初一七年级数学下册《【教学设计】认识不等式》【沪科版适用】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级数学下册教学设计
认识不等式·教学设计
教学内容
在本节我们通过生活中一个卖票的具体实例,分析不等量关系,得到不等式的概念,并初步引入了不等式的思想。
教学目标
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础。
知识与能力
1.通过对具体事例的分析和探索,得到生活中不等量的关系。
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系。
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的。
4.知道什么是不等式的解。
过程与方法
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系。
2.引导并帮助学生列出不等式,分析不等式的成立条件。
3.通过分析、抽象得到不等式的概念和不等式的解的概念。
4.通过习题巩固和加深对概念的理解。
情感、态度与价值观
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,从而培养其抽象思维能力。
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式。
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,体验教学活动充满着探索性和创造性。
教学重、难点及教学突破
重点
不等式的概念和不等式的解的概念。
难点
对文字表述的数量关系能列出不等式。
教学突破
由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触
过含未知数的不等式,建议教师在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处。
建议教师在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别。
在处理本节难点时教师可指导学生练习有理数和代数式的知识,准确“译出”不等式。
教学准备
教师准备
1.准备有关不等式的解与方程的解的不同点的对照关系。
2.准备适当的练习。
学生准备
1.课前复习有关有理数的知识和代数式的知识,为学习作好准备。
2.复习有关方程的内容。
教学步骤
(第1课时)
第一课时教学流程设计
教师活动学生活动
1.引导学生完成对具体实例的分析,使其知道在现实中存在的数量的关系不是只有等量的关系,从而进入对不等式的学习。
2.鼓励学生探索实际问题,从中发现有关不等量的问题的解不是唯一的,从而对不等式有了解,并在此过程中渗透变量的知识。
3.引出不等式的概念和不等式的解的概念,教会学生由文字叙述转化成不等式的表述的方法。
1.仔细讨论,完成对实例的分析,并能在此过程中发现现实中存在的不等量之间的关系。
2.认真讨论并思考,发现实例中不等量之间的关系可以用不等式表达,并能发现其解不唯一。
在教师的指导下能对变量有初步认识。
3.理解不等式的概念和不等式的解的概念知道怎样由文字叙述转化为不等式。
一、导入新课(约分钟)
本节课借助生活的实例引入不等量的关系,进而使学生学习了用不等式表示这些等量关系,接着引入了不等式的相关概念,并鼓励学生分组讨论,对用不等式表达数量之间的关系有初步的认识。
板书设计
7.1 认识不等式
一、问题导入
解决问题:5×27=135,但4×30=120,120<135,所以不浪费
二、问题探索
120<5x当什么时候不等式成立
三、不等式的概念
问题探究与拓展活动
启发学生理解变量的概念,初步了解函数思想。
练习设计
随堂练习设计
1.用不等式表示:a的三倍与7的差是非正数。
答案:3a-7<0。
2.用不等式表示:x与6的和大于9且小于12。
答案:9<6+x<12。
3.用不等式表示:y的一半与5的和大于1。
答案:y/2+5>1。
4.比较下列各数的大小:
-5________4;1________0;1________-2。
答案:<,>,>。
5.用不等式表示:
a是非正数;x的两倍加3小于5。
答案:a<0;2x+3<5。
个性练习设计
1.下列各数中哪些是不等式x+1<3的解?
-3、-1、0、1、1.5、2、3、5。
答案:-3、-1、1、1.5。
2.“当x=a时某个不等式成立”指的是________。
答案:x=a是此不等式的一个解。
3.若x/y>1,则x与y的关系是________。
教学探讨与反思
本课教学之后,教师可引导学生探索不等式与方程之间的联系与区别。