开关电源变压器的分布电容(二)

合集下载

高频变压器分布电容研究综述

高频变压器分布电容研究综述

高频变压器分布电容研究综述变压器寄生参数、分布参数在高频下对变压器的影响成为制约高频、高磁导率、小体积变压器研究的重要因素,也是该领域研究的重点。

本文对近几年高频变压器分布电容的研究情况进行了总结,首先重点介绍了现有的高频变压器模型,并分析了高频变压器分布电容对电路的影响,最后总结了抑制分布电容的方法。

同时文章指出该领域今后的研究方向:磁导率与寄生参数以及EMI直接之间的关系。

标签:开关电源;高频变压器;分布电容;模型;抑制措施0 引言随着磁性材料以及开关电源技术的不断发展,变压器逐渐呈现出磁导率高、频率高以及体积小的特点[1~2]。

在变压器高频化、小型化的过程中,一些在低频情况下被忽略的问题越来越重要,如漏感、分布电容。

这些寄生参数在高频下的影响越来越显著,甚至可能严重影响开关电源的性能[3~4]。

应用普通的变压器模型无法描述和解释高频下的一些电路现象,研究变压器高频下的等值模型以及寄生参数对电路的影响机理,以寻求抑制寄生参数的影响,成为该领域广泛关注的重点。

近几年,很多学者对高频变压器的寄生参数、分布参数进行了大量的研究。

本文主要从含分布电容的高频变压器模型、分布电容对电路的影响及其抑制措施三个方面的研究情况进行了总结。

1 考虑分布电容的高频变压器模型目前,国内外研究人员在高频变压器建模方面做了大量的研究,提出各种不同的高频变压器的模型。

这些建模方法主要分为三种,第一种是采用数值分析法,该方法适合于变压器设计但.是需要大量的关于变压器几何尺寸、电磁特性信息;第二种方法,根据变压器的静电学的行为对分布电容建模,该方法是根据静电学的特性,将工作在线性状态下的变压器看做一个端口网络,然后根据端口网络特性来求解相关模型参数,因此该方法具有建模简单,容易理解的特点;第三种方法,通过应用集总等效电容来对变压器的分布电容的物理效应进行建模。

应用该方法建立的模型,其模型中参数的物理意义明确,比较适合从工程角度对变压器进行分析。

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析漏感与分布电容对输出波形的影响开关电源变压器一般可以等效成图2-43所示电路。

在图2-43中,Ls为漏感,也可称为分布电感,Cs为分布电容,为励磁电感,R为等效负载电阻。

其中分布电容Cs还应该包括次级线圈等效到初级线圈一侧的分布电容,即次级线圈的分布电容也可以等效到初级线圈回路中。

图2-43 开关电源变压器等效电路设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:上式中,Wc2为次级线圈分布电容C2存储的能量,Wc1为C2等效到初级线圈后的分布电容C1存储的能量;U1、U2分别为初、次级线圈的电压,U2 = nU1,n = N2/N1为变压比,N1 、N2分别为初、次级线圈的匝数。

由此可以求得C1为:C1 = n2C2 (2-121)(2-120)式不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算。

所以,C2亦可以是次级线圈电路中的任意电容,C1为C2等效到初级线圈电路中的电容。

由此可以求得图2-43中,变压器的总分布电容Cs为:Cs = Cs1 + C1 = Cs1 +n2C2 (2-122)(2-122)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;C1为次级线圈电路中总电容C2(包括分布电容与电路中的电容)等效到初级线圈电路中的电容;n = N2/N1为变压比。

图2-43开关变压器的等效电路与一般变压器的等效电路,虽然看起来基本没有区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2-43中的等效负载电阻不是一个固定参数,它会随着开关电源的工作状态不断改变。

例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。

开关电源之高频变压器设计

开关电源之高频变压器设计

开关电源之高频变压器设计发表时间:2019-06-18T17:24:32.980Z 来源:《科技研究》2019年4期作者:张升[导读] 本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

(中山市木林森光电有限公司 528415)摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。

而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。

本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。

用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。

若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。

高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。

高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。

2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。

【三圈两地】开关电源PCB布板要领

【三圈两地】开关电源PCB布板要领

三圈两地,开关电源PCB布板要领Ref /thread-174480-1-1.html【作者nc965】有人说关电源的布板反正很麻烦,我同意,因为它是开关电源,不是其他题目是讲“要领”,因此不讲细节,也不是教材,与教材或者他人的理解相左、我也不做过多解释有人说否!细节很重要,决定成败,我说,要领最重要,基本的东西最重要,关键的地方没整对,大方向都错了,谈何细节?因此只捡最重要的讲,其余的自己去琢磨了。

要领就6个字:布局,地线,间距。

其实前4各字基本上是一层意思,后两个字是另外一层意思,这些是要领,其余的都是细节了。

优化图示第一的好与不好,是电容及电感的位置不一样,“C-L-C”π型滤波器不好好(大电流开窗)第二背面的好与不好,就是回路有分割与没分割的区别!不好好(电感后电容开口)第一张图的π型滤波器的电容在电感之后,第二张图的电容管脚铜皮开缺口(保证电流尽量通过电感上方的电容?)。

滤波效果差异其实在图中已经标注出来了的;【nc965】仔细看图,没有说输入输出电流流过电容,正因为输入输出是直流,不能流过电容,那么高频开关电路的高频脉冲交流就只能走电容了,因此电容上的脉冲电流特别大。

恩,这个图例子举的不错,一要遵循电流的流向,二要出线尽量从电容的根部出来。

输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。

发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口其他讨论是不是太宽了也容易被干扰到,最近做一个案子,把IC地线加粗后低压高温烧机时会出现工作不正常。

比如说有些动点(电感与开关管之间)就不宜布的过大【lclbf】看看我画的这个板子,怎么优化?自己感觉IT回来面积太大,有没有想到其他好的方法,还有接地和其他回路有没有问题。

两种开关电源变压器EMC设计方案分享

两种开关电源变压器EMC设计方案分享

两种开关电源变压器EMC设计方案分享
对于电源变压器的新产品研发环节来说,EMC抗干扰设计是其中非常重要的一环,也是每个工程师都需要严禁对待的设计步骤。

EMC设计方案的设置合理与否,直接关系到开关电源变压器的工作效率和能耗控制。

今天我们将会分享两种实用性较强的电源变压器EMC设计方案,大家一其来看看吧。

 在分享电源变压器的EMC设计方案之前,首先我们需要了解的一个概念是,究竟什幺是传导噪声。

在目前电子设备研发领域中,所谓的传导噪声干扰指的是设备在与供电电网连接工作时以噪声电流的形式通过电源线传导到公共电网环境中去的电磁干扰。

在开关电源变压器的实际抗干扰设置中,这种传导干扰又能够细分为共模干扰与差模干扰两种干扰模式。

共模干扰电流在零线与相线上的相位相等,而差模干扰电流在零线与相线上的相位相反。

差模干扰对总体传导干扰的贡献较小,且主要集中在噪声频谱低频端,较容易抑制。

共模干扰对传导干扰的贡献较大,且主要处在噪声频谱的中频和高频频段。

对共模传导干扰的抑制是电子设备传导EMC设计中的难点,也是最主要的任务。

 就目前国内的反激式开关电源应用情况来看,大部分的开关电源电路中都会存在一些电压剧变的节点。

和电路中其他电势相对稳定的节点不同,这些节点的电压包含高强度的高频成分。

这些电压变化十分活跃的节点称为噪声活跃节点。

噪声活跃节点是开关电源电路中的共模传导干扰源,它作用于电路中的对地杂散电容就产生共模噪声电流M。

而电路中对EMI影响较大的寄生电容在电路中的分布如图1所示。

开关电源中的全部缓冲吸收电路解析

开关电源中的全部缓冲吸收电路解析

基本拓扑电路上一般没有吸收缓冲电路,实际电路上一般有吸收缓冲电路,吸收与缓冲是工程需要,不是拓扑需要。

吸收与缓冲的功效:●防止器件损坏,吸收防止电压击穿,缓冲防止电流击穿●使功率器件远离危险工作区,从而提高可靠性●降低(开关)器件损耗,或者实现某种程度的关软开●降低di/dt和dv/dt,降低振铃,改善EMI品质●提高效率(提高效率是可能的,但弄不好也可能降低效率)也就是说,防止器件损坏只是吸收与缓冲的功效之一,其他功效也是很有价值的。

吸收吸收是对电压尖峰而言。

电压尖峰的成因:●电压尖峰是电感续流引起的。

●引起电压尖峰的电感可能是:变压器漏感、线路分布电感、器件等效模型中的感性成分等。

●引起电压尖峰的电流可能是:拓扑电流、二极管反向恢复电流、不恰当的谐振电流等。

减少电压尖峰的主要措施是:●减少可能引起电压尖峰的电感,比如漏感、布线电感等●减少可能引起电压尖峰的电流,比如二极管反向恢复电流等●如果可能的话,将上述电感能量转移到别处。

●采取上述措施后电压尖峰仍然不能接受,最后才考虑吸收。

吸收是不得已的技术措施拓扑吸将开关管Q1、拓扑续流二极管D1和一个无损的拓扑电容C2组成一个在布线上尽可能简短的吸收回路。

拓扑吸收的特点:●同时将Q1、D1的电压尖峰、振铃减少到最低程度。

●拓扑吸收是无损吸收,效率较高。

●吸收电容C2可以在大范围内取值。

●拓扑吸收是硬开关,因为拓扑是硬开关。

体二极管反向恢复吸收开关器件的体二极管的反向恢复特性,在关断电压的上升沿发挥作用,有降低电压尖峰的吸收效应。

RC 吸收●RC吸收的本质是阻尼吸收。

●有人认为R 是限流作用,C是吸收。

实际情况刚好相反。

●电阻R 的最重要作用是产生阻尼,吸收电压尖峰的谐振能量,是功率器件。

●电容C的作用也并不是电压吸收,而是为R阻尼提供能量通道。

●RC吸收并联于谐振回路上,C提供谐振能量通道,C 的大小决定吸收程度,最终目的是使R形成功率吸收。

●对应一个特定的吸收环境和一个特定大小的电容C,有一个最合适大小的电阻R,形成最大的阻尼、获得最低的电压尖峰。

分布电容的产生和影响

分布电容的产生和影响

分布电容的产生和影响摘要:在电感线圈和地间、匝和匝之间都会有分布电容的存在,它的产生和存在会给线圈品质因数、总损耗电阻等带来明显的变化。

而在变压器中,分布电容则存在于初次、次级之间,它会通过变压器来耦合,这就直接对变压器的高频隔离性能,造成了影响。

基于上述种种情况的产生,本文将针对分布电容的产生和影响,进行详细的阐述与探究。

关键词:分布电容;产生;影响前言:分布电容的产生除了会对电感线圈、变压器等造成影响之外,对于电容式油量传感器输出变压器的影响,也是十分显著的。

电容式油量传感器的输出变压器层间分布电容,会直接影响音频信号其抗电磁干扰能力的高频,并使信号其衰减,进而就会使整个频带内的音频信号,出现不均匀传输的情况。

由此也就能够看出分布电容产生,所造成的影响。

1分布电容的产生分布电容的产生、存在位置,是在两个存在电压差,但是这二者之间又相互绝缘的导体之间。

而分布电容本身所指的是由非电容形态形成的一种分布参数。

由此也就能够得出,“分布电容”是在任意电路中存在的,需要进行区分的,仅仅是分布电容大小的问题[1]。

一旦处于高频率的情况中,分布电容所产生的影响,就需要相关工作人员,进行重点的关注,尤其是在精密仪器的运转、高频电路的运行中,需要特备特别注重相应控制措施的采取与利用,这样才能够有效降低因分布电容而造成的影响。

其中,需要重点关注的是,分布电容的大小由电缆的绝缘材料、长度尺寸等决定。

例如,在两根传输线间,每根都被空气介质隔绝了与地的连接,因此,也就有电容的产生和存在。

2分布电容的产生的影响分析2.1交流电机中分布电容的影响电机本身具备价格低廉、结构简单、环境适应能力强等优势,在工业生产的应用中,十分广泛。

而在变频技术得到充分利用之后,逆变器的电力电子器件,在高速开通与关断的过程中,所产生谐波电压频率,在PWM变频器的倍数频率、载波频率附近,是比工频频率(50Hz)要大出许多的。

而这部分谐波电压的产生,就会和电机分布电容之间,有回路的构成。

【三圈两地】开关电源PCB布板要领

【三圈两地】开关电源PCB布板要领

三圈两地,开关电源PCB布板要领Ref【作者nc965】有人说关电源的布板反正很麻烦,我同意,因为它是开关电源,不是其他题目是讲要领”因此不讲细节,也不是教材,与教材或者他人的理解相左、我也不做过多解释有人说否!细节很重要,决定成败,」我说,要领最重要,基本的东西最重要,关键的地方没整对,大方向都错了,谈何细节?匚因此只捡最重要的讲,其余的自己去琢磨了。

要领就6个字:布局,地线,间距。

其实前4各字基本上是一层意思,后两个字是另外一层意思,这些是要领,其余的都是细节了。

优化图示:AR*71第一的好与不好,是电容及电感的位置不一样,C-L-C ” n型滤波器不好好(大电流开窗)第二背面的好与不好,就是回路有分割与没分割的区别!不好好(电感后电容开口)第一张图的n型滤波器的电容在电感之后,第二张图的电容管脚铜皮开缺口(保证电流尽量通过电感上方的电容?)。

滤波效果差异其实在图中已经标注出来了的;【nC965】仔细看图,没有说输入输出电流流过电容,正因为输入输出是直流,不能流过电容,那么高频开关电路的高频脉冲交流就只能走电容了,因此电容上的脉冲电流特别大。

恩,这个图例子举的不错,一要遵循电流的流向,二要出线尽量从电容的根部出来。

输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。

发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口■■ ?/o +- I 1 :^I ^WB m i其他讨论是不是太宽了也容易被干扰到,最近做一个案子,把IC 地线加粗后低压高温烧机时会出现工作不正常。

比如说 有些动点(电感与开关管之间)就不宜布的过大 【Iclb看看我画的这个板子,怎么优化?自己感觉IT 回来面积太大,有没有想到其他好的方法,还有接地和其他回路有没有问题。

开关电源EMI设计

开关电源EMI设计
开关电源的EMI设计
张心益主讲 2012,03,29
版权声明:未经版权所有人同意,不得翻 印复制与传播
开关电源的EMI设计
1.EMI躁声标准和测定方法 由于电,磁效应的存在,各种电子设备均
会感应空间的电磁波,而同时自身也产生大 量的电磁波向外发射,成为电磁噪声的生产 者.
基于此IEEE设置了电磁兼容性体系 (EMC:Electro magnetic compatibility)

2
开关电源的EMI设计
美国FCC传导噪声容许值
开关电源的EMI设计
日本VCCI传导声容许值
3
开关电源的EMI设计
开关电源的EMI设计
美国FCC辐射噪声容许值
4
开关电源的EMI设计
日本VCCI辐射噪声容许值
开关电源的EMI设计
5
开关电源的EMI设计
噪声的测量
传导噪声的测量
LISN网络
开关电源的EMI设计
开关电源设备须兼备设备本身不对外产生 噪声,而又具备抗击外部噪声的能力.
1
开关电源的EMI设计
开关电源的EMI设计
2.噪声标准
传导噪声和辐射噪声会对连接在公共输入工频线路 上的电子设备和无线电通讯设备产生干扰,因而各 国均制订了相应的标准来制约电子设备的抗干扰 及发射干扰的能力.
1.美国联邦通信委员会(FCC) Part-15 2.国际无线电干扰特别委员会(CISPR) Pub22 3.日本的VCCI 4.德国的VDE
地平面的选择:
开关电源的EMI设计
1, 目的: 使连接回路的电感量最小. 因此: 系统电路与接地平面之间的阻抗应最小.
模拟控制回路与开关功率调整回路之间的地应特别设置, 不致其相互之间会产生干扰.

开关电源中变压器的设计

开关电源中变压器的设计
图1.3 骨架俯视图及绕组相位图
Fig.1.3 Skeleton top view and winding phase diagram
1.3
反激式电源的磁芯需要进行中柱磨气隙,否则磁芯会很容易饱和,如图1.4所示。在开气隙时采用边磨气隙边测初级电感的方法,当初级电感量达到0.58mH时就证明气隙磨好了。由于气隙会使空气介入,相当于串入一个大磁阻介质,故气隙越大,电感量越小,变压器能储存的能量越多。为了保证变压器的稳定工作,气隙不能开太大,因为能量主要是存储在气隙里,气隙过大会使漏感增加,对EMC和效率都有影响;气隙也不能开太小,气隙过小会导致变压器能够储存的能量变少,当气隙无法容纳正常工作电感所产生的能量时,磁芯就会饱和从而损坏变压器。
开关电源中变压器的设计
开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能又与变压器设计优劣密切相关。可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大;同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振,产生噪音,恶化电源的电磁兼容性能。但是在磁性元件没有重大的技术突破之前,这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。
④方案一和方案二中变压器的同级线圈少绕一层,这样会使分布电容变小,增强变压器的电磁兼容性能。
综上所述,三明治绕法的变压器漏感小、损耗低、温升少、效率高,但绕制较麻烦;普通绕法的变压器EMC性能更好,且绕制较简单。所以为了提高电源的稳定性与效率,则应该采用方案三。如果电源对电磁兼容性有严格要求,就应该采用方案一。

精讲变压器的“寄生参数”——漏感与分布电容

精讲变压器的“寄生参数”——漏感与分布电容

精讲变压器的“寄生参数”——漏感与分布电容
本文主要为大家讲解一下变压器中的两个寄生参数,漏感与分布电容。

从定义到产生的原因,以及危害等多方面进行讲解。

大家好好学习吧!下面
先来介绍一下漏感的相关知识。

 漏感的定义
 漏感是电机初次级在耦合的过程中漏掉的那一部份磁通
 变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏
磁的电感称为漏感。

 漏感产生的原因
 漏感的产生是由于某些初级(次级)磁通没有通过磁芯耦合到次级(初级),而是通过空气闭合返回到初级(次级)。

 导线的电导率大约为空气电导率的109倍,而变压器用的铁氧体磁芯材料
的磁导率大约只有空气磁导率的104倍。

因此磁通在通过铁氧体磁芯构成的
磁路时,就会有一部分漏入空气,在空气中形成闭合磁路,从而产生漏磁。

而且随着工作频率的提高,所使用的铁氧体磁芯材料的磁导率会降低。

因此
在高频下,这种现象更为明显。

 漏感的危害 
 漏感是开关变压器的一项重要指标,对开关电源性能指标的影响很大,漏
感的存在,当开关器件截止瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,
使电路产生振荡并向外辐射电磁能量,造成电磁干扰。

 影响漏感的因素 
 对于固定的已经制作好的变压器,漏感与以下几个因素有关:。

开关电源变压器参数设计步骤详解(精)

开关电源变压器参数设计步骤详解(精)
u(V P O (W比例系数(μF/W C IN (μF
V Imin (V
固定输
入:100/115
已知
2~3
(2~3×P O

90通用输入:85~265已知
2~3 (2~3×P O ≥
90固定输入:230±35已知
1
P O

240
步骤5根据Vimin和V OR来确定最大占空比
Dmax
V OR
D m a x = ×100% V OR +V I m i n -V D S (O N
0.6
1
步骤7确定初级波形的参数

输入电流的平均值I A VG P O
I A VG=
ηV Imin

初级峰值电流I P I A VG
I P =
(1-0.5K RP ×Dmax

初级脉动电流I R ④
初级有效值流I RMS u(V
初级感应电压V OR (V
钳位二极管反向击穿电压V B (V
固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35

设定MOSFET的导通电压V DS(ON ②
应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6确定初级纹波电流I R与初级峰值电流I P的比值K RP ,K RP =I R /I P
u(V
K RP
最小值(连续模式最大值(不连续模式
固定输入:100/115 0.4 1通用输入:85~265 0.44 1固定输入:230±35
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u ,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin

mos分布电容

mos分布电容

mos分布电容
摘要:
一、电容简介
1.电容的定义
2.电容的分类
二、MOS分布电容
1.MOS电容的定义
2.MOS电容的特性
3.MOS电容的影响因素
三、MOS分布电容的应用
1.集成电路中的MOS电容
2.MOS电容在信号处理中的应用
四、MOS分布电容的发展趋势
1.新材料的研究
2.新型结构的设计
3.集成技术的进步
正文:
电容是一种电子器件,主要用于存储电荷和能量,具有存储、滤波、耦合等功能。

根据材料和结构的不同,电容可分为多种类型,如陶瓷电容、金属电容、MOS电容等。

MOS(Metal-Oxide-Semiconductor)分布电容是一种常见的电容类
型,主要应用于集成电路中。

MOS电容是由金属、氧化物和半导体材料组成的,具有高电容值、低失真、低噪声等优点。

在集成电路中,MOS电容主要用于信号传输、放大、开关等功能。

MOS电容的特性主要取决于其材料和结构。

随着材料研究的深入和制造工艺的进步,MOS电容的性能得到了显著提高。

例如,采用新材料可以提高电容的存储能力,优化结构设计可以降低电容的失真和噪声。

MOS分布电容在集成电路中有着广泛的应用。

在信号处理领域,MOS电容可以实现高速信号传输和放大,满足高性能计算和通信系统的要求。

同时,MOS电容在电源管理、数据存储等领域也有着重要的作用。

未来,随着新材料和新结构的研究,MOS分布电容将进一步提升性能,满足更高速、更大容量的集成电路需求。

开关电源变压器参数设计步骤详解

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤步骤1确定开关电源的基本参数1交流输入电压最小值u min2交流输入电压最大值u max3电网频率F l开关频率f4输出电压V O(V):已知5输出功率P O(W):已知6电源效率η:一般取80%7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。

一般取Z=0.5步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin1令整流桥的响应时间tc=3ms2根据u,查处C IN值3得到V imin确定C IN,V Imin值u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V)固定输已知2~3(2~3)×P O≥90入:100/115步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90定V OR、V B 固定输入:230±35已知1P O≥2401根据u由表查出V OR、V B值2由V B 值来选择TVS步骤5根据Vimin 和V OR 来确定最大占空比DmaxV ORDmax= ×100% V OR +V Imin -V DS(ON)1设定MOSFET 的导通电压V DS(ON)2应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I Pu(V)K RP最小值(连续模式)最大值(不连续模式)固定输入:100/1150.41通用输入:85~2650.441固定输入:230±350.61步骤7确定初级波形的参数①输入电流的平均值I AVGP OI A VG=ηV Imin②初级峰值电流I PI A VG I P =(1-0.5K RP )×Dmax③初级脉动电流I Ru(V)初级感应电压V OR (V)钳位二极管反向击穿电压V B (V)固定输入:100/1156090通用输入:85~265135200固定输入:230±35135200④初级有效值电流I RMSI RMS=I P√D max×(K RP2/3-K RP+1)步骤8根据电子数据表和所需I P值选择TOPSwitch芯片①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值I LIMIT(min)应满足:0.9I LIMIT(min)≥I P步骤9和10计算芯片结温Tj①按下式结算:Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR)2f]×Rθ+25℃式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容②如果Tj>100℃,应选功率较大的芯片步骤11验算I P IP=0.9I LIMIT(min)1输入新的K RP且从最小值开始迭代,直到K RP=12检查I P值是否符合要求3迭代K RP=1或I P=0.9I LIMIT(min)步骤12计算高频变压器初级电感量L P,L P单位为μH106P O Z(1-η)+ ηL P= ×I2P×K RP(1-K RP/2)f η步骤13选择变压器所使用的磁芯和骨架,查出以下参数:1磁芯有效横截面积Sj(cm2),即有效磁通面积。

电源的EMC及安规设计

电源的EMC及安规设计

电源的EMC及安规设计开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。

然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。

这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。

因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标有严格要求的场合下被采用。

开关电源产生噪声的原因开关电源的种类很多,按变换器的电路结构可分为串并联式和直流变换式两种;按激励方式可分为自激和它激两种;按开关管的组合可分为桥式、半桥式、推挽式等。

但无论何种类型的开关电源都是利用半导体器件的开和关工作的,并以开和关的时间比来控制输出电压的高低。

由于它通常在20kHz以上的开关频率下工作,所以电源线路内的dv/dt、di/dt很大,产生很大的浪涌电压、浪涌电流和其它各种噪声。

它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。

图1给出了一种典型的开关电源电路的简图,下面以此为例分析其产生噪声的主要原因。

一次整流回路的噪声在一次整流回路中,整流二极管D1~D4只有在脉动电压超过C1的充电电压的瞬间,电流才从电源输入侧流入。

所以,一次整流回路产生高次畸变波,形成噪声。

开关回路的噪声一是电磁辐射。

电源在工作时,开关管T处于高频率通断状态,在由脉冲变压器初级线圈L、开关管T和滤波器C构成的高频电流环路中,可能会产生较大的空间辐射噪声。

如果C的滤波不足,则高频电流还会以差模方式传导到交流电源中去。

二是感性负载引起的浪涌电压。

在开关回路中开关管T的负载是脉冲变压器的初级线圈L,是感性负载,所以开关管在通断时,在脉冲变压器的初级线圈的两端会出现较高的浪涌电压,很可能造成与此同一回路的电子器件(尤其是开关管T)的损坏。

开关电源中变压器初、次级线圈之间的屏蔽层对EMI的作用有多大

开关电源中变压器初、次级线圈之间的屏蔽层对EMI的作用有多大

开关电源中变压器初、次级线圈之间的屏蔽层对EMI的作用有多大【现象描述】某开关电源外形如图2.53所示。

图2.53 某开关电源外形图图2.53中变压器采用屏蔽设计,屏蔽层位于初级线圈与次级线圈之间,并且屏蔽层通过导线接至初级线圈的0 V,如图2.54所示。

图2.54 变压器内部结构示意图此电源的辐射发射与传导骚扰测试结果如图2.55、图2.56所示。

图2.55 使用屏蔽隔离变压器时的辐射发射测试结果图2.56 使用屏蔽隔离变压器时的传导骚扰测试结果从以上测试数据可以看出,该开关电源能满足EN55022标准中规定的CLASS B的要求。

将该电源的变压器改成非屏蔽的变压器,即取消初级线圈与次级线圈之间的屏蔽铜箔后,再进行辐射发射与传导骚扰测试,结果分别如图2.57、图2.58所示。

图2.57 使用非屏蔽变压器时的辐射发射测试结果图2.58 使用非屏蔽变压器时的传导骚扰测试结果从测试结果可以明显看出,使用非屏蔽变压器,在传导骚扰与辐射发射的项目上均不能达到EN55022标准中规定的CLASS B要求。

【原因分析】对开关电源来说,开关电路产生的电磁骚扰是开关电源的主要骚扰源之一。

开关电路是开关电源的核心,主要由开关管和高频变压器组成。

它产生的dU/dt 是具有较大辐度的脉冲,频带较宽且谐波丰富。

其骚扰传递示意图如图2.59所示。

这种脉冲骚扰产生的主要原因有以下两个方面。

(1)开关管负载为高频变压器初级线圈,是感性负载。

在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。

这种电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这个噪声会传导到输入/输出端,形成传导骚扰。

图2.59 开关电源骚扰传递示意图(2)脉冲变压器初级线圈,开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射骚扰。

开关电源的热地与冷地之间的耦合电容的相关论坛

开关电源的热地与冷地之间的耦合电容的相关论坛

开关电源的热地与冷地之间的耦合电容
1.热地指与市电相连,隔离变压器初级的地,冷地指隔离变压器次级的地,即是开关电源输出的地。

冷地和热地使用电容耦合是为了二者形成交流通路,直流开路,提高电源输出的安全性。

2.我想可能是用来隔直,以及阻隔静电的。

3.此电容为Y电容。

4.这里的电容是安规电容(Y1,or Y2),功能上是不必要的.用於減少电磁干扰. 一般开关电源都需用。

5.通常在开关电源中采用噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器用于差模与共模方式的RFI抑制,通常交流线路上串入一对电感,其两端并联二只电容(X电容),并在交流线二端对大地各接一只电容(Y电容)。

6.Y电容是用于抑制EMI干扰的,没有Y电容有时电路不稳定.
7.主要是防止高频的杂散辐射和工作频率的稳定而设定的。

8.这两个地在直流上当然需要开路,要不就产生安全问题了。

但对于电磁干扰信号,就是通路。

9.一种开关电源变压器分布电容所致干扰的抑制电路,包括开关管及其供电电源、开关变压器及其负载电路,开关管及其供电电源有公共端(初级接地端),负载电路另有公共端(次级接地端),开关变压器将这两个公共端隔离开来,其特征在于,在开关变压器较高电压线圈和较低电压线圈之间外接一个电容器Cc,该电容器之一端接至较高电压线圈的接地端,另一端接至较低电压线圈的同名端,该电容器Cc之容量与开关变压器分布电容的容量相适配,用以抑制在开关电源变压器初、次级接地端之间由于分布电容耦合产生的干扰信号。

变压器设计基本知识

变压器设计基本知识

变压器设计基本知识一、开关电源变压器是开关型功率变换器中的核心部件,其作用有三:磁能转换、电压变换和绝缘隔离。

在开关晶体管的开关作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,将输入功率传递到负载,输出所需要的电压。

由于开关变压器的工作频率很高,因此它的体积和重量比工频变压器大为缩小,同时变压器的分布参数亦不能忽略。

开关变压器的性能好坏,不仅影响变压器本身的发热和效率等,而且还会影响到开关电源的技术性能和可靠性。

所以在设计制作时,对磁心材料的选择,磁心与线圈的结构,绕制工艺等都要有周密考虑。

开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导体中流动的趋肤效应。

一般根据开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应影响则作为选择导线规格大小的条件之一。

设计变压器时,应当预先知道电路拓扑、工作频率、输入和输出电压、输出功率或输出电流以及环境条件。

同时还应当知道所设计的变压器允许多大损耗。

总是以满足最坏情况设计变压器,保证设计的变压器在规定的任何情况下都能满意工作。

这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。

同时,在变压器的设计制作中还有一些工艺问题需要注意。

二、设计开关电源变压器主要考虑以下方面问题:(1)选择高频变压器磁芯、胶芯的时候,需评估该件的80%承受功率是否可以满足所需要求。

(2)原材料评估,磁芯、胶芯、铜线、胶带、套管等材料需选择通用容易采购,材料的特性、绝缘性能、耐温、安规标准、ROHS等选择需合理标准化。

(3)磁芯,高频变压器中使用的是软磁材料。

磁性材料的性能是决定开关变压器性能的重要因素,选择适合的磁性材料是开关变压器设计制作的关键。

开关变压器通常工作在几十KHz以上的频率,它要求磁性材料在工作频率下功耗尽可能小,此外,还要求磁性材料和饱和磁感应强度高,温度稳定性好。

变压器线间电容

变压器线间电容

变压器线间电容
变压器中的线间电容是指变压器绕组之间以及绕组与外壳之间存在的分布式电容。

这些电容的存在会对变压器的工作特性产生影响,尤其是在高频时表现更加明显。

线间电容的主要来源包括:
1. 绕组层间电容:由于绕组采用多层绕制的结构,相邻层之间形成了电容。

2. 绕组间电容:绕组之间由于存在间隙和绝缘,也形成了电容。

3. 绕组与外壳电容:绕组与铁心、外壳之间也存在电容耦合。

线间电容会导致以下影响:
1. 电流分布不均匀:高频时,由于电容的阻抗较小,电流容易从绕组内部短路流过,导致电流分布不均匀。

2. 谐波增大:电容的存在会引起高次谐波电流的增大,降低波形质量。

3. 绝缘受损:高频高电压下,线间电容处会产生部分放电,从而损坏绝缘。

4. 电感降低:线间电容会与绕组电感形成储能电路,降低线圈的有效电感。

为了减小线间电容的影响,可以采取以下措施:
1. 采用分层绕制的方式,减小层间电容。

2. 增加层间绝缘距离,降低电容值。

3. 在高频时采用特殊的绕组结构,如扁平矩形线圈。

4. 在绕组与外壳之间加装静电屏蔽层。

线间电容是高频变压器中不可忽视的因素,需要在设计时充分考虑和优化,以提高变压器的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源变压器的分布电容(二)
为了更好地对多层线圈的分布电容进一步进行分析,我们把(2-114)式改写成一个静态电容与一个动态系数相乘的形式,即:
 当变压器的线圈为多层时,我们只需反复利用(2-117)式来对相邻两层之间的分布电容独立进行计算,然后把结果相加即可。

如果一定要写出计算多层线圈分布电容的表达式,则变压器多层线圈的分布电容可表示为:
 式中,为第i层与i+1层线圈之间的静态电容,i= 1、2、3、• • •、n ,n为所求总分布电容的变压器初级线圈或次级线圈的层数;gi为第i 层与i+1层线圈之间的平均周长;kui为第i 层与i+1层线圈之间分布电容的动态系数;
 Ui为第i层与i+1层线圈之间的标准电位差,其值一般等于相邻两层线圈工作电压之和,即:Ui=2U/n ,U为变压器初级线圈或次级线圈两端的工作电压;Uai、Ubi分别为第i层与i+1层线圈之间x=0和x=h处对应的电位差;对于如图2-42-a线圈接法,Uai= 0,Ubi=Ui ;对于如图2-42-b线圈接法,Uai=Ubi =Uio/2。

 一般开关电源变压器初级线圈的层数很少超过4层的,因此,我们在这里分别列出三层、四层初级线圈分布电容的计算结果。

为了计算简单,我们假设三层线圈的匝数以及工作电压均相等,三层线圈的平均周长gi用中间一层线圈的周长来代替,即用第二层线圈的周长g2代之;三层线圈的层间距离均相等,均等于d。

同理,对于四层线圈的条件也基本相同,但线圈平均周长。

相关文档
最新文档