4N38S1TB-V中文资料
S-AV38中文资料
TOSHIBA RF POWER AMPLIFIER MODULES−AV38○RF POWER AMPLIFIER MODULE for VHF BAND·for digital useABSOLUTE MAXIMUM RATINGS (Tc = 25℃)CHARACTERISTIC SYMBOLUNITRATINGDC Supply Voltage V DD 17 VDC Supply Voltage V GG 7 VInput Power Pi 17 dBmWOperating Case Temperature Range T c (opr)−30~100 ℃Storage Temperature Range T stg−40~110 ℃Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability testreport and estimated failure rate, etc).Weight:3.5gELECTRICAL CHARACTERISTICS (Tc = 25℃, Z G = 50Ω)CHARACTERISTIC SYMBOLTEST CONDITION MIN. TYP. MAX.UNITFrequency Range f range — 260 — 266MHzOutput PowerPoV DD = 7.2V, Po=35dBmW(Pi=adjust)I DD =1.7A(V GG = adjust) , Z L = 50Ω After that Pi = 15dBmW38.8 — — dBmWInput Power Pi V DD = 7.2V, I DD = 1.7A (V GG = adjust) Po = 35dBmW(Pi=adjust), Z L = 50Ω— — 5 dBmW Gate Bias VoltageV GG V DD = 7.2V, I DD = 1.7A (V GG = adjust) Po = 35dBmW(Pi=adjust), Z L = 50Ω 2.5 — 3.5 VGate Bias Current I GGBiasV DD = 7.2V, I DD = 1.7A (V GG = adjust) Po = 35dBmW (Pi= adjust), Z L = 50Ω After that Pi OFF— — 1 mAAdjacent-Channel Power Ratio ACP V DD = 7.2V, I DD = 1.7A (V GG = adjust) Po = 35dBmW (Pi= adjust), Z L = 50Ω Modulated Wave :π/4·DQPSK (α=0.5, 32kbps) Band Width : 16kHz Frequency Offset : 25kHz— — -35 dBSecond Harmonic 2nd HRM — — -27 dBThird Harmonic3rd HRM— — -30 dB Harmonic HRM V DD = 7.2V, I DD = 1.7A (V GG = adjust)Po = 35dBmW (Pi= adjust), Z L = 50Ω— — -35 dB Rate of Adjustment for Input Load VSWRin Input VSWR ( When RF output pin connects 50Ω Load )— — 3 — Rate of Adjustment for Output LoadVSWRoutInput VSWR ( When RF input pin connects 50Ω Load )— — 2.5 —Ralative Phase Variation—V DD = 7.2V, I DD = 1.7A (V GG = adjust)Po = 5 to 35dBmW (Pi= adjust) Z L = 50Ω(@ Po = 35dBmW)— — ±12°Load Mismatch—V DD = 7.2V, I DD = 1.7A (V GG = adjust)Po = 35dBmW (Pi= adjust, Z L = 50Ω) VSWR LOAD 20: 1 ALL PHASE No Degradation —Stability — V DD = 6.0 to 9.0V, V GG = 1 to 5VPi = -40 to 13 dBmWVSWR LOAD 3: 1 ALL PHASEAll spurious output than 60dB below desired signal—Caution・ This product has intersetting cap. Please pay attention for exceeding stress and foreign matter in your application. And not to take away the cap.・ Do not break, cut, crush or dissolve chemically. Dispose of this product properly according to law.Do not intermingle with normal industrial or domestic waste.・ This product is electrostatic sensitivity, please handle with caution.SCHEMATICTEST FIXTUREL L C1C1C1 : 10000pFC2 : 10μF L : φ0.8 ENAMEL WIRE 8T 5IDC2C21. PiZ G =50Ω4. PoZ L =50Ω2. V GG3. V DD(FLANGE)RESTRICTIONS ON PRODUCT USE20070701-EN GENERAL •The information contained herein is subject to change without notice.•TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk.•The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.• Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.。
4N35STB-V中文资料
6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesFeatures:• 4N2X series: 4N25, 4N26, 4N27, 4N28 • 4N3X series: 4N35, 4N36, 4N37, 4N38• H11AX series: H11A1, H11A2, H11A3, H11A4, H11A5 • High isolation voltage between input and output (Viso=5000 V rms)• Creepage distance >7.6mm• Operating temperature up to +110°C • Compact dual-in-line package • Pb free and RoHS compliant. • UL approved (No. E214129) • VDE approved (No. 132249) • SEMKO approval pending • NEMKO approval pending • DEMKO approval pending • FIMKO approval pending • CSA approval pendingDescriptionThe 4N2X, 4N3X, H11AX series contains an infrared emitting diode optically coupled to a phototransistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.Applications• Power supply regulators • Digital logic inputs • Microprocessor inputs1. Anode2. Cathode3. No Connection4. Emitter5. Collector6. BaseSchematic6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesAbsolute Maximum Ratings (T a =25°C)Parameter Symbol Rating Unit Forward currentI F 50 mA Peak forward current (t = 10µs)I FM 1 A Reverse voltageV R 6 V 70 mW InputPower dissipation (T A = 25°C) Derating factor (above 100°C) P D 3.8 mW/°C Collector-Emitter voltage V CEO 80 V Collector-Base voltageV CBO 80 V Emitter-Collector voltage V ECO 7 V OutputEmitter-Base voltageV EBO 7 V 150 mWPower dissipation (T A = 25°C) Derating factor (above 100°C)P C 9.0mW/°CTotal power dissipation P tot 200 mW Isolation voltage *1 V iso 5000 Vrms Operating temperature T opr -55~+110 °C Storage temperature T stg -55~+125 °C Soldering temperature *2 T sol260 °CNotes*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together. *2 For 10 seconds.6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesElectrical Characteristics (T a =25°C unless specified otherwise)InputParameter Symbol Min. Typ.* Max. Unit ConditionForward voltage V F - 1.2 1.5 V I F = 10mA Reverse current I R - - 10 µA V R = 6V Input capacitanceC in-30-pFV = 0, f = 1MHzOutputParameter Symbol Min. Typ.* Max. Unit ConditionCollector-Base dark current I CBO - - 20 nA V CB = 10V - - 50V CE = 10V, IF=0mA Collector-Emitter darkcurrentI CEO - - 50nAV CE = 60V, IF=0mACollector-Emitter breakdown voltage BV CEO80 - - V I c =1mACollector-Base breakdown voltage BV CBO 80 -V I C =0.1mAEmitter-Collector breakdown voltage BV ECO 7 - - V I E =0.1mA Emitter-Basebreakdown voltage BV EBO7 - - V I E =0.1mACollector-Emitter capacitanceC CE - 8 - pF VCE=0V, f=1MHz* Typical values at T a = 25°C6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesTransfer Characteristics (T a =25°C unless specified otherwise)Parameter Symbol Min. Typ.* Max. Unit Condition4N35, 4N36,4N37 100--H11A150 - - H11A5 30 - -4N25, 4N26, 4N38, H11A2, H11A3 20 - - Current transfer ratio4N27, 4N28, H11A4 CTR10--%I F = 10mA, V CE = 10V4N25, 4N26, 4N27, 4N28- - 0.5 I F = 50mA, I c = 2mA4N35, 4N36,4N37 - - 0.3H11A1, H11A2, H11A3, H11A4, H11A5 - - 0.4I F = 10mA, I c = 0.5mACollector-Emitter saturation voltage4N38V CE(sat) - - 1.0VI F = 20mA, I c = 4mA Isolation resistanceR IO 1011 - - ΩV IO = 500VdcInput-output capacitanceC IO- 0.2 - pF V IO = 0, f = 1MHz4N25, 4N26, 4N27, 4N28, H11A1, H11A2, H11A3,H11A4, H11A5- 3 10V CC = 10V, I F = 10mA,R L = 100Ω See Fig. 11Turn-on time4N35, 4N36, 4N37, 4N38 Ton- 10 12µsV CC = 10V, I C = 2mA,R L = 100Ω, See Fig. 114N25, 4N26, 4N27, 4N28, H11A1, H11A2, H11A3, H11A4- 3 10V CC = 10V, I F = 10mA, R L = 100Ω See Fig. 11Turn-off time4N35, 4N36, 4N37, 4N38Toff- 9 12µsV CC = 10V, I C = 2mA, R L = 100Ω, See Fig. 11* Typical values at T a = 25°C6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X SeriesH11AX SeriesTypical Performance Curves6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X SeriesH11AX SeriesFigure 11. Switching Time Test Circuit & WaveformsI FI CR LR INR BEV CCOutputInputInput PulseOutput Pulse10%90%t f t r t offt on6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesOrder InformationPart Number4NXXY(Z)-VorH11AXY(Z)-VNoteXX = Part no. for 4NXX series (25, 26, 27, 28, 35, 36, 37 or 38) X = Part no. for H11AX series (1, 2, 3, 4, or 5) Y = Lead form option (S, S1, M or none) Z = Tape and reel option (TA, TB or none). V = VDE (optional)Option Description Packing quantityNone Standard DIP-665 units per tube M Wide lead bend (0.4 inch spacing)65 units per tube S (TA) Surface mount lead form + TA tape & reel option 1000 units per reel S (TB) Surface mount lead form + TB tape & reel option1000 units per reel S1 (TA) Surface mount lead form (low profile) + TA tape & reel option 1000 units per reel S1 (TB)Surface mount lead form (low profile) + TB tape & reel option1000 units per reel6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesPackage Drawings(Dimensions in mm)Standard DIP TypeOption M Type6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesOption S TypeOption S1 Type6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesDevice MarkingNotesEL denotes Everlight4N35 denotes Device Number Y denotes 1 digit Year code WW denotes 2 digit Week code V denotes VDE (optional)EL 4N35YWWV6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesTape dimensionsDimension No.A B Do D1 E F Dimension (mm) 10.4±0.1 7.52±0.1 1.5±0.1 1.5+0.1/-0 1.75±0.1 7.5±0.1Dimension No.Po P1 P2 t W K Dimension (mm) 4.0±0.15 16.0±0.1 2.0±0.1 0.35±0.03 16.0±0.2 4.5±0.1Option TAOption TBDirection of feed from reel Direction of feed from reel6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesSolder Reflow Temperature Profile6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesDISCLAIMER1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material changefor above specification.2. When using this product, please observe the absolute maximum ratings and the instructions for use asoutlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.3. These specification sheets include materials protected under copyright of EVERLIGHT Corporation.Please do not reproduce or cause anyone to reproduce them without EVERLIGHT’s consent.。
S-T S-N S-V产品对照表
220-240V 2.5/11 380-440V 4/9 100-240V 20 额定(A) AC-1 (阻性负载) 380-440V 11 20 约定发热电流(A) 1a or 1b 辅助触头构成 W (宽) 43(*) H (高) 78(*) 外形尺寸(㎜) D (深) 78 E×F (安装) 35×50(*)
5.5/22 (*) 11/22 32 32 32 2a2b 63 81 81 54×60
(*)
7.5/30 15/30 50(*) (*) 50 50(*) 2a2b 75(*) 89(*) 91(*) 65×70(*)
注. 带(*)标记表示代替型号的额定值和规格有不同。
2.S-T C与S-V对照
79 81(*) 30×60(*)
5.5/22 5.5/22 (*) (*) 11/22 11/22 (*) 32 32 (*) 32 32 32 32(*) 1a1b or 2a 1a1b or 2a(*) 63 63(*) (*) 81 81 (*) 81 81 54×60 54×60(*)
(*)
额定(kw/A) AC-3 (电机负载)
1a or 1b(*) 1a or 1b(*) 43 43 78(*) 78 35×50 78(*) 78 35×50
7.5/32(*) (*) 11/25 15/32(*) 32 32 32 32 32 32 2a2b 63 81 81 54×60Fra bibliotekH F
W
注2.安装互换性 ○:可以互换 ×:不可互换
(*)
S-T25 7.5/30 15/30 32 32 32 2a2b 63 81 81 54×60 ×/○ S-N25
(电机负载)
S-N25
4N33S中文资料
TRANSFER CHARACTERISTICS
AC Characteristic Turn-on Time(3) (4N32, 4N33) (4N29, 4N30, 4N31) Bandwidth(4,5) Turn-off Time(3) Test Conditions (IF = 200 mA, IC = 50 mA, VCC = 10 V) (Fig.7) Symbol ton toff BW 30 Min Typ Max 5.0 100 40 KHz µs Units
IF - LED INPUT CURRENT (mA)
TA - AMBIENT TEMPERATURE (˚C)
Fig. 3 Collector Current vs. Collector-Emitter Voltage
NORMALIZED TO: IF = 1 mA VCE = 5 V
Fig. 4 Dark Current vs. Ambient Temperature
0 0 1 2 3 4 5 6 7 8 9 10
0.01
0
20
40
60
80
100
ቤተ መጻሕፍቲ ባይዱ
VCE- COLLECTOR -EMITTER VOLTAGE (V)
TA - AMBIENT TEMPERATURE (˚C)
Fig. 5 Turn-On Time vs. Input Current
1000 RL = 1 k1 VCC = 10 V 100 1000
元器件交易网
GENERAL PURPOSE 6-PIN PHOTODARLINGTON OPTOCOUPLERS
DESCRIPTION
The 4N29, 4N30, 4N31, 4N32, 4N33 have a gallium arsenide infrared emitter optically coupled to a silicon planar photodarlington.
联想ThinkPad T460s电源适配器数据表说明书
Vertical
Primary Pins
5
Secondary Pins
2
USE_SHIELDS
NO
LP_nom
574
LP_Tol
5.0
NP
46.0
NSM
7
CMA
1408
BW
15.30
ML
0.00
MR
0.00
FF
69.72
AE ALG BM BP BAC LG L_LKG LSEC
52.50 271 3178 3417 1589 0.206 14.35 20
Feedback Circuit
Var
Value
DUAL_OUTPUT_FB_FLA NO G
NO
PIVB
69
NB
7
Transformer Construction Parype
E25/13/7 (EF25)
Core Material
3F3
Bobbin Reference
Generic, 5 pri. + 5 sec.
Bobbin Orientation
OR_HSINK_AREA OSR_RDSON CO IRIPPLE Expected Lifetime
104 15.00 220 x 1 2.912 24386
mm² mΩ µF A hr
Output Rectifier Heatsink Area Synchronous Rectifier RDSON (Manual Overwrite) Output Capacitor - Capacitance Output Capacitor - RMS Ripple Current Output Capacitor - Expected Lifetime
Samsung-NAND-FLASH命名规则
三星的pure nand flash〔就是不带其他模块只是nand flash存储芯片〕的命名规那么如下:1. Memory (K)2. NAND Flash : 93. Small Classification(SLC : Single Level Cell, MLC : Multi Level Cell,SM : Smart Media, S/B : Small Block)1 : SLC 1 Chip XD Card2 : SLC 2 Chip XD Card4 : SLC 4 Chip XD CardA : SLC + Muxed I/ F ChipB : Muxed I/ F ChipD : SLC Dual SME : SLC DUAL (S/ B)F : SLC NormalG : MLC NormalH : MLC QDPJ : Non-Muxed OneNandK : SLC Die StackL : MLC DDPM : MLC DSPN : SLC DSPQ : 4CHIP SMR : SLC 4DIE STACK (S/ B)S : SLC Single SMT : SLC SINGLE (S/ B)U : 2 STACK MSPV : 4 STACK MSPW : SLC 4 Die Stack4~5. Density〔注:实际单位应该是bit,而不是Byte〕12 : 512M16 : 16M28 : 128M32 : 32M40 : 4M56 : 256M64 : 64M80 : 8M1G : 1G2G : 2G4G : 4G8G : 8GAG : 16GBG : 32GCG : 64GDG : 128G00 : NONE6~7. Organization00: NONE08: x816: x168. VccA : 1.65V~3.6VB : 2.7V (2.5V~2.9V)C : 5.0V (4.5V~5.5V)D : 2.65V (2.4V ~ 2.9V)E : 2.3V~3.6VR : 1.8V (1.65V~1.95V)Q : 1.8V (1.7V ~ 1.95V)T : 2.4V~3.0VU : 2.7V~3.6VV : 3.3V (3.0V~3.6V)W : 2.7V~5.5V, 3.0V~5.5V0 : NONE9. Mode0 : Normal1 : Dual nCE & Dual R/ nB4 : Quad nCE & Single R/ nB5 : Quad nCE & Quad R/ nB9 : 1st block OTPA : Mask Option 1L : Low grade10. GenerationM : 1st GenerationA : 2nd GenerationB : 3rd GenerationC : 4th GenerationD : 5th Generation11. "─"12. PackageA : COBB : TBGAC : CHIP BIZD : 63-TBGAE : TSOP1 (Lead-Free, 1217)F : WSOP (Lead-Free)G : FBGAH : TBGA (Lead-Free)I : ULGA (Lead-Free)J : FBGA (Lead-Free)K : TSOP1 (1217)L : LGAM : TLGAN : TLGA2P : TSOP1 (Lead-Free)Q : TSOP2 (Lead-Free)S : SMART MEDIAT : TSOP2U : COB (MMC)V : WSOPW : WAFERY : TSOP113. TempC : CommercialI : IndustrialS : SmartMediaB : SmartMedia BLUE0 : NONE (Containing Wafer, CHIP, BIZ, Exceptionhandling code)3 : Wafer Level 314. Bad BlockA : Apple Bad BlockB : Include Bad BlockD : Daisychain SampleK : Sandisk BinL : 1~5 Bad BlockN : ini. 0 blk, add. 10 blkS : All Good Block0 : NONE (Containing Wafer, CHIP, BIZ, Exceptionhandling code)15. NAND-Reserved0 : Reserved16. Packing Type- Common to all products, except of Mask ROM- Divided into TAPE & REEL(In Mask ROM, divided into TRAY, AMMO Packing Separately) 【举例说明】K9GAG08U0M 详细信息如下:1. Memory (K)2. NAND Flash : 93. Small Classification(SLC : Single Level Cell, MLC : Multi Level Cell,SM : SmartMedia, S/B : Small Block)G : MLC Normal4~5. DensityAG : 16G (Note: 这里单位是bit而不是byte,因此实际大小是16Gb=2GB)0 : Normal (x8)7. Organization0 : NONE 8 : x88. VccU : 2.7V~3.6V9. Mode0 : Normal10. GenerationM : 1st Generation11. "─"12. PackageP : TSOP1 (Lead-Free)13. TempC : Commercial14. Customer Bad BlockB : Include Bad Block15. Pre-Program Version0 : None整体描述就是:K9GAG08U0M是,三星的MLC Nand Flash,工作电压为2.7V~3.6V,x8〔即I/O是8位〕,大小是2GB〔16Gb〕,TSOP1封装。
4N60中文资料
UNISONIC TECHNOLOGIES CO., LTD4N60 Power MOSFET4 Amps, 600 VoltsN-CHANNEL POWER MOSFETDESCRIPTIONThe UTC 4N60 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.FEATURES* RDS(ON) = 2.5Ω @V GS = 10 V* Ultra low gate charge ( typical 15 nC )* Low reverse transfer Capacitance ( C RSS = typical 8.0 pF ) * Fast switching capability * Avalanche energy Specified* Improved dv/dt capability, high ruggednessSYMBOL1.GateTO-22011TO-220F*Pb-free plating product number: 4N60LORDERING INFORMATIONOrder Number Pin AssignmentNormalLead Free Plating Package 1 2 3 Packing4N60-TA3-T 4N60L-TA3-T TO-220 G D S Tube 4N60-TF3-T 4N60L-TF3-T TO-220F G D S TubeABSOLUTE MAXIMUM RATINGS (T C = 25℃, unless otherwise specified)PARAMETER SYMBOL RATINGS UNITDrain-Source Voltage V DSS 600 V Gate-Source Voltage V GSS ±30 V Avalanche Current - (Note 1) I AR 4.4 AT C = 25°C 4.0 AContinuous Drain CurrentT C = 100°C I D 2.8 APulsed Drain Current, T P Limited by T JMAX - (Note 1) I DM 16 A Avalanche Energy, Single Pulsed (Note 2) E AS 260 mJ Avalanche Energy, Repetitive, Limited by T JMAX E AR 10.6 mJ Peak Diode Recovery dv/dt (Note 3) dv/dt 4.5 V/ns Power Dissipation (T C = 25°C) P D 106 W Junction Temperature T J +150 Storage Temperature T STG -55 ~ +150Note Absolute maximum ratings are those values beyond which the device could be permanently damaged.Absolute maximum ratings are stress ratings only and functional device operation is not implied.THERMAL DATAPARAMETER SYMBOL MIN TYP MAX UNITJunction-to-Ambient θJA 62.5 °C/W Junction-to-Case θJC 3 °C/W Case-to-Sink θCS 0.5 °C/WELECTRICAL CHARACTERISTICS (T C =25℃, unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS = 0 V, I D = 250 µA 600V V DS = 600 V, V GS = 0 V10µA Drain-Source Leakage Current I DSSV DS = 480 V, T C = 125°C100µA Forward V GS = 30 V, V DS = 0 V100nA Gate-Source Leakage CurrentReverse I GSSV GS = -30 V, V DS = 0 V-100nA Breakdown Voltage Temperature CoefficientBV DSS /△T J I D = 250 µA, Referenced to 25°C 0.6 V/ On Characteristics Gate Threshold VoltageV GS(TH)V DS = V GS , I D = 250 µA 2.0 4.0V Drain-Source On-State Resistance R DS(ON) V GS = 10 V, I D = 2.2 A2.5ΩForward Transconductance g FSV DS = 50 V, I D = 2.2 A (Note 4)4.0SDynamic Characteristics Input Capacitance C ISS 520 670pFOutput CapacitanceC OSS 70 90pFReverse Transfer Capacitance C RSSV DS = 25 V, V GS = 0 V, f = 1MHz 8 11pF Switching Characteristics Turn-On Delay Time t D(ON) 13 35nsTurn-On Rise Time t R 45 100ns Turn-Off Delay Time t D(OFF) 25 60nsTurn-Off Fall Time t FV DD = 300V, I D = 4.0 A, R G = 25Ω(Note 4, 5) 35 80ns Total Gate Charge Q G 15 20nCGate-Source Charge Q GS 3.4 nCGate-Drain ChargeQ DDV DS = 480V,I D = 4.0A, V GS = 10 V(Note 4, 5)7.1 nCELECTRICAL CHARACTERISTICS(Cont.)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITSource- Drain Diode Ratings and Characteristics Drain-Source Diode Forward Voltage V SD V GS = 0 V, I S = 4.4 A 1.4VMaximum Continuous Drain-SourceDiode Forward CurrentI S 4.4AMaximum Pulsed Drain-Source DiodeForward CurrentI SM 17.6AReverse Recovery Time t RR 250 ns Reverse Recovery Charge Q RR V GS = 0 V, I S = 4.4 A,dI F /dt = 100 A/µs (Note 4) 1.5 µCNotes: 1. Repetitive Rating : Pulse width limited by T J2. L = 25mH, I AS = 4.4A, V DD = 50V, R G = 25 Ω, Starting T J = 25°C3. I SD ≤4.4A, di/dt ≤200A/µs, V DD ≤ BV DSS , Starting T J = 25°C 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%5. Essentially independent of operating temperatureTEST CIRCUITS AND WAVEFORMSV DDV GS (Driver)I SD (D.U.T.)Body DiodeForward Voltage DropV DS(D.U.T.)Fig. 1A Peak Diode Recovery dv/dt Test CircuitFig. 1B Peak Diode Recovery dv/dt WaveformsTEST CIRCUITS AND WAVEFORMS (Cont.)R LDDV DS90%10%V GStFig. 2A Switching Test Circuit Fig. 2B Switching WaveformsFig. 3A Gate Charge Test CircuitFig. 3B Gate Charge Waveform10VLV DDI ASFig. 4A Unclamped Inductive Switching Test Circuit Fig. 4B Unclamped Inductive Switching WaveformsTYPICAL CHARACTERISTICS-100D r a i n -S o u rc e B r e a kd o w n V o l t a ge , B V D S S (N o r m a l i z e d )Junction Temperature , T J (℃)502001001501.201.11.00.90.8Breakdown Voltage Variation vs .Temperature-100D r a i n -S o u r ce O n -R e s i s t a n c e , R D S (O N ) (N o r m a l i z e d )Junction Temperature , T J (℃)-50502001001503.002.01.00.50.01.52.5On-Resistance Junction Temperature10Drain-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )1001011000Maximum Safe Operating AreaD r a i n C u r r e n t , I D (A )Case Temperature , T C (℃)751000125502512345Maximum Drain Current vs . CaseTemperature100.11Drain -to-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )On-State Characteristics2Gate-Source Voltage , V GS (V)D r a i n C u r r e n t , I D (A )Transfer Characteristics 46810100.1TYPICAL CHARACTERISTICS(Cont.)D r a i n -S o u r c e O n -R e s i s t a n c e , R D S (O N ) (o h m )Drain Current, I D (A)24On-Resistance Variation vs . DrainCurrent and Gate Voltage 6810120.2Source-Drain Voltage , V SD (V)On State Current vs. Allowable CaseTemperature1.80.40.60.81.01.2 1.61.4120000.1Drain-SourceVoltage , V DS (V)C a p a c i t a n c e (p F )1000200110800600Capacitance Characteristics(Non-Repetitive)G a t e -S o u r c e V o l t a g e , V G S (V )Total Gate Charge , Q G (nC)515258101210642020Gate Charge Characteristics400T h e r m a l R e s p o n s e , θJ C (t )Square Wave Pulse Duration , t 1(sec)Transient Thermal ResponseCurve 00P D (w )T C (°C)2040204080100120Power Dissipation606080100120140160。
4N38中文资料
Document Number Optocoupler, Phototransistor Output, With Base ConnectionFeatures•Isolation Test Voltage 5300 V RMS•Interfaces with common logic families•Input-output coupling capacitance < 0.5 pF •Industry Standard Dual-in line 6-pin package •Lead-free component•Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/ECAgency Approvals•Underwriters Laboratory File #E52744 •DIN EN 60747-5-2 (VDE0884)DIN EN 60747-5-5 pending Available with Option 1ApplicationsAC mains detection Reed relay drivingSwitch mode power supply feedback Telephone ring detection Logic ground isolationLogic coupling with high frequency noise rejectionDescriptionThis data sheet presents five families of Vishay Indus-try Standard Single Channel Phototransistor Cou-plers.These families include the 4N35/ 4N36/ 4N37/4N38 couplers.Each optocoupler consists of gallium arsenide infra-red LED and a silicon NPN phototransistor.These couplers are Underwriters Laboratories (UL)listed to comply with a 5300 V RMS isolation test volt-age.This isolation performance is accomplished through Vishay double molding isolation manufacturing pro-cess. Comliance to DIN EN 60747-5-2(VDE0884)/DIN EN 60747-5-5 pending partial discharge isolation specification is available for these families by ordering option 1.These isolation processes and the Vishay ISO9001quality program results in the highest isolation perfor-mance available for a commecial plastic phototransis-tor optocoupler.The devices are available in lead formed configura-tion suitable for surface mounting and are available either on tape and reel, or in standard tube shipping containers.Note:Designing with data sheet is cover in Application Note 45Order InformationFor additional information on the available options refer to Option Information.PartRemarks4N35CTR > 100 %, DIP-64N36CTR > 100 %, DIP-64N37CTR > 100 %, DIP-64N38CTR > 20 %, DIP-64N35-X006CTR > 100 %, DIP-6 400 mil (option 6)4N35-X007CTR > 100 %, SMD-6 (option 7)4N35-X009CTR > 100 %, SMD-6 (option 9)4N36-X007CTR > 100 %, SMD-6 (option 7)4N36-X009CTR > 100 %, SMD-6 (option 9)4N37-X006CTR > 100 %, DIP-6 400 mil (option 6)4N37-X009CTR > 100 %, SMD-6 (option 9) Document Number 83717Absolute Maximum RatingsT amb = 25°C, unless otherwise specifiedStresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.InputOutputCouplerParameterTest conditionSymbol Value Unit Reverse voltage V R 6.0V Forward current I F 60mA Surge current ≤ 10 µsI FSM 2.5A Power dissipationP diss100mWParameterTest conditionSymbol Value Unit Collector-emitter breakdown voltageV CEO 70V Emitter-base breakdown voltageV EBO 7.0V Collector currentI C 50mA (t ≤ 1.0 ms)I C 100mA Power dissipationP diss150mWParameterTest conditionSymbol Value Unit Isolation test voltage V ISO5300V RMS Creepage ≥ 7.0mm Clearance≥ 7.0mm Isolation thickness between emitter and detector≥ 0.4mmComparative tracking index per DIN IEC 112/VDE0303,part 1175Isolation resistance V IO = 500 V, T amb = 25°C R IO 1012ΩV IO = 500 V, T amb = 100°CR IO 1011ΩStorage temperature T stg - 55 to + 150°C Operating temperature T amb - 55 to + 100°C Junction temperature T j 100°C Soldering temperaturemax. 10 s dip soldering: distance to seating plane ≥ 1.5 mmT sld260°CDocument Number Electrical CharacteristicsT amb = 25°C, unless otherwise specifiedMinimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.Input1) Indicates JEDEC registered valueOutput1)Indicates JEDEC registered valueCoupler1)Indicates JEDEC registered valueParameterT est conditionSymbol MinT yp.Max Unit Forward voltage 1)I F = 10 mAV F 1.3 1.5V I F = 10 mA, T amb = - 55°C V F 0.9 1.3 1.7V Reverse current 1)V R = 6.0 V I R 0.110µA CapacitanceV R = 0, f = 1.0 MHzC O25pFParameterT est conditionPart Symbol Min Typ.Max Unit Collector-emitter breakdown voltage 1)I C = 1.0 mA4N35BV CEO 30V 4N36BV CEO 30V 4N37BV CEO 30V 4N38BV CEO 80V Emitter-collector breakdown voltage 1)I E = 100 µABV ECO7.0V Collector-base breakdown voltage1)I C = 100 µA, I B = 1.0 µA4N35BV CBO 70V 4N36BV CBO 70V 4N37BV CBO 70V 4N38BV CBO 80VCollector-emitter leakage current1)V CE = 10 V, I F = 04N35I CEO 5.050nA 4N36I CEO 5.050nA V CE = 10 V, I F =04N37I CEO 5.050nA V CE = 60 V, I F = 04N38I CEO 50nA V CE = 30 V, I F = 0, T amb = 100°C4N35I CEO 500µA 4N36I CEO 500µA 4N37I CEO 500µA V CE = 60 V, I F = 0, T amb = 100°C4N38I CEO 6.0µA Collector-emitter capacitanceV CE = 0C CE6.0pFParameterT est conditionSymbol Min T yp.Max Unit Resistance, input to output 1)V IO = 500 V R IO 1011ΩCapacitance (input-output)f = 1.0 MHzC IO0.5pF Document Number 83717Current Transfer Ratio1)Indicates JEDEC registered valueSwitching Characteristics1) Indicates JEDEC registered valueTypical Characteristics (Tamb = 25 °C unless otherwise specified)ParameterTest conditionPart Symbol Min T yp.Max Unit DC Current Transfer Ratio 1)V CE = 10 V , I F = 10 mA4N35CTR DC 100%4N36CTR DC 100%4N37CTR DC 100%V CE = 10 V , I F = 20 mA 4N38CTR DC 20%V CE = 10 V , I F = 10 mA, T A = - 55 to + 100°C4N35CTR DC 4050%4N36CTR DC 4050%4N37CTR DC 4050%4N38CTR DC30%Parameter Test conditionSymbol Min Typ.Max Unit Switching time 1)I C = 2 mA, R L = 100 Ω, V CC = 10 Vt on , t off10µsFigure 1. Forward Voltage vs. Forward Currenti4n25_01100101.10.70.80.91.01.11.21.31.4I F -Forward Current -mAV F -F o r w a r d V o l t a g e -VFigure 2. Normalized Non-Saturated and Saturated CTR vs. LEDCurrenti4n25_020.00.51.01.5110100I F -LED Current -mAN C T R -N o r m l i z e d C T RDocument Number Figure 3. Normalized Non-saturated and Saturated CTR vs. LEDCurrent Figure 4. Normalized Non-saturated and saturated CTR vs. LEDCurrentFigure 5. Normalized Non-saturated and saturated CTR vs. LEDCurrenti4n25_030.00.51.01.5I F -LED Current -mAN C T R -N o r m a l i z e d C T Ri4n25_040.00.51.01.5I F -LED Current -mAN C T R -N o r m a l i z e d C T Ri4n25_050.00.51.01.5I F -LED Current -mAN C T R -N o r m a l i z e d C T RFigure 6. Collector-Emitter Current vs. Temperature and LEDCurrentFigure 7. Collector-Emitter Leakage Current vs.Temp.Figure 8. Normalized CTRcb vs. LED Current and Temp.i4n25_06605040302010I F -LED Current -mAI c e -C o l l e c t o r C u r r e n t -m Ai4n25_0710080604020–201010101010101010–2–1012345T A -Ambient Temperature -°CI c e o -C o l l e c t o r -E m i t t e r -n ATypicalV ce =10V i4n25_080.00.51.01.5I F -LED Current -mAN C T R c b -N o r m a l i z e d C T R c b.1110100 Document Number 83717Figure 9. Normalized Photocurrent vs. I F and Temp.Figure 10. Normalized Non-saturated HFE vs. Base Current andTemperatureFigure 11. Normalized HFE vs. Base Current and Temp.i4n25_090.0.011110I F -LED Current -mAN o r m a l i z e d P h o t o c u r r e n t.1110100i4n25_100.40.61.01.2Ib -Base Current -µAN H F E -N o r m a l i z e d H F E0.8i4n25_110.00.51.01.5N H F E (s a t )-N o r m a l i z e d S a t u r a t e d H F E1101001000Ib -Base Current -µAFigure 12. Propagation Delay vs. Collector Load ResistorFigure 13. Switching TimingFigure 14. Switching Schematici4n25_121000RL -Collector Load Resistor -k Ωt P L H -P r o p a ga t i o n D e l a y -µs.1110100t P H L -P r o p a g a t i o n D e l a y -µsi4n25_13I FV i4n25_14V =5.0VF=10V OI F =10mAPackage Dimensions in Inches (mm)For 4N35/36/37/38..... see DIL300-6 Package dimension in the Package Section.For products with an option designator (e.g. 4N35-X006 or 4N36-X007)..... see DIP-6 Package dimensions in the Package Section. DIL300-6 Package DimensionsDocument Number Document Number 83717Ozone Depleting Substances Policy StatementIt is the policy of Vishay Semiconductor GmbH to1.Meet all present and future national and international statutory requirements.2.Regularly and continuously improve the performance of our products, processes, distribution andoperatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.1.Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendmentsrespectively2.Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the EnvironmentalProtection Agency (EPA) in the USA3.Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.We reserve the right to make changes to improve technical designand may do so without further notice.Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, GermanyTelephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423Document Number 。
二极管分类、使用场合、参数识别稳压管--Lxz135790sBlog
二极管分类、使用场合、参数识别稳压管--Lxz135790sBlog标签:模拟技术二极管分类、使用场合、参数识别稳压管1.二极管分类和使用场合l 硅整流二极管:硅整流二极管的主要型号有IN4001~IN4007、IN5391~IN5399、IN5100~IN5406,它主要用途有在电源电路上做整流元件,还可以灵活的构成限幅、钳位、抑制反向电动势、双电源实现数据保护等电路。
典型应用如图1.6.8。
l 硅整流桥:硅整流桥的主要型号有3N246~3N245,分为单相半桥、单相全桥和三相全桥,其中单相全桥主要用在小功率整流电路中,三相全桥在电力整流和逆变器等大功率设备中使用。
硅整流桥也可以用硅整流二极管搭接而成。
l 检波二极管:它电流小,结电容小,主要用在在小信号、高频率的电路中。
l 肖特基二极管:它的反响恢复时间极短可达几个纳秒,压降可达0.4V,主要在开关稳压电源和逆变器中作续流二极管用,主要型号有IN5817~IN5825等。
l 快恢复二极管:它的正向压降较低,反应时间较快(0.2~0.75μs),比肖特基二极管耐压高得多,在逆变电源中作整流元件。
主要型号有IN4933~IN4937。
l 变容二极管:它是一种电容随外加偏压改变有较大非线性变化的二极管,通常工作于反向偏置状态,在调频电路中有较大应用。
l 发光二极管:它是一种主动发光器件,简称LED,和普通二极管类似,也具有单向导电性,发光响应速度可快到几十纳秒,颜色和外形种类很多。
现在还有一种复合发光二极管,一只二极管在不同的控制条件下发出不同颜色的光。
发光二极管多用于电子电路中作信号和状态的显示,也可作为光传感器的光源。
l 红外发光二极管:和发光二极管类似,只不过它发出是我们肉眼不能直接看到的红外光,在电子产品中常用作红外光源,还经常用于光通讯等领域。
l 稳压二极管:属于硅管,在反向击穿区具有极陡的击穿曲线,在很大的电流变化范围内,只有极小的电压变化。
Si4404DY-T1中文资料
FEATURESD TrenchFET r Power MOSFET D 100% R g TestedVishay SiliconixN-Channel 30-V (D-S) MOSFETPRODUCT SUMMARYV DS (V)r DS(on) (W )I D (A)0.0065 @ V GS = 10 V 23300.008 @ V GS= 4.5 V17SO-8S D S D S D GD5678Top View2341DGN-Channel MOSFET Ordering Information:Si4404DYSi4404DY -T1 (with Tape and Reel)ABSOLUTE MAXIMUM RATINGS (T A = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol10 secsSteady State UnitDrain-Source Voltage V DS 30Gate-Source VoltageV GS "20VT A = 25_C 2315Continuous Drain Current (T J = 150_C)a T A = 70_CI D 1912Pulsed Drain Current (10 m s Pulse Width)I DM 60AContinuous Source Current (Diode Conduction)a I S 2.9 1.3T A = 25_C 3.5 1.6Maximum Power Dissipation aT A = 70_C P D 2.21W Operating Junction and Storage Temperature RangeT J , T stg-55 to 150_CTHERMAL RESISTANCE RATINGSParameterSymbol TypicalMaximumUnitM iJ ti t A bi t t v 10 sec 2935Maximum Junction-to-Ambient a Steady State R thJA 6780_Maximum Junction-to-Foot (Drain)Steady StateR thJF1316C/WNotesa.Surface Mounted on 1” x 1” FR4 Board.Vishay SiliconixSPECIFICATIONS (T J = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol Test Condition Min Typ Max UnitStaticGate Threshold Voltage V GS(th)V DS = V GS , I D = 250 m A 1.0V Gate-Body LeakageI GSS V DS = 0 V, V GS = "20 V "100nA V DS = 30 V, V GS = 0 V 1Zero Gate Voltage Drain Current I DSS V DS = 30 V, V GS = 0 V, T J = 55_C5m A On-State Drain Current aI D(on)V DS w 5 V, V GS = 10 V 30A V GS = 10 V, I D = 23 A 0.00450.0065Drain-Source On-State Resistance a r DS(on)V GS = 4.5 V, I D = 17 A 0.00680.008W Forward Transconductance a g fs V DS = 15 V, I D = 23 A 80S Diode Forward Voltage aV SDI S = 2.9 A, V GS = 0 V0.81.2VDynamic bTotal Gate Charge Q g 3655Gate-Source Charge Q gs V DS = 15 V, V GS = 4.5 V, I D = 23 A15nCGate-Drain Charge Q gd 12Gate Resistance R g1.52.23.7WTurn-On Delay Time t d(on)2030Rise Timet r V 1523Turn-Off Delay Time t d(off)DD = 15 V, R L = 15 WI D ^ 1 A, V GEN = 10 V, R G = 6 W105160ns Fall Timet f 4060Source-Drain Reverse Recovery Timet rrI F = 2.9 A, di/dt = 100 A/m s 5080Notesa.Pulse test; pulse width v 300 m s, duty cycle v 2%.b.Guaranteed by design, not subject to production testing.TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)01020304050600.00.51.01.52.02.53.03.54.001020304050600.00.5 1.0 1.5 2.0 2.5 3.0V DS - Drain-to-Source Voltage (V)- D r a i n C u r r e n t (A )I D V GS - Gate-to-Source Voltage (V)- D r a i n C u r r e n t (A )I DVishay SiliconixTYPICAL CHARACTERISTICS (25_C UNLESS NOTED)0.0000.0020.0040.0060.0080.0101020304050600246810204060800.60.81.01.21.41.61.8-50-2502550751001251501000200030004000500060000612182430Gate ChargeOn-Resistance vs. Drain Current- G a t e -t o -S o u r c e V o l t a g e (V )Q g - Total Gate Charge (nC)V DS - Drain-to-Source Voltage (V)C - C a p a c i t a n c e (p F )V G S - O n -R e s i s t a n c e (r D S (o n )W )I D - Drain Current (A)CapacitanceOn-Resistance vs. Junction Temperature(N o r m a l i z e d )- O n -R e s i s t a n c e (r D S (o n )W )1.01.20.0000.0020.0040.0060.0080.010246810110600.000.20.40.60.8- O n -R e s i s t a n c e (r D S (o n )W )V SD - Source-to-Drain Voltage (V)V GS - Gate-to-Source Voltage (V)- S o u r c e C u r r e n t (A )I S100600。
SSS4N60AS中文资料
Value Units A V mJ A mJ V/ns W A V TO-220F1.Gate2. Drain3. Source3216002.31.5162602.33.33.0330.2630W/oCTRADEMARKSACEx™CoolFET™CROSSVOLT™E 2CMOS TM FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:ISOPLANAR™MICROWIRE™POP™PowerTrench™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status DefinitionAdvance InformationPreliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.Formative or In DesignFirst ProductionFull ProductionNot In ProductionDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.UHC™VCX™。
5000种场效应管参数查询
5000种场效应管参数查询场效应管(Field-effect transistor,简称FET)是一种重要的电子元器件,常用于放大和开关电路中。
根据不同的结构和特性,场效应管有很多不同的类型和型号。
在本文中,我将介绍一些常见的场效应管型号及其参数。
1.MOSFET(金属-氧化物-半导体场效应管)MOSFET是目前最常见的一种场效应管。
它有三个重要参数:漏极-源极间饱和电压(Vds),漏极电流(Id)和栅极电压(Vgs)。
不同的型号有不同的额定值,比如常见的IRF510型号的Vds为100V,Id为5.6A,Vgs为-20V。
2.JFET(结型场效应管)JFET是另一种常见的场效应管类型。
它也有三个重要参数:漏极-源极间饱和电压(Vds)、漏极电流(Id)和栅极电压(Vgs)。
与MOSFET 不同,JFET的工作原理是根据PN结的导电特性来实现的。
常见的2N3819型号的Vds为25V,Id为10mA,Vgs为-5V。
3.IGBT(绝缘栅双极结型场效应管)IGBT是一种结合了双极晶体管和MOSFET的特点的高功率场效应管。
它的主要参数包括最大漏极-源极间饱和电压(Vce(sat))、最大漏极电流(Ic)和最大栅极电压(Vge)。
常见的IRG4PC40W型号的Vce(sat)为1.8V,Ic为50A,Vge为20V。
S(沟道型超级结框场效应管)5.MESFET(金属半导体场效应管)以上仅是几种常见的场效应管型号及其参数的简要介绍。
实际上,市面上有成千上万种不同型号的场效应管,每种型号都有其自身的特性和应用领域。
因此,在选择和使用场效应管时,需要根据具体的应用需求和电路设计要求来确定合适的型号和参数。
同时还需要查阅相关的器件手册和数据表,以获取更详细的参数信息。
4N26.S中文资料
4N25 4N37
4N26 H11A1
4N27 H11A2
4N28 H11A3
4N35 H11A4
4N36 H11A5
TYPICAL PERFORMANCE CURVES
VF - FORWARD VOLTAGE (V)
Fig. 1 LED Forward Voltage vs. Forward Current (Black Package)
CTR
H11A3
%
4N27
4N28
10
H11A4
(IF = 10 mA, VCE = 10 V, TA = -55°C)
4N35
4N36
40
4N37
(IF = 10 mA, VCE = 10 V, TA = +100°C)
4N35
4N36
40
4N37
4N25
(IC = 2 mA, IF = 50 mA)
DC Characteristic
Test Conditions
Symbol Device Min
Typ*
Max
Unit
4N35
4N36
100
4N37
H11A1 50
H11A5 30
(IF = 10 mA, VCE = 10 V)
4N25
4N26 H11A2
20
Current Transfer Ratio, Collector to Emitter
Symbol
VF IR
BVCEO BVCBO BVECO
ICEO ICBO CCE
Min
Typ*
Max
Unit
1.18
1.50
主板常用场效应管参数
主板常用场效应管参数
注:
1、在CPU供电处的MOS管要求功率比较大,而且导通电阻比较小,可以选择09N03、85N03、06N03等功率较大的MOS管;
2、在显卡供电、内存供电处的MOS管要求不是很高,功率不要太低就行,可以采用60N0
3、40N03、603AL等功率较一般(小)的MOS管;对于较高档次(功率较大)的独立显卡,也可选择功率稍大的MOS管,维修时比较放心。
显卡维修时,在未知参数的条件下,一般可直接将可用CPU供电的MOS管代换即可。
3、按理说,用指标高的要好,但指标高的只是一种浪费,够用就行了。
09N03:V DS=25V、I D=50A、P tot=63W(25 °C)06N03:V DS=25V、I D=50A、P tot=83W(25 °C)同时我还顺便下载了04N03的PDF:04N03:V DS=25V、I D=80A、P tot=107W(25°C)我发现N03前面的数字越小,这种管子的功率越高,不知道是不是这样。
听朋友说,在更换MOS管的时候,不同的主板,如果都是775的CPU,那么MOS管是可以互换的,上管之间也可以混用,下管之间也可以混用,以这样的原则来代换MOS管应该没问题吧。
高功率四象限电压和电流放大器系列(100-TS)说明书
1100-TS SeriesArbitrary 4-QuadrantVoltage and Current Amplifiers 400 W - 18.000 WDC ... 200 kHz / 1 MHz2Arbitrary 4-QuadrantVoltage and Current Amplifiers 100-TS Series 400 W - 18.000 W DC - 200 kHz / 1 MHzModel 35N-TS OverviewModels Low voltage -16 V...+16 VMedium voltage -16 V...+27 VHigh voltage -16 V...+35 V Output PowerSize 105-35N-TS 15 A 15 A 11 A 400 W 3 U 110-35N-TS 38 A 38 A 28 A 1.000 W 4 U 120-35N-TS 76 A 76 A 55 A 2.000 W 14 U 130-35N-TS 114 A 114 A 83 A 3.000 W 18 U 140-35N-TS 152 A 152 A 110 A 4.000 W 22 U 150-35N-TS 190 A 190 A 138 A 5.000 W 26 U 160-35N-TS 228 A 228 A 165 A 6.000 W 30 U 180-35N-TS 304 A 304 A 220 A 8.000 W 2 x 22 U 200-35N-TS 380 A 380 A 276 A 10.000 W 2 x 26 U 220-35N-TS 456 A 456 A 331 A 12.000 W 2 x 30 U 250-35N-TS 570 A 570 A 413 A 15.000 W 3 x 26 U 280-35N-TS684 A684 A496 A18.000 W3 x 30 U+35 V / -16 VSpecial Features■DC ... 200 kHz full range bandwidth ■DC up to 1 MHz (small signal -3 dB)■Output voltage 35 V / 70 V / 75 V ■Rise time / fall time up to 100 V/µs ■Arbitrary function with 1 Million memory data points■Internal resistor 0 ... 200 mΩ (Option)■Analogue input 0 ... ±10 V for voltage control ■Option for running as current amplifier ■Monitor outputs for measured values of voltage and current■WaveMaster software for graphical waveform generation■Simulation of imported oscilloscope signals ■Modularly expandable up to 18 kW (Systems > 1 kW)■USB interface standard■Voltage resolution less than 0.001 V ■Linearity 0,1% DC ■DC - Offset < 1 mV■DLL’s for C++, LabView TM , Vector-CAPL, Python,C#, MathLab, etc.Example: Model 110-35N-TS5P Extremely Powerful P Modular DesignP Unlimited Signal Waveforms4 kW Test SystemExample: Model 110-70N-TSModel 105-75N-TS Rear7Example: Model 110-75N-TSSelectable Operating VoltageThree selectable operating-voltage ranges allow to adapt to applications for high voltage / low current or low voltage / high current.Especially when controlling extremely low impedance loads, the operating voltage range can be reduced to one third of the maximum output voltage. This leads to an immense reduction of power dissipation.g Reduction of power dissipationg One system for 12 V / 24 V / 48 V vehicles10Test System ArchitectureGeneralThe 100-TS series are linear precision 4-quadrant power amplifiers for fast voltage and current signals - each positive and negative (bipolar).They also work as sink in applications to absorb power. Extremely high bandwidth at highest power requirements, necessary for fast signals, characterizes this series. Especially these amplifiers are characte -rized by their signal quality.Monitor OutputsLocated on the back of the instruments there are monitor outputs for voltage and current with the respective measured values.Output values are 0 ... ±10 Vfor 0 ... ±V rated respectively 0 ... ±I Irated.The current is measured with an internal shunt and accuracy of approx. 1 %.Optionally a current sensor with 0.01 % accuracy can be integrated easily.Arbitrary FunctionalityBOLAB´s arbitrary power amplifiers include a huge memory of 1 Million data points to store arbitrary waveforms in the instrument itself. No arbitrary waveform generator or any other controlling instrument is needed which makes these 4-quadrant amplifiers unique in the world market.The easy-to-use WaveMaster software, that is standard in scope of delivery, allows to generate waveforms with a graphical user interface or via tabular input.Output ON/OFFWith its output on/off switch at the front of the instruments, the output can be activated or deactivated. When deactivating, there is a complete galvanic separation to the devices under test.Multiple Instrument Functions In One Device11Signal Quality-Rise time:< 1 µs -Fall time:< 1 µs -No overshot / no undershotShort Time Current At Model 110-75N-TSProtective FunctionsVarious protective functions avoid damage of the instru-ment and guarantee protection for the devices under test.Output voltage and current can be limited. Over-tempera-ture shutdown is included.The unit’s internal calculation of power dissipation and complete monitoring of current ensure perfect short circuit and over-voltage protection.Also, for security reasons an interlock shut down can be triggered.Short-Time CurrentWithin 500 ms, the amplifier systems supply a short-time current.E.g. the 1.000 W, 40A will reach 100 A in 500 ms.Generally the instruments provide a short-time current of approximately two times higher than I DC Max13_This technology enables an endless, continuous data stream to the amplifier._Compared to a function generator with its limited arbitrary memory there is no limitationof the size of the waveform._A waveform with small spikes and interruptions of e.g. 100 µs and long constant levels inbetween can be simulated easily.Unlimited Waveform Memory14Analog Remote ControlAmplifier ControlThere are many ways to control BOLAB amplifier systems: •BOLAB WaveMaster SoftwareThis PC software generates waveforms, sends the curves to the internal data memory and runs the process. All selections in the instrument are done automatically.•Function GeneratorStandard function generators can be connected directly to the input of the amplifier.•NI DAQ Card, VT System (Vector), etc.Through their 0..±10 V input, other control units can be used for waveform generation. Automated test systems don´t need programming adaptions.Multiple Control Possibilities16Voltage And Current ControlBoth voltage and current control of the comprehensive amplifiers is possible. This can be selected on the front panel of the instrument.Control input is 0 ... ±10 Vfor 0 ... ±V rated respectively 0 ... ±I Irated.An optional compensation network for current control is necessary, which achieves highest slew rates andsignal quality for current signals.•Modular hardware architecture•Starting with one single unit of e.g. 1 kW •Extension up to 18 kW in parallel•Building up 3-phase systems with up to 6 kW per phase•Serial connection for increasing voltage•In case of a defective module, only this module needs to be repaired•Each module has its own indication for functional capabilityModular Concept / Modularly ExpandableModular Design18Series OperationSeries OperationFor high-voltage applications, two instruments or more can be connected.- Two instruments can be connected in series. Bridge switch must be toggled at one amplifier-For three and more instruments in series, an internal isolation amplifier in each instrument is necessary+Two Instruments In Series19WaveMaster Software Waveform generation and4-quadrant amplifier controlSpecial Features■Easy to use graphical waveform editor and tabular input possibility■Command library for integration into automated test systems:-LabView(TM)-Vector CANoe (CAPL)-C#-C++- ANSI C-Python-etc.■Simulation of imported oscilloscope signals■Waveform trigger caused by external TTL signal (rising edge) for synchronization■Macro function for execution of automated tests Waveform GenerationThe powerful and easy to use WaveMaster software isunique in world market. Without any knowledge in soft-ware development, construction of ordinary and complexwaveforms is dead easy.A graphical waveform editor allows to generate individualcurves in a flash. Also with a tabular input all kinds ofwaveforms can be produced immediately.The simplicity how fast to import data out of oscillo-scopes is amazing. Read in ASCII data files is possible inthe same way.Digital Interface USBAll functionalities of the 4-quadrant ampli-fiers are available in WaveMaster softwarefor controlling the instruments.Short time current on/off, output on/off,operating voltage range and other functionscan be easily set with its USB interface.Trigger FunctionA hardware trigger input can be activateto monitor a TTL input signal on its risingedge. Synchronous waveform simulation,measurement and testing tasks arepredestined applications.Macro FunctionWith a comfortable macro editor andits execution, selected waveforms runsequentially. Bursts, repetitions and loopsmake testing easy without any softwarecoding. Red cursor shows the current position while waveformis runningExample out of JLR-EMC-CS CI 2502021WaveMaster Remote DLLWith the WaveMaster remote DLL´s, available for nearly all programminglanguages, with its command library, users control the 4-quadrant amplifiers in an absolute perfection. There is no need to handle hardware interfaces such as USB or LAN.One command for each function handles all interfaces. Data files are sent to the instrument within milliseconds. No need to concern about memory space and resolution of the amplifiers.A simple “load” command calculates the best resolution of the waveform that is possible and sends data to the arbitrary unit. In every DLL (LabView TM , Vector CANoe, C#, C ++, ANSI C, Python, etc.), commands are identical. This makes switching between programming languages convenient. Commands for creating waveforms out of user programming surroundings are included as well. Variable waveforms for simulation of increasing ramps in time, variation of frequency and many other applicationsare typical test scenarios.Starting monitor of WaveMaster Imported real waveform out of an oscilloscopeAutomotive Standard LV124(VW80000)E-01 ... E-16One of the main standards in automotive industries isLV124 / VW80000. With these systems, this standard can be simulated easily. The waveform library contains all electronic waveform tests out of this specification.For E-17 ... E-22 please ask for our fully automated TestSystemE-01 Long-term overvoltage E-02 Transient overvoltageE-03 Transient undervoltageE-07 Slow decrease and increase of the supply voltageE-08 Slow decrease, quick increase of the supplyE-09 Reset behaviourE-13 Pin interruption 1)E-15 Reverse polarity (dynamic) 2) Additional power supply necessary1) Additional electric switch necessary2223E-04 Jump startE-05 Load dump E-06 Superimposed alternating voltageE-10 Short interruptions 1)E-11 Start pulsesE-12 Voltage curve with intelligent generator controlE-15 Reverse polarity (static)E-16 Ground offset 2)Vehicle And Avionic ApplicationsThe BOLAB arbitrary 4-quadrant amplifiers are predestined to simulate vehicle and avionic standards such as LV 124 / VW 80000, LV148, VDA 320, ISO 7637, DIN 40839, ISO 16750, GS 95024 and many other related norms.These waveforms and also a wide range of company-specific car manufacturer standards (BMW, Daimler, VW, ...) are included in the standard package.Other Standards such as LV148, ISO 16750, ISO 7637, DIN 40839, GS 95024, ..., Can Be Simulated Equally24High VoltageSuperimposed Alternating Voltage LV123 / HV-09 / VW 80300Series Operation With Applied Voltage Ripple Series operation solution allows to test HV components up to 1000 V DC.Standards like LV123, ISO 3637-4 and many others can be tested.With our 4-quadrant amplifier systems, interferences up to 200 kHz with an amplitude of more than 40 V pp are possible.1)O ption OVR HV necessary(Over voltage protection for high voltage power supply in series)How to define the diagrams.Example:I = 100 A, V = 450 V, V pp = 20 VP HV = 450 V · 100 A → P HV ~ 50 KW P 4Q = 20 V · 100 A → P 4Q ~ 2 KW out of the voltage / current graphics and its voltage ranges, we need a 4-quadrant amplifier with approximately 3 KW.Example: U DC = 900 V U SS = 32 V pp f = 200 kHzI= Depending on I max of the 100-TS instrumentOur SolutionHigh Voltage Power Supply4-Quadrant Amplifier+High Voltage Power Supply +4-Quadrant AmplifierV DCV SSVtttV SS4-Quadrant AmplifierV SSMax. 1.000 V Isolation against PE V = V DC + V SSIVHigh Voltage Power SupplyV DC=25E-10 / E-13 Pulses from LV124 standardVariable Waveform GenerationTest System With Electronic Switch Variations In Voltage And Time According to LV124, E-10 and E-13 pulses, inter-ruptions need to be implemented. Hereby additional electronic switches are necessary. These switches are controlled by BOLAB´s WaveMaster software and the amplifier´s built-in counter outputs.No additional function generator is necessary. This allows to build up a fully automated HIL test system.Easy Definition Of VariationsMeanwhile, many car manufacturers extend the stan-dard waveforms with many variable parameters in time and amplitude.BOLAB´s comprehensive WaveMaster Software allows to do these variations easily.Easy Programming PythonSpecial Features■Ready to use for LabView TM, Vector CANoe / CAPL, C#, C++, ANSI C, Python, etc.■Creating waveforms out of source code■Predefined commands for sine waves, exponential functions, ramps, etc.■Integration into HIL simulation systems■Complete interface handling and configuration■Starting and closing software out of application Example 1This programming example in Python opens an existing data file, loads data into amplifiers memory, switches the output on and runs the application in a loop of five times. import WaveMaster_PY27_x32import time#Create PYD objectwavemaster = WaveMaster_PY27_x32.CreateObject()#Connect to the WaveMaster server serverIPAddress = …10.99.92.78“serverPortNumber = 700arbnet.Connect(serverIPAddress,serverPortNumber)#Open an existing filefileName = …F:\\Waveform1MV.and“openfileRet = wavemaster.OpenFile(fileName)#Arbitrary System Functionsys=WaveMaster.GetArbitrarySystem()#Configure the device settings#Define source and amplifiersource = …NI DAQ USB-6259“amplifier = …BOLAB 105-75N-TS“#Set SystemsetSysRet = sys.Set(1,source,amplifier,0,0,0)time.sleep(5)#Load waveform into instruments memorysys.Load()#Enable outputsys.Execute()#Start runnings of waveform with burst=5sys.Start(5)#Wait until waveform ends after 5 runningsrun = sys.IsRun()while run == 1:time.sleep(0.5)run = sys.IsRun()#Set output to standbysys.Standby()#Close fileopenfileRet.Close()#Disconnect from WaveMaster serverwavemaster.disconnect()2627C++Example 2Creating waveforms out of customers programming source code is quite easy:using System;using System.Collections.Generic;using System.Linq;using System.Text;using WaveMaster_CPP_x32;namespace TestCase2{class Program {static void Main(string[] args){//assuming WaveMaster is started externally in server modeRemote WaveMaster DotNet _dllTest = new Remote WaveMasterDotNet();Resource _sysResource = null;Resource _fileResNew = null;string ipaddress = …10.99.92.78“;int iport = 700;int res = -1;int layer = 1;string source = …NI DAQ USB-6259“;string amplifier = …BOLAB 105-75N-TS“;string online = string.Empty;string fileName = …F:\\Waveform2MV.and“;int fileType = 0x10;int run = 0;res = _dllTest.Connect(ipaddress, iport);Console.WriteLine(…1 - Connected to WaveMaster...“);res = _dllTest.NewFile(ref _fileResNew, fileType, fileName);if(res == 0)Console.WriteLine(…2 - New File created...“);res = _dllTest.AddDataFile(_fileResNew,1,0.0,0.0,5.0);if(res == 0)Console.WriteLine(… - 1 New value in waveform added...“);res = _dllTest.AddDataFile(_fileResNew,1,0.1,12.0,5.0);if(res == 0)Console.WriteLine(… - 2 New value in waveform added...“);res = _dllTest.AddDataFile(_fileResNew,1,0.5,12.0,5.0,1,50.0,10.0,2.0,0.0,0.0,0);if(res == 0)Console.WriteLine(… - 3 Sine interference on waveform added...“);res = _dllTest.AddDataFile(_fileResNew,1,1.0,0.0,5.0);if(res == 0)Console.WriteLine(… - 4 New value in waveform added...“);res = _dllTest.GetArbitrarySystem(out _sysResource);if (res == 0){Console.WriteLine(…3 - GetArbitrarySystem...“);res = _dllTest.SetSystem(_sysResource,ref online,layer,source,amplifier,0,0,0);if (res == 0){res = _dllTest.LoadSystem(_sysResource);if (res == 0)Console.WriteLine(…5 - Write Waveform into instruments memory...“);res = _dllTest.ExecuteSystem(_sysResource);if (res == 0)Console.WriteLine(…6 - Switch instruments output on...“);res = _dllTest.StartSystem(_sysResource, 5);if (res == 0)Console.WriteLine(…7 - Run waveform 5 times...“);res = _dllTest.IsRunSystem(_sysResource, out run);if (res == 0)Console.WriteLine(…8 - IsRunSystem...“);while (run == 1){System.Threading.Thread.Sleep(1000);//1 secres = _dllTest.IsRunSystem(_sysResource, out run);}res = _dllTest.StandbySystem(_sysResource);if (res == 0)Console.WriteLine(…9 - StandbySystem...“);}}res = _dllTest.SaveFile(_fileResNew,fileName);res = _dllTest.CloseFile(_fileResNew);res = _dllTest.Disconnect();}}}This code in C# generates the following waveform and runs it 5 times.Example 2 As Graphic WaveformOrder Information105-35N-TS-16 V...+35 V / 20 A / 0,4 kW 110-35N-TS-16 V...+35 V / 40 A / 1 kW 120-35N-TS-16 V...+35 V / 76 A / 2 kW 130-35N-TS-16 V...+35 V / 114 A / 3 kW 140-35N-TS-16 V...+35 V / 152 A / 4 kW 150-35N-TS-16 V...+35 V / 190 A / 5 kW 160-35N-TS-16 V...+35 V / 228 A / 6 kW 180-35N-TS-16 V...+35 V / 304 A / 8 kW 200-35N-TS-16 V...+35 V / 380 A / 10 kW 220-35N-TS-16 V...+35 V / 456 A / 12 kW 250-35N-TS-16 V...+35 V / 570 A / 15 kW 280-35N-TS-16 V...+35 V / 684 A / 18 kW Ranges / Current105-35N-TS110-35N-TS120-35N-TS130-35N-TS140-35N-TS150-35N-TS Low voltage range-16 V...+16 V15 A38 A76 A114 A152 A190 AMiddle voltage range-16 V...+27 V15 A38 A76 A114 A152 A190 AHigh voltage range-16 V...+35 V11 A28 A55 A83 A110 A138 A Current peak 500 ms 2 x I MAXGain (voltage) 1 V / 10 VGain (current) 1 V / 2,5 A 1 V / 10 A 1 V / 100 ADC-Offset< 1 mVMonitor output (voltage) 1 V / 10 VMonitor output (current) 1 V / 2,5 A 1 V / 10 A 1 V / 100 AResidual Noise< 7 mVSource power400 W 1.000 W 2.000 W 3.000 W 4.000 W 5.000 W Sink power140 W350 W700 W 1.050 W 1.400 W 1.750 W Slew rate100 V / µs50 V / µsCV modeFrequencyfull rangesmall signal (-3 dB)CC modeFrequencyfull rangesmall signal (-3 dB)DC - 200 kHzDC - 1 MHz DC - 500 kHzDepending onRC networkInput impedanceunbalanced, 1 kHzbalanced, 1 kHz100 k Ω200 k ΩInstrument size19“, 3 U19“, 4 U19“, 12 U19“, 16 U19“, 20 U19“, 24 U Dimensions WxHxD (cm)Delivery Instrument Instrument19“ rack19“ rack19“ rack19“ rack Weight20 kg40 kg150 kg190 kg230 kg270 kg Power supply230 V AC(±10%, 50 Hz ... 60 Hz)3 x 230 V AC(±10%, 50 Hz ... 60 Hz)Protection10 A 3 x 16 AProtective functions OVT, OCT, OTPOperating temperature10° C - 55° CTechnical SpecificationsTechnical Data /Order Information100-35N-TS35 V / -16 V2830Technical Data /Order Information 100-70N-TS 70 V / -16 V105-70N-TS -16 V...+70 V / 20 A / 0,5 kW 110-70N-TS -16 V...+70 V / 40 A / 1 kW 120-70N-TS -16 V...+70 V / 76 A / 2 kW 130-70N-TS -16 V...+70 V / 114 A / 3 kW 140-70N-TS -16 V...+70 V / 152 A / 4 kW 150-70N-TS -16 V...+70 V / 190 A / 5 kW 160-70N-TS -16 V...+70 V / 228 A / 6 kW 180-70N-TS -16 V...+70 V / 304 A / 8 kW 200-70N-TS -16 V...+70 V / 380 A / 10 kW 220-70N-TS -16 V...+70 V / 456 A / 12 kW 250-70N-TS -16 V...+70 V / 570 A / 15 kW 280-70N-TS-16 V...+70 V / 684 A / 18 kWOrder Information Technical SpecificationsRanges / Current105-70N-TS 110-70N-TS 120-70N-TS 130-70N-TS 140-70N-TS 150-70N-TS Low voltage range -16 V...+16 V 19 A 38 A 76 A 114 A 152 A 190 A Middle voltage range -16 V...+27 V 19 A 38 A 76 A 114 A 152 A 190 A High voltage range -16 V...+70 V 7 A14 A29 A43 A57 A71 ACurrent peak 500 ms 2 x I MAX Gain (voltage) 1 V / 10 VGain (current) 1 V / 2,5 A1 V / 10 A1 V / 100 ADC-Offset< 1 mV Monitor output (voltage) 1 V / 10 VMonitor output (current) 1 V / 2,5 A1 V / 10 A1 V / 100 AResidual Noise < 7 mVSource power 500 W 1.000 W 2.000 W 3.000 W 4.000 W 5.000 W Sink power 240 W470 W940 W1.400 W1.800 W2.400 WSlew rate 100 V / µs50 V / µsCV mode Frequency full range small signal (-3 dB)CC mode Frequency full range small signal (-3 dB)DC - 200 kHzDC - 1 MHzDC - 500 kHzDepending on RC networkInput impedance unbalanced, 1 kHz balanced, 1 kHz 100 k Ω200 k ΩInstrument size 19“, 3 U19“, 4 U19“, 12 U19“, 16 U19“, 20 U19“, 24 UDimensions WxHxD (cm)Delivery Instrument Instrument 19“ rack 19“ rack 19“ rack 19“ rack Weight 20 kg40 kg150 kg190 kg230 kg270 kgPower supply 230 V AC(±10%, 50 Hz ... 60 Hz)3 x 230 V AC(±10%, 50 Hz ... 60 Hz)Protection 10 A3 x 16 AProtective functions OVT, OCT, OTP Operating temperature10° C - 55° CTechnical Data /Order Information 100-75N-TS 75 V / -75 VOrder Information Technical SpecificationsRanges / Current105-75N-TS 110-75N-TS 120-75N-TS 130-75N-TS 140-75N-TS 150-75N-TS Low voltage range -25 V...+25 V 19 A 38 A 76 A 114 A 152 A 190 A Middle voltage range -50 V...+50 V 10 A 19 A 38 A 57 A 76 A 95 A High voltage range -75 V...+75 V 7 A14 A27 A40 A53 A67 ACurrent peak 500 ms 2 x I MAX Gain (voltage) 1 V / 10 VGain (current) 1 V / 2,5 A1 V / 10 A1 V / 100 ADC-Offset< 1 mV Monitor output (voltage) 1 V / 10 VMonitor output (current) 1 V / 2,5 A1 V / 10 A1 V / 100 AResidual Noise < 7 mVSource power 500 W 1.000 W 2.000 W 3.000 W 4.000 W 5.000 W Sink power 500 W1.000 W2.000 W3.000 W4.000 W5.000 WSlew rate 100 V / µs50 V / µsCV mode Frequency full range small signal (-3 dB)CC mode Frequency full range small signal (-3 dB)DC - 200 kHzDC - 1 MHzDC - 500 kHzDepending on RC networkInput impedance unbalanced, 1 kHz balanced, 1 kHz 100 k Ω200 k ΩInstrument size 19“, 3 U19“, 4 U19“, 12 U19“, 16 U19“, 20 U19“, 24 UDimensions WxHxD (cm)Delivery Instrument Instrument 19“ rack 19“ rack 19“ rack 19“ rack Weight 20 kg40 kg150 kg190 kg230 kg270 kgPower supply 230 V AC(±10%, 50 Hz ... 60 Hz)3 x 230 V AC(±10%, 50 Hz ... 60 Hz)Protection 10 A3 x 16 AProtective functions OVT, OCT, OTP Operating temperature10° C - 55° C105-75N-TS -75 V...+75 V / 20 A / 0,5 kW 110-75N-TS -75 V...+75 V / 40 A / 1 kW 120-75N-TS -75 V...+75 V / 76 A / 2 kW 130-75N-TS -75 V...+75 V / 114 A / 3 kW 140-75N-TS -75 V...+75 V / 152 A / 4 kW 150-75N-TS -75 V...+75 V / 190 A / 5 kW 160-75N-TS -75 V...+75 V / 228 A / 6 kW 180-75N-TS -75 V...+75 V / 304 A / 8 kW 200-75N-TS -75 V...+75 V / 380 A / 10 kW 220-75N-TS -75 V...+75 V / 456 A / 12 kW 250-75N-TS -75 V...+75 V / 570 A / 15 kW 280-75N-TS-75 V...+75 V / 684 A / 18 kWBOLAB Systems GmbHMuehlstetten 372351 Geislingen Germanye-mail Internet********************** 。
电磁炉用功率管的型号 代换 参数
电磁炉用功率管的型号代换参数2007年07月28日星期六 12:05大量维修实践表明,电磁炉(灶)内的部分元器件因工作温度较高,工作电流较大,电压较高等,其故障或损坏概率也较高。
其中的场效应功率管损坏率最高。
但由于商业竞争激烈,一般都不随机附带图纸,加之电磁炉所采用的场效应功率管一般均为较新产品,这便给维修带来不便和困难。
下面笔者根据汇集来的相关资料,提供几种常用电磁炉场效应功率管及代换资料供参考。
电磁炉一般均采用N型沟道功率场效应管,其相关参数为BVCBO≥1600V,BVCEO≥1000V,PCM≥100W,ICM≥7A,HFE≥40。
常用的电磁炉用场效应管内部带阻尼二极管的型号有 GT40N150D、GT40T301、SEC·G40N150D、ZON120ND、GT40T101、SQD35JA等。
内部不带阻尼二极管的型号有BT40T101、SGL40N150/150D等。
在维修代换时,若采用不带阻尼二极管的功率场效应管,应在D、S极间加接一只阻尼二极管,该二极管必须是快恢复型阻尼二极管,其耐压应≥1500V。
加接时正极接S 极,负极接D极即可。
参考型号如S5J53、 BY4591500等。
在负载电磁线圈和功率管之间串一只100W的灯泡再通电试机,可以防止烧管。
GT40Q321,FGL40N150D, FGL60N170D, FGA25N120,SK25N120,G40N150D, FGA25N135,1MBH25D--120,GP20B120UD--E,IXGH20N120BDI,以上功率管内部都带阻尼管,耐压都在1200V以上电流在20A以上只要电流相差不多都可以互相代换。
SGW25N120,K15T120。
以上的管子内部不带阻尼,如果要代换一上功率管时可以在电路板上安装2个以上的阻尼二极管耐压1200V以上,电流在8A以上。
电磁炉的关键元器件介绍1、大功率管IGBT(H20T120)说明:(1)、IGBT为电磁炉电路控制核心元器件,使用温度为小于85℃。
三星 V-NAND SSD 860 PRO 2018 数据表说明书
DISCLAIMERSAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.Products and specifications discussed herein are for reference purposes only. All information discussed herein may change without notice and is provi ded on an “AS IS” basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppels or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office.COPYRIGHT © 2018This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under copyright law. TRADEMARKS & SERVICE MARKSThe Samsung Logo is the trademark of Samsung Electronics. Adobe is a trademark and Adobe Acrobat is a registered trademark of Adobe Systems Incorporated. All other company and product names may be trademarks of the respective companies with which they are associated.For more information, please visit /ssd and .To download the latest software & manuals, please visit /samsungssdRevision HistoryTHE SAMSUNG SSD 860 PROThe Samsung SSD 860 PRO is the new Samsung’s Client-PC SATA SSDs, specially designed for high-end computing devices. Building on the reputation of the Samsung SSD 850 PRO, the world’s first V-NAND SSD for Client PCs, the new Samsung SSD 860 PRO drives achieve top class performance for SATA SSDs, offering improvements in speed, reliability, and compatibility. The 860 PRO comes equipped with Samsung’s newly designed MJX controller along with the latest 2bit MLC V-NAND architecture.Professional PerformanceThe legacy Serial-ATA (SATA) interface faces the theoretical bandwidth limitation of 600MB/s which many SSD manufacturers have tried to reach over the years. Among them, Samsung, which first brought V-NAND technology to the market through the 850 PRO, continuously strives to improve product reliability and performance, even with the SATA interface limitations. Powered by Samsung’s latest 64-layer 2bit MLC V-NAND technology, the 860 PRO, the successor of the 850 PRO, delivers best-in-class sequential read (up to 560 MB/s) and write (up to 530 MB/s) speeds and along with high sustainable performance for the professionals who always pursue best achievement Ultimate ReliabilityThe 860 PRO offers guaranteed endurance and ultimate reliability, with up to approximately 8 times higher Total Bytes Written (TBW) than the 850 PRO and an industry-leading 5-year limited warranty. Up to 4,800 TBW powered by the latest V-NAND technology, which is the highest TBW rating industry-wide, will give you absolute confidence in your SSD*.*All documented endurance test results are obtained in compliance with JESD218 standards. Please visit for detailed information on the standard. Furthermore, the 860 PRO assures long-term dependable performance with minimal performance degradation. The 860 PRO provides up to 25% better sustained performance compare to that of its predecessor. This means you can experience the high performance of the SSD even with heavy daily workload.Smart Compatibility with a Refined ControllerThe 860 PRO delivers expanded system compatibility. The refined ECC algorithm and revamped controller generate strong sustainable performance near SATA’s limits, and the improved queued trim provides for better Linux compatibility. The 860 PRO is uniquely designed for not only Client-PCs but also NASs (Network Attached Storages) and workstations thanks to its Samsung 2bit MLC V-NAND composition.Advanced Data EncryptionThe 860 PRO provides multiple advanced data encryption features. Self-Encrypting Drive (SED) security technology will help keep data safe at all times. The 860 PRO includes an AES 256-bit hardware-based encryption engine to ensure that your personal files remain secure. Being hardware-based, the encryption engine secures your data without the performance degradation that you may experience with software-based encryption. Also, the 860 PRO is compliant with various advanced security management solutions (TCG Opal and Encrypted Drive-IEEE1667). Samsung Data Migration and Magician SoftwareThe 860 PRO comes with Samsung Data Migration and Magician software, which is easy to install and makes management of you SSD simple.* Samsung Data Migration software is easy to use, yet provides a very powerful “Custom Cloning”feature that makes migration effortless even when the source data is greater than the SSD’s capacity. Magician provides personalized firmware checks and additional functions tailored for individual users’drives. It even updates the firmware automatically to make sure that the drives’ performance stays up to date.*To download Samsung Data Migration and Magician, please visit /samsungssdTECHINCAL SPECIFICATIONSmay differ from the labeled total capacity.2)Sequential performance measurements are based on CrystalDiskMark v. 5.0.2. Random performance measurements are based on IOmeter1.1.0.Performance may vary based on SSD’s firmware version, system hardware & configuration. Test system configuration: Intel®****************** GHz, DDR3 1333MHz 4GB, OS-Windows 7 Ultimate 64bit, Chipset-ASUS P8H77-V3)Power consumption is measured with IOmeter1.1.0 version with Intel Core i7-7700K @ 4.2GHz, SAMSUNG DDR4 16GB, Gigabyte GA-Z270X, OS –Windows 10 PRO K x644)All documented endurance test results are obtained in compliance with JESD218 Standards. Please visit for detailed information onJESD218 Standards5)TBW means Total Bytes Written.6)Please refer to the detailed warranty statement here at /samsungssd.7)Warranty provides coverage for the stated time period or the TBW, whichever comes first.PRODUCT LINEUPto the warranty provided for this product, please visit /ssd and .。
2n系列三极管
2n系列三极管2n系列三极管2N109 GE-P 35V 0.15A 0.165W?2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz? 2N1307 GE-P 30V 0.3A 0.15W B>602N1613 SI-N 75V 1A 0.8W 60MHz?2N1711 SI-N 75V 1A 0.8W 70MHz2N1893 SI-N 120V 0.5A 0.8W?2N2102 SI-N 120V 1A 1W <120MHz2N2148 GE-P 60V 5A 12.5W?2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz? 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz? 2N2223 2xSI-N 100V 0.5A 0.6W >502N2223A 2xSI-N 100V 0.5A 0.6W >50? 2N2243A SI-N 120V 1A 0.8W 50MHz2N2369A SI-N 40V 0.2A .36W 12/18ns? 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns? 2N2905A SI-P 60V 0.6A 0.6W 45/1002N2906A SI-P 60V 0.6A 0.4W 45/100? 2N2907A SI-P 60V 0.6A 0.4W 45/1002N2917 SI-N 45V 0.03A >60Mz?2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz? 2N3019 SI-N 140V 1A 0.8W 100MHz2N3053 SI-N 60V 0.7A 5W 100MHz?2N3054 SI-N 90V 4A 25W 3MHz2N3055 SI-N 100V 15A 115W 800kHz? 2N3055 SI-N 100V 15A 115W 800kHz2N3055H SI-N 100V 15A 115W 800kHz? 2N3251 SI-P 50V 0.2A 0.36W2N3375 SI-N 40V 0.5A 11.6W 500MHz? 2N3439 SI-N 450V 1A 10W 15MHz2N3440 SI-N 300V 1A 10W 15MHz?2N3441 SI-N 160V 3A 25W POWER2N3442 SI-N 160V 10A 117W 0.8MHz? 2N3495 SI-P 120V 0.1A 0.6W >150MHz 2N3502 SI-P 45V 0.6A 0.7W 200MHz?2N3553 SI-N 65V 0.35A 7W 500MHz2N3571 SI-N 30V 0.05A 0.2W 1.4GHz?2N3583 SI-N 250/175V 2A 35W >10MHz 2N3632 SI-N 40V 0.25A 23W 400MHz? 2N3646 SI-N 40V 0.2A 0.2W2N3700 SI-N 140V 1A 0.5W 200MHz?2N3707 SI-N 30V 0.03A 0.36W 100MHz 2N3708 SI-N 30V 0.03A 0.36W 80MHz? 2N3716 SI-N 100V 10A 150W 4MHz2N3725 SI-N 80V 0.5A 1W 35/60ns?2N3740 SI-P 60V 4A 25W >4MHz2N3741 SI-N 80V 4A 25W >4MHz?2N3742 SI-N 300V 0.05A 1W >30MHz2N3767 SI-N 100V 4A 20W >10MHz?2N3771 SI-N 50V 30A 150W POWER2N3772 SI-N 100V 20A 150W POWER? 2N3773 SI-N 160V 16A 150W POWER2N3792 SI-P 80V 10A 150W 4MHz?2N3819 N-FET 25V 20mA 0.36W2N3820 P-FET 20V 15mA 0.36W?2N3821 N-FET 50V 2.5mA 0.3W2N3824 N-FET 50V 10mA 0.3W <250E? 2N3866 SI-N 55V 0.4A 1W 175MHz2N3904 SI-N 60V 0.2A .35W 300MHz? 2N3906 SI-P 40V 0.2A .35W 250MHz2N3909 P-FET 20V 10MA 0.3W?2N3958 N-FET 50V 5mA 0.25W2N3963 SI-P 80V 0.2A 0.36W >40MHz? 2N3972 N-FET 40V 50mA 1.8W2N4001 SI-N 100V 1A 15W 40MHz?2N4033 SI-P 80V 1A 0.8W 150MHz2N4036 SI-P 90V 1A 1W 60MHz?2N409 GE-P 13V 15mA 80mW 6.8MHz 2N4126 SI-P 25V 200mA HF?2N4220 N-FET 30V 0.2A2N4236 SI-P 80V 3A 1W >3MHz?2N427 GE-P 30V 0.4A 0.15W B>402N428 GE-P 30V 0.4A 0.15W B>60?2N4286 SI-N 30V 0.05A 0.25W2N4287 SI-N 45V 0.1A 0.25W 40MHz? 2N4291 SI-P 40V 0.2A 0.25W 150MH2N4302 N-FET 30V 0.5mA 0.3W?2N4347 SI-N 140V 5A 100W 0.8MHz2N4348 SI-N 140V 10A 120W >0.2MHz? 2N4351 N-FET 30V 30mA 0.3W 140KHz 2N4391 N-FET 40V 50mA 30E Up<10V? 2N4392 N-FET 40V 25mA 60E Up<5V2N4393 N-FET 40V 5mA 100E Up<3V?2N4401 SI-N 60V 0.6A 200MH2N4403 SI-P 40V 0.6A 200MHz?2N4416 N-FET 30V 15mA VHF/UHF2N4420 SI-N 40V 0.2A 0.36W?2N4427 SI-N 40V 0.4A 1W 175MHz2N4906 SI-P 80V 5A 87.5W >4MHz?2N4920 SI-P 80V 1A 30W2N4923 SI-N 80V 1A 30W2N5038 SI-N 150V 20A 140W 0.5us2N5090 SI-N 55V 0.4A 4W 5mA?2N5109 SI-N 40V 0.5A 2.5W 1.5GHz2N5116 P-FET 30V 5mA 150E Up<4V? 2N5154 SI-N 100V 2A 10W2N5179 SI-N 20V 50mA 0.2W >1GHz? 2N5192 SI-N 80V 4A 40W 2MHz2N5240 SI-N 375V 5A 100W >2MHz? 2N5298 SI-N 80V 4A 36W >0.8MHz2N5308 N-DARL 40V 0.3A 0.4W B>7K? 2N5320 SI-N 100V 2A 10W AFSWITCH 2N5322 SI-P 100V 2A 10W AFSWITCH? 2N5401 SI-P 160V 0.6A 0.31W2N5416 SI-P 350V 1A 10W 15MHz?2N5433 N-FET 25V 0.4A 0.3W 7E2N5457 N-FET 25V 1mA Up<6V?2N5458 N-FET 25V 2.9mA UNI2N5460 P-FET 40V 5mA Up<6V GEN.P? 2N5461 P-FET 40V 9mA 0.31W2N5462 P-FET 40V 16mA Up<9V GEN.? 2N5484 N-FET 25V 5mA 0.31W2N5485 P-FET 25V 4mA Up<4V?2N5551 SI-N 180V 0.6A 0.31W VID.2N5589 SI-N 36V 0.6A 3W 175MHz?2N5639 N-FET 30V 10mA 310mW2N5672 SI-N 150V 30A 140W 0.5us?2N5680 SI-P 120V 1A 1W2N5682 SI-N 120V 1A 1W >30MHz?2N5684 SI-P 80V 50A 2002N5686 SI-N 80V 50A 300W >2MHz?2N5770 SI-N 30V 0.05A 0.7W >900MHz2N5771 SI-P 15V 50mA 625mW >850MHz? 2N5876 SI-P 80V 10A 150W >4MHz2N5878 SI-N 80V 10A 150W >4MHz?2N5879 SI-N 60V 10A 150W >4MHz2N5884 SI-P 80V 25A 200W AFPOWSW?2N5886 SI-N 80V 25A 200W >4MHz2N6031 SI-P 140V 16A 200W 1MHz?2N6050 P-DARL+D 60V 12A 100W2N6059 SI-N 100V 12A 150W?2N6083 SI-N 36V 5A PQ=30W 175MH2N6098 SI-N 70V 10A 75W AFPOWSWITCH? 2N6099 SI-N 70V 10A 75W AFPOWSWITCH 2N6109 SI-P 60V 7A 40W 10MHz?2N6124 SI-P 45V 4A 40W2N6211 SI-P 275V 2A 20W 20MHz?2N6213 SI-P 400V 2A 35W >20MHz2N6248 SI-P 110V 15A 125W >6MHz?2N6284 N-DARL 100V 20A 160W B>752N6287 P-DARL 100V 20A 160W?2N6292 SI-N 80V 7A 40W2N6356 N-DARL 50V 20A 150W B>150?2N6422SI-P 500V 2A 35W >10MHz2N6427 N-DARL 40V 0.5A 0.625W?2N6476 SI-P 130V 4A 16W 5MHz2N6488 SI-N 90V 15A 75W?2N6491 SI-P 90V 15A 30W2N6517 SI-N 350V 0.5A 0.625W >40? 2N6520 SI-P 350V 0.5A 0.625W >40 2N6547 SI-N 850/400V 15A 175W?2N6556 SI-P 100V 1A 10W >75MHz 2N6609 SI-P 160V 16A 150W 2MHz? 2N6660 N-FET 60V 2A 6.25W 3E2N6661 N-FET 90V 2A 6.2W 4E2N6675 SI-N 400V 15A2N6678 SI-N 400V 15A?2N6716 SI-N 60V 2A 2W 50MH2N6718 SI-N 100V 2A 2W 50MHz?2N6725 N-DARL 60V 2A 1W B>15K2N6728 SI-P 60V 2A 2W >50MHz?2N697 SI-N 60V 1A 0.6W <50MHz2N7002 N-FET 60V 0.115A 0.2W 7E5? 2N914 SI-N 40V 0.5A <40/40NS SW 2N918 SI-N 30V 50mA 0.2W 600MHz? 2SA1006B SI-P 250V 1.5A 25W 80MHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesFeatures:• 4N2X series: 4N25, 4N26, 4N27, 4N28 • 4N3X series: 4N35, 4N36, 4N37, 4N38• H11AX series: H11A1, H11A2, H11A3, H11A4, H11A5 • High isolation voltage between input and output (Viso=5000 V rms)• Creepage distance >7.6mm• Operating temperature up to +110°C • Compact dual-in-line package • Pb free and RoHS compliant. • UL approved (No. E214129) • VDE approved (No. 132249) • SEMKO approval pending • NEMKO approval pending • DEMKO approval pending • FIMKO approval pending • CSA approval pendingDescriptionThe 4N2X, 4N3X, H11AX series contains an infrared emitting diode optically coupled to a phototransistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.Applications• Power supply regulators • Digital logic inputs • Microprocessor inputs1. Anode2. Cathode3. No Connection4. Emitter5. Collector6. BaseSchematic6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesAbsolute Maximum Ratings (T a =25°C)Parameter Symbol Rating Unit Forward currentI F 50 mA Peak forward current (t = 10µs)I FM 1 A Reverse voltageV R 6 V 70 mW InputPower dissipation (T A = 25°C) Derating factor (above 100°C) P D 3.8 mW/°C Collector-Emitter voltage V CEO 80 V Collector-Base voltageV CBO 80 V Emitter-Collector voltage V ECO 7 V OutputEmitter-Base voltageV EBO 7 V 150 mWPower dissipation (T A = 25°C) Derating factor (above 100°C)P C 9.0mW/°CTotal power dissipation P tot 200 mW Isolation voltage *1 V iso 5000 Vrms Operating temperature T opr -55~+110 °C Storage temperature T stg -55~+125 °C Soldering temperature *2 T sol260 °CNotes*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together. *2 For 10 seconds.6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesElectrical Characteristics (T a =25°C unless specified otherwise)InputParameter Symbol Min. Typ.* Max. Unit ConditionForward voltage V F - 1.2 1.5 V I F = 10mA Reverse current I R - - 10 µA V R = 6V Input capacitanceC in-30-pFV = 0, f = 1MHzOutputParameter Symbol Min. Typ.* Max. Unit ConditionCollector-Base dark current I CBO - - 20 nA V CB = 10V - - 50V CE = 10V, IF=0mA Collector-Emitter darkcurrentI CEO - - 50nAV CE = 60V, IF=0mACollector-Emitter breakdown voltage BV CEO80 - - V I c =1mACollector-Base breakdown voltage BV CBO 80 -V I C =0.1mAEmitter-Collector breakdown voltage BV ECO 7 - - V I E =0.1mA Emitter-Basebreakdown voltage BV EBO7 - - V I E =0.1mACollector-Emitter capacitanceC CE - 8 - pF VCE=0V, f=1MHz* Typical values at T a = 25°C6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesTransfer Characteristics (T a =25°C unless specified otherwise)Parameter Symbol Min. Typ.* Max. Unit Condition4N35, 4N36,4N37 100--H11A150 - - H11A5 30 - -4N25, 4N26, 4N38, H11A2, H11A3 20 - - Current transfer ratio4N27, 4N28, H11A4 CTR10--%I F = 10mA, V CE = 10V4N25, 4N26, 4N27, 4N28- - 0.5 I F = 50mA, I c = 2mA4N35, 4N36,4N37 - - 0.3H11A1, H11A2, H11A3, H11A4, H11A5 - - 0.4I F = 10mA, I c = 0.5mACollector-Emitter saturation voltage4N38V CE(sat) - - 1.0VI F = 20mA, I c = 4mA Isolation resistanceR IO 1011 - - ΩV IO = 500VdcInput-output capacitanceC IO- 0.2 - pF V IO = 0, f = 1MHz4N25, 4N26, 4N27, 4N28, H11A1, H11A2, H11A3,H11A4, H11A5- 3 10V CC = 10V, I F = 10mA,R L = 100Ω See Fig. 11Turn-on time4N35, 4N36, 4N37, 4N38 Ton- 10 12µsV CC = 10V, I C = 2mA,R L = 100Ω, See Fig. 114N25, 4N26, 4N27, 4N28, H11A1, H11A2, H11A3, H11A4- 3 10V CC = 10V, I F = 10mA, R L = 100Ω See Fig. 11Turn-off time4N35, 4N36, 4N37, 4N38Toff- 9 12µsV CC = 10V, I C = 2mA, R L = 100Ω, See Fig. 11* Typical values at T a = 25°C6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X SeriesH11AX SeriesTypical Performance Curves6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X SeriesH11AX SeriesFigure 11. Switching Time Test Circuit & WaveformsI FI CR LR INR BEV CCOutputInputInput PulseOutput Pulse10%90%t f t r t offt on6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesOrder InformationPart Number4NXXY(Z)-VorH11AXY(Z)-VNoteXX = Part no. for 4NXX series (25, 26, 27, 28, 35, 36, 37 or 38) X = Part no. for H11AX series (1, 2, 3, 4, or 5) Y = Lead form option (S, S1, M or none) Z = Tape and reel option (TA, TB or none). V = VDE (optional)Option Description Packing quantityNone Standard DIP-665 units per tube M Wide lead bend (0.4 inch spacing)65 units per tube S (TA) Surface mount lead form + TA tape & reel option 1000 units per reel S (TB) Surface mount lead form + TB tape & reel option1000 units per reel S1 (TA) Surface mount lead form (low profile) + TA tape & reel option 1000 units per reel S1 (TB)Surface mount lead form (low profile) + TB tape & reel option1000 units per reel6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesPackage Drawings(Dimensions in mm)Standard DIP TypeOption M Type6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesOption S TypeOption S1 Type6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesDevice MarkingNotesEL denotes Everlight4N35 denotes Device Number Y denotes 1 digit Year code WW denotes 2 digit Week code V denotes VDE (optional)EL 4N35YWWV6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesTape dimensionsDimension No.A B Do D1 E F Dimension (mm) 10.4±0.1 7.52±0.1 1.5±0.1 1.5+0.1/-0 1.75±0.1 7.5±0.1Dimension No.Po P1 P2 t W K Dimension (mm) 4.0±0.15 16.0±0.1 2.0±0.1 0.35±0.03 16.0±0.2 4.5±0.1Option TAOption TBDirection of feed from reel Direction of feed from reel6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesSolder Reflow Temperature Profile6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER4N3X Series H11AX SeriesDISCLAIMER1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material changefor above specification.2. When using this product, please observe the absolute maximum ratings and the instructions for use asoutlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.3. These specification sheets include materials protected under copyright of EVERLIGHT Corporation.Please do not reproduce or cause anyone to reproduce them without EVERLIGHT’s consent.。