3146原理图
四位移位寄存器
摘要当前,电子信息化高速发展,电子产品成了日常生活中必不可少的一部分。
移位寄存器在大部分电子产品中是必不可少的一部分。
本论文介绍了实现并行存取的四位移位寄存器的设计过程,从电路的构思到整个电路的完成以及其版图的设计都有一个详细的描述。
所设计的寄存器在时钟脉冲的控制下,实现数据的并行输入、并行输出,串行输入并行输出等功能。
整个设计过程全部在LINUX系统下用Cadence软件进行设计的,用Cadence软件进行电路设计并仿真。
最后,利用Cadence软件进行版图的设计,电气规则的检查和LVS的对比匹配验证。
关键词:寄存器;并行存取;版图AbstractAt present, the rapid development of electronic information technology, electronics has become an indispensable part of daily life. Most of the shift register in electronic products is essential. This paper describes the realization of access to the four parallel shift register the design process, from concept to the circuit as a whole circuit of its territory and the completion of the design has a detailed description. The design of the register under the control of the clock, the parallel data input, output parallel, serial input parallel output functions. The entire design process in LINUX system with Cadence software designed and was used Cadence software for circuit design and simulation. Finally, use Cadence software to design the territory, electrical inspection rules and LVS comparison of the match to verify.Key words:register; parallel access; territory目录引言 (1)1 设计要求 (1)2 电路构思及其理论 (1)2.1 设计思路 (1)2.2 设计构思的理论依据 (2)2.2.1 寄存器描述 (2)2.2.2 移位寄存器的特点和分类 (2)3 系统电路的设计及原理说明 (2)3.1 系统框图及说明 (2)3.2 电路设计说明 (3)3.3 关键器件介绍 (4)3.3.1 边沿D触发器 (5)3.3.2 3个二输入与非门构成的选择器 (6)4 仿真验证叙述及效果分析 (6)4.1 电路仿真 (6)4.2电路仿真结果分析 (6)5 工程设计 (7)5.1 Cadence软件介绍 (7)5.2 电路设计 (7)5.3 版图设计及验证 (8)5.3.1 版图设计 (8)5.3.2 版图验证 (9)6 调试测试分析 (10)7 结束语 (10)参考文献 (11)附录 (12)引言当今电子信息化的社会,电子产品在日常生活中随处可见。
电位滴定法测定十二烷基磷酸酯
电位滴定法测定十二烷基磷酸酯Ξ赵丽萍1,赵丽杰2(11辽宁省辽阳中医药学校,辽宁辽阳 111000;21辽阳石油化工高等专科学校,辽宁辽阳 111003) 摘 要:采用电位滴定法测定了十二烷基磷酸酯中单酯、双酯、磷酸的含量。
考察了溶剂种类及配比,滴定剂溶剂及滴定剂浓度、10%CaC l 2及饱和N aC l 用量的影响。
确定了最佳分析条件。
该法操作简单、计算方便、可应用于工业生产中。
关键词:十二烷基磷酸酯;电离常数;电位滴定法;表面活性剂 中图分类号:O 657.1 文献标识码:A 文章编号:100320840(2000)022******* 磷酸酯类表面活性剂是一种性能优良、应用广泛的表面活性剂,它具有优良的抗静电、润湿、增溶、乳化等优良特性,其生物降解性、热稳定性、耐碱性等都优于一般的阴离子表面活性剂[1],因而引起人们的极大兴趣。
近十几年来,此类表面活性剂发展较快,产量逐年增加。
其中,烷基磷酸酯由于它具有的优良特性而被用作特种功能表面活性剂而被用于纺织加工、合成纤维、金属加工、合成树脂、公共清洗、农业、化妆品等行业[2]。
烷基磷酸酯的工业产品主要包括:烷基磷酸单酯、双酯及游离磷酸。
双酯具有较好的平滑性、可有效降低被处理物的摩擦系数。
单酯由于其亲水性强,所以其水溶性、集束性和抗静电较好并具有一定防锈作用,因此,为了对产品进行质量评价,研究烷基磷酸酯中单酯、双酯含量的测定方法具有重要意义。
烷基磷酸酯中单酯、双酯及游离磷酸含量的测定方法有:混合指示剂法[3]、核磁共振法(31P -NM R )[4]、乙醇作溶剂的电位滴定法[5]。
用混合指示剂法测十二烷基磷酸酯,在滴定过程中有沉淀产生,误差较大;核磁共振法仪器昂贵,而用乙醇作溶剂的电位滴定法在测十二烷基磷酸酯过程中有析出物粘住电极,使滴定无法继续进行,这是由于十二烷基磷酸酯中R 基较大,增水强的原因,为此,寻找一种适合于十二烷基磷酸酯分析的方法具有一定的实用价值。
PMC-651T配电变压器保护测控装置用户说明书_V5.2
我们已经检查了本手册关于描述硬件和软件保持一致的内容。由于不可能完全消除差错,所以我们不 能保证完全的一致。本手册中的数据将定期审核,并在新一版的文件中做必要的修改,欢迎提出修改建议。 以后版本中的变动不再另行通知。
PMC-651T专业人士进行安装,对于因不遵守本手册的说明所引起 的故障,厂家将不承担任何责任。
重要提示 感谢您使用深圳市中电电力技术股份有限公司的产品。为了安全、正 确、高效地使用本装置,请您务必注意以下重要提示: 1) 本说明书仅适用于 PMC-651T 配电变压器保护测控装置。 2) 请仔细阅读本说明书,并按照说明书的说明设置、测试和操作。如 有随机资料,请以随机资料为准。 3) 为防止装置损坏,严禁带电插拔装置各插件、触摸印制电路板上的 芯片和器件。 4) 请使用合格的测试仪器和设备对装置进行试验和检测。 5) 装置如出现异常,请及时与本公司售后技术服务(400-8860-418) 联系。 6) 本装置的设置缺省密码是:0000。
2 技术指标...................................................................................................................................................................3 2.1 工作环境条件.............................................................................................................................................. 3 2.2 额定参数.......................................................................................................................................................3 2.3 准确度...........................................................................................................................................................3 2.4 遥信分辨率.................................................................................................................................................. 5 2.5 过载能力.......................................................................................................................................................5 2.6 继电器输出.................................................................................................................................................. 5 2.7 开关量输入.................................................................................................................................................. 5 2.8 外壳防护等级(IP).................................................................................................................................. 5 2.9 端子螺丝紧固力矩...................................................................................................................................... 5 2.10 电气绝缘性能............................................................................................................................................ 5 2.11 机械性能.....................................................................................................................................................6 2.12 电磁兼容性能............................................................................................................................................ 6
RK3126_原理图
VCC_5V D D1 1N5819 SOD123 C4 10uF/6.3V C0603 C3 0.1uF C0402
2
3
R32 510K R0402
Q11
1
C6 10uF/6.3V C0603 R4 OTG_EN 7 10K R0402 R6 100K R0402
U5
5 4 2
VIN EN GND
iNAND NAND FLASH
DDR Interface
SDMMC
RBG PANEL
LCDC RGB666 I2C2
TOUCH PANEL
USB HOST UART1 SPI I2S HDMI
USB WIFI
GPIO
C
I2O
RK3026/RK2926
DEBUG UART2 USB OTG CIF FRONT CAMERA
A
ÉîÛÚÊÐÎåÔªËؿƼ¼ÓÐÏÞ¹«Ë¾
Title: File:
Create Date: Modify Date:
5 4 3 2
Friday, April 29, 2016
Index
F601-RK3126
REV: 0.1 Page Num: Page Total:
1
D
C
B
A
ÉîÛÚÊÐÎåÔªËؿƼ¼ÓÐÏÞ¹«Ë¾
C0603
C0603
C0603
C0603
INDICATE
VCC_IO No indicate
GND
miles above 50 miles above 30 miles above 12 miles Under needs
D
36 35 34 33 32 31 30 29 28 27 26 25
MC34063组成的DC电源或隔离电路
MC34063组成的DC电源或隔离电路MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器主要参数:MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。
工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+ R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co 充电以提高U。
,达到自动控制U。
稳定的作用。
3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。
4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。
5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。
第9节手机主板上的五大件
第九节手机中的五大件一、功放<PA>a. 又称功率放大器,主要运用在手机的发射通道上.用来放大手机的发射功率.功率等于电流乘以电压。
在部分手机中功放和天线开关合二为一。
b.功放的分类按封装形式分为:铁壳封装和陶瓷封装两种早期手机的功放大多采用铁壳封装的,其特点是体积大,吹取温度高,占地面积大.内部不含功控、功率检测。
如日本日立的功放: PF08103=PF08105 PF08109=PF08112 PF08107=PF08122=PF08123当今大量采用美国半导体器件公司的功放,其特点是陶瓷封装、体积小、吹取温度低、内部含功控、功率检测表面有“RF”字样。
常见的型号有:RF3110=RF3100=RF3140 RF3146、RF3166另外在手机中还有型号为:4300、4002、77518、77506、08105B功率检测:实质为电感线圈,利用电感的互感把功放放大的实际量反馈给功控也叫功率取样或实际量。
功控:利用功率检测反馈的实际量和标准的功率等级电平<APC>对比后从而来控制功放的放大能力,让功放放大在标准状态下。
c. 功放损坏会引起:不发射、发射困难、发射关机、加电短路、漏电、无网络故障,检修时代换。
二、电源管理ICa. 又称电源芯片、PMIC、PMU、UEM、CCONTb. 作用:主要用来为手机的各单元电路提供合适的电压。
在手机主板上为VBATT 的直接负载。
大多为QFP封装,周围分布大量的滤波电容,主要把电池电压降压成各路合适的电压为单元电路供电。
c.手机中常见的型号:在MTK方案中MT6305、MT6318、MT6305B是电源IC,重要脚位详见原理图。
在展讯方案中电源在CPU内部,所以在主板上看不到电源IC了。
在诺基亚手机DCT4中电源的体积比CPU还要大。
在CDMA中电源体积很小,CDMA在主板设计中大量采用供电管供电,所以部分手机看不到电源IC。
手机的开机键都与电源IC相连,当我们用手按下开机键后,一个高电平或低电平跳,从而让电源IC受到触发从而输出各路电压.d. 电源管理IC损坏后会引起:不开机、加电短路、漏电、不识卡、无信号、不能下载等。
风电齿轮箱讲义
• 上表中列举了齿轮箱中各类零件损坏的百分比。由表可见,在齿轮箱中齿轮本身 的故障所占比重大,为60%。说明在齿轮传动系统中齿轮本身的制造、装配质 量及其运行维护水平是关键问题。齿轮在机械加工中是一种高度复杂的成形零件, 而在高速、重载下运行的齿轮,其工作条件又相对比其他零部件恶劣。
第17页/共47页
齿轮的故障特征预估障间的关系
第19页/共47页
四、风电齿轮箱的使用、维护和检查
• 以1500KW齿轮箱为例说明: 1 、运行前的检查: • 1.1安装完后,所有多余材料、工具、安装用的工装设备都应拿
走。 • 1.2连接螺栓是否拧紧。 • 1.3齿轮箱壳体的连接螺栓是否拧紧。 • 1.4手动盘车有无阻滞现象。 • 1.5油量是否达到油标刻度。从减速箱的通气帽处加入规定的清
第31页/共47页
表(一) 螺栓的拧紧力矩
螺栓
用扭力扳手的力矩 N.m
大小
8.8 级
10.9 级
M8
21
30.4
M10
42.1
60.8
M12
73.5
104.9
M14
114.7
166.6
M16
176.4
254.8
M18
250.8
356.7
M20
357.7
509.6
M22
480.2
676.2
M24
617
10927
9310
13279
11466
16317
13818
19698
第32页/共47页
12.9 级 34.3 68.6 119.6 189.1 289.1 401.8 568.4 774.2 980 1460 1970 3440 5508 8330 10682 13328 16219 19894 24010
电磁炉原理图和工作原理与维修(全)
电磁炉原理图和工作原理与维修(全)电磁炉原理图和工作原理与维修目录一、简介 (3)1.1 电磁加热原理 (3)1.2 458系列简介 (3)二、原理分析 (3)2.1 特殊零件简介 (3)2.2 电路方框图 (5)2.3 主回路原理分析 (6)2.4 振荡电路 (7)2.5 IGBT激励电路 (8)2.6 PWM脉宽调控电路 (8)2.7 同步电路 (8)2.8 加热开关控制 (9)2.9 V AC检测电路 (9)2.10 电流检测电路 (10)2.11 VCE检测电路 (10)2.12 浪涌电压监测电路 (11)2.13 过零检测 (11)2.14 锅底温度监测电路 (12)2.15 IGBT温度监测电路 (12)2.16 散热系统 (13)2.17 主电源 (13)2.18辅助电源 (13)2.19 报警电路 (14)三、故障维修 (14)3.1故障代码 (14)3.2 主板检测标准 (14)3.3 故障案例 (16)一、简介1.1 电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。
在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。
1.2 458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。
操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。
额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。
当图中时输出电压为31集成运算放大器316集成运放的使用常识一
u u1 u O i i 1 i 0 uId u1 u1 1 1 0 1 或 u1 u 1 Rid u
相当于两输入端断开,但又不是真正的断开, 相当于两输入端短路,但又不是真正的 故称为“虚断”。如图所示。 短路,故称为“虚短”。如图所示。
3.1.5 集成运放的基本运用
uO A 指集成运放本身的差模增益,即 od 。它体现了集成运放的电 指差模信号作用下集成运放的输入电阻。 u u 4 7之间。 压放大能力,一般在 5. 输入失调电压 U 10 ~ 10 io
2. 开环共模增益 A 指为使输出电压为零,在输入级所加的补偿电压值。
oc
指集成运放本身的共模增益,它反映集成运放抗温漂、抗共模干扰的 6. 失调电压温度系数 U io / T 能力,优质的集成运放 指温度变化 T 时所产生的失调电压变化 Aoc 应接近于零。 U 的大小,它直接影响集
开环放大倍数
A
闭环放大倍数
Af
反馈放大器的一般形式
3.1.1 放大器中的负反馈
二、反馈类型 1. 2. 直流反馈和交流反馈 正反馈和负反馈 根据反馈量是直流量还是交流量,可将反馈分为直流反馈和交流反馈。 根据反馈的效果可以区分反馈的极性。 若将直流量反馈到输入端,称为直流反馈。直流反馈多用于稳定静态 当输入量不变时,引入反馈后使净输入量增加,放大倍数增加的反馈称 工作点。 为正反馈。正反馈多用于振荡电路和脉冲电路。 若将交流量反馈到输入端,称为交流反馈。交流反馈多用于改善放大 当输入量不变时,引入反馈后使净输入量减小,导致电路放大倍数减小的反 器的动态性能。 馈称为负反馈。负反馈多用于改善放大器的性能。
3.1.1 放大器中的负反馈
三、负反馈放大器的四种组态 放大器引入交流负反馈后,称为负反馈放大器。在负反馈放大器中,根 据反馈网络与放大器输出端连接方式的不同,可分为电压和电流反馈,当反 馈量取自输出电压时称为电压反馈,取自输出电流时称为电流反馈;根据反 馈网络与放大器输入端连接方式不同,可分为串联和并联反馈,当反馈量与 输入量以电压方式相叠加时称为串联反馈,以电流方式相叠加时称为并联反 馈。 这样,交流负反馈放大器有四种组态,即电压串联、电压并联、电流串 联、电流并联,不同组态的负反馈对放大器输入、输出电阻的影响也不一样。
MTK平台射频方案简介
MTK 平台射频简述(参考自MTK datasheet)组成:PA:RF MICRO. DEVICES 公司的RF3146天线开关(双工器): 三频: HITACHI 2MT43159R2-M090TK/M085TK可换用Murata的天线开关LMSP43CA-309,则匹配电路发生变化收发器(射频前端): MTK MT6129CPA(RF3146)介绍:是RFMD公司生产的第三代PowerStar功率放大器(PA)模块,集成了已获专利的整合功率控制技术的高功率(GSM35dB、DCS与PCS 33dB)、高效率(GSM 60%、DCS/PCS 55%)的射频功放模组,内置方向耦合器、检波二极管、和专用功率控制集成电路(ASIC),适用于GSM850、EGSM900、DCS、PCS频段,输出功率控制范围达到50dB。
目前被三星手机大量采用。
内含CMOS电路,是ESD敏感器件。
尺寸7X7X0.9mm.以下是简化原理框图:主要参数:1、最大输出功率2、总效率3、输入功率范围(全功率输出时)4、二次、三次谐波5、其它非谐波杂散6、输入、输出阻抗7、功率控制范围8、前向隔离度(在典型输入功率且发射禁止、或在最小控制功率时)引脚功能描述:引脚号名称功能描述2 VCC2GSM GSM驱动级的控制电压输入,需连接VCCOUT并去耦,分配给功率控制部分GSM频段射频输出脚,匹配与隔直电路内置,输出阻抗50欧6 GSM850/900OUT18 VCC3GSM GSM输出级的控制电压输入,需连接VCCOUT并去耦,分配给功率控制部分OUT 流入VCC2、VCC3的控制电压输出,分配给功率控制部分,19、20 VCC不能接其它引脚DCS/PCS输出级的控制电压输入,需连接VCCOUT并去耦,DCS/PCS21 VCC3分配给功率控制部分DCS/PCS频段射频输出脚,匹配与隔直电路内置,输出阻抗50 31 DCS/PCSOUT欧35 VCC2DCS/PCS驱动级的控制电压输入,需连接VCCOUT并去耦,DCS/PCS分配给功率控制部分IN DCS/PCS频段的射频输入脚,输入阻抗50欧37 DCS/PCSGSM、DCS/PCS预放大级的控制电压,内部提供,需加去耦DCS/PCS39 VCC1SEL 允许外部控制选择频段,“0”为GSM,“1”为DCS/PCS40 BANDENABLE 允许PA模组工作,“1”允许。
CDMP200A系列通用型保护测控装置说明书
CDMP200A系列通用型保护测控装置说明书目录1概述 (1)1.1适用范围 (1)1.2装置主要特点 (1)1.3装置型号命名 (2)1.4装置执行标准 (2)2技术参数 (3)2.1环境条件 (3)2.2绝缘性能 (3)2.3机械性能 (3)2.4电磁兼容性能 (3)2.5安全性能 (3)2.6装置主要技术参数 (3)2.6.1工作电源 (3)2.6.2额定控制电源 (4)2.6.3额定交流参数 (4)2.6.4功率消耗 (4)2.6.5过载能力 (4)2.6.6输出触点容量 (4)2.6.7交流回路精确工作范围 (4)3装置功能及设置 (5)3.1CDMP201A/B/C/D保护测控装置 (5)3.1.1保护配置 (5)3.1.2测量功能 (6)3.1.3保护原理和逻辑框图 (6)3.1.4整定说明 (33)3.2CDMP231A备用电源自动投入装置 (39)3.2.1保护配置 (39)3.2.2测量功能 (39)3.2.3保护原理和逻辑框图 (39)3.2.4整定说明 (48)3.3CDMP281A电压互感器保护测控装置 (50)3.3.1保护配置 (50)3.3.2保护原理和逻辑框图 (50)3.3.3定值清单 (54)4人机接口及其操作 (56)4.1装置上电 (56)4.2装置菜单功能 (56)4.2.1主界面 (56)4.2.2菜单操作 (57)5装置结构及安装 (69)5.1装置结构 (69)5.2铝合金拉丝面板机箱结构尺寸图 (70)5.3塑料面板机箱结构尺寸图 (71)5.4背视图及接线端子分布 (72)6维护运行注意事项 (75)6.1装置投运前检查 (75)6.2运行情况下注意事项 (75)6.3常见异常情况及对策 (75)6.4保护动作后处理 (75)6.5部分定期检验项目 (75)6.6装置维护指南 (76)6.6.1电源损坏 (76)6.6.2微机系统插件故障 (76)6.6.3交流插件更换 (76)6.6.4开入插件 (76)6.6.5开出插件 (76)7典型报告分析 (77)7.1保护动作报告和告警信息 (77)7.2装置故障信息 (77)8其它注意事项 (79)8.1开箱检查 (79)8.2运输、贮存注意事项 (79)8.3定货须知 (79)9附录 (80)9.1操作回路原理图 (80)9.2CDMP201A典型接线原理图 (81)9.3CDMP201B典型接线原理图 (82)9.4CDMP201C典型接线原理图 (83)9.5CDMP201D典型接线原理图 (84)9.6CDMP231A典型接线原理图 (85)9.7CDMP281A典型接线原理图 (86)修改历史1概述CDMP200A系列通用型保护测控装置(CDMP201A、CDMP201B、CDMP201C、CDMP201D、231A、281A)是集保护、测量、监视、控制、人机接口、通信等多种功能于一体的数字式多功能继电器。
314c_原理图
页数
23
2
日期 编辑. 已检验 初始 2012-7-23 Administrator
首页 捷梯常熟校西门子S7 300教学演示设备
替代人 替代人 IEC_bas001
= CA1 + EAA
页数 页数 1 23
修改
日期
姓名
0
1
2
3
4
5
6
7
8
9
L1 N1
L3 N3
-P2-1 / 3.0 -P2_2 / 3.0
U1
V1
W1
-KA2 219
13 14
-KM2 220 A1
1 3 5 A2
L11 N11 -U46
1 1 -2 2 3 3 4 4
-P2-12 /
/16.7
2 /7.2 4 /7.2 6 /7.2
PE
U2
V2
U1 V1
W2
W1 PE
-M7
M 3~
6
日期 编辑. 已检验 初始 2012-12-19 ADMINISTRATOR
-KA10
/22.2
-P6-12
11.1 PE
U2
V2
U1
V1
W2
W1
-M2
M 3~
PE
5
日期 编辑. 已检验 初始 2013-1-31 ADMINISTRATOR
变频器短路器及接触器
水泵马达 变频器1
= CA1 + EAA
IEC_bas001 页数 页数
200
7
6 23
捷梯常熟校西门子S7 300教学演示设备
101 0V
-P4-10 / 8.0
带轮换控系统图
主电路电气原理图主控制板电器原理图逆变触发电路图脉冲及时序
逆变触发电路图:脉冲及时序板原理图:IGBT逆变电焊机工作原理及输出特性本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。
DC/AC逆变器的制作-------------------------------------------------------------------------------- 江苏电子网QQ:99296827这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。
其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该逆变器的工作原理及制作过程。
--拓普电子1.电路图2.工作原理这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)图3这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路。
图4由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Product DescriptionOrdering InformationTypical Applications FeaturesFunctional Block DiagramRF Micro Devices, Inc.7628 Thorndike Road Greensboro, NC 27409, USA Tel (336) 664 1233Fax (336) 664 0454Optimum Technology Matching® AppliedSi BJT GaAs MESFET GaAs HBTSi Bi-CMOS SiGe HBTSi CMOSInGaP/HBTGaN HEMTSiGe Bi-CMOSDCS/PCS INBAND SELECT TX ENABLE VRAMP VBATT GSM IN VBATT QUAD-BAND GSM850/GSM900/DCS/PCSPOWER AMP MODULE•3V Quad-Band GSM Handsets •Commercial and Consumer Systems •Portable Battery-Powered Equipment •GSM850/EGSM900/DCS/PCS Products •GPRS Class 12 Compatible •Power Star TM ModuleThe RF3146 is a high-power, high-efficiency power ampli-fier module with integrated power control. The device is a self-contained 7mmx7mmx0.9mm lead frame module (LFM) with 50Ω input and output terminals. The power control function is also incorporated, eliminating the need for directional couplers, detector diodes, power control ASICs and other power control circuitry; this allows the module to be driven directly from the DAC output. The device is designed for use as the final RF amplifier in GSM850, EGSM900, DCS and PCS handheld digital cel-lular equipment and other applications in the 824MHz to 849MHz, 880MHz to 915MHz, 1710MHz to 1785MHz and 1850MHz to 1910MHz bands. On-board power con-trol provides over 50dB of control range with an analog voltage input; and, power down with a logic “low” for standby operation.•Integrated V REG•Complete Power Control Solution •+35dBm GSM Output Power at 3.5V•+33dBm DCS/PCS Output Power at 3.5V •60% GSM and 55% DCS/PCS EFF •7mmx7mmx0.9mm Package SizeRF3146Quad-Band GSM850/GSM900/DCS/PCS Power Amp ModuleRF3146P Quad-Band GSM850/GSM900/DCS/PCS Power AmpModule (Pb Free)RF3146 SB Power Amp Module 5-Piece Sample Pack RF3146 PCBA Fully Assembled Evaluation BoardShaded lead is pin 1.0.600.24Package Style: LFM, 48-Pin, 7mm x7mmx0.9mm99Part of the POLARIS TM TOTAL RADIO TM SolutionThe RF3146 is part of the POLARIS TM TOTAL RADIO TM solution.Absolute Maximum RatingsParameterRatingUnitSupply Voltage-0.3 to +6.0V DC Power Control Voltage (V RAMP )-0.3 to +1.8V Input RF Power +10dBm Max Duty Cycle50%Output Load VSWR10:1Operating Case Temperature -20 to +85°C Storage Temperature-55 to +150°CParameterSpecification Unit ConditionMin.Typ.Max.Overall Power Control V RAMPPower Control “ON” 1.5V Max. P OUT , Voltage supplied to the input Power Control “OFF”0.20.25V Min. P OUT , Voltage supplied to the input V RAMP Input Capacitance 1520pF DC to 2MHzV RAMP Input Current 10µA V RAMP =V RAMP MAXT urn On/Off Time 2µs V RAMP =0.2V to V RAMP MAXTX Enable “ON” 1.5V TX Enable “OFF”0.5V GSM Band Enable0.5V DCS/PCS Band Enable1.9V Overall Power SupplyPower Supply Voltage 3.03.5 5.5V SpecificationsV Nominal operating limitsPower Supply Current1µA P IN <-30dBm, TX Enable=Low, Temp=-20°C to +85°CmAV RAMP =0.2V , TX Enable=HighOverall Control SignalsBand Select “Low”000.5V Band Select “High”1.92.03.0V Band Select “High” Current 2050µA TX Enable “Low”000.5V TX Enable “High”1.52.03.0V TX Enable “High” Current12µAESD sensitive device.RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).ParameterSpecificationUnit Condition Min.Typ.Max.Overall (GSM850 Mode)Temp=+25°C, V BATT=3.5V,V RAMP=V RAMP MAX, P IN=3dBm, Freq=824MHz to 849MHz,25% Duty Cycle, Pulse Width=1154µsOperating Frequency Range824 to 849MHzMaximum Output Power+34.2dBm Temp = 25°C, V BATT=3.5V,V RAMP=V RAMP MAX+32.0dBm Temp=+85°C, V BATT=3.0V,V RAMP=V RAMP MAXT otal Efficiency4755%At P OUT MAX, V BATT=3.5VInput Power Range0+3+5dBm Maximum output power guaranteed at mini-mum drive levelOutput Noise Power-88-81dBm RBW=100kHz, 869MHz to 894MHz,P OUT > +5dBmForward Isolation 1-50-35dBm TXEnable=Low, P IN=+5dBmForward Isolation 2-35-15dBm TXEnable=High, P IN=+5dBm, V RAMP=0.2V Cross Band Isolation at 2f0 -18dBm V RAMP=0.2V to V RAMP_R PSecond Harmonic-15-7dBm V RAMP=0.2V to V RAMP_R PThird Harmonic-25-15dBm V RAMP=0.2V to V RAMP_R PAll OtherNon-Harmonic Spurious-36dBm V RAMP=0.2V to V RAMP MAXInput Impedance50ΩInput VSWR 2.5:1V RAMP=0.2V to V RAMP MAXOutput Load VSWR Stability8:1Spurious<-36dBm, RBW=3MHzSet V RAMP where P OUT<34.2dBm into 50ΩloadOutput Load VSWR Ruggedness10:1Set V RAMP where P OUT<34.2dBm into 50Ωload. No damage or permanent degradationto part.Output Load Impedance50ΩLoad impedance presented at RF OUT pad Power Control V RAMPPower Control Range55dB V RAMP=0.2V to V RAMP MAXNotes:V RAMP MAX=0.4*V BA TT+0.06<1.5VV RAMP_R P=V RAMP set for 34.2dBm at nominal conditions.ParameterSpecificationUnit Condition Min.Typ.Max.Overall (GSM900 Mode)Temp=+25°C, V BATT=3.5V,V RAMP=V RAMP MAX, P IN=3dBm, Freq=880MHz to 915MHz,25% Duty Cycle, Pulse Width=1154µsOperating Frequency Range880 to 915MHzMaximum Output Power+34.2dBm Temp = 25°C, V BATT=3.5V,V RAMP=V RAMP MAX+32.0dBm Temp=+85°C, V BATT=3.0V,V RAMP =V RAMP MAXT otal Efficiency5458%At P OUT MAX, V BATT=3.5VInput Power Range0+3+5dBm Maximum output power guaranteed at mini-mum drive levelOutput Noise Power-86-80dBm RBW=100kHz, 925MHz to 935MHz,P OUT > +5dBm-88-84dBm RBW=100kHz, 935MHz to 960MHz,P OUT > +5dBmForward Isolation 1-45-35dBm TXEnable=Low, P IN=+5dBmForward Isolation 2-30-15dBm TXEnable=High, V RAMP=0.2V, P IN=+5dBm Cross Band Isolation 2f0 -17dBm V RAMP=0.2V to V RAMP_R PSecond Harmonic-15-10dBm V RAMP=0.2V to V RAMP_R PThird Harmonic-25-15dBm V RAMP=0.2V to V RAMP_R PAll OtherNon-Harmonic Spurious-36dBm V RAMP=0.2V to V RAMP MAXInput Impedance50ΩInput VSWR 2.5:1V RAMP=0.2V to V RAMP MAXOutput Load VSWR Stability8:1Spurious<-36dBm, RBW=3MHzSet V RAMP where P OUT<34.2dBm into 50ΩloadOutput Load VSWR Ruggedness10:1Set V RAMP where P OUT<34.2dBm into 50Ωload. No damage or permanent degradationto part.Output Load Impedance50ΩLoad impedance presented at RF OUT pad Power Control V RAMPPower Control Range50dB V RAMP=0.2V to V RAMP MAXNotes:V RAMP MAX=0.4*V BA TT+0.06<1.5VV RAMP_R P=V RAMP set for 34.2dBm at nominal conditions.ParameterSpecificationUnit Condition Min.Typ.Max.Overall (DCS Mode)Temp=25°C, V BA TT=3.5V,V RAMP=V RAMP MAX, P IN=3dBm, Freq=1710MHz to 1785MHz,25% Duty Cycle, pulse width=1154µsOperating Frequency Range1710 to 1785MHzMaximum Output Power+32.0dBm Temp=25°C, V BA TT=3.5V,V RAMP =V RAMP MAX30dBm Temp=+85°C, V BA TT=3.0V,V RAMP=V RAMP MAXT otal Efficiency4552%At P OUT MAX, V BA TT=3.5VInput Power Range0+3+5dBm Maximum output power guaranteed at mini-mum drive levelOutput Noise Power-85-80dBm RBW=100kHz, 1805MHz to 1880MHz,P OUT > 0dBm,V BA TT=3.5VForward Isolation 1-50-35dBm TXEnable=Low, P IN=+5dBmForward Isolation 2-25-15dBm TXEnable=High, V RAMP=0.2V, P IN=+5dBm Second Harmonic-15-7dBm V RAMP=0.2V to V RAMP_R PThird Harmonic-20-15dBm V RAMP=0.2V to V RAMP_R PAll OtherNon-Harmonic Spurious-36dBm V RAMP=0.2V to V RAMP MAXInput Impedance50ΩInput VSWR 2.5:1V RAMP=0.2V to V RAMP MAXOutput Load VSWR Stability8:1Spurious<-36dBm, RBW=3MHzSet V RAMP where P OUT<32.0dBm into 50ΩloadOutput Load VSWR Ruggedness10:1Set V RAMP where P OUT<32.0dBm into 50Ωload. No damage or permanent degradationto part.Output Load Impedance50ΩLoad impedance presented at RF OUT pin Power Control V RAMPPower Control Range50dB V RAMP=0.2V to V RAMP MAX, P IN=+5dBm Notes:V RAMP MAX=0.4*V BA TT+0.06<1.5VV RAMP_R P=V RAMP set for 32.0dBm at nominal conditions.ParameterSpecificationUnit Condition Min.Typ.Max.Overall (PCS Mode)Temp=25°C, V BA TT=3.5V,V RAMP =V RAMP MAX, P IN=3dBm, Freq=1850MHz to 1910MHz,25% Duty Cycle, pulse width=1154µsOperating Frequency Range1850 to 1910MHzMaximum Output Power+32.0dBm Temp=25°C, V BA TT=3.5V,V RAMP=V RAMP MAX, 1850MHz to 1910MHz30dBm Temp=+85°C, V BA TT=3.0V,V RAMP=V RAMP MAXT otal Efficiency4855%At P OUT MAX, V BA TT=3.5VInput Power Range0+3+5dBm Full output power guaranteed at minimumdrive levelOutput Noise Power-85-80dBm RBW=100kHz, 1930MHz to 1990MHz,P OUT > 0dBm,V BA TT=3.5VForward Isolation 1-40-33dBm TX_ENABLE=Low, P IN=+5dBmForward Isolation 2-20-15dBm TXEnable=High, V RAMP=0.2V, P IN=+5dBm Second Harmonic-15-7dBm V RAMP=0.2V to V RAMP_R PThird Harmonic-20-15dBm V RAMP=0.2V to V RAMP_R PAll OtherNon-Harmonic Spurious-36dBm V RAMP=0.2V to V RAMP MAXInput Impedance50ΩInput VSWR 2.5:1V RAMP=0.2V to V RAMP MAXOutput Load VSWR Stability8:1Spurious<-36dBm, RBW=3MHzSet V RAMP where P OUT<32.0dBm into 50ΩloadOutput Load VSWR Ruggedness10:1Set V RAMP where P OUT<32.0dBm into 50Ωload. No damage or permanent degradationto part.Output Load Impedance50ΩLoad impedance presented at RF OUT pin Power Control V RAMPPower Control Range50dB V RAMP=0.2V to V RAMP MAX, P IN=+5dBm Notes:V RAMP MAX=0.4*V BA TT+0.06<1.5VV RAMP_R P=V RAMP set for 32.0dBm at nominal conditions.Pin Out123456789101112131415161718192021222324252627282930313233343536373839404142434445464748GSM850/GSM900 OUTNC VCC2 GSM NC GND GND GND NC NC NC NC NC N CN CN CN CN CV C C 3 G S MV C C O U TV C C O U TV C C 3D C S /P C SN CN CN CNCNC NC NC NC NC GND GNDGND NC DCS/PCS OUT D C S /P C S I N VCC2 DCS/PCS N C G N D 1 G S MB A N D S E LT X E N A B L EV B A T TV B A T TN CV R A M Pv c c 1 G S MG S M 850/G S M 900 I NV C C 1D C S /P C SApplication SchematicEvaluation Board SchematicEvaluation Board LayoutBoard Size 2.0” x 2.0”Board Thickness 0.032”, Board Material FR-4, Multi-LayerTheory of OperationOverviewThe RF3146 is a quad-band GSM850, EGSM900, DCS1800, and PCS1900 power amplifier module that incorporates an indirect closed loop method of power control. This simplifies the phone design by eliminating the need for the compli-cated control loop design. The indirect closed loop appears as an open loop to the user and can be driven directly from the DAC output in the baseband circuit.Theory of OperationThe indirect closed loop is essentially a closed loop method of power control that is invisible to the user. Most power con-trol systems in GSM sense either forward power or collector/drain current. The RF3146 does not use a power detector. A high-speed control loop is incorporated to regulate the collector voltage of the amplifier while the stage are held at a con-stant bias. The V RAMP signal is multiplied by a factor of 2.65 and the collector voltage for the second and third stages are regulated to the multiplied V RAMP voltage. The basic circuit is shown in the following diagram.By regulating the power, the stages are held in saturation across all power levels. As the required output power is decreased from full power down to 0dBm, the collector voltage is also decreased. This regulation of output power is demonstrated in Equation 1 where the relationship between collector voltage and output power is shown. Although load impedance affects output power, supply fluctuations are the dominate mode of power variations. With the RF3146 regu-lating collector voltage, the dominant mode of power fluctuations is eliminated.(Eq. 1)There are several key factors to consider in the implementation of a transmitter solution for a mobile phone. Some of them are:•Current draw and system efficiency •Power variation due to Supply Voltage •Power variation due to frequency •Power variation due to temperature •Input impedance variation •Noise power •Loop stability•Loop bandwidth variations across power levels •Burst timing and transient spectrum trade offs •HarmonicsRF OUTP dBm102V CC V SAT –⋅()28R LOAD 103–⋅⋅-------------------------------------------log ⋅=Output power does not vary due to supply voltage under normal operating conditions if V RAMP is sufficiently lower than V BA TT . By regulating the collector voltage to the PA the voltage sensitivity is essentially eliminated. This covers most cases where the PA will be operated. However, as the battery discharges and approaches its lower power range the maximum output power from the PA will also drop slightly. In this case it is important to also decrease V RAMP to prevent the power control from inducing switching transients. These transients occur as a result of the control loop slowing down and not regulating power in accordance with V RAMP .The switching transients due to low battery conditions are regulated by incorporating the following relationship limiting the maximum V RAMP voltage (Equation 2). Although no compensation is required for typical battery conditions, the bat-tery compensation required for extreme conditions is covered by the relationship in Equation 4. This should be added to the terminal software.(Eq. 2)Due to reactive output matches, there are output power variations across frequency. There are a number of components that can make the effects greater or less.The components following the power amplifier often have insertion loss variation with respect to frequency. Usually, there is some length of microstrip that follows the power amplifier. There is also a frequency response found in directional cou-plers due to variation in the coupling factor over frequency, as well as the sensitivity of the detector diode. Since the RF3146 does not use a directional coupler with a diode detector, these variations do not occur.Input impedance variation is found in most GSM power amplifiers. This is due to a device phenomena where C BE and C CB (C GS and C SG for a FET) vary over the bias voltage. The same principle used to make varactors is present in the power amplifiers. The junction capacitance is a function of the bias across the junction. This produces input impedance variations as the Vapc voltage is swept. Although this could present a problem with frequency pulling the transmit VCO off frequency, most synthesizer designers use very wide loop bandwidths to quickly compensate for frequency variations due to the load variations presented to the VCO.The RF3146 presents a very constant load to the VCO. This is because all stages of the RF3146 are run at constant bias. As a result, there is constant reactance at the base emitter and base collector junction of the input stage to the power amplifier.Noise power in PA's where output power is controlled by changing the bias voltage is often a problem when backing off of output power. The reason is that the gain is changed in all stages and according to the noise formula (Equation 5),(Eq. 3)the noise figure depends on noise factor and gain in all stages. Because the bias point of the RF3146 is kept constantthe gain in the first stage is always high and the overall noise power is not increased when decreasing output power.Power control loop stability often presents many challenges to transmitter design. Designing a proper power control loop involves trade-offs affecting stability, transient spectrum and burst timing.In conventional architectures the PA gain (dB/ V) varies across different power levels, and as a result the loop bandwidth also varies. With some power amplifiers it is possible for the PA gain (control slope) to change from 100dB/V to as high as 1000dB/V . The challenge in this scenario is keeping the loop bandwidth wide enough to meet the burst mask at low slope regions which often causes instability at high slope regions.The RF3146 loop bandwidth is determined by internal bandwidth and the RF output load and does not change with respect to power levels. This makes it easier to maintain loop stability with a high bandwidth loop since the bias voltage and collector voltage do not vary.V RAMPMAX 0.4V BATT 0.06 1.5V≤+⋅=F TOT F 1F 21–G 1---------------F 31–G 1G 2⋅-------------------++=An often overlooked problem in PA control loops is that a delay not only decreases loop stability it also affects the burst timing when, for instance the input power from the VCO decreases (or increases) with respect to temperature or supply voltage. The burst timing then appears to shift to the right especially at low power levels. The RF3146 is insensitive to a change in input power and the burst timing is constant and requires no software compensation.Switching transients occur when the up and down ramp of the burst is not smooth enough or suddenly changes shape. If the control slope of a PA has an inflection point within the output power range or if the slope is simply too steep it is diffi-cult to prevent switching transients. Controlling the output power by changing the collector voltage is as earlier described based on the physical relationship between voltage swing and output power. Furthermore all stages are kept constantly biased so inflection points are nonexistent.Harmonics are natural products of high efficiency power amplifier design. An ideal class “E” saturated power amplifier will produce a perfect square wave. Looking at the Fourier transform of a square wave reveals high harmonic content. Although this is common to all power amplifiers, there are other factors that contribute to conducted harmonic content as well. With most power control methods a peak power diode detector is used to rectify and sense forward power. Through the rectification process there is additional squaring of the waveform resulting in higher harmonics. The RF3146 address this by eliminating the need for the detector diode. Therefore the harmonics coming out of the PA should represent the maximum power of the harmonics throughout the transmit chain. This is based upon proper harmonic termination of the transmit port. The receive port termination on the T/R switch as well as the harmonic impedance from the switch itself will have an impact on harmonics. Should a problem arise, these terminations should be explored.The RF3146 incorporates many circuits that had previously been required external to the power amplifier. The shaded area of the diagram below illustrates those components and the following table itemizes a comparison between the RF3146 Bill of Materials and a conventional solution.RF3146Component ConventionalSolutionPower Control ASIC$0.80N/ADirectional Coupler$0.20N/ABuffer$0.05N/AAttenuator$0.05N/AVarious Passives$0.05N/A$0.12N/AMounting Yield(other than PA)Total$1.27$0.00*Shaded area eliminated with Indirect Closed Loop using RF3146PCB Design RequirementsPCB Surface FinishThe PCB surface finish used for RFMD’s qualification process is electroless nickel, immersion gold. T ypical thickness is 3µinch to 8µinch gold over 180µinch nickel.PCB Land Pattern RecommendationPCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.PCB Metal Land PatternA = 0.64 x 0.28 (mm) Typ.B = 0.28 x 0.64 (mm) Typ.C = 5.65 (mm) Sq.Figure 1. PCB Metal Land Pattern (Top View)PCB Solder Mask PatternLiquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.A = 0.74 x 0.38 (mm) Typ.B = 0.38 x 0.74 (mm) Typ.C = 5.25 x 2.20 (mm)Figure 2. PCB Solder Mask Pattern (Top View)Thermal Pad and Via DesignThermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.。