浙江工商大学2018年《高等代数》硕士考试大纲

合集下载

2018年浙江工商大学硕士研究生招生专业目录(学术型)

2018年浙江工商大学硕士研究生招生专业目录(学术型)
0812
14
01可视化技术与图形学
02网络与分布式计算
03模式识别与商务智能
04电子商务技术与应用
05信息安全理论与方法
1.101思想政治理论
2.201英语一
3.301数学一
4.845计算机基础综
合(数据结构50%,操作系统50%)
C语言程序设计
1.计算机组成
2.离散数学
按一级学科招生
马克思主义学院
设计管理
1305J3
3
01文创品牌设计管理与理论研究
按二级学科招生,授艺术学学位
环境科学与工程学院
016
环境科学与工程
0830
17
01废水处理及优化控制技术
02环境功能材料与膜分离技术
03废物处理与资源化技术
04大气复合污染控制理论与技术
05污染环境毒理与生态修复技术
06城镇水工程与管理
1.101思想政治理论
0202
区域经济学
020202
6
01区域发展战略与产业布局
02民营经济与区域发展
1.101思想政治理论
2.201英语一
3.303数学三
4.811西方经济学
经济学综合
1.货币银行学
2.国际贸易
按二级学科招生
财政学
020203
4
01公共管理与区域经济发展
02公共支出与社会保障
03财政理论与政策
公共经济学
3.616综合日语
4.818专业日语
日汉互译
1.基础日语
2.高级日语
按二级学科招生
亚非语言文学
050210
5
01韩国研究
02日朝交流研究

936_高等代数

936_高等代数

高等代数考试科目大纲一、考试性质高等代数是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。

本考试大纲的制定力求反映招生类型的特点,科学、平等、确切、规范地测评考生的相关基础知识控制水平,考生分析问题和解决问题及综合知识运用能力。

应考人员应按照本大纲的内容和要求自行组织学习内容和控制有关知识。

二、评价目标1、要求考生理解该课程的基本概念和基本理论,控制该课程的基本主意。

2、要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力。

3、要求考生具有综合运用所学的知识分析问题和解决问题的能力。

三、考试范围及其基本要求1、行列式考试范围:n阶行列式的定义,n阶行列式的性质与计算。

基本要求:(1)理解罗列及其逆序数,理解n阶行列式的定义,能利用定义计算行列式的值。

(2)熟练控制行列式的性质,能熟练计算低阶行列式的值,能计算较容易的n阶行列式的值。

2、矩阵考试范围:矩阵及其运算,分块矩阵与矩阵的初等变换,矩阵的秩,可逆矩阵。

基本要求:(1)理解矩阵、单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反驳称矩阵、方阵的幂及矩阵的转置等概念,熟练控制矩阵的线性运算、乘法运算、转置及其运算逻辑。

(2)理解分块矩阵、准对角矩阵、初等变换和初等矩阵的概念,熟练控制分块矩阵的运算。

(3)理解初等变换与初等矩阵的概念及基本作用,了解矩阵等价的概念及第 1 页/共 6 页性质,能用矩阵的初等变换化矩阵为标准形。

(4)理解矩阵的子式、矩阵的秩的定义,熟练控制矩阵的秩的性质,能求矩阵的秩。

(5)理解满秩矩阵的概念,控制满秩矩阵的性质。

(6)控制两个方阵与其乘积的秩的关系式,能熟练运用方阵乘积的行列式的公式。

(7)理解可逆矩阵的概念,控制可逆矩阵的性质,控制矩阵可逆的充足须要条件。

(8)理解陪同矩阵的概念,控制陪同矩阵的性质,会用陪同矩阵法求可逆矩阵的逆矩阵,能熟练运用矩阵的初等变换求可逆矩阵的逆矩阵,能解矩阵方程。

考研《高等代数》(学术学位)考试大纲

考研《高等代数》(学术学位)考试大纲
掌握可逆矩阵、奇异矩阵、非退化矩阵等概念。会计算方阵的伴随矩阵,能计算可逆阵的逆矩阵。能利用分块方法进行矩阵运算。能证明有关结论。
(3)初等矩阵与初等变换
掌握矩阵的初等变换和初等矩阵的概念,明确二者关系。能熟练进行矩阵的初等变换,能利用初等变换求解线性方程组,并能进行有关证明。
(4) 相似矩阵与矩阵合同
三、主要参考书目
1、《高等代数》(第三版),北京大学数学系几何与代数教研室前代数小组著,高等教育出版社 2003 或之后版本
2、《高等代数(上下册)》(第二版),丘维声著,高等教育出版社,1999 或之后版本
硕士研究生入学考试自命题科目考试大纲
科目代码、名称:
专业类别:
■学术学位□专业学位
适用专业:
数学
一、基本内容
1、多项式
本部分要求掌握一元多项式及其整除问题、多项式函数、最大公因式、重因式和因式分解定理等有关概念和基本结论,能够进行多项式的有关计算和有关问题的证明。
2、行列式
(1)定义与性质
要求熟悉排列、逆序、对换等概念;理解行列式的定义;掌握行列式的性质。
9、欧几里得空间
掌握欧几里得空间的定义与性质,掌握内积、正交性、标准正交基的概念及有关计算方法,能证明有关性质和结论。
二、考试要求(包括考试时间、总分、考试方式、题型、分数比例等)
考试时间:180分钟
总分:150分
考试方式:笔试,闭卷
题型:填空题,计算与证明题
分数比例:填空题(60分)占40%,计算与证明题(90分)占60%。
(3)线性方程组解的结构
掌握线性方程组解的判定定理,会求有解的线性方程组的通解,熟练掌握线性方程组常用的解
法,并能证明有关结论。
4、矩阵

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲一.课程任务二.教材与参考书目1.教材:1.《高等代数》北京大学数学系几何与代数教研室代数小组编,第三版,高等教育出版社,2003年7月。

2.《高等代数辅导与习题解答》王萼芳,石生明编,高等教育出版社,2007年2月。

3.《高等代数》丘维声编,第二版,高等教育出版社,2002年7月。

4.《LinearAlgebra》彭国华,李德琅编,高等教育出版社,2006年5月。

5.《高等代数解题方法与技巧》李师正主编,高等教育出版社,2004年2月。

三.课程考核方法与命题要求本课程考核以笔试为主,一般采用闭卷形式,主要考核学生对基础理论,基本概念的掌握程度,以及学生逻辑推理能力计算能力以及综合应用能力。

平时成绩占30%,期末成绩占70%。

考试大纲根据教学目标,划分标准为“识记、领会、简单应用、综合应用”四级,其中识记占20%,领会占30%,简单应用占40%,综合应用占10%,考试的试题应按照这四个层次,按比例命题。

本课程考试题型分为客观题和主观题两部分,其中客观题目有选择题(判断题)、填空题,主观题有解答题(计算题)、证明题等。

(第二学期考核第一至第五章部分;第三学期考核第六至第九章部分)四.课程内容与考核要求第一章基本概念1.知识范围:本章主要介绍集合,映射,数学归纳法,整数的一些整除性质,数环和数域的基本知识。

2.考核要求:深入理解集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系,掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件,理解和掌握数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。

能够判别一些数集是否为数环、数域。

3.考核知识点:映射、满射、单射、双射、映射的合成、可逆映射,映射可逆的充要条件,数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质,数环、数域的概念。

第二章多项式1.知识范围:本章主要讨论了多项式的整除性,最大公因,因式分解及在常见数域(有理数域、实数域、复数域)上多项式的约性,多项式根的一些性质,属多项式代数的基本知识,是对中学所学知识的加深和推广。

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲一、《高等代数》的课程性质高等代数是数学与应用数学专业、信息与计算机科学专业和统计学专业一门重要基础课,是中学代数的继续和提高,但是又与中学代数有很大不同,表现在内容的深度和广度上,更主要表现在观点和方法上。

具体表现在内容的高度抽象性、推理的严密性和解题技巧的独特性。

本课程最活跃研究内容:数域上一元多项式理论、行列式、线性方程组、二次型、线性空间、线性变换矩阵、欧氏空间和双线性函数。

方法的特点:在阐述上更强调一般性原则,广泛使用公理化方法,用结构化方法揭示代数系统的内部构造,用矩阵表示作为主线,受整体、统一思想的支配,逐步抽象出高等代数的各个基本概念,揭示代数研究问题的基本方法。

二、《高等代数》课程的教学目的和要求高等代数的教学目的要求是:通过本课程的学习,不仅要求学生掌握一元多项式和线性代数的基础知识、基本理论和基本技能,而且要求学生初步熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限的辩证关系。

培养学生整体思考问题的能力,使之理解代数思想、公理化方法,把握概念的内涵和外延,提高抽象思维、逻辑推理、分析问题和解决问题的能力,为进一步后继课程的学习及继续深造或从事教学工作打下坚实的基础。

三、《高等代数》课程的知识点与考核要求第一章:多项式1、考核知识点:(1)、一元多项式的定义、运算、性质,次数的定义和次数公式;(2)、多项式整除的定义,整除的性质,带余除法;(3)、最大公因子的定义、性质和求法;(4)、多项式互素的概念和性质;(5)、多项式的可约性,因式分解及唯一性定理,标准分解式;(6)、重因式的概念与判别法,求多项式重因式的方法;(7)、多项式函数、多项式根的概念,根的个数定理,多项式相等与根的关系,判别某数是多项式根的综合除法;(8)、复数域和实数域上不可约多项式的特征,因式分解定理;(9)、有理系数多项式是否可约的判别法,根与系数的关系,有理根的求法。

研究生考试大纲研究生考试7.《高等代数》考试大纲

研究生考试大纲研究生考试7.《高等代数》考试大纲

《高等代数》考试大纲一、课程简介高等代数是数学专业的基础课之一。

主要内容包括:多项式理论;线性方程组;行列式;矩阵;二次型;线性变换;欧氏空间等。

本课程不仅注重讲授代数学的基本知识,更强调对于学生的代数学基本思想和基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。

既有较强的抽象性和概括性,又具有广泛的应用性。

对于培养学生的逻辑推理能力、抽象思维能力和运算能力有着重要作用。

二、考查目标主要考察考生对高等代数的基本理论和基本方法的理解和掌握情况及抽象思维能力、逻辑推理能力和运算能力。

三、考试内容及要求第一章多项式一、考核知识点1、熟练掌握一元多项式整除的概念及性质。

2、熟练掌握最大公因式的求法、性质及多项式互素的充要条件。

3、熟悉因式分解定理的内容,了解标准分解式的概念。

4、熟悉重因式的概念,熟练掌握k重因式的判定方法。

5、熟悉有关多项式函数的概念、余数定理。

6、熟练掌握代数基本定理,复系数多项式、实系数多项式因式分解定理的内容。

7、掌握本原多项式的概念。

熟练掌握有理系数多项式与整系数多项式因式分解的关系。

熟练掌握整系数多项式有理根的性质和求法。

熟练掌握Eisenstein 判别法及应用。

二、考核要求识记:数域的概念,一元多项式的概念和运算性质,次数定理, 整除的概念和常用性质,带余除法,最大公因式的概念和性质,不可约多项式的概念和性质,因式分解及唯一性定理,标准分解式的概念,重因式的概念、性质,多项式函数的概念、性质及根,代数基本定理,复系数与实系数多项式的因式分解定理,本原多项式的概念、性质,Eisenstein判别法。

简单应用:1、会求解或证明最大公因式。

2、会求有理系数多项式的有理根。

第二章行列式一、考核知识点1、掌握排列、逆序数、奇排列、偶排列的概念,熟悉对换的概念和性质。

2、深刻理解n级行列式的概念。

会用定义确定行列式各项的符号及简单行列式的值。

3、熟练掌握行列式的性质,并利用行列式性质计算行列式。

2018硕士研究生入学考试大纲

2018硕士研究生入学考试大纲

硕士研究生入学考试大纲考试科目名称:高等代数一、考试要求:.一元多项式理论:①掌握多项式的整除理论;② 会求最大公因式与最小公倍式;③ 掌握复系数、实系数与有理系数多项式的因式分解理论。

.行列式理论:①理解行列式的定义、熟悉行列式的性质;②掌握有特殊结构的n阶行列式的计算;③会用展开定理。

.线性方程组理论:①会用法则进行方程组求解;②掌握向量的线性相关与线性无关的定义及判别;③掌握线性方程组有解的判别法;④掌握线性方程组解的结构。

.矩阵理论:①熟悉矩阵的各种运算与运算律;②会求矩阵的逆;③理解矩阵分块与分块矩阵;④掌握初等矩阵的性质与基本用法;. 二次型理论:①掌握二次型的化简与标准型;②掌握正定、半正定矩阵的定义与基本性质;③熟悉惯性定理。

. 线性空间理论:①掌握线性空间的基底和维数的定义与性质;②掌握线性空间基变换与坐标变换;③掌握子空间以及它们的交与直和的性质;④理解线性空间的同构。

. 线性变换理论:①掌握线性变换的运算及其矩阵表示;②会求线性变换与矩阵的特征值与特征向量;③掌握相似矩阵与某些矩阵的对角化;④掌握线性变换的值域与核及其性质;⑤理解不变子空间;. 欧式空间理论:①掌握内积空间与欧式空间的定义与性质;②掌握正交变换与正交矩阵的性质;③理解对称变换;④掌握实对称矩阵及其对角化理论。

二、考试内容:) 一元多项式理论: 多项式的整除,: 最大公因式与最小公倍式,: 复系数、实系数与有理系数多项式的因式分解理论。

) 行列式: 行列式的定义、性质与计算,: 展开定理。

) 线性方程组理论: 法则,: 线性相关与线性无关,: 线性方程组有解的判别,: 线性方程组解的结构。

) 矩阵: 矩阵的各种运算与运算律,: 矩阵的逆,: 分块矩阵,: 初等矩阵,) 二次型: 二次型的化简与标准型,: 正定二次型与正定矩阵,半定阵。

) 线性空间: 线性空间的基底和维数,: 基变换与坐标变换,: 子空间以及它们的交与直和,: 线性空间的同构。

2018年浙江工商大学硕士研究生招生专业目录(专业学位)

2018年浙江工商大学硕士研究生招生专业目录(专业学位)
2018年浙江工商大学硕士研究生招生专业目录(专业学位)
招生学院
专业名称、代码
培养方式
2017年实际招生人数
初试科目
复试笔试科目
同等学力加试科目
学制
学费(元)
备 注
工商管理学院
001
应用心理硕士
045400
全日制
5
1.101思想政治理论
2.204英语二
3.347心理学专业综合
社会心理学
不接受同等学力报考
2.《计量经济学》李子奈、潘文卿编著,高等教育出版社,第四版
1.初试按照金融硕士专业学位教指委考试大纲命题
2.复试笔试题型为问答题
保险硕士
025500
1.《西方经济学》(微观部分、宏观部分)赵英军主编,机械工业出版社,第三版;
2.《货币银行学》钱水土主编,机械工业出版社,第二版;
3.《保险学》施建祥主编,浙江大学出版社
1.《统计学》李金昌主编,机械工业出版社,2012年第三版;
2.《国民经济核算原理与中国实践》高敏雪主编,中国人民大学出版社,2013年第三版;
3.《国民经济核算原理与中国实践》学习指导书,高敏雪主编,中国人民大学出版社,2013年第三版
数量经济学
020209
1.《西方经济学》(微观部分、宏观部分)赵英军主编,机械工业出版社第三版;
1.101思想政治理论
2.204英语二
3.303数学三
4.801物流学概论
供应链管理
1.运筹学
2.物流技术与物流装备
2.5年
8000/年
其中,9名为2017年招收的非全日制考生
2018年浙江工商大学硕士研究生招生专业复习参考书目
招生学院

高代大纲

高代大纲

硕士研究生入学考试《高等代数》考试大纲此《高等代数》考试大纲适用于中国科学院研究生院数学学科所有专业的硕士研究生入学考试。

高等代数是正规大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。

它的主要内容包括多项式、行列式和线性方程组、矩阵及其标准形、特征值和特征向量、线性变换和矩阵范数。

要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。

-、考试内容(一)多项式1.一元多项式的因式、带余除法公式及互素的概念及判别;2.复根存在定理;3.根与系数关系;4.Sturm定理。

(二)行列式和方程组1.行列式的置换、对换、置换奇偶性;2.行列式的定义,基本性质及计算;3.Vandermonde行列式;4.行列式的代数余子式、Cramer法则。

(三)矩阵1.矩阵基本运算、分块矩阵运算;2.初等矩阵、初等变换和矩阵的秩;3.矩阵的逆、伴随阵、线性方程组的矩阵形式;4.行列式乘积定理;5.矩阵和转置、Hermite共轭;6.对角阵、三角阵、三对角阵;7.矩阵的迹、方阵多项式;8.广义逆矩阵。

(四)线性方程组求解1.线性方程组有解的充分必要条件;2.Gauss消元法;3.三角分解。

(五)线性空间和线性变换;1.向量的线性相关和线性无关;2.线性空间的定义及性质;3.向量组的秩、线性空间的基及坐标;4.线性变换的矩阵表示;5.矩阵相似;6.不变子空间;7.子空间的直接和、维数公式;8.线性空间的同构。

(六)特征值和特征向量1.特征值和特征多项式;2.特征向量、特征子空间、度数和重数;3.非亏损矩阵的完全特征向量系和谱分解;4.特征值估计的圆盘定理;5.三对角矩阵的特征值与Sturm定理。

(七)内积空间和等积变换1.Euclid空间的标准正交基,施密特(Schmidt)正交化;2.Gram行列式;3.正交变换及其矩阵表示;4.初等旋转和镜像变换;5.QR分解;6.酉空间和酉变换;7.正交相似变换和酉相似变换;8.向量到子空间的距离、最小二乘。

2018年考研数学考试大纲(原文)

2018年考研数学考试大纲(原文)

2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性百度文库- 让每个人平等地提升自我考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.11。

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲一、课程目标1.课程性质高等代数是高等院校数学专业(基础数学,应用数学,概率统计和信息专业)的三门最主要基础课之一,对学生的抽象思维能力、逻辑推理能力的培养,以及后继课程的学习起着非常重要的作用。

本课程内容包涵:行列式、矩阵、线性方程组、线性空间、线性变换、二次型、欧氏空间和多项式理论。

行列式是高等代数的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且在求逆矩阵、求矩阵秩及向量组线性相关性、特征值等方面都要用到。

而线性方程组的理论在数学各分支及其它许多领域有着广泛应用。

矩阵及矩阵的运算是高等代数主要内容之一,是数学及许多科学领域的重要工具,也有广泛应用。

二次型在数学其它分支和物理、力学、工程技术中也常常用到。

多项式理论是高等代数的重要内容之一。

虽然它在整个高等代数课程中是一个相对独立而自成体系的部分,但却为高等代数所讲述的基本内容提供了理论依据。

多项式理论中的一些重要定理和方法在进一步学习数学理论和解决实际问题时常常要用到。

线性空间是研究规定了加法,数乘的抽象集合的公共性质。

具有高度的抽象性和应用的广泛性。

对培养学生的抽象思维,有很好的帮助。

线性变换,又是反映了线性空间中元素之间的一种最基本的联系。

线性变换的运算、矩阵表示,特征值特征向量又是使抽象概念具体化。

欧氏空间是把线性空间引入度量,因而是几何空间的一种推广,从而产生了长度夹角,使其更接近几何空间,并有更丰富的内容与方法。

总之,通过教学使学生掌握本课程的基本理论和方法,培养解决实际问题的能力,打好坚实的数学基础十分重要。

二、课程结构1.行列式(14学时)知识点:数域、排列、行列式定义、行列式性质、行列式计算、行列式按行展开和拉普拉斯(Laplace)展开定理、克莱姆法则重点:n阶行列式计算、Laplace展开定理难点:排列、n阶行列式定义2.矩阵(18学时)知识点:矩阵的运算(包括加法、数乘和乘法)矩阵的初等变换,矩阵的秩,矩阵乘积的行列式与秩、矩阵的逆。

浙江工商大学2018年硕士研究生入学考试自命题科目考试要求.doc

浙江工商大学2018年硕士研究生入学考试自命题科目考试要求.doc

浙江工商大学2018年硕士研究生入学考试自命题科目考试要求目录【211 翻译硕士英语】 1【213 翻译硕士日语】 2【253 日语(二外)】3【255 德语(二外)】4【256 法语(二外)】5【257 英语(二外)】6【258西班牙语(二外)】8【347 心理学专业综合】9【357 英语翻译基础】 10【359 日语翻译基础】 11【431 金融学综合】12【432 统计学】15【434 国际商务专业基础】16【435 保险专业基础】 18【448 汉语写作与百科知识】21【601 数学分析】23【611 法学综合1】24【614 马克思主义基本原理】24【615 综合英语】25【616 综合日语】27【617 艺术设计理论】 28【618 政治学】29【619 语言与文化】29【627土地资源与经济】31【628评论与写作】31【801 物流学概论】32【811 西方经济学】33【812 统计学概论】35【813 概率论与数理统计】36【815经济学综合】37【816 毛泽东思想和中国特色社会主义理论体系】39【818 专业日语】40【820 翻译与写作】41【821 专业设计】42【822 信号与系统】43【823东亚历史】44【825 生物化学】45【826 化工原理】46【827 微生物学】47【828 环境学概论】47【830 运筹学】49【832 管理学原理】51【833 旅游学概论】53【836公共管理学】55【842 法学综合2】55【843 会计学】56【845 计算机基础综合】58【846 高等代数】61【849 计算机网络】62【855 现代汉语和古代汉语】63【857水质工程学】64【858中外文学基础】65【859中国古代文学与文献学】66【211 翻译硕士英语】一、考试目的《翻译硕士英语》作为全日制翻译硕士专业学位(MTI)入学考试的外国语考试,其目的是考察考生是否具备进行MTI学习所要求的外语水平。

硕士研究生入学考试大纲高等代数

硕士研究生入学考试大纲高等代数

目录I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (4)全国硕士研究生入学统一考试高等代数考试大纲I 考查目标要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。

二、答题方式答题方式为闭卷、笔试。

三、试卷内容与题型结构计算题(30%)、证明题(70%)III 考查内容一、多项式1.熟练掌握多项式因式分解理论及整除理论。

2.掌握多项式、不可约多项式、最大公因式、重因式的概念;掌握整除、互素、不可约等概念的联系与区别。

3.掌握带余除法、辗转相除法、艾森斯坦因(Eisenstein)判别法。

4.会求两个多项式的最大公因式,会求有理系数多项式的有理根,会判别两个多项式互素。

二、行列式1.熟练掌握行列式的性质及行列式的计算。

2.掌握n阶行列式的定义。

3.掌握克拉默(Cramer)法则。

三、线性方程组1.熟练掌握向量线性相关性的概念、性质、判别法,会求向量组的秩及最大线性无关组。

2.掌握基础解系的概念及计算,熟练掌握线性方程组的解的判别定理,以及齐次和非齐次线性方程组的求解。

3.熟练掌握矩阵的秩的概念及计算。

四、矩阵1.熟练掌握矩阵、可逆矩阵、初等矩阵的概念与性质。

2.理解分块矩阵的概念,掌握分块矩阵的运算及思想方法。

3.熟练掌握矩阵的加法、减法、乘法,数乘、转置等运算。

4.熟练掌握可逆矩阵的判别方法及逆矩阵的计算。

5.能熟练使用矩阵的初等变换方法。

五、二次型1.掌握二次型的标准形、实二次型的规范形的概念。

2.熟练掌握正定二次型的概念、性质、判别方法。

3.掌握化二次型为标准形的思想方法。

4.理解合同矩阵的概念及背景。

六、线性空间1.掌握线性空间、子空间的概念及判定方法。

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲(适用专业:数学与应用数学、应用统计学)第一章基本概念一.主要内容1、集合子集集的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域二. 考试要求(一)掌握1、集合的交与并及其运算律2、映射满射单射双射映射的相等映射的合成3、数环和数域的定义及性质4、数学归纳法的运用(二)理解1、集合的交与并及其运算律2、可逆映射映射可逆的充要条件3、数环和数域的判别(三)了解自然数的最小数原理第一数学归纳法、第二数学归纳法的证明整数的一些整除性质第二章多项式一. 主要内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理二. 考试要求(一)掌握1、一元多项式的定义和运算2、整除的基本性质带余除法定理3、最大公因式概念、性质辗转相除法多项式互素概念、性质4、唯一因式分解定理典型分解式5、多项式的重因式概念多项式有重因式的充要条件6、余式定理综合除法多项式的根的概念7、复数域和实数域上多项式的因式分解有理数域上多顶式的有理根(二)理解1、不可约多项式概念2、多项式的重因式概念3、多项式函数与多项式的根4、多项式函数的概念5、本原多项式的定义 Gauss引理6、整系数多项式在有理数域上的可约性问题Eisenstein判别法(三)了解1、对称多项式的概念2、多元多项式的概念3、多元多项式的概念字典排列法初等对称多项式对称多项式基本定理三. 说明本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江工商大学2018年《高等代数》硕士考试大纲
一、考试目的
《高等代数》高等代数是本科数学专业学生的必修课,是学习其它数学学科和其它现代科学学科的必备基础和不可缺少的重要工具。

其主要任务是使学生获得多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系列基本知识和思想方法。

二、考试性质及范围
本考试是测试考生是否具备基本的高等代数理论与方法的考试。

考试的范围包括多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间共八章内容。

三、考试基本要求
1.掌握基本的代数运算方法。

包括多项式计算、行列式计算,矩阵计算,线性方程组计算等。

2.掌握基本的代数分析技巧。

包括向量的线性无关性、线性空间的基和维数、线性方程组解的结构、矩阵可对角化、二次型与对称阵等。

3.具备代数的基本几何背景,理解代数和几何的关系。

包括欧式空间、正交变换与正交矩阵等。

四、考试形式
本考试采取全部采用主观试题,考察学生的思维能力和分析能力。

试题分类参见“考试内容一览表”。

五、考试内容
本考试包括二个部分:计算题和证明题。

总分150分。

I.计算题
1.要求
要求考生掌握基本的代数运算方法。

2.题型
要求考生对多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等内容的四道计算题进行准确计算。

总分75分。

考试时间为90分钟。

II.证明题
1.要求
要求考生掌握基本的代数分析技巧和推理能力。

2.题型
要求考生对多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等内容的四道计算题进行准确计算。

总分75分。

考试时间为90分钟。

《高等代数》考试内容一览表
序号题型题量分值时间(分钟)
1计算题
4道题(内容取自于多项式理
论、行列式、线性方程组、矩阵论、
二次型、线性空间、线性变换、欧
氏空间)
7590
2证明题
4道题(内容取自于多项式理
论、行列式、线性方程组、矩阵论、
二次型、线性空间、线性变换、欧
氏空间)
7590
合计150180文章来源:文彦考研。

相关文档
最新文档