得出答案.【详解】(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017=4+[4×(﹣0.25)]2017×4=4﹣4=0.【点睛】此题主要考查了积的乘方运算、负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.16.2.6【解析】【分析】根据含乘方的有理数混合运算法则计算即可.【详解】原式=10.63(46)--⨯⨯-=1 1.8(2)--⨯-=﹣1+3.6=2.6.【点睛】本题考查了含乘方的有理数混合运算,解答本题的关键是明确含乘方的有理数混合运算的计算方法.17.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+. 【解析】【分析】1.(1)-(3)根据有理数的运算法则进行计算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,注意灵活运用运算律.2.(4)先去括号,再合并同类项.【详解】(1)原式4204459=--÷=--=-(2)原式()()1113174201174202244=--+--⨯⨯=+--= (3)原式31512121211841510234=⨯-⨯-⨯+=--+= (4)原式2222222313x x x x x x x =-++-+-=--+【点睛】本题考核知识点:有理数运算和整式运算. 解题关键点:掌握有理数运算法则和整式运算法则.18.⑴. 111n n -+;⑴. 20162017,1n n +;⑴.6712014【解析】【分析】(1)观察所给算式,根据观察到的规律写出即可;(2)⑴、⑴都是根据得出的规律展开,再合并,最后求出结果即可;(3)根据观察到的规律展开,然后合并,即可求出结果.【详解】(1)()1n n 1=+ 11n n 1-+, 故答案为:11n n 1-+; (2)⑴原式=11111122334-+-+-+…+1120162017-=1-1201620172017=; ⑴原式=11111122334-+-+-+…+111n n -+=1-111n n n =++, 故答案为:20162017,n n 1+; (3)原式=3×1111111144771020112014⎛⎫-+-+-++- ⎪⎝⎭=3×112014⎛⎫- ⎪⎝⎭=6712014. 【点睛】本题考查了有理数的混合运算,能根据已知算式得出()1n n 1=+ 11n n 1-+这一规律是解题的关键. 19.–114. 【解析】【分析】 根据阅读材料介绍的方法,利用乘法分配律求出原式倒数的值,即可求出原式的值.【详解】(16–314+23–27)÷(–142) =(16–314+23–27)×(–42)=(–42)×16–(–42)×314+(–42)×23–(–42)×27=–7+9–28+12=–14,故原式=–114. 【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换(4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可;(5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可(6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()()=17+4-12(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭ =43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭ =25×34+25×12-25×14=25×(34+12-14) =25×1。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+1-;(2)2.75-2-3+1;(3)42÷(-1)-1÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-+()×(-2.4).2.计算题:(10′×5=50′)(1)-23÷1×(-1)2÷(1)2;(2)-14-(2-0.5)××[()2-()3];(3)-1×[1-3×(-)2]-( )2×(-2)3÷(-)3(4)(0.12+0.32) ÷[-22+(-3)2-3×];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是,那么ac 0;如果,那么ac 0;(2)若,则abc= ; -a2b2= ;(3)已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,那么x2-(a+b)+cdx=.2.计算:(1)-32-(2){1+[]×(-2)4}÷(-);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中()A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元;D.甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-1; (3)-14; (4)-; (5)-2.92.(1)-3 (2)-1; (3)- ; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵=2 ∴x2=4,x=±2].2.(1)-31; (2)-8 (3)224【生活实际运用】B有理数的四则混合运算练习第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-)-(-2)=______.2.计算:(1)-4÷4×=_____;(2)-2÷1×(-4)=______.3.当=1,则a____0;若=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.< B.ab<.<1 D.>15.下列各数互为倒数的是()A.-0.13和- B.-5和- C.-和-11 D.-4和6.(体验探究题)完成下列计算过程:(-)÷1-(-1+)解:原式=(-)÷-(-1-+)=(-)×()+1+-=____+1+=_______.◆Exersising7.(1)若-1<a<0,则a______;(2)当a>1,则a_______;(3)若0<a≤1,则a______.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则+-3cd值是()A.1 B..11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+)+(-4)+(-6)=-10 (2)(-)+1+(-)=0(3)0.25+(-0.75)+(-3)+=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个B.4个C.2个D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.>>1 B.>1>- C.1>-> D.1>>11.计算:(1)-20÷5×+5×(-3)÷15 (2)-3[-5+(1-0.2÷)÷(-2)](3)[÷(-1)]×(-)÷(-3)-0.25÷◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控 1.(1)-80 (2)5 2.(1)- (2)8 3.>,< 4.D 5.C 6.,-,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B 11.解:(1)原式=-20××+5×(-3)×=-1-1=-2 (2)原式=×(-)×(-)×(-)-÷ =×(-)-1=--1=-1 (3)原式=-3[-5+(1-×)÷(-2)] =-3[-5+×(-)] =-3[-5-] =15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( ) A.0B.-54C.-72D.-18 3. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

专题2-11有理数的混合运算-(解析版)

专题2-11有理数的混合运算-(解析版)

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2 B.3 C.7 D.【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【解析】原式=4+2+1=7,故选:C.2.(2019秋•德城区校级期中)|﹣3|﹣(﹣1)2的值是()A.﹣2 B.4 C.2 D.﹣4【分析】根据有理数的乘方、有理数的减法和绝对值可以解答本题.【解析】|﹣3|﹣(﹣1)2=3﹣1=2,故选:C.3.(2020•金华模拟)下列计算正确的是()A.23×22=26B.C.D.﹣32=﹣9【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解析】∵23×22=25,故选项A错误;∵()3,故选项B错误;∵,故选项C错误;∵﹣32=﹣9,故选项D正确;故选:D.4.(2019秋•海淀区校级期中)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【分析】利用相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【解析】根据题意得:a+b=0,xy=1,1,则原式=0﹣1+1=0,故选:A.5.(2019秋•福田区期中)下列运算错误的是()A.B.(﹣1)2+(﹣1)3=0C.﹣(﹣3)2=﹣9 D.﹣8﹣2×6=﹣20【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解析】22,故选项A错误;(﹣1)2+(﹣1)3=1+(﹣1)=0,故选项B正确;﹣(﹣3)2=﹣9,故选项C正确;﹣8﹣2×6=﹣8﹣12=﹣20,故选项D正确;故选:A.6.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7 B.﹣1 C.1 D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.8.(2020•浙江自主招生)定义运算a⨂b,则(﹣2)⨂4=()A.﹣1 B.﹣3 C.5 D.3【分析】判断﹣2﹣4=﹣6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:﹣2﹣4=﹣6<1,则有(﹣2)⨂4=4﹣1=3,故选:D.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④;⑤;⑥;计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意;②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意;④原式=()×(),符合题意;⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2,不符合题意,故选:C.10.(2019秋•德惠市期中)计算()÷()的结果是()A.B.C.D.﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减..【解析】()÷()=()÷()=(),故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•九龙坡区校级期中)对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解析】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.12.(2020春•海淀区校级月考)计算:﹣2.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可.【解析】原式()(),故答案为.13.(2019秋•资阳区校级期中)若定义一种新的运算,规定ad﹣bc,则﹣11.【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=﹣3﹣8=﹣11,故答案为:﹣1114.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是[(﹣2)+(﹣3)﹣1]×(﹣4)=24.【分析】根据“24点”游戏规则列出算式即可.【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24,故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•思明区校级月考)计算:10242﹣128×(﹣43)×(﹣3)=10240000.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1048576﹣24576=10240000,故答案为:1024000016.(2019秋•虹口区校级月考)若规定一种新运算:a*b=(a+b)÷3,则2*3=.【分析】根据a*b=(a+b)÷3,可以求得所求式子的值.【解析】∵a*b=(a+b)÷3,∴2*3=(2+3)÷3=5,故答案为:.17.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为1.【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值.【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘)=1,故答案为:118.(2019秋•思明区校级期中)计算:(1)(1)×(﹣54)=59;(2)9992﹣999×715+284=284000.【分析】(1)根据乘法分配律可以解答本题;(2)根据提公因式法可以解答本题.【解析】(1)(1)×(﹣54)=9+(﹣10)+60=59,故答案为:59;(2)9992﹣999×715+284=999×(999﹣715)+284=999×284+284=284×(999+1)=284×1000=284000,故答案为:284000.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•钟楼区期中)计算:(1)10+(﹣16)﹣(﹣24);(2)5÷();(3)()×(﹣24);(4)﹣12+[20﹣(﹣2)3]+4.【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)10+(﹣16)﹣(﹣24)=10﹣16+24=34﹣16=18;(2)5÷()=5×();(3)()×(﹣24)(﹣24)(﹣24)(﹣24)=﹣9﹣14+20=﹣3;(4)﹣12+[20﹣(﹣2)3]+4=﹣1+(20+8)+4=﹣1+28+4=31.20.(2019秋•崇川区校级期中)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)【分析】(1)首先写成省略括号的形式,再计算有理数的加减即可;(2)先算乘方,再算乘除,后算加减即可.【解析】(1)原式=﹣20+3+5﹣7,=﹣20﹣7+3+5,=﹣27+8,=﹣19;(2)原式=﹣16()+2,=﹣162,2,.21.(2019秋•海陵区校级期中)计算:(1)﹣3+34+0.25(2)﹣4÷(﹣14)(3)()×60(4)﹣14÷(﹣5)2×()【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)﹣3+34+0.25=(﹣3﹣4)+(3)=﹣7+4=﹣3;(2)﹣4÷(﹣14)=﹣4×();(3)()×60=﹣45﹣50+55=﹣40;(4)﹣14÷(﹣5)2×()=﹣1÷25×()=﹣1().22.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:35﹣34=2×34;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n表示上述规律,通过提取公因式法进行证明便可;(3)把原式化成,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020.23.(2020春•通州区期末)对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.【分析】(1)(x]表示小于x的最大整数,依此即可求解;(2)根据(x]的定义求得a+b=2,代入解析式求得即可;(3)分两种情况列出关于x的不等式,解不等式即可.【解析】(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:与标准质量的差值﹣3 1 0 2.5 ﹣2 ﹣1.5(单位:千克)袋数 1 2 3 8 4 2(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数
§2.11 有理数的混合运算
班别:________姓名:________学号:____日期:____年__月__日
一、学习目标
准确的按运算顺序进行混合运算,并能正确选取简便算法进行计算。

二、知识回顾
1、有理数的混合运算中:____________叫做一级运算;____________叫做二级运算;_____________叫做三级运算。

2、有理数的混合运算顺序为:
(1)先算_______,再算________,最后算_________;
(2)同级运算,按照从____至_____的顺序进行。

(3)如果有括号,就先算_____里的,再算_____里的,最后算_____里的。

3、计算:
(1)15)3(4)3(23+-⨯--⨯ (2)[]4)103(412÷-⨯-
(3))221(2-÷ (4)22
12-÷
三、学习新知识
有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键。

在进行有理数的混合运算时,一般按运算顺序进行。

但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用_________为求________ 。

例1. 计算:15125032-⎪⎭
⎫ ⎝⎛-⨯÷+
解:原式=151___503-⎪⎭
⎫ ⎝⎛-⨯÷+先算乘方 =151____503-⎪⎭
⎫ ⎝⎛-⨯⨯+化除为乘 =
=
例2 计算:()[]
232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝
⎛⨯-- 解:原式= 先算 = 再算 = 再算 =
例3 计算:⎪⎭
⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--38871278747 解法一:按运算顺序直接计算 ⎪⎭
⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--38871278747 = 先算小括号里的
= 再算除法(化除为乘) =
=
解法二;运用运算律 ⎪⎭
⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--38871278747 =
四、练习
【A 组】1.计算
(1) -2+2×(-4)2 (2) -22+(-7)÷(4
7-)
(3) 2239852411⎪⎭
⎫ ⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛- (4) ⎪⎭⎫ ⎝⎛-⨯--6592)3(322
2、下列计算有无错误?若有错,应该怎样改正?
(1) 74-22÷70=70÷70=1 ( ) 改正
(2) 2×32=2)32(⨯=62=36( )改正
(3) 6÷(2×3)=6÷2×3=3×3=9( )改正 (4)18
172194121942141)2(322=+=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-⨯-- ( ) 改正:
【B 组】3、计算: (1)551)5(512
⨯⎪⎭⎫ ⎝⎛-÷-⨯ (2) 43)1()1(38---⨯--
【C 组】4、计算:
(1)⎪⎭⎫
⎝⎛-÷+⨯⎪⎭⎫ ⎝⎛--⨯52232212532125311 (2)2332942⎪⎭⎫ ⎝⎛-⨯÷- (运用乘法分配率进行计算)。

相关文档
最新文档