云南省剑川县马登镇初级中学2016届中考数学模拟试题(二)

合集下载

云南省2015-16中考数学模拟卷(含答案分析)

云南省2015-16中考数学模拟卷(含答案分析)

云南省2015-16中考数学模拟试卷1、 5的相反数是( )A 、51- B 、51 C 、5-D 、52、下列运算正确的是( )A 、246x x x +=B 、326()x x -=C 、235a b ab +=D 、632x x x ÷=3、下图中所示的几何体的主视图是( )4、要使函数y=1-x 有意义,自变量x 的取值范围是( )A 、x ≥1B 、x ≤1C 、x>1D 、x<15、如图,C 是⊙O 上一点,若圆周角∠ACB=40°,则圆心角∠AOB 的度数是( )A 、50°B 、60°C 、80°D 、90°6、如图,ABCD 中,对角线AC 和BD 相交于点O ,如果 AC=12 , BD=10, AB=m , 那么m 的取值范围是( )A 、10<m<12B 、2<m<22C 、1<m<11D 、5<m<6 7、函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )图 A B C D8、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,a-b-c ,b+c-a ,2ba-这四个式子中,值为正数的有( )A 、4个B 、3个C 、2个D 、1个一、选择题1. C2. B3. D4. A5. C6. C7. C8. A一、选择题:请将唯一正确答案的编号填入答卷中,本题共8题,每题3分,共24分。

A .B .C .D .Oxy-1 19、如果3a =,那么a b b-= .10、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.11、当x = 时,分式2233x x x ---的值为零.12、已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是 . 13、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米.14、若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 cm.二、填空题9. 12 10. 2n-1 11. -1 12. 外切13. 4.8 14. 6π15、(411(2015)()2---+1二、填空题:请将正确答案填在横线上,本题共6题,每题3分,共18分。

2016年云南省大理州剑川县马登中学中考数学模拟试卷(二)

2016年云南省大理州剑川县马登中学中考数学模拟试卷(二)

2016年云南省大理州剑川县马登中学中考数学模拟试卷(二)一、选择题(共6小题)1.(2015•兴化市三模)﹣2015的相反数是()A.2015 B.﹣2015 C.D.2.(2015•兴化市三模)下列计算正确的是()A.=﹣2 B.(a2)5=a10C.a2+a5=a7D.6×2=123.(2014•汕头)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2013•宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.5.(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2014•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3二、填空题7.(2004•乌鲁木齐)﹣27的立方根是.8.(2015•西乡塘区二模)某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.9.(2015•兴化市三模)说明命题“x>﹣4,则x2>16”是假命题的一个反例可以是x=.10.(2015•兴化市三模)如图,正方形ABOC的边长为3,反比例函数y=的图象过点A,则k的值是.11.(2015•兴化市三模)某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为.12.(2015•兴化市三模)如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2=.13.(2015•兴化市三模)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差S=0.1,S=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是.14.(2015•兴化市三模)如图,如果将半径为10cm的圆形纸片剪去一个圆心角为120°的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为.15.(2015•兴化市三模)函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是.16.(2015•兴化市三模)如图,在直角坐标系中,已知点E(3,2)在双曲线y=(x>0)上.过动点P(t,0)作x轴的垂线分别与该双曲线和直线y=﹣x交于A、B两点,以线段AB为对角线作正方形ADBC,当正方形ADBC的边(不包括正方形顶点)经过点E时,则t的值为.三、解答题17.(2015•兴化市三模)(1)计算:6×3﹣1﹣(2015﹣π)0+×;(2)先化简,再求值:(+)÷,其中x=+1.18.(2014•宿迁)解方程:.19.(2015•兴化市三模)为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:(1)本次抽查的学生共有名;(2)表中x和m所表示的数分别为:x=,m=,并在图中补全条形统计图;(3)若该校共有1500名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?20.(2015•兴化市三模)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)两次转盘,第一次转得的数字记为m,第二次记为n,A的坐标为(m,n),则A点在函数y=上的概率.21.(2015•兴化市三模)如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.22.(2015•兴化市三模)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.(1)求点E距水平面BC的高度;(2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).23.(2015•兴化市三模)如图,AB为⊙O的直径,弦AC=3,∠ABC=30°,∠ACB的平分线交⊙O于点D.(1)求BC、AD的长;(2)求图中两阴影部分的面积和.24.(2015•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.25.(2015•兴化市三模)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,点F为斜边AB上的一点,连接CF,CD平分∠ACF交AB于点D,点E在AC上,且有∠CFD=∠CDE.(1)如图1,当点F为斜边AB的中点时,求CE的长;(2)将点F从AB的中点沿AB方向向左移动到点B,其余条件不变,如图2.①求点E所经过的路径长;②求线段DE所扫过的面积.26.(2015•兴化市三模)如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C (0,3)三点.(1)求抛物线相应的函数表达式;(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,连接NB.若点M的横坐标为t,是否存在t,使MN的长最大?若存在,求出sin∠MBN的值;若不存在,请说明理由;(3)若对一切x≥0均有ax2+bx+c≤mx﹣m+13成立,求实数m的取值范围.2016年云南省大理州剑川县马登中学中考数学模拟试卷(二)参考答案一、选择题(共6小题)1.A;2.B;3.C;4.D;5.D;6.C;二、填空题7.-3;8.9.4×10-7;9.-3;10.-9; 11.8,7;12.26°;13.③;14.cm;15.y=2(x+3)2+4;16.2或;三、解答题17.;18.;19.50;20;30%;20.;21.;22.;23.;24.;25.;26.;。

2016年云南省中考数学试卷及解析

2016年云南省中考数学试卷及解析

2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分) 46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.。

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

云南省2016年中考数学试卷(解析版)

云南省2016年中考数学试卷(解析版)

2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为()A.15 B.10 C.D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为()A.15 B.10 C.D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A 种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P . 【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.第21页(共21页)。

云南 2016年中考数学真题试卷附解析

云南 2016年中考数学真题试卷附解析

2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(2016·云南)|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.(2016·云南)如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.(2016·云南)因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.(2016·云南)若一个多边形的边数为6,则这个多边形的内角和为720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.(2016·云南)如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.(2016·云南)如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.(2016·云南)据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2016·云南)函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.(2016·云南)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.(2016·云南)下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.(2016·云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.(2016·云南)某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.(2016·云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.(2016·云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.(2016·云南)解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(2016·云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.(2016·云南)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A 种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.(2016·云南)如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.(2016·云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.(2016·云南)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°, ∴DO=2OC=DB+OB=DB+OC ,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°,∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.(2016·云南)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(2016·云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(2016·云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)。

云南省2016年中考数学真题试题(含答案)

云南省2016年中考数学真题试题(含答案)

2016年云南省初中学业水平考试数学试题(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷的答题卡一并交回。

一、填空题(本大题共6个小题,每小题3分,满分18分)1.- 3 = .2.如图,直线a ∥b,直线c 与直线a 、b 分别相交于A 、B 两点,若∠1=60°则∠2= .3.因式分解:21x - = .4.若一个多边形的边数为6,则这个多边形的内角和为度5.如果关于x 的一元二次方程22 20x a x a +++=有两个相等的实数根,那么实数a 的值为 .6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 .二、选择题(本大题共9小题,每小题只有一个正确选项,每小题3分,满分27分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为8.函数12y x =- 的自变量x 的取值范围为9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是 圆锥1011.位于第一象限的点 E 在反比例函数ky x=的图象上,点F 在x 轴的正半轴上,O 是坐标原点,若EO=EF ,△EOF 的面积等于2,则k =.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:47下列说法正确的是A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是14. 如图, D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,若果△ABD的面积为15,那么△三.解答题(共9个小题,共70分)15.(本小题满分6分)解不等式组2(3)10 21xx x+>⎧⎨+>⎩16.(本小题满分6分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D17.(本小题满分8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.(本小题满分6分)如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC ,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.(本小题满分7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.(本小题满分8分)如图, AB为⊙O的直径,C是⊙O 上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.(本小题满分8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.(本小题满分9分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,下图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W得最大值。

云南省2016年中考数学试题含答案

云南省2016年中考数学试题含答案

云南省2016年中考数学试题含答案2016年云南省初中学业水平考试数学试题(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷的答题卡一并交回。

一、填空题(本大题共6个小题,每小题3分,满分18分)1. - 3 = .2.如图,直线a ∥b,直线c 与直线a 、b 分别相交于A 、B 两点,若∠1=60°则∠2= . 3.因式分解:21x - = . 4.若一个多边形的边数为6,则这个多边形的内角和为 度5.如果关于x 的一元二次方程2 2 20x a x a +++=有两个相等的实数根,那么实数a 的值为 .6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 .二、选择题(本大题共9小题,每小题只有一个正确选项,每小题3分,满分27分) 7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为8.函数12y x =- 的自变量x 的取值范围为9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是圆锥11.位于第一象限的点 E在反比例函数kyx=的图象上,点F在x轴的正半轴上,O12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:下列说法正确的是A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是14. 如图, D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,若果△ABD的面的面积为三.解答题(共9个小题,共70分)15.(本小题满分6分)解不等式组2(3)10 21xx x+>⎧⎨+>⎩16.(本小题满分6分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D17.(本小题满分8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.(本小题满分6分)如图,菱形ABCD的对角线AC与BD交于点O,∠A BC:∠BAD=1:2,BE∥AC ,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.(本小题满分7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.(本小题满分8分)如图, AB为⊙O的直径,C是⊙O 上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.(本小题满分8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.(本小题满分9分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,下图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W得最大值。

2016年云南省中考数学模拟试卷

2016年云南省中考数学模拟试卷

2016 年云南省中考数学模拟试卷(一)一.(每小 3 分,共24 分)1.( 3 分)的倒数是()A. B.C. D.2.( 3 分)如是几何体的三,几何体是()A. B .柱 C.正三棱柱 D .正三棱3.( 3 分)以下运算中正确的选项是()0﹣2D. | 2|=2A.π =1 B. C . 2= 44.( 3 分)不等式的解集是()A. x≤ 2 B. x>3 C . 3<x≤ 2D.无解5.( 3 分)云南省甸2014 年 8 月 3 日生地震,造成重要人亡和失.灾情万同胞的心,在灾区人民最需要救助的刻,全国同胞充足“一方有、八方增援”的中民族良,及向灾区同胞伸出救助之手.截止 9 月 19 日 17 ,云南省共接收昭通甸“”地震捐钱80100万元.科学数法表示()元.A.× 107B.× 107C.× 108D.× 1096.( 3 分)九年某班40 位同学的年以下表所示:年()13141516人数316192班 40 名同学年的众数和均匀数分是()A. 19, 15B.15, C. 19, D.15,157.( 3 分)如: AB∥ DE,∠ B=30°,∠ C=110°,∠ D 的度数()A.115°B.120°C.100°D.80°二.填空(每小 3 分,共18 分)8.( 3 分)一元二次方程6x2 12x=0 的解是.9.( 3 分)如,AD是⊙ O的直径,弦 BC⊥ AD,接 AB、AC、OC,若∠ COD=60°,∠ BAD=.10.( 3 分)在二次函数22y=ax +bx+c 的象如所示,以下法中:① b 4ac< 0;②> 0;③abc > 0;④ a b c> 0,法正确的选项是(填序号).11.( 3 分)写出一个象第二、四象限的反比率函数y=( k≠ 0)的分析式:.12.( 3 分)如, Rt △ ABC中∠ A=90°,∠C=30°, BD均分∠ ABC且与 AC交于点D,AD=2,点 D 到 BC的距离是.13.( 3 分)察以下等式:解答下边的:21+22+23+24 +25+26+⋯ +22015的末位数字是.三.解答(共9 个小,共58 分)14.( 5 分)化求:,此中 x=3.15.(5 分)在△ ABC中, AB=AC,点 E,F 分在 AB,AC上, AE=AF,BF 与 CE订交于点 P.求:△EBC≌△ FCB.16.( 6 分)如图,在平面直角坐标系中,直线AB与 x 轴交于 B 点,与 y 轴交于 A 点,已知(1)求直线 AB的分析式.(2)若 S△ABC=7,求点 C 的坐标.AC与 x 轴交于 C 点,与 y 轴交于 A 点,直线A(0, 4), B( 2, 0).17.( 6 分)为丰富校园文化生活,某校举办了成语大赛.学校准备购置一批成语字典奖赏获奖学生.购置时,商家给每本字典打了九折,用2880 元钱购置的成语字典,打折后购置的数目比打折前多10 本.求打折前每本笔录本的售价是多少元18.( 7 分)为增强学生身体锻炼,我校展开体育“大课间”活动.学校学生会体育部决定在学生中开设A:篮球, B:立定跳远, C:跳绳, D:跑步, E:排球五种活动项目.为了了解学生对五种项目的喜爱状况,随机抽取了部分学生进行检查,并将检查结果绘制成以以下图所示的两个统计图.请联合图中的信息解答以下问题:(1)在这项检查中,共检查了多少名学生(2)请计算本项检查中喜爱“篮球”的学生人数和所占百分比,并将两个统计图增补完好;(3)若该校有1200 名在校学生,请预计喜爱排球的学生大概有多少人19.( 7 分)某市“艺术节”时期,小明、小亮都想去观看茶艺表演,可是只有一张茶艺表演门票,他们决定采纳抽卡片的方法确立谁去.规则以下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其他都同样)洗匀后,反面向上放置在桌面上,随机抽出一张记下数字后放回;从头洗匀后反面向上搁置在桌面上,再随机抽出一张记下数字.假如两个数字之和为奇数,则小明去;假如两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的全部可能出现的结果;(2)你以为这个规则公正吗请说明原因.20.( 6 分)如图,某同学站在旗杆正对的教课楼上点 C 处观察到旗杆顶端 A 的仰角为30°,旗杆底端 B 的俯角为45°,已知旗杆距离教课楼12 米,求旗杆AB的高度.(结果精准到 . ≈,≈)(参照数据: sin30 °=, cos30°=, tan30 °=, sin45 °=, cos45°=,tan45 °=1)21.( 7 分)如图,在△ ABC中, DE分别是 AB,AC的中点, BE=2DE,延伸 DE到点 F,使得EF=BE,连 CF(1)求证:四边形 BCFE是菱形;(2)若 CE=6,∠ BEF=120°,求菱形 BCFE的面积.22.( 12 分)如图,抛物线y=ax2 +bx+c 经过 A(﹣ 1,0)、 B( 4, 0)、 C(0,﹣ 2)三点.(1)求抛物线的函数关系式;(2)若直线 l 是抛物线的对称轴,设点 P 是直线 l 上的一个动点,当△ PAC的周长最小时,求点 P 的坐标;(3)在线段 AB上能否存在点 M( m, 0),使得以线段 CM为直径的圆与边 BC交于 Q点(与点 C 不一样),且以点 Q、B、O为极点的三角形是等腰三角形若存在,求出 m的值;若不存在,请说明原因.2016 年云南省中考数学模拟试卷(一)参照答案与试题分析一.选择题(每题 3 分,共 24 分))1.( 3 分)(2016?云南模拟)的倒数是(A. B .﹣ C. D.﹣【解答】解:的倒数是.应选: C.2.( 3 分)(2014?北京)如图是几何体的三视图,该几何体是()A.圆锥 B .圆柱C.正三棱柱 D .正三棱锥【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.应选: C.3.( 3 分)(2016?云南模拟)以下运算中正确的选项是()A.π0 =1 B. C . 2﹣2=﹣ 4D.﹣ | ﹣ 2|=2【解答】解: A、非零的零次幂等于 1,故 A 正确;B、 =|x| ,故 B 错误;C、负整数指数幂与正整数指数幂互为倒数,故 C 错误;D、﹣ | ﹣ 2|= ﹣ 2,故 D 错误;应选: A.4.( 3 分)(2016?邹平县一模)不等式组的解集是()A. x≤﹣ 2 B. x>3 C . 3<x≤﹣ 2D.无解【解答】解:解不等式 x﹣ 2> 1,得: x> 3,又∵ x≤﹣ 2,∴不等式组无解,应选: D.5.( 3 分)(2016?云南模拟)云南省鲁甸县2014 年 8 月 3 日发生级地震,造成重要人员伤亡和经济损失.灾情牵动亿万同胞的心,在灾区人民最需要救助的时辰,全国同胞充足弘扬“一方有难、八方增援”的中华民族优秀传统,实时向灾区同胞伸出救助之手.截止9 月19 日 17 时,云南省级共接收昭通鲁甸“”地震捐钱80100 万元.科学记数法表示为()元.A.× 107 B.× 107 C.× 108 D.× 109【解答】解:将80100 万用科学记数法表示为:×108.应选: C.6.( 3 分)(2016?云南模拟)九年级某班40 位同学的年纪以下表所示:年纪(岁)13141516人数316192则该班40 名同学年纪的众数和均匀数分别是()A. 19, 15B.15, C. 19, D.15,15【解答】解:∵年纪为15 岁的有 19 人,最多,∴众数为15 岁;均匀数为: =岁,应选 B.7.(3 分)(2016?临清市二模)如图:AB∥ DE,∠ B=30°,∠C=110°,∠ D的度数)为(D.80°A.115°B.120°C.100°【解答】解:过点C作 CF∥ AB,∵AB∥ DE,∴AB∥ DE∥CF,∵∠ B=30°,∴∠ 1=30°,∵∠ C=110°,∴∠ 2=80°,∴∠ D=180°﹣∠ 2=180°﹣ 80°=100°.应选: C.二.填空题(每题 3 分,共 18 分)8.( 3 分)(2016?云南模拟)一元二次方程6x2﹣ 12x=0 的解是x1=0, x2=2.【解答】解: 6x( x﹣ 2) =0,6x=0 或 x﹣2=0,因此 x1=0, x2=2.故答案为x1=0,x2=2.BC⊥ AD,连结AB、AC、 OC,若∠9.( 3 分)(2016?黄冈三模)如图,AD是⊙ O的直径,弦COD=60°,则∠ BAD= 30°.【解答】解:∵∠ COD=60°,∴∠ DAC=30°,∵AD是⊙ O的直径,弦BC⊥ AD,∴=,∴∠ BAD=∠DAC=30°,故答案为: 30°.b2 10.(3 分)(2016?云南模拟)在二次函数y=ax2+bx+c 的图象以下图,以下说法中:①﹣4ac< 0;②> 0;③ abc > 0;④ a﹣ b﹣ c> 0,说法正确的选项是②③④(填序号).b2﹣ 4ac> 0,故①错误;【解答】解:由图可知,抛物线与 x 轴有 2 个交点,因此对称轴在 y 轴右边,则 x=﹣> 0,故②正确;抛物张口向上,a> 0,而称在y 右,a、b 异号,因此b< 0,其与 y 的交点( 0, c)位于 y 的半,c< 0,因此 abc >0,故③正确;∵a> 0, b< 0, c< 0,∴ a b c> 0,故④正确;故答案:②③④.y=( k≠0)的11.( 3 分)(2016?云南模)写出一个象第二、四象限的反比率函数分析式:y=.【解答】解:因为反比率函数象二、四象限,因此比率系数数,故分析式能够y=.答案不独一.故答案: y=.12.( 3 分)(2016?平一模)如, Rt△ ABC中∠ A=90°,∠ C=30°, BD均分∠ ABC且与AC交于点 D, AD=2,点 D 到 BC的距离是 2 .【解答】解: D 作 DE⊥ BC于 E,∵BD均分∠ ABC,∠ A=90°,∴D E=AD=2,故答案: 2.13.( 3 分)(2016?云南模)察以下等式:解答下边的: 21+22+23 +24+25+26+⋯ +22015的末位数字是4 .【解答】解:由 2n, 2n+1, 2n+2, 2n+3的个位数挨次是2, 4, 8, 6,得指数每 4的倍数一循,2015÷4=503⋯3,即( 2+4+8+6)× 503+( 2+4+8) =503×20+14=10074.故答案: 4.三.解答(共9 个小,共58 分)14.( 5 分)(2016?云南模)化求:,此中x=3.【解答】解:原式 =?==,当 x=3 ,原式 =.15.( 5 分)(2016?云南模)在△ ABC中, AB=AC,点 E,F 分在 AB, AC上, AE=AF, BF 与 CE订交于点 P.求:△ EBC≌△ FCB.【解答】明:∵ AB=AC,∴∠ ABC=∠ACB,∵A E=AF,∴AB﹣ AE=AC﹣ AF即 BE=CF,在△ EBC和△ FCB中,,∴△ EBC≌△ FCB( SAS).16.( 6 分)(2016?云南模拟)如图,在平面直角坐标系中,直线AC与 x 轴交于 C 点,与 y轴交于 A 点,直线AB与 x 轴交于 B 点,与 y 轴交于 A 点,已知A(0, 4),B( 2, 0).(1)求直线AB的分析式.(2)若 S△=7,求点 C 的坐标.ABC【解答】解:( 1)设直线 AB的分析式为y=kx+b∵直线 AB经过 A( 0, 4), B( 2, 0)∴,解之得,∴直线 AB的分析式为y= ﹣ 2x+4;(2)设 C( x, 0)∵A( 0, 4), B( 2,0)∴OA=4, OB=2∵S△ABC=7,∴BC?OA=7,∴BC=,∴|x ﹣ 2|= ,解得: x=或 x=﹣,∴C(﹣, 0)或 C(, 0).17.( 6 分)(2016?云南模拟)为丰富校园文化生活,某校举办了成语大赛.学校准备购置一批成语字典奖赏获奖学生.购置时,商家给每本字典打了九折,用2880 元钱购置的成语字典,打折后购置的数目比打折前多10 本.求打折前每本笔录本的售价是多少元【解答】解:设打折前每本笔录本的售价是x 元,由题意得:,解得: x=32,经查验: x=32 是原方程的解.答:打折前每本笔录本的售价是32 元.18.( 7 分)(2016?云南模拟)为增强学生身体锻炼,我校展开体育“大课间”活动.学校学生会体育部决定在学生中开设A:篮球, B:立定跳远, C:跳绳, D:跑步, E:排球五种活动项目.为了认识学生对五种项目的喜爱状况,随机抽取了部分学生进行检查,并将检查结果绘制成以以下图所示的两个统计图.请联合图中的信息解答以下问题:(1)在这项检查中,共检查了多少名学生(2)请计算本项检查中喜爱“篮球”的学生人数和所占百分比,并将两个统计图增补完好;(3)若该校有 1200 名在校学生,请预计喜爱排球的学生大概有多少人【解答】解:( 1)检查人数为40÷ 20%=200人;(2)喜爱“篮球”的人数为:200﹣10﹣ 40﹣30﹣ 40=80 人,百分比为: 80÷200× 100%=40%跑步占的百分比为:1﹣ 40%﹣20%﹣ 5%﹣ 20%=15%;图形以下:(3)从抽样检查中可知,喜爱排球的人约占 20%,能够预计全校学生中喜爱排球的学生约占20%,人数约为: 1200 × 20%=240人答:全校学生中,喜爱排球的人数约为240 人.19.( 7 分)(2014?云南)某市“艺术节”时期,小明、小亮都想去观看茶艺表演,可是只有一张茶艺表演门票,他们决定采纳抽卡片的方法确立谁去.规则以下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其他都同样)洗匀后,反面向上放置在桌面上,随机抽出一张记下数字后放回;从头洗匀后反面向上搁置在桌面上,再随机抽出一张记下数字.假如两个数字之和为奇数,则小明去;假如两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的全部可能出现的结果;(2)你以为这个规则公正吗请说明原因.【解答】解:( 1)依据题意列表得:123412345234563456745678(2)由列表得:共16 种状况,此中奇数有8 种,偶数有8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公正.20.( 6 分)(2016?潮南区模拟)如图,某同学站在旗杆正对的教课楼上点顶端 A 的仰角为30°,旗杆底端 B 的俯角为45°,已知旗杆距离教课楼的高度.C处观察到旗杆12 米,求旗杆AB(结果精准到 . ≈,≈)(参照数据: sin30 °=, cos30°=, tan30 °=, sin45 °=, cos45°=,tan45 °=1)【解答】解:在 Rt△ ACD中,∵t an ∠ ACD=,∴t an30 °=,∴=,∴AD=4m,在Rt △BCD中,∵∠BCD=45°,∴BD=CD=12m,∴AB=AD+BD=4+12≈( m).答:旗杆 AB的高度为.21.( 7 分)(2016?邗江区二模)如图,在△ ABC中, DE分别是 AB,AC的中点, BE=2DE,延伸 DE到点 F,使得 EF=BE,连 CF(1)求证:四边形 BCFE是菱形;(2)若 CE=6,∠ BEF=120°,求菱形 BCFE的面积.【解答】( 1)证明:∵ D、 E 分别是 AB、 AC的中点,∴DE∥ BC且 2DE=BC,又∵ BE=2DE, EF=BE,∴E F=BC, EF∥ BC,∴四边形 BCFE是平行四边形,又∵ BE=EF,∴四边形 BCFE是菱形;(2)解:∵∠ BEF=120°,∴∠ EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点 E 作 EG⊥ BC于点 G,∴EG=BE?sin60°=6× =3,∴S菱形BCFE=BC?EG=6× 3=18.22.( 12 分)(2016?云南模拟)如图,抛物线 y=ax2+bx+c 经过 A(﹣ 1,0)、B( 4,0)、C ( 0,﹣2)三点.(1)求抛物线的函数关系式;(2)若直线 l 是抛物线的对称轴,设点 P 是直线 l 上的一个动点,当△ PAC的周长最小时,求点 P 的坐标;(3)在线段 AB上能否存在点 M( m, 0),使得以线段 CM为直径的圆与边 BC交于 Q点(与点 C 不一样),且以点 Q、B、O为极点的三角形是等腰三角形若存在,求出 m的值;若不存在,请说明原因.2【解答】解:∵ y=ax +bx+c 经过 A(﹣ 1, 0)、 B( 4, 0)、 C( 0,﹣ 2),解之得,∴函数分析式为y=x2﹣ x﹣ 2;(2)如图 1,抛物线的对称轴是直线x=.当点 P 落在线段BC上时, PA+PC最小,△ PAC的周长最小.设抛物线的对称轴与x 轴的交点为D.∵B( 4, 0)、 C( 0,﹣ 2).∴O B=4,OC=2.又 OD=,得 BD=.由,得PD=.∴点 P 的坐标为(,).(3)过点 Q作 QM⊥BC交 AB于点 M,如图 2,则依据直径所对圆周角是直角的性质,知点Q在以 CM为直径的圆上,由 A(﹣ 1, 0)、 B(4, 0)、 C( 0,﹣ 2)可证△ ABC是直角三角形,得∠ ACB=90°,∴QM∥ AC,∴△ BMQ∽△ BAC.∴,由 A(﹣ 1, 0)、 B(4, 0)、 C( 0,﹣ 2),可得 OA=1, OB=4,OC=2.则 AB=1+4=5, BC=.由 M( m, 0),得 BM=4﹣ m.分三种状况:①当 QB=QO时,点 Q在 OB垂直均分线上,是BC的中点,得QC=.∴,解得.②当 BQ=BO时, BQ=4.∴,解得.③当 OB=OQ时,因为 OQ=4, OA=2, OQ>OA进而点 Q在 CB的延伸线上,这样点 M不在线段AC上.综上所述, m的值为或.。

云南省2016届中考数学模拟试题三含解析

云南省2016届中考数学模拟试题三含解析

云南省2016届中考数学模拟试题三一、选择题(本大题共8小题,每题只有一个正确选项,每题3分,总分值24分)1.的绝对值是()A.B.C.2021 D.﹣20152.以下运算正确的选项是()A.3a+2b=5ab B.(3a)3=9a3C.a3•a4=a7D.a4+a3=a73.抛物线y=﹣(x﹣3)2+2的极点坐标是()A.(2,3) B.(﹣3,2)C.(3,2) D.(﹣3,﹣2)4.某物体的侧面展开图如下图,那么它的左视图为()A.B. C. D.5.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.26.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,那么所得任一多边形内角和度数不可能是()A.720°B.540°C.360°D.180°7.如图,在△ABC中,别离以极点A、B为圆心,大于AB为半径作弧,两弧在直线AB双侧别离交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好通过点C.以下结论中,错误的选项是()A.AB是⊙O的直径B.∠ACB=90°C.△ABC是⊙O内接三角形D.O是△ABC的内心8.如图,Rt△ABC中,∠B=90◦,BC=12,tanC=.若是一质点P开始时在AB边的P0处,BP0=3.P 第一步从P0跳到AC边的P1(第1次落点)处,且;第二步从P1跳到BC边的P2(第2次落点)处,且;第三步从P2跳到AB边的P3(第3次落点)处,且;…;质点P依照上述规那么一直跳下去,第n次落点为P n(n为正整数),那么点P2021与点P2021之间的距离为()A.6 B.5 C.4 D.3二、填空题(本大题共6个小题,每题3分,总分值15分)9.= .10.对甲、乙、丙三名射击手进行10次测试,平均成绩都是环,方不同离是,,,在这三名射击手中成绩比较稳固的是.11.截至2021年12月31日24时,三峡电站全年发电988亿千瓦时,创单座水电站年发电量新的世界最高纪录.988亿千瓦时用科学记数法表示为千瓦时.12.x2=x,那么方程的解为.13.如图,点A、C、B、D在⊙O上,∠AOB=60°,OC平分∠AOB,那么∠CDB的度数是°.三.解答题(共9个小题,共58分)14.先化简再求值:,其中x=1.15.如图,⊙O的直径AB垂直弦CD于E,过点C的切线CF交AB延长线于F,连接CO并延长交AD于G,且CG⊥AD.求证:△CEF≌△DEA.16.如图,菱形ABCD的边长为5,以菱形ABCD的对称中心为原点O,平行于AD的直线为x轴成立平面直角坐标系,已知A(﹣1,2),点D在双曲线y=上.(1)写出点B、D的坐标,并求双曲线的解析式.(2)判定点B是不是在双曲线上,并说明理由.17.某校九年级举行数学竞赛,学校预备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价别离是多少元?(2)学校打算拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?18.某区从参加地理学业水平考试的8000名学生中,随机抽取了部份学生的成绩作为样本,为了节省时刻,先将样本分成甲、乙两组,别离进行分析,取得下表;随后汇总整个样本数据,取得部份结果,绘制成如下统计图.(注:A:优秀(≥90分)、B:良好(≥70分且<90分)、C:合格(≥60分且<70分)、D:不合格(<60分))表一甲组乙组人数(人)120 80平均分(分)88 83请依照图和表所示信息回答以下问题:(1)样本中,学生地理学成绩平均分为分,中位数在内(填等第),众数是(填等第).A占的百分比是,C占的百分比是.(2)补全条形统计图.(3)成绩不低于60的为合格,估量这8000名学生的合格人数.19.甲、乙两人玩如下图的转盘游戏,游戏规那么是:转盘被平均分作3个区域,颜色别离为黑、白、红,转动转盘时,指针指向的颜色,即为转出的颜色,若是指针指在两区域之间,那么重转一次.两人参与游戏,一人转动两次转盘,另一人猜颜色,假设转出的颜色与猜出的颜色所表示的特点相符,那么猜颜色的人获胜;不然,转动转盘的人获胜.猜颜色的方式从下面三种方案当选一种.A.猜“颜色相同”或“颜色不同”B.猜是“必然有黑色”C.猜是“没有黑色”请利用所学的概率知识回答以下问题:(1)用树状图或列表法列出所有可能结果.(2)若是你是猜颜色的人,你将选择哪一种猜颜色方案,而且如何猜才能使自己尽可能获胜?什么缘故?20.甲、乙两条轮船同时从口岸A动身,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的方向,沿着东南方向航行,结果在小岛C处与乙船相遇、假设乙船的速度和航向维持不变,求:口岸A与小岛C之间的距离?21.如图,四边形ABCD是正方形,点E,F别离在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E别离作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是如何的特殊四边形,并证明你的猜想.22.在平面直角坐标系中,以D(﹣4,)为圆心的⊙D与y轴相切于点Q,与x轴交于A、B两点,其中点B坐标为(﹣1,0).以CD为对称轴的抛物线与⊙D交于A、B两点,点C 坐标为(﹣4,9).CD与x轴交于点H(1)求抛物线和直线AC的解析式;(2)P为直线AC上方抛物线上一点,当S△APC=AHC时,求点P坐标;(3)PM⊥AC于点M,PE⊥x轴于点E且与AC交于点N,△PMN的周长为l,求l的最大值.2016年云南省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共8小题,每题只有一个正确选项,每题3分,总分值24分)1.的绝对值是()A.B.C.2021 D.﹣2015【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;据此解答即可.【解答】解:依照负数的绝对值是它的相反数,得|﹣|=应选B.【点评】此题要紧考查的是绝对值的性质,解题的关键是把握绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.以下运算正确的选项是()A.3a+2b=5ab B.(3a)3=9a3C.a3•a4=a7D.a4+a3=a7【考点】幂的乘方与积的乘方;归并同类项;同底数幂的乘法.【分析】别离利用积的乘方运算法那么,和同底数幂的乘法运算法那么、归并同类项法那么判得出答案.【解答】解:A、3a+2b无法计算,故此选项错误;B、(3a)3=27a3,故此选项错误;C、a3•a4=a7,故此选项正确;D、a4+a3,无法计算,故此选项错误;应选:C.【点评】此题要紧考查了积的乘方运算法那么和同底数幂的乘法运算、归并同类项等知识,正确把握运算法那么是解题关键.3.抛物线y=﹣(x﹣3)2+2的极点坐标是()A.(2,3) B.(﹣3,2)C.(3,2) D.(﹣3,﹣2)【考点】二次函数的性质.【分析】已知抛物线解析式为极点式,依照极点式的坐标特点直接写出极点坐标.【解答】解:∵y=﹣(x﹣3)2+2为抛物线的极点式,∴抛物线的极点坐标为(3,2).应选C.【点评】要紧考查了求抛物线的极点坐标的方式.4.某物体的侧面展开图如下图,那么它的左视图为()A.B. C. D.【考点】几何体的展开图;简单几何体的三视图.【专题】常规题型.【分析】先依照侧面展开图判定出此物体是圆锥,然后依照左视图是从左面看到的视图解答.【解答】解:∵物体的侧面展开图是扇形,∴此物体是圆锥,∴圆锥的左视图是等腰三角形.应选B.【点评】此题考查了几何体的展开图,与简单几何体的三视图,依照侧面展开图判定出此物体是圆锥是解题的关键.5.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.2【考点】一元一次不等式组的整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式组的解集,即可确信出所有整数的和.【解答】解:不等式解得:﹣2<x≤1,整数解为﹣1,0,1,即整数解之和为﹣1+0+1=0,应选B.【点评】此题考查了一元一次不等式组的整数解,熟练把握运算法那么是解此题的关键.6.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,那么所得任一多边形内角和度数不可能是()A.720°B.540°C.360°D.180°【考点】多边形内角与外角.【分析】依照题意画出图形,再别离依照多边形的内角和定理进行解答即可.【解答】解:不同的划分方式有4种,见图:所得任一多边形内角和度数可能是360°或540°或180°.应选A.【点评】此题考查的是多边形内角与外角,多边形的内角和定理,利用数形结合及分类讨论是解答此题的关键.7.如图,在△ABC中,别离以极点A、B为圆心,大于AB为半径作弧,两弧在直线AB双侧别离交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好通过点C.以下结论中,错误的选项是()A.AB是⊙O的直径B.∠ACB=90°C.△ABC是⊙O内接三角形D.O是△ABC的内心【考点】作图—复杂作图;三角形的内切圆与内心.【专题】作图题.【分析】利用作法可判定点O为AB的中点,那么可判定AB为⊙O的直径,依照圆周角定理取得∠ACB=90°,依照三角形内接圆的概念取得△ABC为⊙O的内接三角形,然后对选项进行判定.【解答】解:由作法得MN垂直平分AB,那么OA=OB,那么AB为⊙O的直径,∵⊙O恰好通过点C,∴∠ACB=90°,△ABC为⊙O的内接三角形,点O为△ABC的外心.应选C.【点评】此题考查了作图﹣复杂作图:复杂作图是在五种大体作图的基础上进行作图,一样是结合了几何图形的性质和大体作图方式.解决此类题目的关键是熟悉大体几何图形的性质,结合几何图形的大体性质把复杂作图拆解成大体作图,慢慢操作.解决此题的关键是明白得三角形的内心的概念.8.如图,Rt△ABC中,∠B=90◦,BC=12,tanC=.若是一质点P开始时在AB边的P0处,BP0=3.P 第一步从P0跳到AC边的P1(第1次落点)处,且;第二步从P1跳到BC边的P2(第2次落点)处,且;第三步从P2跳到AB边的P3(第3次落点)处,且;…;质点P依照上述规那么一直跳下去,第n次落点为P n(n为正整数),那么点P2021与点P2021之间的距离为()A.6 B.5 C.4 D.3【考点】相似三角形的判定与性质.【专题】规律型.【分析】依照题意,观看循环规律,由易到难,由特殊到一样,找到点P2021和点P2021的位置,进而得出答案.【解答】解:如,在RT△ABC中,∵BC=12,tan∠C=,∠B=90°,∴AB=9,BC=12,由题意:BP0=P0P4=P4A=3,AP5=P5P1=P1C=5,CP3=P3P6=P6B=4,P7与P0重合,从P7开始显现循环,∵2021÷7的余数是5,∴P2021与P5重合,∴P2021P2021=P5P6,∵P5P6∥BA,∴=,∴,∴P2021P2021=P5P6=6.应选A.【点评】此题要紧考查了图形转变规律、平行线分线段成比例定理,通过列举几个落点之间的距离,寻觅一样规律是解题关键.二、填空题(本大题共6个小题,每题3分,总分值15分)9.= 2.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式第一项化为最简二次根式,第二项利用零指数幂法那么计算,最后一项利用负整数指数幂法那么计算即可取得结果.【解答】解:原式=2﹣1+1=2,故答案为:2【点评】此题考查了实数的运算,熟练把握运算法那么是解此题的关键.10.对甲、乙、丙三名射击手进行10次测试,平均成绩都是环,方不同离是,,,在这三名射击手中成绩比较稳固的是甲.【考点】方差.【分析】依照方差的意义即可得出结论.方差是用来衡量一组数据波动大小的量,方差越小,说明这组数据散布比较集中,各数据偏离平均数越小,即波动越小,数据越稳固.【解答】解:依照方差的概念,方差越小数据越稳固,因为S甲2=,S乙2=,S丙2=,方差最小的为甲,因此此题中成绩比较稳固的是甲.故答案为:甲【点评】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳固;反之,方差越小,说明这组数据散布比较集中,各数据偏离平均数越小,即波动越小,数据越稳固.11.截至2021年12月31日24时,三峡电站全年发电988亿千瓦时,创单座水电站年发电量新的世界最高纪录.988亿千瓦时用科学记数法表示为×1010千瓦时.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将988亿用科学记数法表示为:×1010.故答案为:×1010.【点评】此题考查科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.12.x2=x,那么方程的解为x1=0,x2=1 .【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左侧,用提公因式法因式分解即可求出方程的根.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0,x﹣1=0,解得x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查的是用因式分解法解一元二次方程,依照题目的结构特点,用提公因式法因式分解,能够求出方程的根.13.如图,点A、C、B、D在⊙O上,∠AOB=60°,OC平分∠AOB,那么∠CDB的度数是15 °.【考点】圆周角定理.【分析】由∠AOB=60°,OC平分∠AOB,可得∠BOC=30°,依照同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得结论.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠BOC=30°,点A、B、C、D在⊙O上,∴∠CDB=∠BOC=15°.故答案为15°.【点评】此题考查了圆周角定理.此题比较简单,熟练把握圆周角定理是解题的关键.三.解答题(共9个小题,共58分)14.先化简再求值:,其中x=1.【考点】分式的化简求值.【分析】先依照分式混合运算的法那么把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=[1+]•=•=,当x=1时,原式=2.【点评】此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.15.如图,⊙O的直径AB垂直弦CD于E,过点C的切线CF交AB延长线于F,连接CO并延长交AD于G,且CG⊥AD.求证:△CEF≌△DEA.【考点】切线的性质;全等三角形的判定.【专题】证明题.【分析】由CF是⊙O的切线,易患CG⊥CF,证得CF∥AD,得出∠ECF=∠EDA,∠F=∠A,依照垂径定理得出CE=DE,然后依照AAS即可证得△CEF≌△DEA.【解答】证明:∵CF是⊙O的切线∴∠OCF=90°,∴CG⊥CF,又∵CG⊥AD,∴CF∥AD,∴∠ECF=∠EDA,∠F=∠A,∵直径AB垂直弦CD,∴CE=DE,在△CEF和△DEA中,,∴△CEF≌△DEA(ASA).【点评】此题考查了切线的性质、平行线的判定和性质、垂径定理和全等三角形的判定.熟练把握性质定理是解此题的关键.16.如图,菱形ABCD的边长为5,以菱形ABCD的对称中心为原点O,平行于AD的直线为x轴成立平面直角坐标系,已知A(﹣1,2),点D在双曲线y=上.(1)写出点B、D的坐标,并求双曲线的解析式.(2)判定点B是不是在双曲线上,并说明理由.【考点】菱形的性质;反比例函数图象上点的坐标特点;待定系数法求反比例函数解析式.【分析】(1)直接利用菱形的性质结合A点坐标得出B,D点坐标;(2)利用反比例函数图象上点的坐标性质得出答案.【解答】解:(1)由题意可得:B(﹣4,﹣2),D(4,2)把D代入y=得:,解得:k=8反比例函数解析式为:;(2)把x=﹣4代入解析式得:,因此B(﹣4,﹣2)在双曲线上.【点评】此题要紧考查了菱形的性质和反比例函数图象上点的坐标性质,正确得出B,D点坐标是解题关键.17.某校九年级举行数学竞赛,学校预备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价别离是多少元?(2)学校打算拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)设甲种笔记本的单价为x元,乙种为(x﹣10)元,丙种为元,依照“单价和为80元”列出方程并解答;(2)设购买甲种笔记本y本,依照“不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本”列出不等式组并解答.【解答】解:(1)设甲种笔记本的单价为x元,乙种为(x﹣10)元,丙种为元,依照题意得x+(x﹣10)+=80,解得x=36,乙种单价为x﹣10=36﹣10=26元,丙种为==18元.答:甲种笔记本的单价为36元,乙种为26元,丙种为18元.(2)设购买甲种笔记本y本,由题意得,解得5<y≤7,因为y是整数,因此y=6或y=7 那么乙种笔记本购买14本或13本,因此,方案有2种:方案一:购买甲种笔记本6本,乙种笔记本14本,丙种笔记本20本;方案二:购买甲种笔记本7本,乙种笔记本13本,丙种笔记本20本.【点评】此题考查了一元一次不等式组和一元一次方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.18.某区从参加地理学业水平考试的8000名学生中,随机抽取了部份学生的成绩作为样本,为了节省时刻,先将样本分成甲、乙两组,别离进行分析,取得下表;随后汇总整个样本数据,取得部份结果,绘制成如下统计图.(注:A:优秀(≥90分)、B:良好(≥70分且<90分)、C:合格(≥60分且<70分)、D:不合格(<60分))表一甲组乙组人数(人)120 80平均分(分)88 83请依照图和表所示信息回答以下问题:(1)样本中,学生地理学成绩平均分为 B 分,中位数在 B 内(填等第),众数是B (填等第).A占的百分比是30% ,C占的百分比是15% .(2)补全条形统计图.(3)成绩不低于60的为合格,估量这8000名学生的合格人数.【考点】条形统计图;用样本估量整体;扇形统计图.【分析】(1)样本中,学生的数学成绩的平均分数能够用(120×88+80×83)÷(120+80)计算取得,进一步利用中位数、众数的意义得出中位数和众数,利用A、C人数除以总人数得出百分比;(2)利用(1)中数据补全条形统计图;(3)用8000乘合格以上人数所占百分比即可.【解答】解:(1)样本中,学生地理学成绩平均分为(120×88+80×83)÷(120+80)=86分,中位数在B等内(填等第),众数是B(填等第).A占的百分比是60÷200=30%,C占的百分比是(200﹣60﹣100﹣10)÷200=15%.(2)补全条形统计图.(3)在样本中,合格所占比例为:50%+30%+15%=95%,因此能够估量,8000名学生中,合格的学生约占95%,那么人数为8000×95%=7600人.【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中取得必要的信息是解决问题的关键.条形统计图能清楚地表示出每一个项目的数据.19.甲、乙两人玩如下图的转盘游戏,游戏规那么是:转盘被平均分作3个区域,颜色别离为黑、白、红,转动转盘时,指针指向的颜色,即为转出的颜色,若是指针指在两区域之间,那么重转一次.两人参与游戏,一人转动两次转盘,另一人猜颜色,假设转出的颜色与猜出的颜色所表示的特点相符,那么猜颜色的人获胜;不然,转动转盘的人获胜.猜颜色的方式从下面三种方案当选一种.A.猜“颜色相同”或“颜色不同”B.猜是“必然有黑色”C.猜是“没有黑色”请利用所学的概率知识回答以下问题:(1)用树状图或列表法列出所有可能结果.(2)若是你是猜颜色的人,你将选择哪一种猜颜色方案,而且如何猜才能使自己尽可能获胜?什么缘故?【考点】列表法与树状图法.【专题】计算题.【分析】(1)利用列表法展现所有9种等可能得结果数;(2)在表中别离找出“颜色相同”或“颜色不同”、“必然有黑色”、“没有黑色”的结果数,然后依照概率别离计算出三个方案的概率,再比较概率大小即可进行判定.【解答】解:(1)列表如下:黑白红第一次第二次黑(黑,黑)(黑,白)(黑,红)白(白,黑)(白,白)(白,红)红(红,黑)(红,白)(红,红)共有9种等可能的结果;(2)选方案B.理由如下:因为P(A方案)=,P(B方案)=,P(C方案)=,因此P(B)>P(C)>P(A).因此选方案B.【点评】此题考查了列表法或树状图法:通过列表法或树状图法展现所有等可能的结果求出n,再从当选出符合事件A或B的结果数量m,然后依照概率公式求出事件A或B的概率.20.甲、乙两条轮船同时从口岸A动身,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的方向,沿着东南方向航行,结果在小岛C处与乙船相遇、假设乙船的速度和航向维持不变,求:口岸A与小岛C之间的距离?【考点】解直角三角形的应用-方向角问题.【分析】依照题意画出图形,再依照平行线的性质及直角三角形的性质解答.【解答】解:由题意可知:∠1=60°,∠2=30°,∠4=45°,AB=30海里,过B作BD⊥AC于D,那么∠1=∠3=60°,在Rt△BCD中,∵∠4=45°,∴CD=BD,在Rt△ABD中,∵∠2=30°,AB=30海里,∴BD=AB=15海里,AD=•cos30°=30×=15海里,∴AC=AD+CD=15+15(海里).故口岸A与小岛C之间的距离是(15+15)海里.【点评】此题比较简单,解答此题的关键是过B作BD⊥AC,构造出直角三角形,利用特殊角的三角函数值及直角三角形的性质解答.21.如图,四边形ABCD是正方形,点E,F别离在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E别离作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是如何的特殊四边形,并证明你的猜想.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)利用角边角可得△DCE≌△MDA,那么可得DE=DM,∠EDC=∠MDA,进而依照∠ADC=90°可得DE⊥DM;(2)先证明四边形CFMD是平行四边形,得出DM=CF,DM∥CF,再证明四边形DENM都是矩形,得出EN=DM,EN∥DM,得出CF=EN,CF∥EN,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAM=90°,在△DCE和△MDA中,,∴△DCE≌△MDA(SAS),∴DE=DM,∠EDC=∠MDA.又∵∠ADE+∠EDC=∠ADC=90°,∴∠ADE+∠MDA=90°,∴DE⊥DM;(2)解:四边形CENF是平行四边形,理由如下:∵四边形ABCD是正方形,∴AB∥CD,AB=CD.∵BF=AM,∴MF=AF+AM=AF+BF=AB,即MF=CD,又∵F在AB上,点M在BA的延长线上,∴MF∥CD,∴四边形CFMD是平行四边形,∴DM=CF,DM∥CF,∵NM⊥DM,NE⊥DE,DE⊥DM,∴四边形DENM都是矩形,∴EN=DM,EN∥DM,∴CF=EN,CF∥EN,∴四边形CENF为平行四边形.【点评】此题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质;熟练把握正方形的性质,并能进行推理论证是解决问题的关键.22.在平面直角坐标系中,以D(﹣4,)为圆心的⊙D与y轴相切于点Q,与x轴交于A、B两点,其中点B坐标为(﹣1,0).以CD为对称轴的抛物线与⊙D交于A、B两点,点C 坐标为(﹣4,9).CD与x轴交于点H(1)求抛物线和直线AC的解析式;(2)P为直线AC上方抛物线上一点,当S△APC=AHC时,求点P坐标;(3)PM⊥AC于点M,PE⊥x轴于点E且与AC交于点N,△PMN的周长为l,求l的最大值.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+4)2+9.将B(﹣1,0)代入求得a的值即可;由抛物线的对称性求得点A的坐标,设直线AC的解析式为y=kx+b,将A(﹣7,0)、C(﹣4,9)代入求解即可;(2)由题意可求得S△APC=3.设p(a,﹣a2﹣8a﹣7),N(a,3a+21).那么PN=﹣a2﹣8a ﹣7﹣(3a+21)=﹣a2﹣11a﹣28,由三角形的面积公式列出关于a的方程,然后解得a的值可求得点P的坐标;(3)利用配方式可求得PN的最大值为,然后证明△PMN∽△CHA,取得PM:MN:PN=1:3:,从而可求得l的最大值.【解答】解:(1)设抛物线的解析式为y=a(x+4)2+9.∵将B(﹣1,0)代入得:9a+9=0,解得;a=﹣1,∴解析式为y=﹣(x+4)2+9,即y=﹣x2﹣8x﹣7.∵点A与点B关于x=﹣4对称,B(﹣1,0)∴A(﹣7,0).设直线AC的解析式为y=kx+b.∵将A(﹣7,0)、C(﹣4,9)代入得:,解得:k=3,b=21,∴直线AC的解析式为y=3x+21.(2)∵AH=3,CH=9,∴S△AHC==.∵S△APC=AHC,∴S△APC=×=3.设p(a,﹣a2﹣8a﹣7),N(a,3a+21).那么PN=﹣a2﹣8a﹣7﹣(3a+21)=﹣a2﹣11a﹣28.∵S△APC=PN•AH=3,∴×(﹣a2﹣11a﹣28)×3=3,解得:a1=﹣5,a2=﹣6.∴点P(﹣5,8)或(﹣6,5)(3)∵由(2)可知PN=﹣a2﹣11a﹣28=﹣(a+)2+.∴PN的最大值为.∵EN∥CH,∴∠ACH=∠ANE.∵∠PNM=∠ENA,∴∠PNM=∠ACH.又∵∠PMN=∠AHC=90°,∴△PMN∽△CHA.∴PM:MN:PN=CH:HA:CA=1:3:.∴l=PN×=×=.【点评】此题要紧考查的是二次函数的综合应用,解答此题要紧应用了二次函数的图象和性质、待定系数法求二次函数、一次函数的解析式、相似三角形的性质和判定、三角形的面积公式,配方式求二次函数的最值,取得PN与点P的横坐标a的函数关系式是解题的关键.。

2016年云南省昆明市中考数学模拟试卷(二)(解析版)

2016年云南省昆明市中考数学模拟试卷(二)(解析版)

2016年云南省昆明市中考数学模拟试卷(二)一、填空题:本大题共6个小题,每小题3分,满分18分1.分解因式:x3﹣4x=.2.函数中,自变量x的取值范围是.3.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=.4.已知A(4,y1)、B(﹣4,y2)是抛物线y=(x+3)2﹣2的图象上两点,则y1y2.5.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.6.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为.二、选择题:本大题共8小题,每小题4分,满分32分7.下列计算正确的是()A.3a2﹣a2=3 B.a2•a4=a8C.a8÷a2=a5D.(a3)2=a68.某市轨道交通3号线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.32.83×104米C.3.283×105米D.3.283×103米9.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.10.一个圆锥形的圣诞帽底面半径为12cm,母线长为13cm,则圣诞帽的表面积为()A.312πcm2B.156πcm2C.78πcm2D.60πcm211.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是()A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣212.下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且13.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M 与⊙O的位置关系为()A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方14.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4三、解答题:本大题共9小题,满分70分15.计算:(﹣)﹣1+0﹣4sin60°+|﹣|16.图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.17.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.18.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.19.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)20.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.21.胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得PB+PC的和最小?若存在,求出P点坐标;若不存在,请说明理由;(3)若点M是线段BC下方的抛物线上一点,求△MBC面积的最大值,并求出此时M点的坐标.2016年云南省昆明市中考数学模拟试卷(二)参考答案与试题解析一、填空题:本大题共6个小题,每小题3分,满分18分1.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).2.函数中,自变量x的取值范围是x≥﹣1且x≠2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x﹣2≠0,解得:x≥﹣1且x≠2.故答案为:x≥﹣1且x≠2.3.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=6.【考点】锐角三角函数的定义.【分析】根据正弦函数的定义即可直接求解.【解答】解:∵sinB=,∴AB===6.故答案是:6.4.已知A(4,y1)、B(﹣4,y2)是抛物线y=(x+3)2﹣2的图象上两点,则y1>y2.【考点】二次函数图象上点的坐标特征.【分析】先求得函数y=(x+3)2﹣2的对称轴为x=﹣3,再判断A(4,y1)、B(﹣4,y2)离对称轴的远近,从而判断出y1与y2的大小关系.【解答】解:由y=(x+3)2﹣2可知抛物线的对称轴为直线x=﹣3,∵抛物线开口向上,而点A(4,y1)到对称轴的距离比B(﹣4,y2)远,∴y1>y2.故答案为>.5.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是60°.【考点】旋转的性质.【分析】根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°﹣40°×2=10°,∠ACO=∠A===70°,由三角形的外角性质得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.故答案为:60°.6.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为22014.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】根据规律得出OA1=,OA2=1,OA3=2,OA4=4,所以可得OA n=2n﹣2,进而解答即可.【解答】解:因为OA2=1,∴OA1=,OA2=1,OA3=2,OA4=4,由此得出OA n=2n﹣2,所以OA2016=22014,故答案为:22014.二、选择题:本大题共8小题,每小题4分,满分32分7.下列计算正确的是()A.3a2﹣a2=3 B.a2•a4=a8C.a8÷a2=a5D.(a3)2=a6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.8.某市轨道交通3号线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.32.83×104米C.3.283×105米D.3.283×103米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32.83千米=328300米=3.283×105米,故选:C.9.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.【考点】平行投影.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选D.10.一个圆锥形的圣诞帽底面半径为12cm,母线长为13cm,则圣诞帽的表面积为()A.312πcm2B.156πcm2C.78πcm2D.60πcm2【考点】圆锥的计算.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的底面周长是:12×13π=156π,则圆锥的侧面积是:×12π×13=156π(cm2).故选B.11.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是()A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2【考点】二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为(0,2),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+2.故选A.12.下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【考点】相似三角形的判定.【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.13.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M 与⊙O的位置关系为()A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方【考点】点与圆的位置关系;坐标与图形性质.【分析】根据勾股定理,可得OM的长,根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:OM==5,OM=r=5.故选:A.14.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.【解答】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:∵S△GCE=GC•CE=×3×4=6∵GF=3,EF=2,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×6=≠3.故④不正确.∴正确的个数有3个.故选:C.三、解答题:本大题共9小题,满分70分15.计算:(﹣)﹣1+0﹣4sin60°+|﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣3+1﹣4×+2=﹣2.16.图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.【考点】扇形面积的计算;作图-旋转变换;作图-位似变换.【分析】(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【解答】解:(1)见图中△A′B′C′(直接画出图形,不画辅助线不扣分)(2)见图中△A″B′C″(直接画出图形,不画辅助线不扣分)S=π(22+42)=π•20=5π(平方单位).17.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.【解答】证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.18.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【考点】条形统计图;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.19.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【考点】游戏公平性;列表法与树状图法.【分析】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.【解答】解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.2由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.20.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】过A作AE⊥BC,交CB的延长线于点E,先解Rt△ACD,求出CD的长,则AE=CD,再解Rt△ABE,求出BE的长,然后根据BC=AD﹣BE即可得到这栋楼的高度.【解答】解:过A作AE⊥BC,交CB的延长线于点E,在Rt△ACD中,∵∠CAD=30°,AD=420米,∴CD=AD•tan30°=420×=140(米),∴AE=CD=140米.在Rt△ABE中,∵∠BAE=30°,AE=140米,∴BE=AE•tan30°=140×=140(米),∴BC=AD﹣BE=420﹣140=280(米),答:这栋楼的高度为280米.21.胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.【考点】一次函数的应用.【分析】(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙两家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.【解答】解:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.22.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得PB+PC的和最小?若存在,求出P点坐标;若不存在,请说明理由;(3)若点M是线段BC下方的抛物线上一点,求△MBC面积的最大值,并求出此时M点的坐标.【考点】二次函数综合题.【分析】(1)将点B的坐标代入代入抛物线的解析式,可求得a的值,将a的值代入可求得抛物线的解析式;(2)先求得点C的坐标,然后依据待定系数法求得直线BC的解析式,然后再求得抛物线的对称轴方程,由三角形的三边关系可知当点P、C、B在一条直线上时,PC+PB有最小值,最后将点P的横坐标代入直线BC的解析式可求得点P的纵坐标;(3)过点M作MD⊥x轴,交直线BC与点D.设点M(a,),则点D(a,).于是可求得DM的长(用含a的式子表示),接下来,依据三角形的面积公式得到△CMB的面积与a的函数关系式,最后依据配方法可求得△CMB的面积的最大值以及点a的值.【解答】解:(1)∵将点B的坐标代入得:16a﹣6﹣2=0,解得:a=,∴抛物线的解析式为y=.(2)如图1所示:∵PC+PB≥BC,∴当点P、C、B在一条直线上时,PC+PB有最小值.∵令x=0得;y=﹣2,∴点C的坐标为(0,﹣2).设直线BC的解析式为y=kx+b.∵将点B、C的坐标代入得:,解得:k=,b=﹣2,∴直线BC的解析式为y=﹣2.∵抛物线的对称轴为x=﹣==,∴点P的横坐标为.∵将x=代入直线BC的解析式得;y=﹣2=﹣,∴点P的坐标为(,﹣).(3)过点M作MD⊥x轴,交直线BC与点D.设点M(a,),则点D(a,).DM=﹣()=﹣a2+2a.∵△CMB的面积=MD•OB=×4×(﹣a2+2a)=﹣a2+4a=﹣(a﹣2)2+4,∴当a=2时,△CMB的面积有最大值,△CMB的最大面积=4.∴点M(2,﹣3).2016年5月31日。

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。

2016年云南省大理州剑川县马登中学中考数学模拟试卷(三)

2016年云南省大理州剑川县马登中学中考数学模拟试卷(三)

2016年云南省大理州剑川县马登中学中考数学模拟试卷(三)一、选择题(共8小题)1.(2014•长沙)的倒数是()A.2 B.﹣2 C.D.﹣2.(2013•梧州)sin30°=()A.0 B.1 C.D.3.(2008•陕西)已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点有一个在y轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.34.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π5.(2005•浙江)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一3.24 C.3.24<x<3.25 D.3.25<x<3.266.(2012•呼伦贝尔)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱 C.长方体D.圆锥7.(2016•剑川县校级模拟)下列说法中,正确的有()(1)的平方根是±5;(2)五边形的内角和是540°.(3)抛物线y=x2+2x+4与x轴无交点.(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.A.2个B.3个C.4个D.5个8.(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.二、填空题(本大题共有10小题)9.(2016•剑川县校级模拟)计算:0×(﹣2)﹣7=.10.(2016•剑川县校级模拟)已知x2﹣2x﹣3=0,则2x2﹣4x的值为.11.(2015•张家界)因式分解:x2﹣1=.12.(2009•盐都区二模)已知∠α与∠β互补,若∠α=43°26′,则∠β=.13.(2016•剑川县校级模拟)九年级学生在进行跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得他们的平均成绩都是5.68米,甲的方差为0.3,乙的方差为0.4,那么成绩较为稳定的是(填“甲”或“乙”).14.(2014•青海)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=度.15.(2003•岳阳)在Rt△ABC中,∠C=90°,AC=3,BC=4,以直线AC为轴,把△ABC 旋转一周得到的圆锥的侧面积是.16.(2016•剑川县校级模拟)用黑白两种颜色的正方形纸片拼成如下一列图案:按这种规律排列第10个图案中有白色纸片张.三、解答题17.(2016•剑川县校级模拟)计算:﹣22++(3+π)0﹣|﹣3|.18.(2011•南昌)先化简,再求值:,其中a=.19.(2013•荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.20.(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.21.(2014•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?22.(2016•剑川县校级模拟)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.23.(2013•梧州)海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=.(1)求小岛两端A、B的距离;(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.24.(2013•鄂尔多斯)如图,△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:PC是⊙O的切线;(2)若∠PAC=60°,直径AC=4,求图中阴影部分的面积.25.(2013•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.26.(2013•鄂尔多斯)如图,抛物线的顶点为C(﹣1,﹣1),且经过点A、点B和坐标原点O,点B的横坐标为﹣3.(1)求抛物线的解析式;(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为顶点的四边形为平行四边形,请直接写出点D的坐标;(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.2016年云南省大理州剑川县马登中学中考数学模拟试卷(三)参考答案一、选择题(共8小题)1.A;2.C;3.C;4.C;5.C;6.B;7.A;8.C;二、填空题(本大题共有10小题)9.-7;10.6;11.(x+1)(x-1);12.136°34′;13.甲;14.50;15.20π;16.31;三、解答题17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;。

2016年云南省中考一模数学

2016年云南省中考一模数学

2016年云南省中考一模数学一.选择题(每小题3分,共24分)1. 34的倒数是()A.3 4B.3 4 -C.4 3D.43 -解析:34的倒数是43.答案:C.2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥解析:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.答案:C.3.下列运算中正确的是()A.π0=1xC.2-2=-4D.-|-2|=2解析:A、非零的零次幂等于1,故A正确;B x,故B错误;C、负整数指数幂与正整数指数幂互为倒数,故C错误;D、-|-2|=-2,故D错误;答案:A.4.不等式组221xx≤-⎧⎨-⎩>的解集是()A.x≤-2B.x>3C.3<x≤-2D.无解解析:解不等式x-2>1,得:x>3,又∵x≤-2,∴不等式组无解,答案:D.5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失.灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手.截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款80100万元.科学记数法表示为()元.A.8.01×107B.80.1×107C.8.01×108D.0.801×109解析:将80100万用科学记数法表示为:8.01×108.答案:C.6.九年级某班40位同学的年龄如下表所示:A.19,15B.15,14.5C.19,14.5D.15,15解析:∵年龄为15岁的有19人,最多,∴众数为15岁;平均数为:1331416151916214.540⨯+⨯+⨯+⨯=岁,答案:B.7.如图:AB∥DE,∠B=30°,∠C=110°,∠D的度数为()A.115°B.120°C.100°D.80°解析:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∵∠B=30°,∴∠1=30°,∵∠C=110°,∴∠2=80°,∴∠D=180°-∠2=180°-80°=100°.答案:C.二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是.解析:6x(x-2)=0,6x=0或x-2=0,所以x1=0,x2=2.答案:x1=0,x2=2.9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD= .解析:∵∠COD=60°,∴∠DAC=30°,∵AD 是⊙O 的直径,弦BC ⊥AD , ∴,∴∠BAD=∠DAC=30°, 答案:30°.10.在二次函数y=ax 2+bx+c 的图象如图所示,下列说法中:①b 2-4ac <0;②02b a->;③abc>0;④a-b-c >0,说法正确的是 (填序号).解析:由图可知,抛物线与x 轴有2个交点,所以b 2-4ac >0,故①错误; 对称轴在y 轴右侧,则02b x a=->,故②正确;抛物线开口向上,则a >0,而对称轴在y 轴右侧,则a 、b 异号,所以b <0, 其与y 轴的交点(0,c)位于y 轴的负半轴,则c <0, 所以abc >0,故③正确;∵a >0,b <0,c <0,∴a-b-c >0,故④正确; 答案:②③④.11.写出一个图象经过第二、四象限的反比例函数0k y k x=≠()的解析式: . 解析:由于反比例函数图象经过二、四象限, 所以比例系数为负数,故解析式可以为3y x=-.答案不唯一.答案:3y x=-.12.如图,Rt △ABC 中∠A=90°,∠C=30°,BD 平分∠ABC 且与AC 边交于点D ,AD=2,则点D 到边BC 的距离是 .解析:过D 作DE ⊥BC 于E ,∵BD 平分∠ABC ,∠A=90°, ∴DE=AD=2, 答案:2.13.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是 . 解析:由2n ,2n+1,2n+2,2n+3的个位数依次是2,4,8,6,得 指数每4的倍数一循环, 2015÷4=503…3,即(2+4+8+6)×503+(2+4+8)=503×20+14=10074. 答案:4.三.解答题(共9个小题,共58分) 14.化简求值:2232412444x x x x x +÷---+-,其中x=3. 解析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可. 答案:原式=()2321222x x x -⋅--- =()32122x x --- =()122x -, 当x=3时,原式=12.15.在△ABC 中,AB=AC ,点E ,F 分别在AB ,AC 上,AE=AF ,BF 与CE 相交于点P .求证:△EBC ≌△FCB.解析:首先根据等边对等角可得∠ABC=∠ACB ,再根据等式的性质可得BE=CF ,然后再利用SAS 判定△EBC ≌△FCB. 答案:∵AB=AC ,∴∠ABC=∠ACB,∵AE=AF,∴AB-AE=AC-AF即BE=CF,在△EBC和△FCB中,EB CFABC ACB BC BC⎧⎪∠∠⎨⎪⎩===,∴△EBC≌△FCB(SAS).16.如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x 轴交于B点,与y轴交于A点,已知A(0,4),B(2,0).(1)求直线AB的解析式.(2)若S△ABC=7,求点C的坐标.解析:(1)设直线AB的解析式为y=kx+b,把A(0,4),B(2,0)代入即可得出答案;(2)根据S△ABC=7得出BC的长度,从而得出点C的坐标.答案:(1)设直线AB的解析式为y=kx+b∵直线AB经过A(0,4),B(2,0)∴420 bk b⎧⎨-⎩==,解之得24kb⎧⎨⎩=-=,∴直线AB的解析式为y=-2x+4;(2)设C(x,0)∵A(0,4),B(2,0)∴OA=4,OB=2∵S△ABC=7,∴17 2BC OA⋅=,∴BC=3.5,∴|x-2|=3.5,解得:x=5.5或x=-1.5,∴C(-1.5,0)或C(5.5,0).17.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本笔记本的售价是多少元?解析:设打折前售价为x元,则打折后售价为0.9x元,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可.答案:设打折前每本笔记本的售价是x元,由题意得:2880288010=,0.9x x解得:x=32,经检验:x=32是原方程的解.答:打折前每本笔记本的售价是32元.18.为加强学生身体锻炼,我校开展体育“大课间”活动.学校学生会体育部决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下图所示的两个统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“篮球”的学生人数和所占百分比,并将两个统计图补充完整;(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人?解析:(1)根据喜欢C项目的人数是40,所占的百分比是20%即可求得调查的总人数;(2)利用总人数减去其它项的人数即可求得喜欢“篮球”的学生人数,然后根据百分比的意义求得百分比;以及喜欢“跑步”的百分比,补全两个图即可;(3)利用总人数乘以喜欢篮球的百分比即可.答案:(1)调查人数为40÷20%=200人;(2)喜欢“篮球”的人数为:200-10-40-30-40=80人,百分比为:80÷200×100%=40%跑步占的百分比为:1-40%-20%-5%-20%=15%;图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240人答:全校学生中,喜欢排球的人数约为240人.19.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.解析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.答案:(1)根据题意列表得:(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为12,∴这个游戏公平.20.如图,某同学站在旗杆正对的教学楼上点C处观测到旗杆顶端A的仰角为30°,旗杆底端B的俯角为45°,已知旗杆距离教学楼12米,求旗杆AB的高度.(结果精确到0.1. 1.732 1.414≈≈)(参考数据:130303045454512sin cos tan sin cos tan ︒=︒=︒=︒=︒=︒=,)解析:根据在Rt △ACD 中,AD tan ACD CD∠=,求出AD 的值,再根据在Rt △BCD 中,tan BD BCD CD∠=,求出BD 的值,最后根据AB=AD+BD ,即可求出答案.答案:在Rt △ACD 中, ∵AD tan ACD CD∠=,∴3012AD tan ︒=,∴12AD =,∴AD =, 在Rt △BCD 中, ∵∠BCD=45°, ∴BD=CD=12m ,∴12AB AD BD m =+=+().答:旗杆AB 的高度为12+m.21.如图,在△ABC 中,DE 分别是AB ,AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连CF(1)求证:四边形BCFE 是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE 的面积.解析:(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以是菱形;(2)由∠BEF 是120°,可得∠EBC 为60°,即可得△BEC 是等边三角形,求得BE=BC=CE=6,再过点E 作EG ⊥BC 于点G ,求的高EG 的长,即可求得答案. 答案:(1)证明:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC 且2DE=BC , 又∵BE=2DE ,EF=BE , ∴EF=BC ,EF ∥BC ,∴四边形BCFE 是平行四边形, 又∵BE=EF ,∴四边形BCFE 是菱形;(2)解:∵∠BEF=120°, ∴∠EBC=60°,∴△EBC 是等边三角形, ∴BE=BC=CE=6,过点E 作EG ⊥BC 于点G ,∴606EG BE sin =⋅︒==∴6BCFE S BC EG =⋅=⨯=菱形.22.如图,抛物线y=ax 2+bx+c 经过A(-1,0)、B(4,0)、C(0,-2)三点. (1)求抛物线的函数关系式;(2)若直线l 是抛物线的对称轴,设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在线段AB 上是否存在点M(m ,0),使得以线段CM 为直径的圆与边BC 交于Q 点(与点C 不同),且以点Q 、B 、O 为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由.解析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可.(2)由图知:A 、B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC ,那么BC 与直线l 的交点即为符合条件的P 点.(3)由于△QBO 的腰和底没有明确,因此要分三种情况来讨论:①QB=BO 、②QB=QO 、③QO=BO ;可先设出M 点的坐标,然后用M 点纵坐标表示△QBO 的三边长,再按上面的三种情况列式求解即可.答案:(1)∵y=ax 2+bx+c 经过A(-1,0)、B(4,0)、C(0,-2),∴164002a b c a b c c ++⎧⎪-+⎨⎪⎩===-, 解之得12322a b c ⎧⎪⎪-⎨⎪-⎪⎩===, ∴函数解析式为231222y x x =--; (2)如图1,抛物线的对称轴是直线x=1.5.当点P 落在线段BC 上时,PA+PC 最小,△PAC 的周长最小.设抛物线的对称轴与x 轴的交点为D .∵B(4,0)、C(0,-2).∴OB=4,OC=2.又3522OD BD ==,得. 由BD PD BO OC=,得 54PD =. ∴点P 的坐标为3524-(,). (3)过点Q 作QM ⊥BC 交AB 于点M ,如图2,则根据直径所对圆周角是直角的性质,知点Q 在以CM 为直径的圆上,由A(-1,0)、B(4,0)、C(0,-2)可证△ABC 是直角三角形,得∠ACB=90°,∴QM ∥AC ,∴△BMQ ∽△BAC . ∴BQ BM BC AB=, 由A(-1,0)、B(4,0)、C(0,-2),可得OA=1,OB=4,OC=2.则AB=1+4=5,BC =由M(m ,0),得BM=4-m .分三种情况:①当QB=QO 时,点Q 在OB 垂直平分线上,是BC 的中点,得QC=5.45m -,解得32m =. ②当BQ=BO 时,BQ=4.45m -=,解得4m -= ③当OB=OQ 时,由于OQ=4,OA=2,OQ >OA 从而点Q 在CB 的延长线上,这样点M 不在线段AC 上.综上所述,m 的值为32或4m -=。

2016年云南省初中学业水平测试数学中考考试试题

2016年云南省初中学业水平测试数学中考考试试题

2016年云南省中考数学试卷一、填空题(本大题共6个小题,每小题4分,满分24分)1.|﹣3|= .2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2= .3.因式分解:x2﹣1= .4.若一个多边形的边数为6,则这个多边形的内角和为度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y= 的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y= 的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.D.515. 已知一个圆锥的底面直径为6cm,高为4cm。

云南省剑川县马登镇初级中学2016届中考数学模拟试题(二)

云南省剑川县马登镇初级中学2016届中考数学模拟试题(二)

WORD格式∴点 E 所经过的路径长=1.5 ﹣〔 4﹣6〕=;②如图,过C 作 CM⊥AB 于 M,过 M作 MN⊥AC 于 N,由〔 1〕知 CM=,MN=,则AN= ,由①知, DF=2DG=6﹣2,∴AD=4﹣〔 6﹣ 2〕=2﹣2,∴线段DE所扫过的面积=S△ACD﹣S△CDE﹣S△AMN=﹣﹣,∴线段 DE所扫过的面积=18﹣.【点评】此题考察了轨迹问题,角平分线的定义,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.26.如图,抛物线y=ax 2+bx+c 经过点 A〔﹣ 1, 0〕、 B〔 3, 0〕、C〔 0, 3〕三点.(1〕求抛物线相应的函数表达式;(2〕点M是线段BC上的点〔不与B、C 重合〕,过M作MN∥y轴交抛物线于N,连接NB.假设点 M的横坐标为 t ,是否存在 t ,使 MN的长最大?假设存在,求出 sin ∠MBN的值;假设不存在,请说明理由;(3〕假设对一切 x≥0均有 ax2+bx+c≤mx﹣ m+13成立,XX数 m的取值X围.∴点 E 所经过的路径长=1.5 ﹣〔 4﹣6〕=;②如图,过C 作 CM⊥AB 于 M,过 M作 MN⊥AC 于 N,由〔 1〕知 CM=,MN=,则AN= ,由①知, DF=2DG=6﹣2,∴AD=4﹣〔 6﹣ 2〕=2﹣2,∴线段DE所扫过的面积=S△ACD﹣S△CDE﹣S△AMN=﹣﹣,∴线段 DE所扫过的面积=18﹣.【点评】此题考察了轨迹问题,角平分线的定义,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.26.如图,抛物线y=ax 2+bx+c 经过点 A〔﹣ 1, 0〕、 B〔 3, 0〕、C〔 0, 3〕三点.(1〕求抛物线相应的函数表达式;(2〕点M是线段BC上的点〔不与B、C 重合〕,过M作MN∥y轴交抛物线于N,连接NB.假设点 M的横坐标为 t ,是否存在 t ,使 MN的长最大?假设存在,求出 sin ∠MBN的值;假设不存在,请说明理由;(3〕假设对一切 x≥0均有 ax2+bx+c≤mx﹣ m+13成立,XX数 m的取值X围.∴点 E 所经过的路径长=1.5 ﹣〔 4﹣6〕=;②如图,过C 作 CM⊥AB 于 M,过 M作 MN⊥AC 于 N,由〔 1〕知 CM=,MN=,则AN= ,由①知, DF=2DG=6﹣2,∴AD=4﹣〔 6﹣ 2〕=2﹣2,∴线段DE所扫过的面积=S△ACD﹣S△CDE﹣S△AMN=﹣﹣,∴线段 DE所扫过的面积=18﹣.【点评】此题考察了轨迹问题,角平分线的定义,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.26.如图,抛物线y=ax 2+bx+c 经过点 A〔﹣ 1, 0〕、 B〔 3, 0〕、C〔 0, 3〕三点.(1〕求抛物线相应的函数表达式;(2〕点M是线段BC上的点〔不与B、C 重合〕,过M作MN∥y轴交抛物线于N,连接NB.假设点 M的横坐标为 t ,是否存在 t ,使 MN的长最大?假设存在,求出 sin ∠MBN的值;假设不存在,请说明理由;(3〕假设对一切 x≥0均有 ax2+bx+c≤mx﹣ m+13成立,XX数 m的取值X围.∴点 E 所经过的路径长=1.5 ﹣〔 4﹣6〕=;②如图,过C 作 CM⊥AB 于 M,过 M作 MN⊥AC 于 N,由〔 1〕知 CM=,MN=,则AN= ,由①知, DF=2DG=6﹣2,∴AD=4﹣〔 6﹣ 2〕=2﹣2,∴线段DE所扫过的面积=S△ACD﹣S△CDE﹣S△AMN=﹣﹣,∴线段 DE所扫过的面积=18﹣.【点评】此题考察了轨迹问题,角平分线的定义,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.26.如图,抛物线y=ax 2+bx+c 经过点 A〔﹣ 1, 0〕、 B〔 3, 0〕、C〔 0, 3〕三点.(1〕求抛物线相应的函数表达式;(2〕点M是线段BC上的点〔不与B、C 重合〕,过M作MN∥y轴交抛物线于N,连接NB.假设点 M的横坐标为 t ,是否存在 t ,使 MN的长最大?假设存在,求出 sin ∠MBN的值;假设不存在,请说明理由;(3〕假设对一切 x≥0均有 ax2+bx+c≤mx﹣ m+13成立,XX数 m的取值X围.。

云南省剑川县马登镇初级中学九年级数学模拟试题(一)

云南省剑川县马登镇初级中学九年级数学模拟试题(一)

云南省剑川县马登镇初级中学2016届九年级数学中考模拟试题一一、选择题1.﹣5的绝对值是()A.B.﹣5 C.5 D.﹣2.(a2)3等于()A.3a2B.a5C.a6D.a83.随着电子技术的不断进步,电子元件的尺寸大幅缩小,电脑芯片上某电子元件大约只有0.000 000 645mm2,这个数用科学记数法表示为()A.6.45×10﹣7B.64.5×10﹣8C.0.645×10﹣6D.6.45×10﹣64.下列调查中,适宜采用普查的是()A.了解宁德市空气质量情况B.了解闽江流域的水污染情况C.了解宁德市居民的环保意识D.了解全班同学每周体育锻炼的时间5.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B.C.D.6.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)7.不等式组的解集在数轴上表示为()A.B.C.D.8.下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形9.边长为4的正三角形的高为()A.2 B.4 C.D.210.多位数139713…、684268…,都是按如下方法得到的:将第1位数字乘以3,积为一位数时,将其写在第2位;积为两位数时,将其个位数字写在第2位.对第2位数字进行上述操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字为4时,所得多位数前2014位的所有数字之和是()A.10072 B.10066 C.10064 D.10060二、填空题.11.五边形的内角和等于度.12.分解因式:mx2+2mx+m= .13.如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD= 度.14.已知△ABC的周长为18,D、E分别是AB、AC的中点,则△ADE的周长为.15.计算: = .16.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是.17.若我们把十位上的数字比个位和百位上的数字都小的三位数称为凹数,如:768,645.则由1,2,3这三个数字构成的,数字不重复的三位数是“凹数”的概率是.18.如图,A是反比例函数y=(x>0)图象上一点,点B、D在 y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则该反比例函数的表达式为.三、解答题.19.(1)计算:;(2)解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.20.请从以下三个等式中,选出一个等式填在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,.求证:△ABE≌△CDF.证明:21.随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式.黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车来福州,那么他此行与乘飞机相比将减少二氧化碳排放量多少千克?22.为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(2015•金溪县模拟)一段路基的横断面是直角梯形,如图1所示,已知原来坡面的坡角α的正弦值为0.6.(1)求DC的长.(2)现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如图2所示的技术要求,试求出改造后坡面的坡角是多少?(精确到0.1度)24.如图,点P是⊙O外一点,过点P作⊙O的切线,切点为A,连接PO并延长,交⊙O于B、C两点.(1)求证:△PBA∽△PAC;(2)若∠BAP=30°,PB=2,求⊙O的半径.25.如图所示,四边形ADEF为正方形,△ABC为等腰直角三角形,D在BC边上,连接CF.(1)求证:BC⊥CF;(2)若△ABC的面积为16,BD:DC=1:3,求正方形ADEF的面积;(3)当(2)的条件下,连接AE交DC于G,求的值.26.如图,已知抛物线y=x2+bx+c与直线y=﹣x+3交于A、B两点,点A 在y轴上,点B在x轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM⊥x轴交直线AB于M.(1)求抛物线解析式.(2)当PM=2BC时,求M的坐标.(3)点P运动过程中,△APM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.参考答案一、选择题1.﹣5的绝对值是()A.B.﹣5 C.5 D.﹣【考点】绝对值.【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:﹣5的绝对值是5.故选C.【点评】本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(a2)3等于()A.3a2B.a5C.a6D.a8【考点】幂的乘方与积的乘方.【分析】根据幂的乘方法则(幂的乘方,底数不变,指数相乘)求出即可.【解答】解(a2)3=a6,故选C.【点评】本题考查了幂的乘方的应用,能根据法则进行计算是解此题的关键,注意:(a m)n=a mn.3.随着电子技术的不断进步,电子元件的尺寸大幅缩小,电脑芯片上某电子元件大约只有0.000 000 645mm2,这个数用科学记数法表示为()A.6.45×10﹣7B.64.5×10﹣8C.0.645×10﹣6D.6.45×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 645=6.45×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列调查中,适宜采用普查的是()A.了解宁德市空气质量情况B.了解闽江流域的水污染情况C.了解宁德市居民的环保意识D.了解全班同学每周体育锻炼的时间【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解宁德市空气质量情况适合抽样调查,故A错误;B、了解闽江流域的水污染情况适合抽样调查,故B错误;C、了解宁德市居民的环保意识适合抽样调查,故C错误;D、了解全班同学每周体育锻炼的时间适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确;D、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.故选C.【点评】本题主要考查几何体展开图的知识点,熟记常见立体图形的平面展开图是解决此类问题的关键.6.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果.【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣2,1)关于x轴的对称点的坐标是(﹣2,﹣1),故选:C.【点评】本题主要考查了两点关于x轴对称,横坐标不变,纵坐标互为相反数,比较简单.7.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解3x+1≥4,解得x≥1;解4﹣2x>0,解得x<2,不等式组的解集为1≤x<2,故选:D.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形【考点】矩形的判定;菱形的判定.【分析】A与C根据对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形即可判定;B与D举反例即可判定,反例可以作图,利用数形结合思想解答.【解答】解:A、对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;正确;即可得C错误;B、D、对角线互相垂直且相等的四边形可能是如图:所以错误;故选:A.【点评】此题考查了:对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;对角线互相垂直的平行四边形是菱形.注意当判定一个命题错误时,举反例即可,当判定一个命题正确时,需要证明.9.边长为4的正三角形的高为()A.2 B.4 C.D.2【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质,即可得D为BC的中点,即可求BD的值,已知AB、BD根据勾股定理即可求AD的值.【解答】解:∵等边三角形三线合一,∴D为BC的中点,∴BD=BC=2,在Rt△ABD中,AB=4,BD=2,则AD====2.故选D.【点评】本题主要考查了勾股定理在直角三角形中的运用,等边三角形三线合一的性质,本题中根据勾股定理求AD的值是解题的关键,难度适中.10.多位数139713…、684268…,都是按如下方法得到的:将第1位数字乘以3,积为一位数时,将其写在第2位;积为两位数时,将其个位数字写在第2位.对第2位数字进行上述操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字为4时,所得多位数前2014位的所有数字之和是()A.10072 B.10066 C.10064 D.10060【考点】规律型:数字的变化类.【分析】通过计算发现,每4位数为一个循环组依次循环,然后用2014除以4即可得出第2014位数字是第几个循环组的第几个数字,由此进一步计算得出答案即可.【解答】解:当第1位数字为4时,得到42684268…,每四个数字一循环,∵2014÷4=503…2,∴第2014位的数字是2,则(4+2+6+8)×503+4+2=20×503+6=10066.故选:B.【点评】此题考查数字的变化规律,找出数字的循环规律,利用规律解决问题.二、填空题.11.五边形的内角和等于540 度.【考点】多边形内角与外角.【专题】计算题.【分析】直接根据n边形的内角和=(n﹣2)•180°进行计算即可.【解答】解:五边形的内角和=(5﹣2)•180°=540°.故答案为:540.【点评】本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•180°.12.分解因式:mx2+2mx+m= m(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:mx2+2mx+m=m(x2+2x+1)=m(x+1)2.【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD=50 度.【考点】平行线的性质;直角三角形的性质.【专题】计算题.【分析】先根据直角三角形两锐角互余求出∠B的度数,再根据两直线平行,内错角相等解答.【解答】解:∵∠A=40°,AC⊥BC,∴∠B=90°﹣40°=50°,∵AB∥CD,∴∠BCD=∠B=50°.【点评】本题利用直角三角形两锐角互余和平行线的性质求解.14.已知△ABC的周长为18,D、E分别是AB、AC的中点,则△ADE的周长为9 .【考点】三角形中位线定理.【专题】计算题.【分析】利用三角形中位线定理,可知中点三角形的周长等于原三角形周长的一半,则△ADE 的周长可求.【解答】解:如图:∵D、E分别是AB、AC的中点,∴DE=BC,AD=AB,AE=AC,∴△ADE的周长=DE+AD+AE=(BC+AB+AC)=×18=9.故答案为9.【点评】本题是中学阶段较简单的题目,考查了三角形的中位线定理,解题关键是熟记三角形的中位线定理即可.15.计算: = 1 .【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式==1.故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】根据圆心O到直线l的距离大于半径即可判定直线l与⊙O的位置关系为相离.【解答】解:∵圆心O到直线l的距离是4cm,大于⊙O的半径为3cm,∴直线l与⊙O相离.故答案为:相离【点评】此题考查的是直线与圆的位置关系,根据圆心到直线的距离d与半径r的大小关系解答.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.17.若我们把十位上的数字比个位和百位上的数字都小的三位数称为凹数,如:768,645.则由1,2,3这三个数字构成的,数字不重复的三位数是“凹数”的概率是.【考点】概率公式.【专题】新定义.【分析】将由1,2,3构成的所有的数全部列举出来,找到“凹数”的个数,用概率公式求解即可.【解答】解:由1,2,3这三个数字构成的,数字不重复的三位数有:123,132,213,231,312,321,∵共6种等可能的结果,数字不重复的三位数是“凹数”的有2种情况,∴不重复的3个数字组成的三位数中是“凹数”的概率是: =.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;18.如图,A是反比例函数y=(x>0)图象上一点,点B、D在 y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则该反比例函数的表达式为.【考点】位似变换;反比例函数综合题.【专题】计算题;综合题.【分析】根据△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,得出,进而得出假设BD=x,AE=4x,D0=3x,AB=y,根据△ABD的面积为1,求出xy=2即可得出答案.【解答】解:过A作AE⊥x轴,∵△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似是1:3,∴,∴OE=AB,∴,假设BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面积为1,∴xy=1,∴xy=2,∴AB•AE=4xy=8,该反比例函数的表达式为:y=,故答案为:y=.【点评】此题主要考查了位似图形的性质以及反比例函数的综合应用,得出假设BD=x,AE=4x,D0=3x,AB=y,根据△ABD的面积为1,求出xy=2是解决问题的关键.三、解答题.19.(1)计算:;(2)解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.【考点】解一元一次不等式;实数的运算;零指数幂;负整数指数幂;在数轴上表示不等式的解集.【分析】(1)根据负整数指数幂、零指数幂、乘方、开方及绝对值的意义,先进行计算,然后进行加减运算;(2)按不等式的解法步骤,先去括号,移项,合并同类项,系数化为1得到不等式的解,然后将它的解集在数轴上表示出来即可.【解答】解:(1);=2+3﹣1﹣3+1,=5﹣3;(2)5x﹣12≤2(4x﹣3),去括号得:5x﹣12≤8x﹣6,移项得:5x﹣8x≤﹣6+12,合并同类项得:﹣3x≤6,系数化为1得:x≥﹣2.不等式的解集在数轴上表示如图:.【点评】(1)本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了负整数指数幂和零指数幂;(2)本题考查了不等式的解法,易错点是:在数轴上表示最后的解集时,要注意数轴上这个点是实心点还是空心点..20.请从以下三个等式中,选出一个等式填在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,AB=CD .求证:△ABE≌△CDF.证明:【考点】全等三角形的判定.【专题】证明题.【分析】先加上条件,再证明,根据所加的条件,利用全等三角形的判定加以证明.【解答】证明:∵AB∥CD,∴∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF.【点评】本题是一道开放性的题目,考查了全等三角形的判定,是基础知识比较简单.21.随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式.黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车来福州,那么他此行与乘飞机相比将减少二氧化碳排放量多少千克?【考点】二元一次方程组的应用.【专题】方程思想.【分析】此题可以设两种交通工具每小时二氧化碳的排放量分别为x和y,根据已知两个关系列二元一次方程组,那么减少二氧化碳排放量是3x﹣9y.解二元一次方程组求出x和y 代入即可求出.【解答】解:设黄先生乘飞机和坐汽车每小时二氧化碳的排放量分别为x千克和y千克,依题意得:,解得,3x﹣9y=54,答:他此行将减少二氧化碳排放量54千克.【点评】此题考查的知识点是二元一次方程组的应用,解题的关键是由两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克这两个关系列方程组求解.22.为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(2015•金溪县模拟)一段路基的横断面是直角梯形,如图1所示,已知原来坡面的坡角α的正弦值为0.6.(1)求DC的长.(2)现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如图2所示的技术要求,试求出改造后坡面的坡角是多少?(精确到0.1度)【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知可求EC=40m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形ABCD面积=梯形A1B1C1D面积,可再求出EC1=80(m),即可求出改建后的坡度i=B1E:EC1=20:80=1:4.【解答】解:(1)作BE⊥DC于E,得矩形ABED与Rt△BCE.在Rt△BCE中,∵sinα==0.6,BE=AD=30m,∴BC==50m,∴EC2=BC2﹣BE2=502﹣302=1600,∴EC=40m,∴DC=DE+EC=20+40=60m;(2)作B1E1⊥D1C1于E1,在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形ABCD面积=梯形A1B1C1D面积,即×(20+60)×30=×20(20+20+E1C1),解得E1C1=80(m),所以改造后的坡度i=B1E1:E1C1=20:80=1:4,∵tan14.0°=0.2493,t an14.1°=0.2511,∴改造后坡面的坡角约为14.0°.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,分析得出梯形ABCD面积=梯形A1B1C1D面积是解题的关键;还要熟悉坡度公式.24.如图,点P是⊙O外一点,过点P作⊙O的切线,切点为A,连接PO并延长,交⊙O于B、C两点.(1)求证:△PBA∽△PAC;(2)若∠BAP=30°,PB=2,求⊙O的半径.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)利用弦切角定理可以证明:∠PAB=∠C,则△PBA和△PAC中有两个角对应相等,则一定相似;(2)易证△OAB是等边三角形,再证明AB=BP,即可证明.【解答】解:(1)证明:∵PA作⊙O的切线,切点为A,∴∠PAB=∠C,又∵∠P=∠P,∴△PBA∽△PAC;(2)∵PA作⊙O的切线,切点为A,∴∠OAP=90°,∵∠BAP=30°,∴∠OAB=60°,∵OA=OB,∴∠ABO=60°,∴∠P=30°∴∠AOB=90°﹣∠P=90°﹣30°=60°.∵OA=OB∴△OAB是等边三角形.∴OB=AB.∵PA作⊙O的切线,切点为A,∴∠PAB=∠AOB=30°,∴∠PAB=∠P,∴AB=BP∴OB=AB=BP=2.【点评】本题考查了弦切角定理,切线的性质定理,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.25.如图所示,四边形ADEF为正方形,△ABC为等腰直角三角形,D在BC边上,连接CF.(1)求证:BC⊥CF;(2)若△ABC的面积为16,BD:DC=1:3,求正方形ADEF的面积;(3)当(2)的条件下,连接AE交DC于G,求的值.【考点】四边形综合题.【分析】(1)由正方形的性质及等腰直角三角形的性质证明△ABD≌△ACF即可;(2)由三角形的面积可以求出AB、AC的值,由勾股定理就可以求出BC的值,就可以求出BD、CD的值,作DH⊥AB于点H,由勾股定理就可以求出BH=DH的值,进而得出AH的值,由勾股定理就可以求出AD2的值,即可得出结论;(3)设EF交BC于点M,设CM=x,则可以表示出MD,由勾股定理就可以得出FM的值,由△FCM∽△DEF就可以得出x的值,再由△AGD∽△EGM就可以得出GM的值,进而求出结论.【解答】解:(1)∵四边形ADEF为正方形,△ABC为等腰直角三角形,∴AD=AF=EF=DE,AB=AC,∠DAF=∠BAC=∠DEF=∠ADE=90°,∠B=∠ACB=45°,AD∥EF.∴∠DAF﹣∠DAC=∠BAC﹣∠DAC,∴∠DAB=∠FAC.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠B=∠ACF,BD=CF,∴∠ACF=45°,∴∠ACF+∠ACB=90°,即∠BCF=90°.∴BC⊥CF;(2)设AB=BC=x,由题意,得=16,∴x=4.∴BC=8.∵BD:DC=1:3,∴BD=8×=2,CD=8﹣2=6.作DH⊥AB于点H,∴∠DHB=∠DHA=90°,∴∠BDH=45°,∴∠B=∠BDH,∴BH=DH.设BH=DH=a,由勾股定理,得a=,∴AH=4﹣=3.在Rt△ADH中,由勾股定理,得AD2=20.∴AD=2.∵S正方形ADEF=AD2,∴正方形ADEF的面积为20;(3)设EF交BC于点M,设CM=x,则DM=6﹣x.∵BD=CF,∴CF=2.在Rt△CMF中,由勾股定理,得FM=.∵∠DEF=∠FCM=90°,∠DME=∠FMC,∴△FCM∽△DEF,∴,∴,∴,解得:x1=1,x2=﹣4(舍去)∴CM=1,FM=,∴ME=.DM=5∵AD∥EF.∴△AGD∽△EGM,∴,∴=2,∴DG=2GM,设GM=b,DG=2b,∴b+2b=5,∴b=,∴GC=,∴DG=6﹣=.∴=.答:的值为.【点评】本题考查了正方形的性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,垂直的判定及性质的运用,相似三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等及相似是关键.26.如图,已知抛物线y=x2+bx+c与直线y=﹣x+3交于A、B两点,点A 在y轴上,点B在x轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM⊥x轴交直线AB于M.(1)求抛物线解析式.(2)当PM=2BC时,求M的坐标.(3)点P运动过程中,△APM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.【考点】二次函数综合题.【分析】(1)将点B(3,0)坐标代入y=x2+bx+3即可得到二次函数的解析式;(2)根据抛物线的解析式求出BC的长,设直线PM的解析式为x=a,表示出P,M两点的坐标,再根据PM=2BC,列方程解答;(3)△APM为等腰三角形则分别讨论PA=PM,PM=AM,PA=AM三种情况,得出符合条件的解即为点P的坐标.【解答】解:(1)当x=0时,y=3,当y=0时,x=3,∴A,B两点的坐标为(0,3)、(3,0)将A,B两点的坐标代入抛物线的解析式可得:,解得:,∴抛物线的解析式为:y=x2﹣4x+3.(2)令y=0,则x2﹣4x+3=0,解得:x1=1,x2=3,∴BC=2.设直线PM的解析式为x=a,则P,M两点的坐标为(a,a2﹣4a+3),(a,﹣a+3)∴PM=a2﹣4a+3﹣(﹣a+3)=4解得:a1=﹣1(舍去),a=4,∴M的坐标为(4,﹣1)(3)若△APM为等腰三角形,进行分类讨论;①当PA=PM时,P(m,m2﹣4m+3)则M(m,﹣m+3),|PM|=|m2﹣3m|,|PA|=;|AM|==m;由PA=PM可得|m2﹣3m|=,解得m=4,m2﹣4m+3=3,则P点坐标为P(4,3),②当PA=AM时, =m,解得m=3,或m=5,当m=3时,m2﹣4m+3=0,由题意可知m>3,故m=3不合题意;当m=5时,m2﹣4m+3=8,故点P坐标为(5,8),③当PA=AM时,|m2﹣3m|=m解得m=3+或m=3﹣,由题意可知m>3,故m=3﹣舍去,当m=3+时,m2﹣4m+3=2+2,故点P坐标为(3+,2+).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形的性质等知识点,是各地中考的热点和难点,解题时注意数形结合和分类讨论等数学思想的运用.。

2016年云南省中考数学试卷

2016年云南省中考数学试卷

祝您成绩进步,生活愉快!数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前云南省2016年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.一、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上) 1.|3|=- .2.如图,直线a b ∥,直线c 与直线a ,b 分别相交于A ,B 两点. 若160∠=度,则2∠= 度.3.分解因式:21x -= .4.若一个多边形的边数为6,则这个多边形的内角和为 度.5.如果关于x 的一元二次方程2 2 20x a x a +++=有两个相等的实数根,那么实数a 的值为 .6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 .二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种.25434用科学记数法表示为 ( ) A .32.543410⨯ B .42.543410⨯C .32.543410-⨯D .42.543410-⨯8.函数12y x =-的自变量x 的取值范围为 ( )A .2x >B .2x <C .2x ≤D .2x ≠ 9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是 ( )A .圆柱B .圆锥C .球D .正方体 10.下列计算,正确的是( )A .2(-2)= 4-B .2(2)2-=-C .664(2)64÷-=D .826-=11.位于第一象限的点E 在反比例函数ky x=的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO EF =,EOF △的面积等于2,则k =( )A .4B .2C .1D .2-12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的 结果如下表:成绩(分) 4647484950人数(人)1 2 124下列说法正确的是( )A .这10名同学的体育成绩的众数为50B .这10名同学的体育成绩的中位数为48C .这10名同学的体育成绩的方差为50D .这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是 ( )ABCD14.如图,D 是ABC △的边AB 上一点,4AB =,2AD =,DAC B =∠∠,如果ABD △的面积为15,那么ACD △的面积为( )A .15B .10毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页)数学试卷 第4页(共16页)C .152D .5三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分6分)解不等式组2(3)10,21.x x x +>⎧⎨+>⎩16.(本小题满分6分)如图,点C 是AE 的中点,A ECD =∠∠,AB CD =. 求证:B D =∠∠.17.(本小题满分8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适 量的添加剂对人体无害而且有利于食品的储存和运输.为提高质量,做进一步研究. 某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?18.(本小题满分6分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,:1:2ABC BAD =∠∠,BE AC ∥,CE BD ∥.(1)求tan DBC ∠的值;(2)求证:四边形OBEC 是矩形.19.(本小题满分7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育 用品供学生课后锻炼使用.因此学校随机抽取了部分同学就体育兴趣爱好情况进行 调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问 题.(1)设学校这次调查共抽取了n 名学生,直接写出n 的值; (2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳.20.(本小题满分8分)如图,AB 为O 的直径,C 是O 上一点,过点C 的直线交AB 的延长线于点D , AE DC ⊥,垂足为E ,F 是AE 与O 的交点,AC 平分BAE ∠.(1)求证:DE 是O 的切线;(2)设6AE =,30D ∠=,求图中阴影部分的面积.祝您成绩进步,生活愉快!数学试卷 第5页(共16页) 数学试卷 第6页(共16页)21.(本小题满分8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一 次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1,2,3, 4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球, 记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个 小球,记下小球上标有的数字,并计算两次记下的数字之和.若两次所得的数字之和 为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张; 若所得的数字之和为5,则可获得15元代金券一张,其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可 能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P .22.(本小题满分9分)草莓是云南多地盛产的一种水果.2016年某水果销售店在草莓销售旺季,试销售成本 为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40 元.经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,下图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围; (2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.23.(本小题满分12分)有一列按一定顺序和规律排列的数:第1个数是112⨯; 第2个数是123⨯;第3个数是134⨯;……对任何正整数n ,第n 个数与第(+1)n 个数的和等于2(2)n n ⨯+.(1)经过探究,我们发现:1111212=-⨯; 1112323=-⨯; 1113434=-⨯. 设这列数的第5个数为a ,那么1156a ->,11=56a -,1156a -<,哪个正确? 请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n表示第n 数),并且证明你的猜想满足“第n 个数与第+1n ()个数的和等于2(2)n n +”;(3)设M 表示211,212,213,……,212016,这2016个数的和,即22221111+1232016M =+++…,求证:2016403120172016M <<. 云南省2016年初中学业水平考试数学答案解析一、填空题 1.【答案】3毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无-----------------------------数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【解析】根据绝对值的概念,33-=.数a 的绝对值(0),0(0),(0).>⎧⎪==⎨⎪-<⎩a a a a a a【考点】化简绝对值2.【答案】60【解析】∵3160∠=∠=︒,且6∥a .2∠和3∠是同位角,2360∠=∠=︒.【考点】平行线的性质 3.【答案】()()11-+x x【解析】直接用平方差公式分解()()2111-=-+x x x .【考点】分解因式 4.【答案】720【解析】根据多边开内角和公式得()()2180621804180720-⨯︒=-⨯︒=⨯︒=︒n . 【提示】记清多边形的内角和公式是解题的关键. 【考点】多边形的内角和定理 5.【答案】1-或2【解析】根据题意得()()22420∆=-+=a a ,解得12 1,2=-=a a ,则a 的值为1-或2. 【提示】解一元二次方程求a 的值是解答此题的关键. 【考点】一元二次方程根的判别式 6.【答案】384π144或【解析】分两种情况:当6为高,16π为底而圆周长时,16π 2π=r ,则8=r ,∴ 64π=圆S ,∴圆柱的体积64π6384π=⨯=;当16π为高,6为底面圆周长时,62π=r ,则3π=r ,∴9 π=圆S ,∴圆柱的体积916144π=⨯=r . 【提示】已知的长方形能组成两个不同的圆柱是本题的关键.【考点】圆柱内侧面展开图及体积、分类讨论思想 二、选择题 7.【答案】B【解析】425434 2.543410-⨯,故选B.【提示】用科学记数法表示收,关键是要确定a 和10的指数n ,本题需弄清楚小数点的移动位数.【考点】科学记数法8.【答案】B【解析】根据分式的分母不能为0得 20-≠x ,∴ 2≠x ,故选D. 【考点】分式成立的条件9.【答案】C【解析】选项A 中,圆柱的主视图和左视图都是长方形,故错误:选项B 中,圆锥的主视图和左视图都是三角形,故错误;选项C 中,球的三种视图都是圆,且半径相等,正确;选项D 中,正方体的三种视图都是正方形,故错误,故选C. 【考点】几何体的三视图 10.【答案】C【解析】因为()2421=--,故选项A 错误;因为2=,故选项B 错误;因为()633664244464÷-÷===,故选项C正确;=故选项D 错误,故选C.【提示】本题涉及的运算比较多,正确使用计算法则是解答此题的关键.【考点】实数的计算 11.【答案】A【解析】如图,设E 点的坐标为(),x y ,⊥EA x 轴,∵=EO EF ,∴ ==OA AF x , ∴1222=•=⨯⨯==△EOF S OF EA x y xy ,又因为点E 在反比例函数的图象上,则 2==k xy ,故选B.祝您成绩进步,生活愉快!数学试卷 第9页(共16页) 数学试卷 第10页(共16页)【提示】利用三角形的面积与k 的关系是解答此题的关键. 【考点】反比例函数图象的性质,三角形的面积与常量k 的关系12.【答案】A【解析】因为成绩为50分的人数最多,则众数是50,故选项A 正确;将成绩从小到大进行排序,因为有10个数据,故中位数为第5个和第6个的平均数,即为49,故选项B 错误;因为这组数据的方差为2.04【提示】本题可用排除法,判断选项A 正确后,排除选项B ,C ,D ,避免求平均数和方差. 【考点】求一组数据的众数、中位:数、方差、平均数13.【答案】A【解析】选项A 中的图形是轴对称图形,但不是中心对称图形;选项B 中的图形既不是轴对称图形,也不是中心对称图形;选项C 中的图形既不是轴对称图形,也不是中心对称图形;选项D 中的图形既是轴对称图形,也是中心对称图形,故选A. 【提示】掌握轴对称图形和中心对称图形的概念是解答本题的关键.轴对称图形只需将图形沿对称轴对折,对称轴两边的图形能完全重合;中心对称图形需将图形沿旋转中心旋转180后,能和原图形重合. 【考点】轴对称图形和中心对称图形的概念14.【答案】D【解析】∵∠=∠DAC B ,∠C 是公共角,∴~△△ACD BCA ,∴相似比为:2:41:2==AD AB ,∴:1:4=△△ACD BCAS S ,∴:1:3=△△ACD ABD S S ,∴15=△ABD S ,∴5=△ACD S ,故选D .【提示】相似三角形的面积比等于相似比的平方是解答此题的关键. 【考点】相似角形的性质三、解答题15.【答案】解:由不等式()2310+>x 得2610+>x ,解得2>x .由不等式21+>x x 得21->-x x ,解得1>-x .不等式组2(3)10,21.+>⎧⎨+>⎩x x x 的解集为2>x .【解析】分别解出两个不等式的解集,再求它们的公共解集,得原不等式组的解集. 【考点】解一元一次不等式组16.【答案】证明:∵点 C 是 AE 的中点,∴=AC CE 在 △ABC 和△CDE 中, ∵ =⎧⎪∠=∠⎨⎪=⎩AC CEA ECD AB CD,∴≌△ABC CDE ∴∠=∠B D .【解析】根据已知条件,利用“SAS ”判定两个三角形全等,再根据全等三角形的对应角相等,结论得证.【考点】全等三角形的判定和性质17.【答案】解:设A 种饮料生产了x 瓶,B 种饮料生产了 y 瓶.(1分)根据题意得100,23270.+=+=⎧⎨⎩x y x y 解这个方程组得30,70.==⎧⎨⎩x y答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.【解析】根据等量关系“A ,B 两种饮料共100瓶”和“共加入添加剂270克”列得方程组,解出方程组的解即可.【考点】列二元一次方程组解应用题 18.【答案】解:(1)∵四边形 ABCD 是菱形,∴∥AD BC ,12∠=∠DBC ABC . ∴180∠+∠=︒ABC BAD . 又∵:1:2∠∠=ABC BAD ,60∠=︒ABC .∴1302∠=∠=︒DBC ABC .数学试卷 第11页(共16页) 数学试卷 第12页(共16页)∴tan tan30∠=︒=DBC . (2)证明::四边形 ABCD 是菱形,∴⊥AC BD ,即90∠=︒BOC . ∵∥BE AC ,∥CE BD ,∴∥BE OC ,∥CE OB . ∴四边形 OBEC 是平行四边形,且90∠=︒BOC .∴四边形 OBEC 是矩形 【解析】(1)根据菱形的邻角互补和已知条件中的比值,可求出菱形相邻两内角的度数,再根据菱形的对角线平分一组对角,可求得30∠=︒DBC ,从而求得正切值; (2)先根据两组对边平行判定四边形 OBEC 为平行四边形,再利用菱形的对角线互相垂直,得四边形 OBEC 有一个角是直角,从而判定四边形 OBEC 是矩形. 【考点】菱形的性质、锐角三角函数、矩形的判定 19.【答案】解:(1)100 (2)补全条形统计图,如图所示.(3)由已知得120020%240⨯=(人).答:该校约有240人喜欢跳绳.【解析】(1)根据喜欢足球的人数和百分比可求出调查的总人数;(2)根据条形统计图中的人数和总人数计算出喜欢羽毛球的人数,作出图形即可; (3)根据喜欢跳绳的百分比,可计算出1200名学生中喜欢跳绳的人数. 【考点】统计 20.【答案】(1)证明:连接OC .∵=OA OC ,∴∠=∠OAC OCA . 又∵ ∠平分AC BAE ,∴∠=∠OAC CAE .∵∠=∠OCA CAE ,∴∥OC AE . ∴∠=∠OCD E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省剑川县马登镇初级中学2016届中考数学模拟试题二一、选择题1.﹣2015的相反数是()A.2015 B.﹣2015 C.D.2.下列计算正确的是()A. =﹣2 B.(a2)5=a10 C.a2+a5=a7D.6×2=123.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.5.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3二.填空题7.﹣27的立方根是.8.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.9.说明命题“x>﹣4,则x2>16”是假命题的一个反例可以是x= .10.如图,正方形ABOC的边长为3,反比例函数y=的图象过点A,则k的值是.11.某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为.12.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2= .13.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差S=0.1,S=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是.14.如图,如果将半径为10cm的圆形纸片剪去一个圆心角为120°的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为.15.函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是.16.如图,在直角坐标系中,已知点E(3,2)在双曲线y=(x>0)上.过动点P(t,0)作x轴的垂线分别与该双曲线和直线y=﹣x交于A、B两点,以线段AB为对角线作正方形ADBC,当正方形ADBC的边(不包括正方形顶点)经过点E时,则t的值为.三.解答题17.(1)计算:6×3﹣1﹣(2015﹣π)0+×;(2)先化简,再求值:( +)÷,其中x=+1.18.解方程:.19.为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:所抽取学生的比赛成绩情况统计表(1)本次抽查的学生共有名;(2)表中x和m所表示的数分别为:x= ,m= ,并在图中补全条形统计图;(3)若该校共有1500名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?20.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)两次转盘,第一次转得的数字记为m,第二次记为n,A的坐标为(m,n),则A点在函数y=上的概率.21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.22.如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.(1)求点E距水平面BC的高度;(2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).23.如图,AB为⊙O的直径,弦AC=3,∠ABC=30°,∠ACB的平分线交⊙O于点D.(1)求BC、AD的长;(2)求图中两阴影部分的面积和.24.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,点F为斜边AB上的一点,连接CF,CD平分∠ACF交AB于点D,点E在AC上,且有∠CFD=∠CDE.(1)如图1,当点F为斜边AB的中点时,求CE的长;(2)将点F从AB的中点沿AB方向向左移动到点B,其余条件不变,如图2.①求点E所经过的路径长;②求线段DE所扫过的面积.26.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线相应的函数表达式;(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,连接NB.若点M的横坐标为t,是否存在t,使MN的长最大?若存在,求出sin∠MBN的值;若不存在,请说明理由;(3)若对一切x≥0均有ax2+bx+c≤mx﹣m+13成立,求实数m的取值范围.参考答案一、选择题1.﹣2015的相反数是()A.2015 B.﹣2015 C.D.【考点】相反数.【分析】根据相反数的定义即可得出答案.【解答】解:﹣2015的相反数是2015;故选A.【点评】此题考查了相反数,掌握好相反数的定义,只有符号不同的两个数是互为相反数.2.下列计算正确的是()A. =﹣2 B.(a2)5=a10 C.a2+a5=a7D.6×2=12【考点】幂的乘方与积的乘方;合并同类项;二次根式的性质与化简;二次根式的乘除法.【分析】A:根据算术平方根的求法判断即可.B:根据幂的乘方的运算方法计算即可.C:根据整式加法的运算方法判断即可.D:根据二次根式的乘方运算方法计算即可.【解答】解:∵,∴选项A不正确;∵(a2)5=a10,∴选项B正确;∵a2+a5≠a7,∴选项C不正确;∵6×2=60,∴选项D不正确;故选:B.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的乘除法,要熟练掌握,解答此题的关键是要明确:①积的算术平方根性质:a•b=a•b(a≥0,b≥0);②二次根式的乘法法则:a•b=a•b(a≥0,b≥0);③商的算术平方根的性质:ab=ab(a≥0,b>0);④二次根式的除法法则:ab=ab(a≥0,b >0).(3)此题还考查了合并同类项的方法,以及二次根式的性质和化简,要熟练掌握.3.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.【考点】简单几何体的三视图.【分析】分别找到四个几何体从正面看所得到的图形比较即可.【解答】解:A、主视图为长方形;B、主视图为长方形;C、主视图为长方形;D、主视图为三角形.则主视图与其它三个不相同的是D.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【考点】作图—复杂作图.【分析】要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.【解答】解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.【点评】本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.6.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3【考点】解一元二次方程-公式法;估算无理数的大小.【专题】判别式法.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.二.填空题7.﹣27的立方根是﹣3 .【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.说明命题“x>﹣4,则x2>16”是假命题的一个反例可以是x= ﹣3 .【考点】命题与定理.【分析】当x=﹣3时,满足x>﹣4,但不能得到x2>16,于是x=﹣3可作为说明命题“x>﹣4,则x2>16”是假命题的一个反例.【解答】解:说明命题“x>﹣4,则x2>16”是假命题的一个反例可以是x=﹣3.故答案为﹣3.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.如图,正方形ABOC的边长为3,反比例函数y=的图象过点A,则k的值是﹣9 .【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形面积S是个定值k|,再结合反比例函数所在的象限确定k的值.【解答】解:正方形ABOC的边长为3,则正方形的面积S=9;由反比例函数系数k的几何意义可得:S=|k|=9,又反比例函数的图象位于第二象限,k<0,则k=﹣9.故答案为:﹣9.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.11.某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为8,7 .【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中8是出现次数最多的,故众数是8;将这组数据从小到大的顺序排列后,处于中间位置的那个数是7,那么由中位数的定义可知,这组数据的中位数是7.故答案为8,7.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2=26°.【考点】平行线的性质;多边形内角与外角.【分析】先根据正五边形的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵图中是正五边形.∴∠3=108°.∵太阳光线互相平行,∠1=46°,∴∠2=180°﹣∠1﹣∠3=180°﹣46°﹣108°=26°.故答案为:26°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,解题的关键是:根据正五边形的性质求出∠3的度数.13.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差S=0.1,S=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是③.【考点】全面调查与抽样调查;方差;随机事件;概率的意义.【分析】①根据调查方式,克的答案;②根据概率的意义,可得答案;③根据方差的性质,克的答案;④根据随机事件,可得答案.【解答】解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故①错误;②若一个游戏的中奖率是1%,则做100次这样的游戏可能中奖,可能不中奖中奖,故②错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差S=0.1,S=0.2,则甲组数据比乙组数据稳定,故③正确;④“掷一枚硬币,正面朝上”是随机事件,故④错误;故答案为:③.【点评】本题考查了全面调查与抽样调查,了解全面调查与抽样调查的区别是解题关键,注意方差越小越稳定.14.如图,如果将半径为10cm的圆形纸片剪去一个圆心角为120°的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为cm .【考点】圆锥的计算.【专题】计算题.【分析】设这个圆锥的底面圆半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:设这个圆锥的底面圆半径为rcm,根据题意得2πr=,解得r=,即这个圆锥的底面圆半径为cm.故答案为cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是y=2(x+3)2+4 .【考点】二次函数图象与几何变换.【专题】新定义.【分析】先写出抛物线的解析式,然后求出顶点坐标,再根据向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出函数表达式即可.【解答】解:∵“特征数”是[2,0,4],∴函数解析式为y=2x2+4,∴函数的顶点坐标为(0,4),∵函数图象向左平移3个单位,∴得到的新的函数图象的顶点坐标为(3,4),∴函数表达式为y=2(x+3)2+4.故答案为:y=2(x+3)2+4.【点评】本题考查了二次函数图象与几何变换,读懂题目信息理解函数的“特征数”是解题的关键,此类题目,利用顶点的变化确定函数解析式的更简便.16.如图,在直角坐标系中,已知点E(3,2)在双曲线y=(x>0)上.过动点P(t,0)作x轴的垂线分别与该双曲线和直线y=﹣x交于A、B两点,以线段AB为对角线作正方形ADBC,当正方形ADBC的边(不包括正方形顶点)经过点E时,则t的值为2或.【考点】反比例函数综合题.【分析】存在两种情况:①当AD经过点E时,先求出双曲线的解析式,再求出直线AD的解析式,把A(t,)代入一次函数解析式即可求出t的值;②当BD经过点E时,先求出直线BD的解析式,再把B(t,﹣ t)代入直线BD的解析式即可求出t的值.【解答】解:存在两种情况:①当AD经过点E时,如图1所示:∵点E(3,2)在双曲线y=(x>0)上,∴k=3×2=6,∴双曲线解析式为:y=,∵四边形ADBC是正方形,∴∠DAB=∠DAC=45°,∵AB⊥x轴,∴设直线AD的解析式为y=﹣x+b,把点E(3,2)代入得:b=5,∴直线AD的解析式为:y=﹣x+5,设A(t,),代入y=﹣x+5得:﹣t+5=,解得:t=2,或t=3(不合题意,舍去),∴t=2;②当BD经过点E时,如图2所示:∵BD⊥AD,∴设直线BD的解析式为:y=x+c,把点E(3,2)代入得:c=﹣1,∴直线BD的解析式为:y=x﹣1,设B(t,﹣ t),代入y=x﹣1得:﹣t=t﹣1,解得:t=;综上所述:当正方形ADBC的边(不包括正方形顶点)经过点E时,t的值为:2或;故答案为:2或.【点评】本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、坐标与图形性质、正方形的性质等知识;本题难度较大,综合性强,需要进行分类讨论,求出相关直线的解析式才能得出结果.三.解答题17.(1)计算:6×3﹣1﹣(2015﹣π)0+×;(2)先化简,再求值:( +)÷,其中x=+1.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂、负整数指数幂的计算法则、数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=6×﹣1+4=2﹣1+4=5;(2)原式=(+)÷=•=,当x=+1时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.解方程:.【考点】解分式方程.【分析】首先找出最简公分母,进而去分母求出方程的根即可.【解答】解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.【点评】此题主要考查了解分式方程,正确去分母得出是解题关键.19.为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:(1)本次抽查的学生共有50 名;(2)表中x和m所表示的数分别为:x= 20 ,m= 30% ,并在图中补全条形统计图;(3)若该校共有1500名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?【考点】条形统计图;用样本估计总体;统计表.【分析】(1)根据C等级的人数是10,所占的百分比是20%,即可求得抽查的总人数;(2)根据百分比的意义即可求解;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)抽查的总人数是:10÷20%=50,故答案是:50;(2)x=50×40%=20,m==30%,补全统计图如右图所示:(3)(30%+40%)×1500=1050(名).答:此次汉字听写比赛成绩达到B级及B级以上的学生约有1050名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)两次转盘,第一次转得的数字记为m,第二次记为n,A的坐标为(m,n),则A点在函数y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)游戏分两步,列出树状图较好;(2)根据树状图,利用概率公式解答.【解答】解:(1)列树状图:(2)由(1)可知所有可能结果为(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3),其中(1,2)(2,1)在函数图象上,P(A在函数y=上)=.【点评】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及菱形的性质、等腰三角形的判断和性质,题目的综合性较强,难度中等.22.如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.(1)求点E距水平面BC的高度;(2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)过点E作EF⊥BC于点F.在Rt△CEF中,求出CF=EF,然后根据勾股定理解答;(2))过点E作EH⊥AB于点H.在Rt△AHE中,∠HAE=45°,结合(1)中结论得到CF的值,再根据AB=AH+BH,求出AB的值.【解答】解:(1)过点E作EF⊥BC于点F.在Rt△CEF中,CE=20, =,∴EF2+(EF)2=202,∵EF>0,∴EF=10.答:点E距水平面BC的高度为10米.(2)过点E作EH⊥AB于点H.则HE=BF,BH=EF.在Rt△AH E中,∠HAE=45°,∴AH=HE,由(1)得CF=EF=10(米)又∵BC=25米,∴HE=25+10米,∴AB=AH+BH=25+10+10=35+10≈52.3(米),答:楼房AB的高约是52.3米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题、坡度坡角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.如图,AB为⊙O的直径,弦AC=3,∠ABC=30°,∠ACB的平分线交⊙O于点D.(1)求BC、AD的长;(2)求图中两阴影部分的面积和.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)根据圆周角定理得出∠ACB=∠ADB=90°,然后由弦AC=3,∠B=30°,根据勾股定理求出BC,根据圆周角定理求出AD=BD,求出AD即可;(2)根据三角形的面积公式,求出△AOC和△AOD的面积,再求出S扇形COD,即可求出答案.【解答】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,∠B=30°,AC=3,∴AB=6,∴BC==3,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD∴,∴AD=BD,∴在Rt△ABD中,AD=BD==3;(2)连接OC,OD,∵∠B=30°,∴∠AOC=2∠B=60°,∵OA=OB,∴S△AOC=S△ABC=××AC×BC=××3×3=,由(1)得∠AOD=90°,∴∠COD=150°,S△AOD=×AO×OD=×32=,∴S阴影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣=.【点评】此题考查了圆周角定理,勾股定理,扇形的面积计算公式,熟练掌握定理及扇形的面积计算公式是解本题的关键.24.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【考点】反比例函数的应用.【分析】(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v﹣20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.【解答】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.【点评】本题考查了反比例函数的应用,一元一次方程的应用,解题的关键是从实际问题中整理出反比例函数模型.25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,点F为斜边AB上的一点,连接CF,CD平分∠ACF交AB于点D,点E在AC上,且有∠CFD=∠CDE.(1)如图1,当点F为斜边AB的中点时,求CE的长;(2)将点F从AB的中点沿AB方向向左移动到点B,其余条件不变,如图2.①求点E所经过的路径长;②求线段DE所扫过的面积.【考点】轨迹;直角三角形斜边上的中线;勾股定理.【分析】(1)首先根据等边三角形的特征,判断出ACF是等边三角形;然后根据CD平分∠ACF,可得CD⊥AF,据此求出CD的值是多少;最后根据相似三角形判定的方法,判断出△CFD∽△CDE,即可判断出,据此求出CE的长度是多少即可.(2)①如图2,过D作DG⊥CF于G,过E作EH⊥CD于H,由点F与点B重合,得到∠ACB=∠ACF=90°,CD平分∠ACF交AB于点D,得到∠FCD=∠ACD=45°,于是得到△CDG与△CHE是等腰直角三角形,通过解直角三角形得到CE=4﹣6,于是求出点E所经过的路径长=1.5﹣(4﹣6)=;②如图,过C作CM⊥AB于M,过M作MN⊥AC于N,由(1)知CM=,MN=,则AN=,由①知,DF=2DG=6﹣2,求得AD=4﹣(6﹣2)=2﹣2,于是得到线段DE所扫过的面积=S△ACD﹣S△CDE﹣S△AMN=﹣﹣,即可求得结论线段DE所扫过的面。

相关文档
最新文档