化工原理(传热)

合集下载

化工原理 第四章 传热

化工原理 第四章 传热
条件:系统两部分之间存在温度差。
6
2. 对流
有温差的流体(或内部)作宏观移动和混合,将热量从高 温物体传向低温物体的现象,称对流传热。
特点:流体各部分间有相对位移,热对流仅发生在流体中。
自然对流:温度、密度不同引起。 强制对流:外力引起。
7
说明: 同一种流体中可能同时发生自然对流和强制对 流; 化工过程中,流体流过固体表面时的传热是包 含了热传导和热对流的联合过程,称对流传热; 对流传热与流体流动状况密切相关。
Cp

2. 流体对流起因
强制对流
自然对流
升力 (1- 2)g= 2g t
强制对流速度大,大。
3. 流体流动状态
4. 流体相态变化
5. 传热面的形状、相对位置及尺寸____特征尺寸
37
对流传热过程的分类及准数关联
由于对流传热的多样性,有必要将问题分类加以研究。
对流传热
有相变传热
41
四、流体无相变时对流传热系数的经验关联式
(一)流体在管内作强制对流 1. 圆形直管强制湍流的给热系数 流体在圆形直管内作强制湍流时,对于低粘度流体,则有
Nu 0.023Re0.8Prn
式中n值与热流方向有关,
当流体被加热时,n=0.4,
n取不同的数值,这是为了反映 热流方向对给热系数的影响。

推动力 热阻
总传热系数、传热面积、推动力是传热过程三大要素。
将热阻记为R,则Q=tm/R
下面将分别讨论传热基本原理及传热系数的计算。
12
第二节 热传导 一、傅立叶定律
1.温度场和温度梯度 1) 温度场 某一时刻物体或系统内各点的温度分布总和。
t f x, y, z,

化工原理第三章传热

化工原理第三章传热

Q S
Kt m
t m
1/ K
(1-3)
传 热 速 率
传热温度差(推动力) 热阻(阻力)
式中:△tm──传热过程的推动力, ℃ 1/K ──传热总阻力(热阻),m2 ·℃/W
两点说明:
➢ 单位传热面积的传热速率(热通量)正比于推动力,反比于 热阻。因此,提高换热器的传热速率的途径是提高传热推
动力和降低热阻。
三、 换热器类型
换热器:实现冷、热介质热量交换的设备
用于输送热量的介质—载热体。 加热介质(加热剂):起加热作用的载热体。水蒸气、热水等。 冷却介质(冷却剂):起冷却作用的载热体。冷水、空气制冷剂。
① 直接混合式 —— 将热流体与冷流体直接混合的一种传热方式。 ② 蓄热式 —— 热量 存储在热载体上 传递给冷流体。如
式中:d1为套管的内管直径,d2为套管的内管直径。
应用范围:
Re 1200 ~ 220000, d2 1.65 ~ 17 d1
特征尺寸: 流动当量直径de。
定性温度: 流体进、出口温度的算术平均值。
滴状冷凝:若冷凝液不能润湿壁面,由于表面张力的作用,冷凝 液在壁面上形成许多液滴,并沿壁面落下,此中冷凝 称为。在实际生产过程中,多为膜状冷凝过程。
➢ 一般金属(固体)的导热系数>非金属(固体)>液体>气体
➢ 多数固体λ与温度的关系
λ=k0+k×t
单位:W/(m •K)
k0 --0℃下的导热系数
k为经验常数。
对大多数金属材料,其k值为负值;对非金属材料则为正值。
➢ 对于金属 t ↑ λ↓(通过自由电子的运动) 对于非金属 t ↑ λ↑ (通过靠晶格结构的振动) 对于液体 t ↑ λ↓ (通过靠晶格结构的振动) 对于气体 t ↑ λ↑ (通过分子不规则热运动)

化工原理传热

化工原理传热

化工原理传热
传热是化工过程中重要的物理现象之一,它涉及能量的转移和分布。

传热可以通过三种方式进行:传导、对流和辐射。

传导是指热能在固体或液体中以分子间相互碰撞的方式传递。

在传导过程中,热量会从高温区域传递到低温区域,直到温度达到平衡。

对流是指热能通过流体的运动传递。

当物体表面受热时,周围的流体会被加热并膨胀,然后从热源处上升。

这导致了对流循环,使热量从热源传递到周围环境。

辐射是指热能以电磁波的形式传递,不需要介质来传递热量。

辐射可以通过空气、液体和固体传播,甚至可以在真空中传播。

辐射热传递取决于物体的温度和表面特性。

在化工过程中,传热是必不可少的。

传热的目的可以是控制温度以实现反应的理想条件,或者从一个系统中移除或向其输入热量。

为了实现有效的传热,可以采取以下措施:
1. 提高传热系数:通过增加传热表面积或提高传热介质的流速,可以增加传热系数,从而加快传热速度。

2. 减小传热阻力:通过改变传热介质的性质或减小传热介质的流通路径长度,可以减小传热阻力,提高传热效率。

3. 使用传热表面增强技术:如使用鳍片、流体分散剂或填料等
技术,可以增大传热表面积,从而提高传热效率。

4. 优化换热设备设计:通过合理设计换热设备的结构和组件,可以实现更高效的传热过程,并减少传热介质的能量损失。

化工过程中的传热是一个复杂的过程,需要综合考虑多种因素。

通过合理选择传热方式和采取相应的措施,可以实现高效的能量传递和分布,从而提高化工过程的效率和质量。

化工原理(传热)

化工原理(传热)

化工原理(传热)传热是指由于温度差引起的能量转移,又称热传递。

由热力学第二定律可知,凡是有温度差存在时,热就必定从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

不管在能源、宇航、化工、动力、冶金、机械、建筑等工业部门,依旧在农业、环境爱护等其他部门中都涉及到许多有关传热的咨询题。

应予指出,热力学和传热学两门学科既有区别又有联系。

热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平稳状态,确定系统由一种平稳状态变到另一种平稳状态所需的总能量;而传热学研究能量的传递速率,因此能够认为传热学是热力学的扩展。

热力学(能量守恒定律)和传热学(传热速宰方程)两者的结合,才可能解决传热咨询题:化学工业与传热的关系尤为紧密;这是因为化工生产中的专门多过程和单元操作,都需要进行加热和冷却。

例如:①化学反应通常要在一定的温度下进行,为了达到并保持一定的温度,就需要向反应器输入或从它输出热;②在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热:③化工设备的保温,生产过程中热能的合理利用以及废热的回收等都涉及传热的咨询题。

由此可见,传热过程普遍地存在于化工生产中,且具有极其重要的作用。

化工生产中对传热过程的要求经常有以下两种情形:一种是强化传热过程,如各种换热设备中的传热;②另一种是削弱传热过程,如设备和管道的保温,以减少热缺失。

为此必须把握传热的共同规律。

本章讨论的重点是传热的差不多原理及其在化工中的应用4.1.1传热的差不多方式按照传热机理的不同,热传递有三种差不多方式:传导、对流和热辐射传热能够靠其中的一种方式或几种方式同时进行。

1.热传导(又称导热)若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导(又称导热)。

热传导的条件是系统两部分之间存在温度差,现在热量将从高温部分传向低温部分,或从高温物体传向与它接触的低温物体,直至整个物体的各部分温度相等为止。

化工原理传热

化工原理传热

化工原理传热
传热是化工工程中非常重要的一个环节。

它在诸多化工过程中起着至关重要的作用。

传热的目的是将热量从一个物体或介质传递到另一个物体或介质中,以实现热量的平衡。

常见的传热方式有传导、对流和辐射。

传导是指热量通过物质内部的分子碰撞传递。

当两个物体的接触表面存在温度差异时,热量会从高温区域向低温区域传导。

传导的速率取决于物质的导热性能、温度差和物质的厚度及表面积。

对流是指热量通过介质的流动传递。

当液体或气体流经固体表面时,会带走固体表面的热量,然后将其释放到其他地方。

对流的速率取决于介质的流速、流动性质、热交换表面积和温度差。

辐射是指发射和吸收电磁辐射传递热量。

所有物体都会辐射热能,其强度与物体的温度和表面特性有关。

辐射的速率取决于温度差、辐射表面的特性和表面积。

在化工过程中,传热通常与反应、分离和加热等操作密切相关。

通过合理设计和优化传热设备,可以提高化工过程的效率和产量。

例如,在化工反应过程中,提供适当的传热方式和设备,可以加快反应速率和提高产品质量。

在化工分离过程中,通过传热可以实现不同组分的分离和纯化。

在加热过程中,传热设备可以提供所需的加热功率和温度控制。

综上所述,传热在化工工程中起着重要的作用。

通过合理选择和设计传热设备,可以提高化工过程的效率和产量,同时实现能量的合理利用。

化工原理传热

化工原理传热

化工原理传热化工原理传热是化工领域中重要的一个学科,涉及到热传导、对流传热和辐射传热等方面。

它在工业生产中起到了重要的作用,有助于提高化工产品的生产效率和质量,也可以降低工业生产的成本。

本文将从热传导、对流传热和辐射传热三个方面介绍化工原理传热的相关知识。

一、热传导热传导是指在无外力驱动下热量沿着物体内部由高温区向低温区传递的现象。

它是工业生产中最基本的传热方式之一,常见的有平板换热器、卷帘换热器等。

热传导的传热系数受多种因素的影响,如物体的热导率、物体的导热截面积等。

因此在实际工业生产中,需要根据具体的情况选择不同的热传导设备和参数来实现传热。

二、对流传热对流传热是指热量通过物体与气体或液体流体的对流传递,也是化工工业中常用的传热方式之一。

对流传热的传热系数和物体表面的状态有关,如表面上的气流速度、温度和物体和流体之间的热阻等。

具体的对流传热设备包括了冷却塔、换热器等。

在实际生产中,需要根据不同流体的特性选择不同的对流传热设备。

三、辐射传热辐射传热是指热量通过介质之间的空气、真空等的辐射传递。

单从传热方式上来看,辐射传热与其他两种传热方式有很大的区别。

常见的辐射传热设备有电热炉、太阳能热水器等。

辐射传热的传热系数受多种因素的影响,如介质温度、表面发射系数等。

在实际生产中,需要根据不同的环境条件选择不同的辐射传热设备。

总体来说,化工原理传热是工业生产过程中必不可少的一个环节。

在实际生产中,需要根据具体的情况选择不同的传热方式,以提高生产效率和质量。

虽然热传导、对流传热和辐射传热在物理学原理方面各有不同,但它们在化工生产中的作用和意义都是相通的,同时也相互补充和共同影响。

因此,在进行化工原理传热的设计和应用时,需要综合考虑各种因素的综合影响,才能达到预期效果。

化工原理 传热概述

化工原理  传热概述
B .强制对流传热(Forced convection)
由于外力作用引起流体流动而传热。
(3)辐射(Radiation)
物体因热的原因发射辐射能,以电磁波的 形式而在 空间传播,当遇到另一物体, 则 部分或全部地被吸收, 重新又转变为热能。
特征:①辐射不仅是能量的转移,而且伴有能量形式的转化; ②辐射可以在真空中传播。
4 传热(Heat transfer)
4.1 概述
4.1.1 传热在工业生产中的应用 ①化学反应过程输入或输出热量;
②蒸发、蒸馏、干燥等单元操作要求按一定的速率 输入或输 出热量; ③高温或低温下操作的设备或管道的保温;
④热量的合理利用和废热回收等。 4.1.2载热体
为将冷流体加热或热流体冷却,必须用另一种流体来供给或取 走热量,此流体称为载热体。起加热作用的称为加热剂;起冷却 作用的称为冷却剂。
4.1.5 传热速率与热通量
T1
热流体 T2
传热速率Q:单位时间传递的热量,W
传热速率
传热推动力= 温度差 传热阻力 热阻
t2 Q 冷流体 t1
Q
KAtm
tm 1
tm R
推动力 热阻
KA
热流密度(或热通量)q:单位时间单位面积传递的热量,W/m2
q Q tm tm
A
1ห้องสมุดไป่ตู้K
r
(2)对流(Convection) 流体内各部分质点发生相对位移而引起的热量传递过程。
特征:对流只能发生在流体中,流体各部分质点发生相对位移。
(通常把流体与固体传热面之间的传热也称为对流传热)
A .自然对流传热(Natural convection)
由于流体内部温度不同,引起密度不同使流体发生对流而传热。

化工原理第四章传热

化工原理第四章传热
化工原理
4-2.2

平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )

1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型

1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理

等温面 在温度场中,温度相同的各点组成的面。
等温面

温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理

多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d

化工原理第五章传热

化工原理第五章传热

第五章传热一、基本知识1. 下列关于传热与温度的讨论中正确的是。

①绝热物系温度不发生变化②恒温物体与外界(环境)无热能交换③温度变化物体的焓值一定改变④物体的焓值改变,其温度一定发生了变化2. 下列关于温度梯度的论断中错误的是。

①温度梯度决定于温度场中的温度分布②温度场中存在温度梯度就一定存在热量的传递③热量传递会引起温度梯度的变化④热量是沿温度梯度的方向传递的3. 传热的目的为。

①加热或冷却②换热,以回收利用热量③保温④萃取4. 根据冷、热两流体的接触方式的不同,换热器包括()等类型。

①直接混合式②蓄热式③间壁式④沉降式5. 热量传递的基本方式为。

①热传导(简称导热)②对流传热③热辐射④相变传热6. 下列有关导热系数论断中正确的是——。

①导热系数入是分子微观运动的一种宏观表现②导热系数入的大小是当导热温差为「C、导热距离为1m导热面积为lm2 时的导热量,故入的大小表示了该物质导热能力的大小,入愈大,导热越快③一般来说,金属的导热系数数值最大,固体非金属次之,液体较小,气体最小④大多数金属材料的导热系数随温度的升高而下降,而大多数非金属固体材料的导热系数随温度的升高而升高⑤金属液体的导热系数大于非金属液体的导热系数,非金属液体中除水和甘油外,绝大多数液体的导热系数随温度的升高而减小,一般情况下,溶液的导热系数低于纯液体的导热系数⑥气体的导数系数随温度的升高而增大,在通常压力下,导热系数与压力变化的关系很小,故工程计算中可不考虑压力的影响7. 气体的导热系数值随温度的变化趋势为。

①T升高,入增大②T升高,入减小③T升高,入可能增大或减小④T变化,入不变8. 空气、水、金属固体的导热系数分别为入l、入2、入3,其大小顺序。

①入l >入2>入3 ②入l <入2<入3 ③入2>入3>入l ④入2<入3<入l9. 水银、水、软木的导热系数分别为入l、入2、入3其大小顺序为。

①入l>入2>入3 ②入l<入2<入3 ③入l>入3>入2 ④入3>入l>入210. 下列比较铜、铁、熔化的铁水三种物质导热系数的大小论断中正确的是。

化工原理第四章传热

化工原理第四章传热

λ3A
因△t = t1-t4 = △t1+ △t2+ △t3
△t b1 b2 b3 + + λ1A λ2A λ3A
△t
Q=

∑ Ri
i=1
3
总推动力
=
总热阻
[例4-2]已知:耐火砖 :b1=150mm λ1=1.06 W/(m· ℃) 保温砖: b2=310mm λ2=0.15 W/(m· ℃) 建筑砖 :b3=240mm λ3=0.69 W/(m· ℃) t1=1000℃,t2=946℃
解:(a)每米管长的热损失
q1= Q l = r2 1 ln r1 λ1 2π(t1 – t4) r3 1 ln + r2 λ2 r4 1 + ln r3 λ3
r1=0.053/2=0.0265, r2=0.0265+0.0035=0.03 r3=0.03+0.04=0.07,r4=0.07+0.02=0.09 q1=191
Q q1= =2πλ l
t1-t2 r2 ln r1
可见,当比值r2/r1一定时,q1与坐标r无关
上式也可改写为单层平壁类似形式的计 算式:
2πl(r2 - r1)λ(t1 - t2)
2πr2l (r2 - r1)ln 2πr1l (A2 - A1)λ(t1 - t2) λ = = Am(t1-t2) A2 b (r2 - r1)ln A1

△t
R
传热推动力 = 热阻
也可写成: Q q= A
λ (t1-t2) = b
[例4-1] 现有一厚度为240mm的砖壁,内 壁温度为600℃,外壁温度为150℃。试求 通过每平方米砖壁壁面的导热速率(热流 密度)。已知该温度范围内砖壁的平均热 导率λ=0.6W/(m. ℃ )。 解:

《化工原理》传热计算

《化工原理》传热计算
若不计热损失,则:热流体的放热量 = 冷流体的吸热量
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000

K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100

1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷

化工原理传热

化工原理传热

Φ
由: dt dx A
t xC A
t2
沿壁厚方向,温度分布为一直线。
x/ m
单层平壁导热温度分布
12
② 热导率和温度有关
dt q (t ) dx
代入 0 (1 a t ),积分得:

t2
t1
0 (1 t )dt q dx
x1
Φ
t2

热导率为常数 热流量:
b
dt A dx
t2 t1
b
x1
x2
x
积分: dx A dt
0
单层平壁的稳态热传导
11
t1 t2 t 传热推动力(温差) 得: (t 2 t1 ) b R 传热阻力(热阻) b A
A
t/ ℃ t1
平壁内的温度分布:
u
t
t∞-t
t∞
t∞-t
t'∞
(t-tW)/ (t∞-t)=0.99
Φ
tW
δt
19
(2)热边界层的厚度
tw t 0.99(tw t )
(3)热边界层的特点
层内(近壁处):集中全部的温差和热阻
dt 0 dy
dt 层外(流体主体):等温区,无温差和热阻 0 dy
(4)热边界层发展过程 圆管内
ln(r2 / r1 ) b 其中,R 2L Am
A2 A1 Am A2 ln A1
16
② 多层圆筒壁
t1 t 4 b b1 b 2 3 1 Am1 2 Am2 3 Am3
r2
r3
r4
r1
t1
t1 t 4 ln(r2 / r1 ) ln(r3 / r2 ) ln(r4 / r3 ) 2L1 2L2 2L3

化工原理--传热

化工原理--传热

第四章传热本章介绍了三种基本传热方式,即导热、对流传热、辐射传热的基本概念和定律;详细分析了对流传热过程机理,建立了对流传热速率方程以及表面传热系数的经验关联式;由总传热速率方程出发,对传热过程进行设计计算和操作分析、诊断;介绍了换热设备的类型和列管式换热器的设计和选用。

本章重点要求掌握:①对流传热过程的基本概念、定律、传热速率方程;②管内强制湍流流动时表面传热系数的经验关联及影响因素;③总传热速率方程以及传热过程的计算。

4.1 概述4.1.1 传热在化工生产中的应用传热,即热量的传递,是自然界中普遍存在的物理现象。

由热力学第二定律可知,凡是有温度差存在的物系之间,就会导致热量从高温处向低温处的传递,故在科学技术、工业生产以及日常生活中都涉及许多的传热过程。

化工生产过程与传热关系十分密切。

这是因为化工生产中的很多过程都需要进行加热和冷却。

例如,为保证化学反应在一定的温度下进行,就需要向反应器输入或移出热量;化工生产设备的保温或保冷;生产过程中的热量的合理使用以及废热的回收利用,换热器网络的综合利用;蒸发、精馏、吸收、萃取、干燥等单元操作都与传热过程有关。

化工生产过程中需要解决的传热问题大致分为两类:(1)传热过程的计算,包括设计型计算和操作型计算;(2)传热过程的改进与强化。

这两类问题的解决,都需要从总的传热速率方程出发,即:(4.1.1)式中:Q—冷流体吸收或热流体放出的热流量,W;K—传热系数,W/(m2·℃);A—传热面积,m2;Δtm—平均传热温差,℃。

4.1.2 传热的基本方式根据热量传递机理的不同,传热基本方式有三种,即热传导、对流和辐射。

热传导:热传导又称导热。

是指热量从物体的高温部分向同一物体的低温部分、或者从一个高温物体向一个与它直接接触的低温物体传热的过程。

对流传热:对流传热是依靠流体的宏观位移,将热量由一处带到另一处的传递现象。

在化工生产中的对流传热,往往是指流体与固体壁面直接接触时的热量传递。

化工原理传热

化工原理传热
方法:先按纯逆流的情况求得其对数平均温度差Δt m逆 ,
然后再乘以校正系数εΔt,即
Δtm=εΔt·Δtm逆
校正系数ε Δt 与冷、热两种流体的温度变化有关,是R和P 的函数,即
εΔt=f(R,P)
式中 R=(T1-T2)/(t2-t1) = 热流体的温降/冷流体的温升
P=(t2-t1)/ (T1- t1) = 冷流体的温升/两流体的最初温差
按照参与热交换的两种流体在沿着换热器壁面流动时各点温 度变化的情况,可将传热分为恒温传热与变温传热两类。
1 恒温传热
两种流体进行热交换时,在沿传热壁面的不同位置上,在 任何时间两种流体的温度皆不变化,这种传热称为稳定的恒 温传热。如蒸发器中,饱和蒸汽和沸腾液体间的传热。
Δt=T-t
式中 T——热流体的温度℃; t——冷流体的温度℃。
(500 179 ) (400 179 ) 271 ℃ 2
(c)计算单位面积传热 量 (d)管壁温度
Q/S1=K1Δtm =242×271=65580W/ m2
T----热流体的平均温度,取进、出口温度的平均值
T=(500+400)/2=450 ℃
dQ Wh c ph 常量 dT
dQ Wc c pc 常量 dt
Q~T和Q~t为直线关系,即
T=mQ+k
t=m΄Q+k΄
Δt=T-t=(m-m΄)Q+(k-k΄)
温度 T2 t1 Δ t1
T1
t2
Δ t2
0
传热量Q
从上式可以看出: Δt~Q关系呈直线,其斜率为
d ( t ) t1 t 2 dQ Q
生产上换热器内流体流动方向大致可分为下列四种情况:

化工原理 传热

化工原理 传热

精品课件
2、对流 流体内部质点发生相对位移的热量传递过程。
✓自然对流 ✓强制对流
3、热辐射 物体因热的原因发出辐射能的过程称为热辐射。 能量转移、能量形式的转化 不需要任何物质作媒介 Ea∝T4
三种传热方式一般不单独存精在品课,件往往相互伴随,同时出现。
精品课件
三、两流体通过间壁换热与传热速率方程式 1、间壁式换热器
试计算该管路每米长的散热量。
水蒸气管 保温层
解:
Q
dt
dt
q ll 2rd r 2(0 .5 0 .00 t)rd 0r19 r =0.213m
ql r1 r2d r r2
t2(0.50.00t)0 d9 t
t1
r2=0.613m
t1=150oC
t2=40oC
0.4m
q llr r n 1 2 2 ( 0 .5 t 0 .0 2t 0 2 )t t 1 2 0 2 [ 9 0 .5 ( t 1 t2 ) 9 1 2 4 ( 0 t 1 2 t2 2 )]
dx
分离变量后积分
t2 dt Q
b
dx
t1
A 0
得导热速率方程式
Q b A(t1 t2)

Q
t1
t2 b
t R
传热推动力 热阻A来自qQ Ab
(t1
t2 )
精品课件
例:平壁A=20m2,b=0.37m,t1=1650oC,t2=300oC,材料导热系 数=0.815+0.00076t (t:oC,:W/(moC))。试求平壁Q和q。
lnr2
1 lnr2 R
r1
2l r1
精品课件
注:在稳态下通过圆筒壁的导热速率Q与坐标r无关,但热流密度q

化工原理--传热 ppt课件

化工原理--传热 ppt课件

• 气体的λ很小,有利于保温;气体的λ随温度升高而增大;
• 一般情况下,气体的λ与压力无关; 导热系数大致范围:
金属:2.3~420 W/m.K; 建筑材料: 0.25~3 W/m.K;
绝缘材料: 0.025~0.25 W/m.K; 液体: 0.09~0.6 W/m.K;
ppt课件
15
气体:0.006~0.4 W/m.K
稳态温度场: tf(x ,y ,z)
•等温面:温度相同的点组成的面,等温面彼此不相交。
2. 温度梯度
lim t t •温度梯度的方向垂直于等 n0 n n 温面,以温度增加方向为正。
3. 傅立叶定律--热传导的基本定律 •单位实际时间内传导的热量与温度梯度和导热面积成正比。
dQ ldA t
n
传热方向与温度梯度方p向pt课相件 反
• 利用余热,以降低能耗;
•绝热
醋酸乙烯气体
冷油
冷凝器
冷凝器
醋酸气体 加热器
乙炔气体


精醋酸

粗醋酸 馏
乙烯液

乙烯液体 塔
体产品
200℃
150℃
热油
ppt课件
9
2. 传热的三种基本方式
一、热传导(conduction)
• 依靠物体中微观粒子的热运动而传热;
• 特点:物体内部无宏观运动,靠物体各部分的直接接触产 生热量传递;
稳定导热时,通过各层热量相等:
Q
l1A
t1 t 2 b1
t1 b1
t1 R1
l1A
l2A
t2 t3 b2
t2 b2
t2 R2
l2A
l3A
t3 t4 b3

化工原理 第四章 传热

化工原理 第四章 传热

注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
dt Q S dx x 0,t t1;
x b,t t2; t1 t2
Q
S
b
t1 t2
Q
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
⑴ 给热是集热对流和热传导于一体的耦合过程。 ⑵ R集中在层流内层→ 层流内层厚度↓是强化给热的主要途径。
传热-对流传热
② 热边界层 热边界层→即温度边界层,指壁面附近处具有温度梯度的流体薄层。
dt dQ dS dy w

dQ tw t dS
dt dt tw t dy w t dy w

平板上的热边界层
dt t不变时, t , dy w

⑵ 流体在管内流动时,热边界层与流动边 ⑴ 热边界层边缘处→ 界层类似。不同的是,经历进口段和完全 t t 0.99 t t 发展区后,温度分布随管长渐变为平坦, < ⑵ 热边界层厚度→ 。 继而温度梯度消失,直至传热停止。
dQ T Tw dS
Q S t
R
1 S
① →平均给热系数。 ② 流体温度→流动横截面上的平均温度。 ③ 若热流体走管内,冷流体走环隙, dQ i T Tw dSi o tw t dSo
④ 给热研究的内核→不同给热情况下,α 的大小、影响因素及其计算式。
n
bi
mi
Q

2 πL t1 t4 1 r2 1 r3 1 r4 ln ln ln 1 r1 2 r2 3 r3

化工原理 第四章 传热

化工原理 第四章 传热

12
第二节 热传导
一、傅立叶定律
1.温度场和温度梯度 1) 温度场 某一时刻物体或系统内各点的温度分布总和。
t f x, y, z,
13
2) 等温面:温度场中同一时刻下相同温度各点所
组成的面。等温面不能相交。 3) 温度梯度:两相邻等温面的温度差与两面间的 垂直距离之比。即等温面上某点法线 方向上的温度变化
Ku l c p ( gt )
a b c d e f
h
将各物理量量纲代入上式,用一些参数a,f,h表示其它参数 得 d=1-f c=-a+f-2h e=a+2h b=a+3h-1 代入原函数得 39
lu c p l K
37
对流传热过程的分类及准数关联
由于对流传热的多样性,有必要将问题分类加以研究。
冷凝传热 有相变传热 沸腾传热 对流传热 自然对流 无相变传热 强制对流 管内对流 管外对流 非圆管道 弯管 圆形直管 湍流 过渡区 滞流
38
三、对流传热中的量纲分析
对流传热系数一般难于用理论建立公式,通过量纲分 析再加实验是确定它的关系的重要途径。 流体无相变时,通常有下列物理量影响。 u , l , , , , Cp, gt 设可写为幂函数形式
物体物流各点不随时间变化的传热过程称稳态传热, 反之则非稳态传热。稳态传热的传热速率为常数。 工业生产上一般接近稳态传热。
4. 两流体通过间壁的传热过程
对流热传导对流 以对流方式为主,通常又称对流传热或给热。
11
5. 传热速率方程
经验表明,在稳态传热过程中,传热速率与传热面积 A和两流体的温度差成正比。 t m 推动力 Q KAt m 1 /(KA) 热阻 总传热系数、传热面积、推动力是传热过程三大要素。 将热阻记为R,则Q=tm/R 下面将分别讨论传热基本原理及传热系数的计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 概述传热是指由于温度差引起的能量转移,又称热传递。

由热力学第二定律可知,凡是有温度差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

无论在能源、宇航、化工、动力、冶金、机械、建筑等工业部门,还是在农业、环境保护等其他部门中都涉及到许多有关传热的问题。

应予指出,热力学和传热学两门学科既有区别又有联系。

热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一种平衡状态变到另一种平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。

热力学(能量守恒定律)和传热学(传热速宰方程)两者的结合,才可能解决传热问题:化学工业与传热的关系尤为密切;这是因为化工生产中的很多过程和单元操作,都需要进行加热和冷却。

例如:①化学反应通常要在一定的温度下进行,为了达到并保持一定的温度,就需要向反应器输入或从它输出热;②在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热:③化工设备的保温,生产过程中热能的合理利用以及废热的回收等都涉及传热的问题。

由此可见,传热过程普遍地存在于化工生产中,且具有极其重要的作用。

化工生产中对传热过程的要求经常有以下两种情况:①一种是强化传热过程,如各种换热设备中的传热;②另一种是削弱传热过程,如设备和管道的保温,以减少热损失。

为此必须掌握传热的共同规律。

本章讨论的重点是传热的基本原理及其在化工中的应用4.1.1传热的基本方式根据传热机理的不同,热传递有三种基本方式:传导、对流和热辐射传热可以靠其中的一种方式或几种方式同时进行。

1.热传导(又称导热)若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导(又称导热)。

热传导的条件是系统两部分之间存在温度差,此时热量将从高温部分传向低温部分,或从高温物体传向与它接触的低温物体,直至整个物体的各部分温度相等为止。

热传导在固体、液体和气体中均可进行,但它的微观机理因物态而异。

固体中的热传导属于典型的导热方式。

在金属固体中,热传导起因于自由电子的运动;在不良导体的固体中和大部分液体中,热传导是通过晶格结构的振动,即原子、分子在平衡位置附近的振动来实现的;在气体中,热传导则是由于分子不规则运动而引起的。

对于纯热传导的过程,它仅是静止物质内的一种传热方式,也就是说没有物质的宏观位移。

2,热对流流体各部分之间发生相对位移所引起的热传递过程称为热对流(简称对流)。

热对流仅发生在流体中。

在流体中产生对流的原固有二:一是因流体中各处的温度不同而引起密度的差别,使轻者上浮,重者下沉,流体质点产生相对位移,这种对流称为自然对流;二是因泵(风机)或搅拌等外力所致的质点强制运动,这种对流称为强制对流。

流动的原因不同,对流传热的规律也不同。

应予指出,在同一种流体中,有可能同时发生自然对流和强制对流。

在化工传热过程中,常遇到的并非单纯对流方式,而是流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常将它称为对流传热(又称为给热)。

对流传热的特点是靠近壁面附近的流体层中依靠热传导方式传热,而在流体主体中则主要依靠对流方式传热。

由此可见,对流传热与流体流动状况密切相关。

虽然热对流是一种基本的传热方式,但是由于热对流总伴随着热传导,要将两者分开处理是困难的,因此一般并不讨论单纯的热对流,而是着重讨论具有实际意义的对流传热。

3.热辐射因热的原因而产生的电磁波在空间的传递,称为热辐射。

所有物体(包括固体、液体和气体)都能将热能以电磁波形式发射出去,而不需要任何介质,也就是说它可以在真空中传播。

自然界中一切物体都在不停地向外发射辐射能,同时又不断地吸收来自其他物体的辐射能,并将其转变为热能。

物体之间相互辐射和吸收能量的总结果称为辐射传热。

由于高温物体发射的能量比吸收的多,而低温物体则相反,从而使净热量从高温物体传向低温物体。

辐射传热的特点是:不仅有能量的传递,而且还有能量形式的转移,即在放热处,热能转变为辐射能,以电磁波的形式向空间传递;当遇到另一个能吸收辐射能的物体时,即被其部分地或全部地吸收而转变为热能。

应予指出,任何物体只要在热力学温度零度以上,都能发射辐射能,但是只有在物体温度较高时,热辐射才能成为主要的传热方式。

实际上,上述的三种基本传热方式,在传热过程中常常不是单独存在的,而是两种或三种传热方式的组合,称为复杂传热。

例如,在高温气体与固体壁面之间的换热就要同时考虑对流传热和辐射传热等。

4.1.2 传热过程中热、冷流体(接触)热交换的方式传热过程中热,冷流体热交换可分为三种方式,各种热交换方式所用换热设备的结构也各不相同,简述如下。

1.直接接触式换热和混合式换热器对某些传热过程,例如气体的冷却或水蒸气的冷凝等,可使热、冷流体直接混合进行热交换。

这种换热方式的优点是传热效果好,设备结构简单。

所采用的设备称为混合式换热器。

显然,仅对于工艺上允许两流体互相混合的情况,才能采用这种换热方式。

直接接触换热的机理比较复杂,它在进行传热的同时往往伴有传质过程。

图4—1所示为混合式冷凝器,其中图(b)较为常见,称为干式逆流高位冷凝器,被冷凝的蒸汽与冷却水在器内逆流流动,上升蒸汽与自上部喷淋下来的冷却水相接触而冷凝,冷凝液与冷却水沿气压管向下流动。

由于冷凝器通常与真空蒸发器相连,器内压强为10-20 kPa ,因此气压管必须有足够的高度,一般为10—11 m。

2.蓄热式换热和蓄热器蓄热式换热是在蓄热器中实现热交换的一种方式。

蓄热器内装有固体填充物(如耐火砖等),冷、热流体交替地流过蓄热器,利用固体填充物来积蓄和释放热量而达到换热的目的。

由于不能完全避免两种流体的混合,所以这类设备在化工生产中使用得不太多。

如图4-2.3.间壁式换热和间壁式换热器在化工生产中遇到的多是间壁两侧流体的热交换,即冷、热流体被固体壁面(传热面)所隔开,它们分别在壁面两侧流动。

固体壁面即构成间壁式换热器。

间壁式换热器的类型很多,它们都是典型的传热设备。

如图4-3所示,热、冷流体通过间壁两侧的传热过程三个基本步骤:①热流体将热量传至固体壁面左侧(对流传热);②热量自壁面左侧传至壁面右侧(热传导);③热量自壁面右侧传至冷流体(对流传热)。

通常,将流体与固体壁画之间的传热称为对流传热过程,将热、冷流体通过壁面之间的传热称为热交换过程,简称传热过程间壁式换热是本章讨沦的重点。

4.1.3 典型的间壁式换热器换热器是实现传热过程的基本设备。

为便于讨沦传热的基本原理,先简单介绍典型间壁式换热器,其他类型的换热器将在4.7节中详细讨论。

图4-4为简单的套管式换热器。

它是由直径不同的两根管子同心套在一起构成的。

冷、热流体分别流经内管和环隙而进行热的交换。

图4—5为单程管壳式换热器。

一流体由左侧封头5的接管4进入换热器内,经封头与管板6间的空间(分配室)分配至各管内,流过管束2后,由另一端的接管流出。

另一流体由壳体右侧的接管3进人,壳体内装有数块挡板7,使流体在壳与管束间沿挡板作折流流动,而从另一端的壳体接管流出。

通常,把流体流经管束称为流经管程,将该流体称为管程(或管方)流体;把流体流经管间环隙称为流经壳程。

将该流体称为壳程(或壳方)流体。

由于管程流体在管束内只流过一次,故称为单程管壳换热器。

图4-6为双程管壳式换热能,隔板4将分配室等分为二,管程流体只能先经一半管束,待流到另一端分配室折回再流经另一半管束,然后从接管流出换热器。

由于管程流体在管束内流经两次,故称为双程管壳式换热器。

若流体在管束内来回流过多次,称为多程(例如四程、六程等)换热器。

由于两流体间的传热是通过管壁进行的,故管壁表面积即为传热面积。

显然,传热面积愈大,传递的热量愈多。

对于特定的管壳式换热器,其传热面积可按下式计算,即()。

管长,—管径,—管数;—传热面积,—式中m L m d n m S dLn S ;;1-42π=应予指出,式中管径d 可分别用管内径di 、管外径d 。

或平均直径dm (即(di+d 。

)/2)来表示,则对应的传热面积分别为管内侧面积Si 、外侧面积 S 。

或平均面积Sm 。

对于一定的传热任务,确定换热器的传热面积是设计换 热器的主题,以后各节将要围绕此问题进行讨沦。

在换热器中两流体间传递的热,可能是伴随有流体相变化的潜热,例如冷凝 或沸腾;亦可能是流体无相变化、仅有温度变化的显热,例如加热或冷却。

换热器的热衡算是传热计算的基础之一。

4.1.4传热速率和热通量在换热器中传热的快慢用传热速率来表示,传热速率是传热过程的基本参数。

传热速率(又称热流量)是指在单位时间内通过传热面的热量,用Q 表示,单位为W 。

热通量(又称传热速度)是指单位传热面积的传热速率,用q 表示,单位为W /m 2。

热通量和传热速率间的关系为dS dQq =由于换热器的传热面积可以用圆管的内表面积Si 、外表面积So 或平均表面积Sm 表示,因此相应的热通量的数值各不相同,计算时应标明选择的基准面积。

自然界中传递过程的普遍关系为:传递过程速率与过程的推动力成正比,与过程的阻力成反比。

()单位传热面积的热阻—整个传热面的热阻,—式中或或阻力,温度差传热阻力温度差传热推动力传热速率传热过程速率可表示为R R R t Q R t Q R R t ''∆=∆='∆=对不同的传热情况。

找出热阻的表达方式,即可求得传热速率。

为了提高传热速率或热通量,关键在于减小传热过程的热阻。

应予指出,传热速率和热通量是评价换热器性能的重要指标。

4.1.5 稳态传热和非稳态传热在传热系统(例如换热器)中不积累能量(即输入的能量等于输出的能量)的传热过程称为稳态传热。

稳态传热的特点是传热系统中温度分布不随时间而变,且传热速率在任何时间都为常数。

连续生产过程中的传热多为稳态传热。

若传热系统中温度分布随时间而变化,则这种传热过程为非稳态传热。

工业生产上间歇操作的换热设备和连续生产时设备的开工和停工阶段,都为非稳态传热过程。

化工过程中遇到的大多是稳态传热。

因此,本章重点讨论稳态传热。

4.1.6载热体及其选择在化工生产中,物料在换热器内被加热或冷却时,通常需要用另一种流体供给或取走热量,此种流体称为载热体,其中起加热作用的载热体称为加热剂(或加热介质);起冷却(或冷凝)作用的载热体称为冷却剂(或冷却介质)。

对一定的传热过程,待加热或冷却物料的初始及终了温度常由工艺条件决定,因此需要提供或取出的热量是一定的。

热量的多少决定了传热过程的操作费用。

但应指出,单位热量的价格因载热体而异。

例如,当加热时,温度要求愈高,价格愈贵;当冷却时,温度要求愈低,价格愈贵。

相关文档
最新文档