近代物理简答题整理

合集下载

高考物理近代史知识点总结

高考物理近代史知识点总结

高考物理近代史知识点总结近代物理史是研究物理学在近代发展中的历史和演变过程的一门学科。

它包括了自牛顿力学的诞生开始,到相对论和量子力学的奠基,直至现代物理学的形成。

了解近代物理史对于高考物理考试是非常重要的,因为它能够帮助我们理解现代物理学的基本原理和发展脉络。

本文将为大家总结一些高考物理考试中常见的近代史知识点。

1. 牛顿力学的诞生牛顿力学是近代最早也是最重要的物理学分支之一。

1642年,牛顿出生在英国的一个农村家庭中。

他在1667年发表了《自然哲学的数学原理》,奠定了现代力学的基础。

牛顿的三大定律成为了力学研究的基础:惯性定律、加速度定律和作用力与反作用力定律。

2. 法拉第电磁感应定律迈克尔·法拉第是19世纪初英国的一位物理学家。

他在1831年提出了电磁感应定律,即当导体在磁场中运动或磁场变化时,会产生感应电流。

法拉第电磁感应定律是电磁学的基本定律之一,也是电磁感应现象的核心。

它的发现对于电磁能量的转换和利用具有重要的意义。

3. 波尔的量子理论尼尔斯·波尔是20世纪初丹麦的一位物理学家。

他在1913年提出了量子理论,揭示了原子结构和原子光谱的奥秘。

波尔的量子理论对于解释电子能级、光谱线和电子跃迁具有重要的作用,为量子力学的发展奠定了基础。

4. 狭义相对论爱因斯坦的狭义相对论是20世纪物理学的一大突破。

1905年,爱因斯坦发表了相对论的论文,提出了相对论的基本原理。

狭义相对论包括了两个重要的原理:相对性原理和光速不变原理。

它解决了牛顿力学无法解释的时空结构、光速不变等问题,对于粒子高速运动和重力场的研究具有重要意义。

5. 普朗克的量子假设马克斯·普朗克是20世纪早期的一位德国物理学家。

他在1900年提出了普朗克的量子假设,揭示了黑体辐射的规律。

根据普朗克的假设,辐射的能量是离散的,而不是连续的。

这一假设对于量子力学和能量的量子化有着重要的影响。

以上只是近代物理史中的一部分知识点,每一个知识点都有其独特的价值和意义。

近代物理复习资料

近代物理复习资料

1.原子只能处在某些能量分立的稳定状态,每一状态对应一定的能量,其数值是彼此分隔的,原子在这些状态时,不发射和吸收能量.2.137Cs 射出的γ射线的能量=0.661MeV ;60Co …=1.25MeV ;1居里=103.710⨯Bq3.γ射线经过闪烁晶体物质时当能量在30MeV 以下时在所有相互作用方式中,最主要的有三种:光电效应、康普顿效应、电子对效应;其中当中能γ射线和低Z 吸收物质相互作用时以光电效应为主.4.在微波频率测量时,旋转频率计的测微头.当频率计与被测频率谐振时,将出现吸收峰,反映在检波指示器上是一跌落点,选频放大器使用时,在被测电压接入后,需要仔细调整检波器细调旋钮,使其仪器指示最大.5.实现核磁共振的内因是原子具有自旋角动量和磁矩.自然界大约有105种同位素的核,其自旋量子数I 为整数或半整数,具有不为零的角动量和磁矩,可以观测到核磁共振信号.6.布拉格反射实验中,选择用晶体这个天然的光栅来研究X 射线的衍射,是因为晶格正好与X 射线的波长同数量级.其中布拉格公式为2sin ,1,2...d n n θλ==7.测量微波频率时,调节波长表使波长表使波长计的固有频率与被测微波频率相等时,在检波指示器上表现为一个跌落点.一般情况下,波导波长g λ比自由空间波长λ要大8.在核物理中,放射源的放射性强度单位可用居里()或贝克勒()来表示,其关系见(2)..9.γ射线是不带电的高能光子流,因此它与物质相互作用的机制与,αβ等带电粒子不同,可以发生光电效应和康普顿效应,基本上与X射线相同,但由于其能量比X射线高得多,还能产生电子对效应.1.闪烁谱仪为什么要先调零才能关机?答:因为闪烁谱仪的高压电源是接在光电倍增管上的,如果未调零,开机瞬间的高压电源打在光电倍增管上会击穿,造成仪器损坏。

2.发现找不到峰值时可能是电压偏大或偏小,调节电压为何要先使扫描终止并刷新,待调好后再重新开始?:因为停止时扫描位置存在原来的计数点,前一次停止并没有达到稳定状态,调压后时间是接续上一次的开始,则放射时间不足,达到设定时间后,也许还没有达到稳定状态。

高考物理一轮复习专题近代物理考点归纳

高考物理一轮复习专题近代物理考点归纳

专题12 近代物理目录第一节光电效应、波粒二象性 (1)【基本概念规律】 (1)【重要考点归纳】 (2)考点一光电效应规律的理解 (2)考点二光电效应方程及图象问题 (2)【思想方法与技巧】 (3)用统计规律理解光的波粒二象性 (3)第二节原子与原子核 (3)【基本概念、规律】 (3)【重要考点归纳】 (6)考点一氢原子能级及能级跃迁 (6)考点二氢原子的能量及其变化 (6)考点三原子核的衰变半衰期 (6)考点四核反应类型与核反应方程 (7)考点五有关核能的计算 (7)【思想方法与技巧】 (8)守恒思想在核反应中的应用 (8)第一节光电效应、波粒二象性【基本概念规律】一、光电效应1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).2.产生条件:入射光的频率大于极限频率.3.光电效应规律(1)存在着饱和电流对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.(2)存在着遏止电压和截止频率光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.(3)光电效应具有瞬时性当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9s.二、光电效应方程1.基本物理量(1)光子的能量ε=hν,其中h =6.626×10-34J ·s(称为普朗克常量).(2)逸出功:使电子脱离某种金属所做功的最小值. (3)最大初动能发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值. 2.光电效应方程:E k =hν-W 0. 三、光的波粒二象性与物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=hp,p 为运动物体的动量,h 为普朗克常量.【重要考点归纳】考点一 光电效应规律的理解 1.放不放光电子,看入射光的最低频率. 2.单位时间内放多少光电子,看光的强度. 3.光电子的最大初动能大小,看入射光的频率. 4.要放光电子,瞬时放.考点二 光电效应方程及图象问题 1.爱因斯坦光电效应方程E k =hν-W 0hν:光电子的能量.W 0:逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功. E k :光电子的最大初动能.2.图象分析【思想方法与技巧】用统计规律理解光的波粒二象性微观粒子中的粒子性与宏观概念中的粒子性不同,通俗地讲,宏观粒子运动有确定的轨道,能预测,遵守经典物理学理论,而微观粒子运动轨道具有随机性,不能预测,也不遵守经典物理学理论;微观粒子的波动性与机械波也不相同,微观粒子波动性是指粒子到达不同位置的机会不同,遵守统计规律,所以这种波叫概率波.第二节原子与原子核【基本概念、规律】一、原子的核式结构1.α粒子散射实验的结果绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来,如图所示.2.原子的核式结构在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.二、玻尔理论1.定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.2.跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E m-E n.(h是普朗克常量,h=6.626×10-34J·s)3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.4.氢原子的能级、能级公式(1)氢原子的能级图(如图所示)(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m.三、天然放射现象、原子核的组成1.天然放射现象(1)天然放射现象元素自发地放出射线的现象,首先由贝克勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)放射性和放射性元素:物质发射某种看不见的射线的性质叫放射性.具有放射性的元素叫放射性元素.(3)三种射线:放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线.2.原子核(1)原子核的组成①原子核由质子和中子组成,质子和中子统称为核子.②原子核的核电荷数=质子数,原子核的质量数=质子数+中子数.(2)同位素:具有相同质子数、不同中子数的原子,在元素周期表中的位置相同,同位素具有相同的化学性质.四、原子核的衰变和半衰期 1.原子核的衰变(1)原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变. (2)分类α衰变:A Z X →A -4Z -2Y +42He β衰变:AZ X → AZ +1Y + 0-1e 2.半衰期(1)定义:放射性元素的原子核有半数发生衰变所需的时间.(2)衰变规律:N =N 0⎝ ⎛⎭⎪⎫12t /τ、m =m 0⎝ ⎛⎭⎪⎫12t /τ(3)影响因素:由原子核内部因素决定,跟原子所处的物理化学状态无关. 五、核力、结合能、质量亏损、核反应 1.核力(1)定义:原子核内部,核子间所特有的相互作用力. (2)特点:①核力是强相互作用的一种表现; ②核力是短程力,作用范围在1.5×10-15m 之内;③每个核子只跟它的相邻核子间才有核力作用. 2.核能 (1)结合能核子结合为原子核时放出的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能. (2)比结合能①定义:原子核的结合能与核子数之比,称做比结合能,也叫平均结合能.②特点:不同原子核的比结合能不同,原子核的比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定.3.质能方程、质量亏损爱因斯坦质能方程E =mc 2,原子核的质量必然比组成它的核子的质量和要小Δm ,这就是质量亏损.由质量亏损可求出释放的核能ΔE =Δmc 2.4.获得核能的途径:(1)重核裂变;(2)轻核聚变. 5.核反应(1)遵守的规律:电荷数守恒、质量数守恒.(2)反应类型:衰变、人工转变、重核裂变、轻核聚变.【重要考点归纳】考点一 氢原子能级及能级跃迁 1.原子跃迁的条件(1)原子跃迁条件hν=E m -E n 只适用于光子和原子作用而使原子在各定态之间跃迁的情况. (2)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.2.跃迁中两个易混问题(1)一群原子和一个原子:氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了.(2)直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时.有时可能是直接跃迁,有时可能是间接跃迁.两种情况下辐射(或吸收)光子的能量是不同的.直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和.3.(1)能级之间跃迁时放出的光子频率是不连续的.(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=E m -E n 求得.若求波长可由公式c =λν求得. (3)一个氢原子跃迁发出可能的光谱线条数最多为(n -1). (4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法: ①用数学中的组合知识求解:N =C 2n =n n -12.②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加. 考点二 氢原子的能量及其变化1.原子能量:E n =E k n +E p n =E 1n2,随n (r )增大而增大,其中E 1=-13.6 eV.2.电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2r 2n =m v 2r n ,所以E k n =12k e2r n,随n (r )增大而减小.3.电势能:通过库仑力做功判断电势能的增减.当n 减小,即轨道半径减小时,库仑力做正功,电势能减小;反之,n 增大,即轨道半径增大时,电势能增加. 考点三 原子核的衰变 半衰期1.衰变规律及实质 (1)两种衰变的比较衰变类型α衰变β衰变(2)γα衰变或β衰变的过程中,产生的新核由于具有过多的能量(核处于激发态)而辐射出光子.2.确定衰变次数的方法因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数.3.半衰期(1)公式:N 余=N 原⎝ ⎛⎭⎪⎫12t /τ,m 余=m 原⎝ ⎛⎭⎪⎫12t /τ(2)影响因素:放射性元素衰变的快慢是由原子核内部自身因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关. 考点四 核反应类型与核反应方程1.核反应的四种类型:衰变、人工转变、裂变和聚变.2.核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头连接并表示反应方向,不能用等号连接.3.核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程. 4.核反应遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化. 5.核反应遵循电荷数守恒. 考点五 有关核能的计算 1.应用质能方程解题的流程图书写核反应方程→计算质量亏损Δm →利用ΔE =Δmc2计算释放的核能(1)根据ΔE =Δmc 2计算,计算时Δm 的单位是“kg ”,c 的单位是“m/s ”,ΔE 的单位是“J ”. (2)根据ΔE =Δm ×931.5 MeV 计算.因1原子质量单位(u)相当于931.5 MeV 的能量,所以计算时Δm 的单位是“u ”,ΔE 的单位是“MeV ”.2.利用质能方程计算核能时,不能用质量数代替质量进行计算. 【思想方法与技巧】守恒思想在核反应中的应用(1)在动量守恒方程中,各质量都可用质量数表示.(2)只有利用ΔE=Δmc2时,才考虑质量亏损,在动量和能量守恒方程中,不考虑质量亏损.(3)注意比例运算求解.。

(整理)大学物理近代物理题库及答案.

(整理)大学物理近代物理题库及答案.

一、选择题:(每题3分)1、 有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是(A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的.(C) 只有(2)、(3)是正确的.(D) 三种说法都是正确的. [ ]2、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C) 2)/(1c t c v -⋅∆2)/(1c t c v -⋅⋅∆ [ ]3、一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v2的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速)(A) 21v v +L . (B) 2v L . (C) 12v v -L . (D) 211)/(1c L v v - . [ ]4、(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:(A) (1)同时,(2)不同时.(B) (1)不同时,(2)同时.(C) (1)同时,(2)同时.(D) (1)不同时,(2)不同时. [ ]5、有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角(A) 大于45°. (B) 小于45°.(C) 等于45°.(D) 当K ′系沿Ox 正方向运动时大于45°,而当K ′系沿Ox 负方向运动时小于45°. [ ]6、边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y轴平行.今有惯性系K '以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为(A) 0.6a 2. (B) 0.8 a 2.(C) a 2. (D) a 2/0.6 . [ ]7、一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v - (C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ ]8、两个惯性系S 和S ′,沿x (x ′)轴方向作匀速相对运动. 设在S ′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0 ,而用固定在S 系的钟测出这两个事件的时间间隔为τ .又在S ′系x ′轴上放置一静止于是该系.长度为l 0的细杆,从S 系测得此杆的长度为l, 则(A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0. [ ]9、在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的.(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.(A) (1),(3),(4). (B) (1),(2),(4).(C) (1),(2),(3). (D) (2),(3),(4). [ ]10、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c .(C) (2/5) c . (D) (1/5) c . [ ]11、一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c 表示真空中光速)(A) v = (1/2) c . (B) v = (3/5) c .(C) v = (4/5) c . (D) v = (9/10) c . [ ]12、某核电站年发电量为 100亿度,它等于36×1015 J 的能量,如果这是由核材料的全部静止能转化产生的,则需要消耗的核材料的质量为(A) 0.4 kg . (B) 0.8 kg .(C) (1/12)×107 kg . (D) 12×107 kg . [ ]13、一个电子运动速度v = 0.99c ,它的动能是:(电子的静止能量为0.51 MeV)(A) 4.0MeV . (B) 3.5 MeV .(C) 3.1 MeV . (D) 2.5 MeV . [ ]14、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [ ]15、α 粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的(A) 2倍. (B) 3倍. (C) 4倍. (D) 5倍. [ ]16、把一个静止质量为m 0的粒子,由静止加速到=v 0.6c (c 为真空中光速)需作的功等于(A) 0.18m 0c 2. (B) 0.25 m 0c 2.(C) 0.36m 0c 2. (D) 1.25 m 0c 2. [ ]17、已知电子的静能为0.51 MeV ,若电子的动能为0.25 MeV ,则它所增加的质量∆m 与静止质量m 0的比值近似为(A) 0.1 . (B) 0.2 . (C) 0.5 . (D) 0.9 . [ ]18、设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小 为(以c 表示真空中的光速)(A) 1-K c . (B) 21K Kc -. (C) 12-K K c . (D) )2(1++K K K c . [ ]19、根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c(C) 0.75 c (D) 0.85 c [ ](c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV)20、令电子的速率为v ,则电子的动能E K 对于比值v / c 的图线可用下列图中哪一个图表示?(c 表示真空中光速)[ ]21、已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足:(A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ ]22、已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å(A) 5350 Å. (B) 5000 Å.(C) 4350 Å. (D) 3550 Å. [ ]23、用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K .. (B) 2h ν - E K .(C) h ν - E K . (D) h ν + E K . [ ]24、设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系:(A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ]/c (A)/c (B)/c(C)/c25、以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示.满足题意的图是 [ ]26、在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍. [ ]27、当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V . (B) 减小0.34 V .(C) 增大0.165 V . (D) 增大1.035 V . [ ](普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)28、保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E 0和飞到阳极的电子的最大动能E K 的变化分别是(A) E 0增大,E K 增大. (B) E 0不变,E K 变小.(C) E 0增大,E K 不变. (D) E 0不变,E K 不变. [ ]29、在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2. (B) 3. (C) 4. (D) 5. [ ]30、以下一些材料的逸出功为铍 3.9 eV 钯 5.0eV铯 1.9 eV 钨 4.5 eV今要制造能在可见光(频率范围为3.9×1014 Hz —7.5×1014 Hz)下工作的光电管,在这些材料中应选(A) 钨. (B) 钯. (C) 铯. (D) 铍. [ ]31、某金属产生光电效应的红限波长为λ0,今以波长为λ (λ <λ0)的单色光照射该金属,金属释放出的电子(质量为m e )的动量大小为(A) λ/h . (B) 0/λh(C)λλλλ00)(2+hc m e (D) 02λhc m e(E) λλλλ00)(2-hc m e [ ]32、光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]33、用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1 >E K 2,那么(A) ν1一定大于ν2. (B) ν1一定小于ν2.(C) ν1一定等于ν2. (D) ν1可能大于也可能小于ν2. [ ]34、若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) )2/(eRB h . (B) )/(eRB h .(C) )2/(1eRBh . (D) )/(1eRBh . [ ]35、如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的(A) 动量相同. (B) 能量相同.(C) 速度相同. (D) 动能相同. [ ]36、不确定关系式 ≥⋅∆∆x p x 表示在x 方向上(A) 粒子位置不能准确确定.(B) 粒子动量不能准确确定.(C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]37、已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ, ( - a ≤x ≤a ) 那么粒子在x = 5a /6处出现的概率密度为(A) 1/(2a ). (B) 1/a .(C) a 2/1. (D) a /1 [ ]38、关于不确定关系 ≥∆∆x p x ()2/(π=h ),有以下几种理解:(1) 粒子的动量不可能确定.(2) 粒子的坐标不可能确定.(3) 粒子的动量和坐标不可能同时准确地确定.(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是:(A) (1),(2). (B) (2),(4).(C) (3),(4). (D) (4),(1). [ ]39、将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将(A) 增大D 2倍. (B) 增大2D 倍.(C) 增大D 倍. . (D) 不变. [ ]40、直接证实了电子自旋存在的最早的实验之一是(A) 康普顿实验. (B) 卢瑟福实验.(C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ ]二、选择题:(每题4分)41、狭义相对论的两条基本原理中,相对性原理说的是________________________________________________________________________________; 光速不变原理说的是_______________________________________________ ___________________________________________.42、已知惯性系S '相对于惯性系S 系以 0.5 c 的匀速度沿x 轴的负方向运动,若从S '系的坐标原点O '沿x 轴正方向发出一光波,则S 系中测得此光波在真 空中的波速为____________________________________.43、以速度v 相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为______.44、有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为____________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为____________.45、一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为0.5 m.则此米尺以速度v=__________________________m·s-1接近观察者.46、狭义相对论确认,时间和空间的测量值都是______________,它们与观察者的______________密切相关.47、静止时边长为50 cm的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108m·s-1运动时,在地面上测得它的体积是____________.48、牛郎星距离地球约16光年,宇宙飞船若以________________的匀速度飞行,将用4年的时间(宇宙飞船上的钟指示的时间)抵达牛郎星.49、π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8 s,如果它相对于实验室以0.8 c (c为真空中光速)的速率运动,那么实验室坐标系中测得的π+介子的寿命是______________________s.51、μ子是一种基本粒子,在相对于μ子静止的坐标系中测得其寿命为τ0=2×10-6s.如果μ子相对于地球的速度为=v0.988c(c为真空中光速),则在地球坐标系中测出的μ子的寿命τ=____________________.52、设电子静止质量为m e,将一个电子从静止加速到速率为0.6 c (c为真空中光速),需作功________________________.53、(1) 在速度=v____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v____________情况下粒子的动能等于它的静止能量.54、狭义相对论中,一质点的质量m与速度v的关系式为______________;其动能的表达式为______________.55、质子在加速器中被加速,当其动能为静止能量的3倍时,其质量为静止质量的________倍.56、α粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能量的________倍.57、观察者甲以0.8c的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg的物体,则(1) 甲测得此物体的总能量为____________;(2) 乙测得此物体的总能量为____________.58、某加速器将电子加速到能量E = 2×106 eV时,该电子的动能E K =_____________________eV.(电子的静止质量m e = 9.11×10-31 kg, 1 eV =1.60×10-19 J)59、当粒子的动能等于它的静止能量时,它的运动速度为______________.60、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31 kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________.61、匀质细棒静止时的质量为m0,长度为l0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l,那么,该棒的运动速度v =__________________,该棒所具有的动能E K =______________.62、某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V.当入射光的波长为__________________Å时,其遏止电压变为1.43 V.( e =1.60×10-19 C,h =6.63×10-34 J·s )63、光子波长为λ,则其能量=____________;动量的大小=_____________;质量=_________________ .64、已知钾的逸出功为2.0 eV,如果用波长为3.60×10-7 m的光照射在钾上,则光电效应的遏止电压的绝对值|U a| =___________________.从钾表面发射出电子的最大速度v max =_______________________.(h =6.63×10-34 J·s,1eV =1.60×10-19 J,m e=9.11×10-31 kg)65、以波长为λ= 0.207 μm的紫外光照射金属钯表面产生光电效应,已知钯的红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a| =_______________________V.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)66、在光电效应实验中,测得某金属的遏止电压|U a |与入射光频率ν的关系曲线如图所示,由此可知该金属的红限频率ν0=___________Hz ;逸出功A =____________eV . 67、已知某金属的逸出功为A ,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 =_____________________________,ν1 > ν0,且遏止电势差|U a | =______________________________.68、当波长为 300 nm (1 nm = 10-9 m)的光照射在某金属表面时,光电子的动能范围为 0~ 4.0×10-19 J .此时遏止电压为|U a | =__________________V ;红限频 率ν0=_______________________ Hz . (普朗克常量h =6.63×10-34 J ·s , 基本电荷e =1.60×10-19 C)69、钨的红限波长是230 nm (1 nm = 10-9 m),用波长为180 nm 的紫外光照射时,从表面逸出的电子的最大动能为___________________eV . (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)70、频率为 100 MHz 的一个光子的能量是_______________________,动量的大小是______________________. (普朗克常量h =6.63×10-34 J ·s)71、分别以频率为ν1和ν2的单色光照射某一光电管.若ν1 >ν2 (均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1____E 2;所产生的饱和光电流I s1____ I s2.(用>或=或<填入)72、当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从 0到 4.0×10-19 J .在作上述光电效应实验时遏止电压为 |U a | =____________V ;此金属的红限频率ν0 =__________________Hz .(普朗克常量h =6.63×10-34 J ·s ;基本电荷e =1.60×10-19 C)73、康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时, 散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.|1014 Hz)-74、在玻尔氢原子理论中势能为负值,而且数值比动能大,所以总能量为________值,并且只能取____________值.75、玻尔的氢原子理论中提出的关于__________________________________和____________________________________的假设在现代的量子力学理论中仍然是两个重要的基本概念.76、玻尔的氢原子理论的三个基本假设是:(1)____________________________________,(2)____________________________________,(3)____________________________________.77、玻尔氢原子理论中的定态假设的内容是:_________________________________________________________________________________________________________________________________________________________________________.78、玻尔氢原子理论的基本假设之一是定态跃迁的频率条件,其内容表述如下:______________________________________________________________________________________________________________________.79、玻尔氢原子理论的基本假设之一是电子轨道动量矩的量子化条件,其内容可表述如下:________________________________________________________________________________________________________________________ ________________________________________________________________.80、氢原子的部分能级跃迁示意如图.在这些能级跃迁中, (1) 从n =______的能级跃迁到n =_____的能级时所发射的光子的波长最短;(2) 从n =______的能级跃迁到n =______的能级时所发射的光子的频率最小.81、若中子的德布罗意波长为2 Å,则它的动能为________________.(普朗克常量h =6.63×10-34 J ·s ,中子质量m =1.67×10-27 kg)大学物理题库------近代物理答案一、选择题:01-05 DABAA 06-10 ACDBB 11-15 CACBA 16-20 BCCCD21-25 ADDCB 26-30 DDDDC 31-35 ECDAA 36-40 DACDD二、填空题41、见教本下册p.268; 42、c ; 43. c ; 44. c , c ; 45. 8106.2⨯;46. 相对的,相对运动; 47. 3075.0m ; 48. 181091.2-⨯ms ; 49. 81033.4-⨯; 51. s 51029.1-⨯; 52. 225.0c m e ; 53.c 23, c 23;54. 2)(1c v m m -=, 202c m mc E k -=; 55. 4; 56. 4;n = 1n = 2n = 3n = 457. (1) J 16109⨯, (2) J 7105.1⨯; 58. 61049.1⨯; 59. c 321;60. 13108.5-⨯, 121004.8-⨯; 61. 20)(1l l c -, )(020l l l c m -; 62. 11082.3⨯;63. λhc hv E ==, λh p =, 2c h c m νλ== ; 64. V 45.1, 151014.7-⨯ms ; 65. )(0v c e h -λ; 66. 5×1014,2; 67. h A /,e h /)(01νν-; 68. 5.2,14100.4⨯; 69. 5.1; 70. J 261063.6-⨯,1341021.2--⋅⨯ms kg ; 71. 21E E >, 21s s I I <; 72. 5.2,14100.4⨯; 73. π,0; 74. 负,离散; 75. 定态概念, 频率条件(定态跃迁); 76. —79. 见教本下册p.246--249; 80. (1)4,1;(2)4, 3;81. J mh E k 21221029.32⨯==λ;。

近代物理知识点归纳总结

近代物理知识点归纳总结

近代物理知识点归纳总结近代物理学是20世纪以来发展起来的一门新兴学科,其研究领域广泛,涉及到微观领域的粒子物理,宏观领域的相对论和引力理论,以及光与电磁场的研究。

本文将针对近代物理学中的一些重要知识点进行归纳总结,包括相对论、量子力学、粒子物理、电磁场等方面的内容。

相对论相对论是20世纪初由爱因斯坦提出的一种新的物理学理论,它颠覆了牛顿力学的经典观念。

相对论包括狭义相对论和广义相对论两个部分,狭义相对论主要是关于相对运动的物理规律,广义相对论则是对引力现象的解释。

以下是相对论的一些重要知识点:1. 相对性原理相对性原理是相对论的基础,它包括两个部分:运动相对性原理和物理定律相对性原理。

运动相对性原理指出,一切物理规律在任意惯性系中都具有相同的形式;物理定律相对性原理指出,在惯性系中观测到的物理现象与在任何其他相对此做匀速直线运动的惯性系中观测到的现象相同。

2. 等效原理等效原理是广义相对论的基础,它指出惯性质量和引力质量是等效的,也就是说质量在产生引力和受到引力的情况下是一样的。

3. 时空结构相对论将时空看做一个整体,时间和空间不再是独立的,而是统一在一个四维时空中。

在相对论中,时间也变得相对,即观察者的时间会因为他们的相对运动状态而发生变化。

4. 光速不变原理相对论中的一个重要结论是光速在任何惯性系中都是恒定不变的。

这意味着光速是一个绝对不变的常数,而不受光源相对于观察者的运动状态的影响。

量子力学量子力学是20世纪初由普朗克、爱因斯坦等科学家提出的一种描述微观领域的物理学理论。

量子力学颠覆了经典力学的观念,提出了波粒二象性和不确定性原理等新概念。

以下是量子力学的一些重要知识点:1. 波粒二象性在量子力学中,粒子被描述为具有波动特性的粒子,即波粒二象性。

这意味着微观粒子既可以呈现粒子的特性,也可以呈现波动的特性,具有双重性质。

2. 不确定性原理不确定性原理是量子力学的基础之一,它由海森堡提出。

不确定性原理指出,在测量某个粒子的位置和动量时,我们无法同时确定它们的精确数值,只能确定它们的概率分布。

高中物理《近代物理初步》知识梳理

高中物理《近代物理初步》知识梳理

质子 中子
发现者 实质 电荷 符号
发现者 电荷 符号
英国物理学家卢瑟福
氢原子核
正电,带电荷量为元电荷
p或
1 1
H
卢瑟福的学生查德威克
电中性,不带电
n或1 n 0
备注
核子
两个 等式
质子与中子的统称
(1)电荷数(Z)=质子数=元素的 原子序数=核外电子数 (2)质量数(A)=核子数=质子数+ 中子数
三、原子核的衰变、半衰期 1.原子核的衰变 1)α衰变和β衰变的比较
说明
光的波动性 光的干涉、 衍射和偏振
(1)光是一种概率波,即光子在空间 (1)光的波动性是光子本身的一种
各点出现的可能性大小(概率)可 属性,不是光子之间相互作用产生
用波动规律来描述

(2)大量光子往往表现出波动性 (2)光的波动性不同于宏观概念的

光的粒子性 光电效应、 康普顿效应
(1)当光同物质发生作用时,这种作 (1)“粒子”的含义是“不连续”
用是“一份一份”进行的,表现出 、“一份一份”的
粒子的性质
(2)光子不同于宏观概念的粒子
(2)少量光子往往表现出粒子性
二、物质波 与实物粒子相联系的波叫物质波;实物粒子的能量E和动量p跟它所对应 的波的频率ν和波长λ之间遵循的关系为:E=hν,p= h 。
λ
考点三 原子结构
一、原子的核式结构模型 1.电子的发现:汤姆孙在研究阴极射线时发现了电子。 2.α粒子散射实验 1)实验装置
从低能级向高能级的跃迁过程 称为激发,始末能级差的绝对值 等于所吸收的能量,ΔE=E终-E初
注意:①大量原子从高能级向低能级跃迁时,释放出光子种类数为C2n 。② 从高能级向低能级跃迁时,电子动能增加,电势能减小,总能量减小;从低

近代物理知识归纳总结

近代物理知识归纳总结

近代物理知识归纳总结近代物理知识是现代科学发展的重要基石,涉及到能量、力学、电磁学、光学、量子力学等众多领域。

本文将对近代物理知识进行归纳总结,旨在帮助读者更好地理解与掌握这一领域的关键概念和原理。

一、能量与动力学1. 能量守恒定律:能量在封闭系统中是不会增加或减少的,只会发生转化或转移。

它可分为动能、势能、内能等不同形式。

2. 动力学定律:牛顿三定律是经典力学的核心内容。

它们分别是惯性定律、动量定律和作用-反作用定律,描述了物体运动的基本规律。

3. 牛顿力学:基于牛顿三定律,研究物体在外力作用下的运动轨迹与力学性质。

4. 理想气体定律:理想气体状态方程描述了气体压力、体积和温度之间的关系。

包括理想气体状态方程、查理定律、玻意耳定律等。

二、电磁学1. 静电学:研究静电场与电荷之间的相互作用。

库仑定律描述了电荷之间的电力作用,高尔法定律则用于计算带电粒子所受的电场力。

2. 电场与电势:电场是描述电荷周围空间的物理量,电势则是描述电场中单位正电荷所具有的电位能。

3. 电容与电容器:电容是指电荷量与电压之间的比值,电容器则用于存储电荷。

常见的电容器有平行板电容器、球面电容器等。

4. 电流与电阻:电流是电荷在导体中的流动,电阻则是导体阻碍电流流动的程度。

欧姆定律描述了电流和电阻之间的关系。

5. 磁场与电磁感应:磁场是描述磁力作用的物理量,法拉第定律和楞次定律描述了磁场与电流之间的关系,以及通过磁场的变化所引起的感应电动势。

三、光学1. 光的反射与折射:根据光传播的规律,光在介质之间发生反射和折射。

斯涅尔定律描述了光的折射规律。

2. 光的干涉与衍射:光的干涉是指两束或多束光在相遇时产生的干涉现象,衍射则是指光通过缝隙或物体边缘时产生的偏折现象。

3. 光的电磁波性质:光是一种电磁波,具有波长、频率和能量等特征。

光的波粒二象性是光学领域的基本概念。

四、量子力学1. 波粒二象性:微观粒子(如电子、光子)既具有波动性又具有粒子性。

高中近代物理知识点总结

高中近代物理知识点总结

高中近代物理知识点总结1. 光的粒子说和波动说近代物理学首要的突破是光的粒子性质和波动性质的统一。

光既可以被视为粒子,也可以被视为波动。

爱因斯坦提出的光量子说认为,光具有波粒二象性,既可以表现出粒子的性质,又可以表现出波动的性质。

这一观点完美地解释了光在电磁波谱中的行为。

2. 光电效应光电效应是指当光照射到金属表面时,金属表面会发射电子的现象。

其关键观察结果是,光的频率高于一定阈值,金属表面才会发射电子。

根据经典物理学的波动理论,应该是光的强度决定电子的发射情况,但实验结果却与之相悖。

爱因斯坦的光量子说成功地解释了这一现象,他认为光的能量以量子的形式,由许多个不可分割的光子构成,而光电效应是光子与金属表面上的电子相互作用的结果。

3. 波粒二象性波粒二象性是指微观粒子既可以表现出波动性质,也可以表现出粒子性质。

根据德布罗意的假设,任何物质粒子都可以被视为波动性质的体现,其波长和动量之间存在着德布罗意关系:λ = h/p,其中λ为波长,p为动量,h为普朗克常数。

麦克斯韦方程组和德布罗意关系一起构成了近代物理学的基础。

4. 薛定谔波动方程薛定谔波动方程是描述微观粒子行为的基本方程。

它是由薛定谔定理提出的,用于描述微观粒子的波函数状态和随时间变化规律。

薛定谔方程具有严谨的数学表达,它描述了微观粒子的波函数在空间和时间上的变化规律,可以用来计算粒子的位置和动量等物理量。

5. 不确定性原理不确定性原理是由海森堡提出的,它是量子力学的核心原理之一。

不确定性原理指出,对于微观粒子的某些物理量,例如位置和动量,两者无法同时被准确地测量。

通过测量粒子的位置,动量的值将无法确定,反之亦然。

这是由于测量过程中不可避免地对微观粒子施加扰动,导致测量结果的不确定性。

6. 原子核结构原子核是原子的核心部分,由质子和中子组成。

质子带正电荷,中子不带电荷。

原子核中的质子数量决定了元素的性质,而中子数量可以不同而属于同位素。

原子核的结构是由于核力的作用,核力是一种极强的吸引力,在极短的距离范围内才有效。

近代物理知识点归纳总结

近代物理知识点归纳总结

近代物理知识点归纳总结在近代物理的发展过程中,涌现出了许多重要的物理知识点,这些知识点不仅对物理学的发展产生了深远的影响,也对我们理解自然世界和应用科技有着重要意义。

本文将对近代物理中的一些重要知识点进行归纳总结。

1. 量子力学量子力学是建立在微观粒子行为研究的基础上的物理学理论,它描述了微观世界的奇妙现象。

量子力学的核心概念包括波粒二象性、不确定性原理、量子纠缠等。

通过量子力学的研究,我们能够深入理解原子、分子结构以及微观粒子的行为规律。

2. 相对论相对论由爱因斯坦提出,包括狭义相对论和广义相对论两个部分。

狭义相对论描述了高速运动物体的时空变化规律,揭示了时间的相对性和质量能量等的转换关系。

广义相对论则进一步将引力纳入相对论框架,提出了引力是由物体所造成的时空弯曲所导致的。

3. 原子核物理原子核物理研究原子核及其内部结构的性质。

其中一个重要的知识点是核裂变和核聚变。

核裂变是指重核在受到外界作用下分裂成两个或多个较轻的核的过程,释放出巨大的能量。

核聚变则是两个轻核融合成较重的核的过程,也能够释放出巨大的能量。

核能的利用与核武器的研发都与核裂变和核聚变有关。

4. 粒子物理学粒子物理学研究物质的基本构成单位以及它们之间的相互作用。

其中,粒子物理学中的标准模型被认为是对粒子物理学最为精确的理论总结。

标准模型包括了基本粒子的分类和相互作用方式,如强力、弱力和电磁力。

通过对粒子物理学的研究,人们发现了一些新粒子,如希格斯玻色子。

5. 凝聚态物理学凝聚态物理学研究固体和液体等凝聚态物质的性质和行为。

凝聚态物理学中的一个重要知识点是超导和超流现象。

超导是指在低温下某些物质的电阻突然消失,电流得到零电阻的现象。

超流则是某些低温物质在流体中表现出零黏性的现象。

这些现象具有重要的理论和实际应用价值。

6. 宇宙学宇宙学研究宇宙的起源、演化和性质。

宇宙学知识点的重要内容包括宇宙大爆炸理论、暗物质和暗能量等。

宇宙大爆炸理论认为宇宙起源于一个巨大的爆炸,随后不断膨胀并演化至今。

高中近代物理高考知识点

高中近代物理高考知识点

高中近代物理高考知识点近代物理是高中物理中的一个重要内容,也是高考中必考的知识点。

本文将以高中近代物理为主题,详细介绍一些重要的知识点,不仅涵盖内容丰富,而且形式多样,以便更好地为考生提供帮助。

一、光的折射和反射1. 光的折射定律:当光从一种介质进入另一种介质时,入射角、折射角和两种介质折射率之间满足n1sinθ1 = n2sinθ2的关系。

2. 全反射现象:当光从光密介质向光疏介质射入时,发生全反射现象,条件是入射角大于临界角。

3. 凸透镜成像:凸透镜成像有实像和虚像两种情况,通过凸透镜成像可以明确物体与像的关系以及像的性质。

4. 平面镜成像:平面镜成像有虚像一种情况,经过平面镜的光线发生反射,形成的像与物体具有相同的大小和形状。

二、电磁感应和电动势1. 法拉第电磁感应定律:当导体中的磁通量发生变化时,会在导体中产生感应电动势和感应电流。

2. 感应电磁感应定律:当导体中感应电流产生变化时,会在其周围产生感应磁场。

3. 电动势和电源:电动势是电源对单位正电荷所做的功,电源的正负极之间存在着电压差,电流会由高电压向低电压方向流动。

三、核能与放射性1. 核能释放与吸收:核能释放和吸收可以通过核反应来实现,包括裂变和聚变两种方式。

2. 放射性物质与半衰期:放射性物质会自发地发出放射线,并在一定时间内减少一半,这个时间被定义为半衰期。

3. 辐射的防护与利用:辐射对人体有害,需要采取一些防护措施来保护自己。

同时,利用辐射也可以应用于医学诊断和治疗等方面。

四、量子物理和光的行为1. 光子与光的粒子性:光具有波动和粒子性,光子是光的粒子性质,具有能量、动量和频率等特性。

2. 光的衍射与干涉:光的衍射是光通过小孔或者物体边缘时产生弯曲的现象,光的干涉是光由两个或多个波前叠加时产生明暗相间的现象。

3. 光的光电效应和康普顿散射:光电效应是指光照射到金属表面,使金属发射电子的现象;康普顿散射是指光通过物质时与物质中的自由电子发生碰撞,改变光的频率和方向的现象。

近代物理专题考查试题

近代物理专题考查试题

《近代物理专题》考查试题注意:有选择性地答题,不要原搬照抄,卷面尽量整齐!一、简述凝聚态物理的学科概况、研究范围及国内著名研究机构。

(20分)二、简述光学的学科概况、研究范围及国内著名研究机构。

(20分)三、什么是纳米、纳米体系、纳米材料?(15分)四、纳米材料的分类有哪些?(20分)五、简述电话网的组成。

(15分)六、简述波分复用技术及波分复用系统的主要优点。

(10分)《近代物理专题》考查题答案一、答:(1)学科概况凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、粒子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间联系的一门学科。

凝聚态物理是以固体物理为基础的外向延拓,特别是20世纪80年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。

一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等,从而使凝聚态物理学成为当前物理学中最重要的分支之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。

目前,凝聚态物理学正处在枝繁叶茂的兴旺时期。

(2)研究范围研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。

研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理、液体物理、微结构物理、缺陷与相变物理、纳米材料和准晶等。

(3)国内著名研究机构中国科学院物理研究所、南京大学、中国科技大学。

二、答:(1)学科概况光学是研究光辐射的性质及其与物质相互作用的一门基础学科,具有悠久的历史。

20世纪60年代初激光问世,,这一划时代的成就为光学学科本身开创了新的纪元。

大学物理近代物理知识点归纳总结

大学物理近代物理知识点归纳总结

大学物理近代物理知识点归纳总结近代物理是物理学中的一个重要分支,涵盖了许多原子、分子、核物理以及相对论等领域的知识。

本文将对大学物理中的近代物理知识点进行归纳总结,以帮助读者更好地掌握这一领域的核心概念。

1. 光电效应光电效应是指当光线照射到金属等材料表面时,会引起光电子的发射现象。

其中,光子是光的量子,具有一定能量和动量。

光电效应的重要特点是光电子的发射速度与入射光的频率有关,与光的强度无关。

这一现象为量子论的出现提供了重要的实验依据。

2. 波粒二象性波粒二象性是指微观粒子既具有粒子的粒状特性,同时又具有波动的波状特性。

根据德布罗意波动假设,物质粒子的波动性质与其动量有关。

波粒二象性的实验表现包括电子衍射、中子干涉等现象,揭示了微观世界的奇特性质。

3. 原子结构近代物理学对原子结构的研究深入揭示了原子的组成和性质。

根据玻尔模型,原子可以视为由中心核和绕核运动的电子构成。

电子在不同能级上的运动状态决定了元素的化学性质。

原子结构的研究为量子力学的发展奠定了基础。

4. 相对论相对论是爱因斯坦于20世纪初提出的一种新的物理理论,揭示了物质与能量之间的等价关系。

狭义相对论说明了在高速运动和强引力场中的物理规律,涵盖了时间膨胀、长度收缩、质能关系等知识点。

广义相对论进一步将引力解释为时空弯曲的结果,提出了引力波等概念。

5. 核物理核物理研究原子核的结构、稳定性以及核反应等现象。

其中,核衰变是指核自发发出辐射粒子转变为另一种核的过程。

核裂变是指重核分裂为两个或更多的核片,释放出大量能量。

核聚变是指轻核融合成重核,也伴随着巨大的能量释放。

核物理的研究对于能源的开发和利用具有重要意义。

6. 量子力学量子力学是近代物理学的重要理论基础,揭示了微观世界的奇特现象。

薛定谔方程是量子力学的基本方程,描述了粒子的波函数演化规律。

量子力学的概念包括波函数、测量、不确定性原理等,通过数学形式描述了微观粒子的性质。

7. 统计物理统计物理研究大量粒子的集体行为,并从统计角度解释了宏观系统的性质。

《大学物理》近代物理学练习题及答案解析

《大学物理》近代物理学练习题及答案解析

《大学物理》近代物理学练习题及答案解析一、简答题1、简述狭义相对论的两个基本原理。

答:爱因斯坦相对性原理: 所有的惯性参考系对于运动的描述都是等效的。

光速不变原理: 光速的大小与光源以及观察者的运动无关,即光速的大小与参考系的选择无关。

2、简述近光速时粒子的能量大小以及各部分能量的意义。

答:总能量2E mc = 2,静能量20E c m =,动能为()20k -m E c m =表示的是质点运动时具有的总能量,包括两部分,质点的动能k E 及其静动能20c m 。

3、给出相对论性动量和能量的关系,说明在什么条件下,cp E =才成立?答:相对论性动量和能量的关系为:22202c p E E +=,如果质点的能量0E E >>,在这种情况下则有cp E =。

4、爱因斯坦相对论力学与经典力学最根本的区别是什么? 写出一维情况洛伦兹变换关系式。

答案:经典力学的绝对时空观与相对论力学的运动时空观。

相对论力学时空观认为:当物体运动速度接近光速时,时间和空间测量遵从洛伦兹变化关系:()vt x -='γx ⎪⎭⎫ ⎝⎛-='x c v t 2t γ5、什么情况下会出现长度收缩和时间延缓现象? 这些现象遵从什么规律?答案:运动系S’与静止系S 之间有接近光速的相对运动时,出现长度收缩或时间延缓现象; 这些现象遵从狭义相对论中洛伦兹时空变换规律。

6、写出爱因斯坦的质能关系式,并说明其物理意义。

答:2E mc = 或2E mc ∆=∆物理意义:惯性质量的增加和能量的增加相联系,能量的改变必然导致质量的相应变化,相对论能量和质量遵从守恒定律。

7、微观例子(例如电子)同光子一样具有波粒二象性,它们之间有什么区别,它们的波动性有什么不同?答:光子具有光速,而微观粒子的速度则相对较小,微观粒子具有静止质量,光子不具有。

光子是电磁波,具有干涉衍射偏振性,微观粒子(电子)则是概率波,具有干涉衍射,但未发现偏振性。

近代物理考试复习

近代物理考试复习

近代物理考试复习近代物理考试复习1.什么是量子力学,简述量子力学的发展过程,举例量子力学的实际应用。

答:量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。

量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

量子力学是在旧量子论的基础上发展起来的。

旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。

十九世纪中期,物理学形成了完整的、系统的经典理论体系。

由于经典物理学在发展过程中几乎没有遇到什么重大难题,因而当时有许多物理学家错误地认为经典物理学理论是物理学的“最终理沦”,往后没有什么重大的工作可做了,只是解一下微分方程和对具体问题进行解释。

但是,在经典物理学晴朗的天空中,不断出现了几朵“乌云”—经典理论无法解释的实验事实。

其中最著名的是开耳芬称之为“第一号乌云”的迈克尔逊—莫雷实验与“第二号乌云”的黑体辐射实验,此外还有光电效应实验和原子光谱的实验规律等。

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。

1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。

其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。

1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。

按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。

原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。

这个理论虽然有许多成功之处,对于进一步解释实验现象还有许多困难。

近代物理基础试题及答案

近代物理基础试题及答案

近代物理基础试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理中,描述微观粒子状态的基本物理量是:A. 动量B. 能量C. 波函数D. 角动量答案:C2. 根据海森堡不确定性原理,以下哪个说法是正确的?A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的速度和位置可以同时准确测量D. 粒子的动量和能量可以同时准确测量答案:B3. 在相对论中,光速不变原理指的是:A. 光速在不同介质中保持不变B. 光速在真空中对所有惯性观察者来说都是相同的C. 光速会随着观察者的运动而变化D. 光速在不同惯性参考系中是不同的答案:B4. 以下哪个是狭义相对论的效应?A. 质量增加B. 长度收缩C. 时间膨胀D. 所有以上选项答案:D5. 根据泡利不相容原理,以下哪个说法是错误的?A. 两个电子不能拥有完全相同的四个量子数B. 一个原子中不可能有两个电子处于完全相同的状态C. 泡利不相容原理只适用于电子D. 泡利不相容原理是量子力学的基础之一答案:C二、填空题(每空2分,共20分)6. 量子力学中的波粒二象性表明,微观粒子既具有________,也具有________。

答案:波动性;粒子性7. 根据德布罗意假说,物质波的波长λ与动量p的关系是λ=________。

答案:h/p8. 爱因斯坦质能方程E=mc²表明,质量和能量之间存在着________关系。

答案:等价9. 狭义相对论中的时间膨胀公式是Δt'=________,其中v是相对速度,c是光速。

答案:Δt/√(1-v²/c²)10. 根据量子力学的测不准原理,粒子的位置和动量的不确定性关系是Δx·Δp≥________。

答案:h/4π三、简答题(每题10分,共30分)11. 简述量子力学中的波函数坍缩概念。

答案:波函数坍缩是量子力学中描述测量过程的一个概念。

在测量之前,微观粒子的状态由波函数描述,它是一个概率波,表示粒子出现在不同位置的概率。

近代物理学习题

近代物理学习题

近代物理1、填空题1. 氢原子的电离能是.2. 锂的四个光谱线系分别为()。

3. 粒子散射实验中,偏转角的取值范围()。

4. 氢原子光谱的帕邢线系的波数可以表达为()5. 当时,氢原子的电子轨道半径为,能量为;若时,电子轨道半径为( ),能量为( )。

6. 物理学界建立的包括强相互作用、 和的“标准模型”理论,成为粒子物理学的基本理论.日本科学家南部阳一郎,因发现亚原子物理的;小林诚和益川敏英则因有关 的发现共同分享 2008 年诺贝尔物理学奖.他们的研究成果成为人类对物质最深处探索的一个新里程碑.7. 自然界的四种相互作用包括、、电磁相互作用和弱相互作用.基本粒子按其相互作用可分为、轻子和.8. 里德堡原子是指.其主要特点有:.9. 卢瑟福提出核式结构模型的主要依据是 .10. 电子自旋假设提出的实验基础有、、和.11. 分子的近红外谱是由分子的 产生的.12. 夫兰克—赫兹实验证明了______ .13. 电子显像管在20千伏的加速电压下,产生的X射线的最短波长是nm.14. 氢的巴耳末系的最长波长为 nm;氢的电离能是eV.15. 电子耦素的里德堡常数是 .16. L = 1,S = 1/2,J = 1/2,其光谱项是.17. 和的质量分别为.1.0078252u和1.0086654u,则 中每个核子的平均结合能 .18. 某放射性核素的衰变常数为,则其半衰期为,平均寿命为.19. 原子物理学、原子核物理学和粒子物理学这三个学科反映了物质微观结构的不同层次和微观粒子能量变化的尺度有关.原子物理学的能量变化尺度是 eV,原子核物理学的能量变化尺度是,粒子物理学的能量变化尺度是甚至已接近 TeV.20. 同科电子是指;nl 次壳层上能容纳的电子数最多为个.21. 人类历史上第一次人工实现的核反应是.22. 碱金属原子能级与轨道角量子数有关的原因是;造成碱金属原子精细能级的原因是;造成氢原子光谱精细结构(不考虑蓝姆移动)的原因是.23. 电子的自旋角动量为ħ;在外场方向(z方向)的投影为ħ;自旋磁矩为μB.24. 电子显像管在20千伏的加速电压下,产生的X射线的最短波长是.25. 和的质量分别为.1.0078252 u和1.0086654 u,则中每个核子的平均结合能.26. 某放射性核素的衰变常数为,则其半衰期为,平均寿命为.27. 双原子分子的纯转动谱,其波数间隔为28. 的价电子态为,考虑精细结构,其原子态为()。

物理近代物理知识点

物理近代物理知识点

物理近代物理知识点
1. 嘿,你知道狭义相对论吗?就像我们坐火车时,时间会变慢一样神奇呢!比如当你飞快地坐高铁时,从外面的人看你的时间就好像过得稍慢一些。

2. 量子力学可太有意思啦!这不就像在微观世界里,粒子们都有着自己的小脾气,一会儿在这里,一会儿在那里的。

就像电子在原子里跳来跳去,神出鬼没的。

3. 光电效应!哇哦,这就好像阳光洒在金属上,有时候就能神奇地激发出电子呢!比如太阳能电池板不就是靠着这个原理工作的嘛。

4. 波粒二象性呀,真的很难想象一个东西又像波又像粒子呢!就好比一个人既像画家又像音乐家一样奇特。

5. 量子纠缠简直酷毙了!这边的粒子动一下,那边的粒子马上就能“感应”到,简直比心灵感应还厉害!这就好像两个超有默契的好朋友,一个打喷嚏另一个立马就知道。

6. 普朗克常量可别小瞧哦!它在量子世界里那可是相当关键的。

就好像一把小钥匙,能打开微观世界的神秘大门哟!
7. 原子的能级结构,不就像楼梯一样嘛,电子只能在特定的台阶上待着。

比如霓虹灯里的气体原子就是这样,发出各种漂亮的光。

我觉得近代物理的知识点真的超级神奇,充满了奥秘,让我们对世界有了更深刻的认识!。

高中近代物理知识点总结

高中近代物理知识点总结

高中近代物理知识点总结在高中物理的学习中,近代物理部分是一个重要且具有一定难度的板块。

它为我们打开了微观世界和高速运动领域的大门,让我们对物理的认知更加深入和全面。

接下来,让我们一起梳理一下高中近代物理的主要知识点。

一、光电效应光电效应是指在光的照射下,金属表面发射电子的现象。

1、光电效应的实验规律(1)存在饱和电流:在光照条件不变的情况下,随着所加电压的增大,光电流趋于一个饱和值。

(2)存在遏止电压:使光电流减小到零的反向电压称为遏止电压。

(3)存在截止频率:当入射光的频率低于截止频率时,无论光的强度多大,都不会发生光电效应。

(4)光电效应具有瞬时性:几乎在光照到金属表面的同时就产生光电流。

2、爱因斯坦的光电效应方程$E_{k} = h\nu W_{0}$其中,$E_{k}$是光电子的最大初动能,$h\nu$ 是入射光子的能量,$W_{0}$是金属的逸出功。

二、光的波粒二象性光既具有波动性,又具有粒子性。

1、大量光子表现出的波动性强,个别光子表现出的粒子性强。

2、频率高的光子粒子性强,频率低的光子波动性强。

三、原子结构1、汤姆孙的“枣糕模型”认为原子是一个球体,正电荷均匀分布在整个球内,电子镶嵌在其中。

2、卢瑟福的核式结构模型通过α粒子散射实验,提出了原子的核式结构模型:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转。

3、玻尔的原子模型(1)定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

(2)跃迁假设:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即$h\nu = E_{m} E_{n}$。

四、氢原子的能级1、能级公式:$E_{n} =\frac{E_{1}}{n^{2}}$($n = 1, 2, 3, \cdots$),其中$E_{1} =-136 eV$ 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简答题整理:
整理by阿表哥
答:重力、浮力才、电场力、斯托克斯粘滞力
答:为了减小漏热,样品接线较细,电阻较大。

其次引线和样品之间不可避免地有接触电阻,这两者比超导体的正常态时的电阻大得多。

通过四引线法,把电流引线和测量点位分开,消除样品电流和接触电阻的影响。

答:因为汞原子是单原子分子,能力及比较简单。

汞是一种易操纵的物质,常温下是液体,饱和蒸汽压很低,加热就可以改变他的饱和蒸汽压。

答:1、仪器没有放水平2、电压分布不均匀3、带电油滴带电量过多,造成互相吸引
无~
答(晶体):光波经过狭缝将产生衍射现象,因此,狭缝的大小必须与光波的波长数量级相同或者更小。

对X 射线来说,由于它的的波长在0.2mm 的数量级,而晶体的晶格正好和X 射线的波长同数量级。

衍生图案满足布拉格公式:2sin (1,2)d n n θλ==L
答(密立根):一般带较多的电荷,油滴的体积大、较亮,但是下降速度快,时间不容易测准确。

答:将样品焊接在放大器上,将放大器与主机连接,调整好样品电流、温度计电流等参数后,放入低温杜瓦(里面含有液氮),打开电脑中相应的记录软件,观测T-R 的曲线。

答:温度过高,平均自由程小,电子与汞原子的碰撞次数大大增加,虽然电子与汞原子发生弹性碰撞一次所损失的能量十分微弱,但是在整个加速过程中,弹性碰撞损失的能量还是相当可观的。

温度过低,平均自由程大,电子与汞原子发生碰撞的几率小,在每一个自由程间隔中电子获得的能量较大,当电子积聚的能量比4.9eV 大的多时,汞原子第一激发态的激发明显下降。

答(德布罗意假设):微观粒子也具有波动性的假设:每一运动粒子都有一波与之相联系,微观粒子的能量E ,动量P 与平面波的频率ν、波长λ之间有如光子和广播之间的关系。

E h ν= h
P n h K λ
=
= 德布罗意关系式
答(密立根实验中如何选择油滴):一般可以选择平衡和电压200V 左右驱除多余的油滴,寻找一颗缓慢移动的油滴,仔细调节平衡使其不动,撤去平衡电压,在30秒左右下降2mm 距离的油滴。

油滴的体积不能太大,太大的油滴虽然较亮,但是一般带的电荷较多,下降速度快,时间不容易测准确。

也不能太小,太小测布朗运动明显。

电子衍射实验当加速电压增大,衍射图案有何变化?为什么?
答:电压增大,X 射线能量增大,波长变小,根据布拉格公式2sin (1,2)d n n θλ==L ,加强点的θ变小,得到的衍射圆环亮条纹增多。

相关文档
最新文档