北师大版八年级数学下册4()
初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)
北师大版八年级下册第4 章《因式分解》单元测试卷满分: 100 分姓名: ___________班级: ___________学号: ___________成绩: ____________一.选择题(共 8 小题,满分 24 分)1.多项式 ① x 2 +8y 2, ② x 2 ﹣ 4y 2, ③ ﹣ x 2+1, ④ ﹣ x 2﹣ y 2中能用平方差公式分解因式的有( )A .①②B .②③C . ③④D . ①④2.下列各式从左到右的变形,是因式分解的是( )A .m (a+b )= ma+mbB . ma+mb+1= m ( a+b )+1C .(a+3)(a ﹣ 2)= a 2+a ﹣ 6D . x 2﹣ 1=( x+1)( x ﹣ 1)3.分解因式 a 4﹣ 2a 2b 2+b 4的结果是( )A .a 2( a 2﹣ 2b 2) +b 4B .( a ﹣ b )2C .(a ﹣ b )4D .( a+b ) 2( a ﹣ b )24.若△ ABC 的三边长为a ,b ,c 满足 a 2+b 2+c 2+50 = 6a+8b+10c ,则△ ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 5.若 x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),那么 a+b 的值为() A .﹣1B .1C .﹣ 2D . 22的值()6. a 是有理数,则多项式﹣ a +a ﹣ A .一定是正数B .一定是负数C .不可能是正数D .不可能是负数 7.(﹣ 2)100+(﹣ 2) 101的结果是()A .2100B .﹣ 2100C .﹣ 2D . 2 8.已知 a ﹣ b = 5,且 c ﹣ b = 10,则 a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac 等于() A .105B .100C . 75D . 50二.填空题(共 8 小题,满分 24 分)9.分解因式: 32.a +2a +a =10.如图中的四边形均为矩形,根据图形,写出一个正确的等式 .11.在实数范围内分解因式 : x 5﹣ 4x =.12.如果代数式 x 2+mx+9=( ax+b ) 2,那么 m 的值为.13.若 3x 2﹣mx+n 进行因式分解的结果为( 3x+2)( x ﹣ 1),则 mn =.14.若长方形的长为 a ,宽为 b ,周长为 16,面积为22的值为 .15,则 a b+ab 15.已知 a 2+a ﹣ 3= 0,则 a 3+3 a 2﹣a+4 的值为.16.化简: a+1+a ( a+1) +a (a+1) 2 + +a ( a+1)99=.三.解答题(共 6 小题,满分 52 分)17.因式分解:( 1)﹣ 2ax 2+8ay 2;( 2) 4m 2﹣ n 2+6n ﹣ 9.18.利用因式分解计算: 22 ﹣315 2.999 +999+68519.若已知 x+y = 3, xy =1,试求( 1)(x ﹣ y ) 2的值( 2) x 3 y+xy 3 的值.20.观察下面的分解因式过程,说说你发现了什么.例:把多项式 am+an+bm+bn 分解因式解法 1: am+an+bm+bn =( am+an )+(bm+bn )= a ( m+n )+b (m+n )=( m+n )(a+b )解法 2: am+an+bm+bn =( am+bm )+( an+bn )= m ( a+b ) +n ( a+b )=( a+b )(m+n )根据你的发现,把下面的多项式分解因式:( 1)mx ﹣ my+nx ﹣ ny ;( 2) 2a+4b ﹣ 3ma ﹣ 6mb .21.因式分解与整式乘法是方向相反的变形.∵( x+4)( x+2)= x 2+6 x+8∴ x 2+6x+8=( x+4)( x+2)由此可见 x 2+6x+8 是可以因式分解成( x+4)( x+2)的,爱研究问题的小明同学经过认真思考,找到了 x 2+6x+8 的因式分解方法如下:x 2+6x+8 = x 2+6x+32﹣ 32+8 =( x+3) 2﹣ 1=( x+3+1 )( x+3﹣ 1)=( x+4)( x+2)根据你对以上内容的理解,解答下列问题:( 1)小明同学在对 2 进行因式分解的过程中,在2 的后面加 2,其目的是构 x +6x+8 x +6x 3成完全平方式,请在下面两个多项式的后面分别加上适当的数,使这成为完全平方式,并将添加后的多项式写成平方的形式.① x 2+4x+ =( )2;② x 2﹣ 8x+=()2( 2)请模仿小明的方法,尝试对多项式x 2+10x ﹣ 24 进行因式分解.22.材料阅读:若一个整数能表示成 2 2a +b ( a 、 b 是正整数)的形式,则称这个数为“完美数”.例如:因为 13=32+22,所以 13 是“完美数” ;22 2 222也是“完美数”.再如:因为 a +2ab+2b =( a+b ) +b ( a 、b 是正整数),所以 a +2ab+2 b( 1)请你写出一个大于 20 小于 30 的“完美数” ,并判断 53 是否为“完美数” ;( 2)试判断( x 2+9y 2)(? 4y 2+x 2)(x 、 y 是正整数)是否为“完美数” ,并说明理由.参考答案一.选择题1.【解答】解: ② x 2﹣ 4y 2, ③ ﹣ x 2+1 能用平方差公式分解因式,故选: B .2.【解答】解: A 、是多项式乘法,不是因式分解,错误;B 、右边不是整式的积的形式,实际上本题不能分解,错误;C 、是多项式乘法,不是因式分解,错误;D 、是平方差公式,分解正确.故选: D .3.【解答】解: a 4﹣ 2a 2b 2+b 4,=( a 2﹣b 2) 2,=( a+b ) 2( a ﹣b ) 2.故选: D .4.【解答】解:已知等式整理得:( a 2﹣ 6a+9) +( b 2﹣8b+16) +(c 2﹣ 10c+25)= 0,即( a222﹣ 3) +( b ﹣ 4) +( c ﹣ 5) = 0,∴ a ﹣ 3= 0, b ﹣4= 0, c ﹣5= 0,解得: a = 3, b = 4, c = 5,∵ 32+42=52,∴△ ABC 为直角三角形,故选: B .5.【解答】解: ( x ﹣ 2)( x+b )= x 2+(﹣ 2+b ) x ﹣ 2b ,∵ x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),∴﹣ a =﹣ 2+b ,﹣ 2b =﹣ 1,∴ a = , b = ,∴ a+b =2,故选: D .6.【解答】解:∵﹣ a 2+a ﹣ =﹣( a ﹣ ) 2,∴多项式﹣ a 2+a ﹣ 的值不可能是正数.故选: C .7.【解答】解: (﹣ 2) 100101 100 100+(﹣ 2) =(﹣ 2) ×( 1﹣ 2)=﹣ 2 .故选: B .8.【解答】解:∵ a ﹣ b = 5,c ﹣b = 10∴ a ﹣ c =﹣ 5a 2+b 2+c 2﹣ab ﹣ bc ﹣ ac = [( a ﹣ b )2+( b ﹣ c )2+( a ﹣ c )2]= × [52+(﹣ 10)2+(﹣ 5)2]=75故选: C . 二.填空题9.【解答】解: a 3+2a 2+a = a ( a 2+2a+1 ) = a ( a+1) 2,故答案为: a ( a+1)210.【解答】解:由题意可得: am+bm+cm = m ( a+b+c ). 故答案为: am+bm+cm =m (a+b+c ).11.【解答】解:原式= x ( x 4﹣ 4)= x ( x 2+2)(x 2﹣ 2)= x (x 2+2)( x+ )( x ﹣ ),故答案为: x ( x 2+2)( x+ )( x ﹣ )12.【解答】解:已知等式整理得:x 2+mx+9=( ax+b ) 2,可得 m =± 2× 3× 1,则 m =± 6.故答案为:± 6.213.【解答】解:∵( 3x+2 )( x ﹣1)= 3x ﹣x ﹣2,∴ 3x 2﹣ mx+n =3x 2﹣ x ﹣ 2,∴ m = 1, n =﹣ 2,∴ mn =﹣ 2,故答案为:﹣ 2.14.【解答】解:由题意得: a+b = 8, ab = 15,则原式= ab ( a+b )= 120,故答案为: 12015.【解答】解:∵ a 2+a ﹣ 3= 0,∴ a 2= 3﹣ a ,∴ a 3= a?a 2= a ( 3﹣ a )= 3a ﹣ a 2= 3a ﹣( 3﹣ a )= 4a ﹣3,32∴ a +3a ﹣ a+4= 4a ﹣ 3+3( 3﹣ a )﹣ a+4= 10.故答案为 10.16.【解答】解:原式=( a+1) [1+ a+a ( a+1) +a ( a+1) 2+ +a ( a+1 )98]=( a+1) 2[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )97]=( a+1) 3[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )96]==( a+1) 100.100故答案为:( a+1) .2217.【解答】解: ( 1)原式=﹣ 2a ( x ﹣4y )( 2)原式= 4m 2﹣( n 2﹣ 6n+9)= 4m 2﹣( n ﹣3)2=( 2m+n ﹣3)( 2m ﹣ n+3 ).18.【解答】解: 9992+999+685 2﹣ 3152= 999×( 999+1) +( 685﹣ 315)×( 685+315)= 999× 1000+370× 1000= 999000+370000= 1369000.19.【解答】解: ( 1)∵ x+y = 3,xy = 1;∴( x ﹣y ) 2=( x+y )2﹣ 4xy = 9﹣ 4= 5;( 2)∵ x+y = 3, xy = 1,∴ x 3y+xy 3= xy[( x+y ) 2﹣ 2xy] = 9﹣2= 7.20.【解答】解( 1)原式= m ( x ﹣ y )+n ( x ﹣ y )=( x ﹣y )( m+n );( 2)原式= 2(a+2 b )﹣ 3m (a+2b )=( a+2b )( 2﹣3m ).21.【解答】解: ( 1) ① x 2+4x+22=( x+2) 2;故答案为: 22, x+2;② x 2﹣ 8x+16=( x ﹣ 4) 2故答案为: 42, x ﹣ 4;( 2) x 2+10x ﹣ 24= x 2+10x+52﹣ 52﹣ 24=( x+5) 2﹣ 49=( x+12)( x ﹣ 2).2 222.【解答】解: ( 1) 25= 4 +3,∵ 53=49+4 = 72+22,∴ 53 是“完美数” ;( 2)(x 2+9y 2)(? 4y 2+x 2)是“完美数” ,22 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2理由:∵( x +9 y )(? 4y +x )= 4x y +36y +x +9x y = 13x y +36y +x =( 6y +x ) +x y ,∴( x 2+9y 2)(? 4y 2+x 2)是“完美数” .。
八年级数学下册目录(北师大版)
八年级数学下册目录(北师大版)第一章三角形的证明
1. 等腰三角形
2. 直角三角形
3. 线段的垂直平分线
4. 角平分线
回顾与思考
复习题
第二章一元一次不等式与一元一次不等式组
1. 不等关系
2. 不等式的基本性质
3. 不等式的解集
4.一元一次不等式
5.一元一次不等式与一次函数
6.一元一次不等式组
回顾与思考
复习题
第三章图形的平移与旋转
1. 图形的平移
2. 图形的旋转
3. 中心对称
4. 简单的图案设计
回顾与思考
复习题
第四章因式分解
1. 因式分解
2. 提公因式法
3. 公式法
回顾与思考
复习题
第五章分式与分式方程
1. 认识分式
2. 分式的乘除法
3. 分式的加减法
4. 分式方程
回顾与思考
复习题
第六章平行四边形
1. 平行四边形的性质
2. 平行四边形的判定
3. 三角形的中位线
4. 多边形的内角和与外角和
回顾与思考
复习题。
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。
八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件
知1-讲
例2 分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
ìïïíïïî
4x-4 y=96, x2-y2=960,
但直接解方程组很烦琐,可利用平方差公式分解
因式:x2-y2=(x+y)(x-y),再利用整体思想求
出x+y的值,从而转化为二元一次方程组求解.
知2-讲
解:设大正方形的边长为x cm,小正方形的边长为y cm,
由题意得
ìïïíïïî
4x-4 y=96,① x 2-y2=960,②
知1-练
3 将多项式a2-9b2+2a-6b分解因式为( D ) A.(a+2)(3b+2)(a-3b) B.(a-9b)(a+9b) C.(a-9b)(a+9b+2) D.(a-3b)(a+3b+2)
知1-练
4 分解因式x2-2xy+y2+x-y的结果是( A ) A.(x-y)(x-y+1) B.(x-y)(x-y-1) C.(x+y)(x-y+1) D.(x+y)(x-y-1)
知1-练
5 分解因式: (1) ac+ad+bc+bd=__(_a_+__b_)_(c_+__d_)__; (2) x2-xy+xz-yz=___(_x_-__y_)(_x_+__z_)_.
6 分解因式: a2-4ab+4b2-1=_(_a_-__2_b_+__1_)_(a_-__2_b_-___1_) .
2.分解技巧:分组分解是因式分解的一种复杂的方法, 让我们来须有预见性. 能预见到下一步能继续分解. 而“预见”源于细致的“观察”,分析多项式的特 点,恰当的分组是分组分解法的关键 .
2022-2023学年八年级数学北师大版下册4.1因式分解 教案
2022-2023学年八年级数学北师大版下册4.1因式分解教案一、教学目标1.理解因式分解的概念和意义;2.掌握基本的因式分解方法;3.能够应用因式分解解决实际问题;4.培养学生的逻辑思维和综合运算能力。
二、教学内容1.回顾负数的乘法和除法;2.因式分解的基本概念;3.因式分解的基本方法;4.应用因式分解解决实际问题。
三、教学重点1.理解因式分解的概念和意义;2.掌握基本的因式分解方法。
四、教学难点1.能够应用因式分解解决实际问题;2.培养学生的逻辑思维和综合运算能力。
五、教学准备1.北师大版八年级数学下册教材;2.学生练习册;3.教学投影仪和课件。
六、教学过程1. 导入(5分钟)目的:进一步激发学生对因式分解的兴趣。
1.引入一个生活中的问题:小明买了5个苹果,小红买了3个苹果,他们一共买了多少个苹果?请用数学式子表示出来。
2. 新课讲解(10分钟)目的:引入因式分解的概念和意义。
1.引导学生思考:在小明和小红买苹果的问题中,能否用一种更简洁的方式表示数量关系?2.引出因式分解的概念:将一个数或者一个代数式写成若干个乘积的形式,其中每个乘积的因数称为因式。
3.引导学生发现因式分解的意义:通过因式分解,可以使问题的表达更加简洁,同时也方便我们进行计算和解题。
3. 示例演练(15分钟)目的:回顾负数的乘法和除法,并让学生掌握基本的因式分解方法。
1.提醒学生注意负数的乘法和除法规则:两个负数相乘得正数,一个正数和一个负数相乘得负数,负数除以正数得负数,正数除以负数得正数。
2.给出一个示例:将14ab分解为因式的乘积。
3.引导学生思考解题思路:首先确定14的因数,然后确定a和b的因数,并组合得到14ab的所有因式。
4.和学生一起分解示例:14ab = 2 * 7 * a * b。
4. 练习与巩固(15分钟)目的:让学生通过练习巩固所学的因式分解方法。
1.学生完成教材上的练习题,老师及时给予指导和解答。
5. 拓展与应用(10分钟)目的:引导学生将因式分解应用到实际问题中。
初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)
章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。
八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件
1 知识小结
1.因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形 叫做因式分解,也可称为分解因式.
2. 因式分解与整式乘法是一个互逆过程,
即:几个整式相乘 噲垐因整垐式式垐分乘解法垎垐 一个多项式
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
C.x2(1-3xy2)
D.x(x-3y2)
导引:把各选项进行整式乘法的运算,将所得的积与 x2-3xy2对照,能够与x2-3xy2相等的选项必是 正确答案.
总结
知2-讲
四个选项都是乘积的形式,可以利用因式分解 和整式乘法的互逆关系检验所得结果的正确性.
知2-讲
例3 20162-2016不能被下列哪个数整除?( B )
因此是因式分解,D正确.
知1-练
1 下列由左边到右边的变形,哪些是因式分解?为 什么? (1) (a+3)(a-3)=a2-9 ; (2) m2-4=(m+2)(m-2); (3) a2-b2+1=(a+b)(a-b)+1; (4) 2mR+2mr=2m(R+r).
解:(2)(4)是因式分解.理由:只有(2)(4)是把一个多项 式化成几个整式的积
知1-导
把一个多项式化成几个整式的积的形式,这种 变形叫做因式分解. 例如,a3-a= a (a+1)(a-1), am+bm+cm=m(a+b+c),x2+2x+l=(x+1)2都 是因式分解. 因式分解也可称为分解因式.
(来自《教材》)
知1-讲
例1 下列各式从左到右的变形属于因式分解的是( D ) A.a2+1=a(a+ 1 ) a B.(x+1)(x-1)=x2-1 C.a2+a-5=(a-2)(a+3)+1 D.x2y+xy2=xy(x+y)
A.9a2+y2
北师大版八年级下册数学课本答案参考
北师大版八年级下册数学课本答案参考做八年级数学课本练习用汗水织就实力,用毅力成就梦想,用拼搏铸就辉煌。
店铺为大家整理了北师大版八年级下册数学课本的参考答案,欢迎大家阅读!北师大版八年级下册数学课本答案参考(一)习题2.51.解:(1)去分母,得x-5+2>2(x-3).去括号,得x-5+2>2x-6.移项、合并同类项,得-x>-3.两边都除以-1,得x<3.(2)去分母,得-3x+x≤-15.合并同类项,得-2x≤-15. 两边都除以-2,得x≥15/2 .(3)去分母,得5x-30<15-3x. 移项、合并同类项,得8x<45.两边都除以8,得x<45/8 .(4)去括号,得x-3x+1≤x+2 . 移项、合并同类项,得-3x≤1.两边都除以-3,得x≥-1/3 .2.解:设还能买x本辞典.根据题意,得65×20+40x≤2000,解得x≤35/2 . 所以最多还能买x本辞典.3.解:设她还能买n支笔,根据题意,得3n+2.2×2≤21. 解这个不等式,得n≤83/15 .因为在这个问题中n只能取正整数,所以小颖最多还能买5支笔.4.解:设需要x名八年级学生参加活动,则七年级参加活动的人数为(60-x).根据题意,得15(60-x)+20x≥1000.解得x≥20.所以至少20名八年级学生参加活动.北师大版八年级下册数学课本答案参考(二)第50页当y1>y2,即-x+3>3x-4时,x<7/4,所以当x<7/4时,y1>y2.本题还可以分别画出y1=-x+3与y2=3x-4的图像,再利用图像进行比较说明.北师大版八年级下册数学课本答案参考(三)习题2.61.当x>7/4时,y1<y2.通过画出y1=-x+3与y2=3x-4的图像,进行观察分析得到,也可以通过解不等式得到.2.由图像可以看出,当x>4t时,生产该产品才能盈利.3.解(1)观察图像,可得甲共用了0.6h,乙共用了0.5h,所以乙快.(2)设l1的函数关系式为s=kt(k≠0).由图像可知l1经过点(0.6,20),将(0.6,20)代入s=kt,得20=0.6k.解得k=100/3 .所以s=100/3t.当s=10时,得10=100/3t . 解得t=0.3.所以经过0.3h甲车行驶到A,B 两地的中点.4.问题:若到校时间不超过1/4h,那么步行的距离至多是多少?方案:设步行的距离为xkm,根据题意,得x/6+(2-x)/10≤1/4,解得x≤3/4 .所以步行的距离至多是3/4km.北师大版八年级下册数学课本答案参考(四)第52页解:设某公司40名员工中女士有x人,景点每张票价a元,打八折的购票方案费用为y1元,根据题意,得y1=40×0.8a,即y1=32a;y2=0.5ax+(40-x)a,即y2=(40-0.5x)a;由y1=y2,得32a=(40-0.5x)a,解得x=16;由y1>y2,得32a=(40-0.5x)a,解得x>16;由y1<y2,得32a=(40-0.5x)a,解得x<16.所以当x=16时,两种购票方案费用相同;当17≤x≤40时,选择女士票价打五折的购票方案;当x<16时,选择买团体票的购票方案.。
北师大版八年级下数学第四章《因式分解》单元测试(含答案)
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
北师大版初中八年级数学下册第四章集体备课教案含教学反思
第四章因式分解1因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67×132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
993-99 = 99×992-99 = 99(992-1)∴993-99能被99整除.(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993-99能被100整除.想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99可以被98、99、100三个连续整数整除.将99换成其他任意一个大于1的整数,上述结论仍然成立吗?学生探究发现:用a表示任意一个大于1的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)①能理解吗?你能与同伴交流每一步怎么变形的吗?②这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x=______- (2)m2-4n2 =____答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m=______ 2a3+2a=______ y2+4y+4=______答案:4m(m-1) 2a(a2+1) (y+2)24.如果a+b=10,ab=21,则a2b+ab2的值为.答案:210.5.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.8答案:D.6.9993-999能被998整除吗?能被1000整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998所以9993-999能被998整除,能被1000整除。
北师大版八年级数学下册第四章《因式分解 1》优课件
想一想 ô 回顾 & 思考☞
1.整式乘法有几种形式? (1)单项式乘以单项式 (2)单项式乘以多项式 (3)多项式乘以多项式 2.乘法公式有哪些? (1)平方差公式 (2)完全平方公式
ô 回顾 & 思考☞
3.计算:
(1)3a(a-2b+c) (2)(a+3)(a-3) (3)(a+2b)2 (4)(a-3b)2
(2) m(a+b+c) = __, (2)ma+mb+mc=___
ma+mb+mc
m(a+b+c)
(3) (m+4)(m-4)= m2_-_1,6
(4) (x-3)2= x2-6x+9 , (3) m2-16=_(_m__+_4_)(_m_-_4_) (5) a(a+1)(a-1)= a3-_a_, (4) x2-6x+9=_(_x_-3_)_2___
=2004 ×2005 ∴ 20042+2004能被2005整除
a2
1、若 x 2 —x—m=(x+2)(x-3) 则m=_______ 2、若x 2 —ax+b=能分解成(x-1)(x-4),
则a=___,b=___
异想天开
假如用一根比地球赤道长10 米的铁丝将地球赤道围起来,那 么铁丝与赤道之间均匀的间隙 能有多大(赤道看成圆形)?
1、连一连
x2-y2 9-25x2 x2+2x+1 xy-y2
P40 y(x-y)
(3-5x)·(3+5x)
(x-y)·(x+y)
(x+1)2
2、在课本上。
北师大版八年级数学下册4.3 第2课时 完全平方公式
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
课外作业
1.练闯考P57(预习导学、课内精 炼1-10题)
2.课本P102-103(随堂练习第1、2 题,习题 4.5第1、2题,做到作业 本上)
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
典例精析
例3 如果x2-6x+N是一个完全平方式,那么N是( B )
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
练习
把下列各式分解因式
① ax4 ax2
解:原式=ax2(x2-1) =ax2(x+1)(x-1)
② x4-16
解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式) (因式分解要彻底。)
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
课堂小结
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2
北师大版八年级下册数学《第四章复习》教学设计
北师大版八年级下册数学《第四章复习》教学设计一. 教材分析北师大版八年级下册数学《第四章复习》主要包括了第四章的内容,即二次根式、二次方程、二次不等式以及函数的性质。
这一章节的内容是初中数学的重要部分,也是初高中数学衔接的关键。
在教学设计中,我们需要让学生通过复习加深对基本概念的理解,强化对基本方法的掌握,提高解决问题的能力。
二. 学情分析学生在学习本章内容时,可能存在对二次根式的理解不够深入,对二次方程和二次不等式的解法掌握不牢固,以及对函数性质的理解不够全面等问题。
因此,在教学设计中,我们需要针对学生的这些问题,进行有针对性的讲解和辅导。
三. 教学目标1.让学生掌握二次根式的基本概念和运算方法;2.让学生熟练掌握二次方程和二次不等式的解法;3.让学生理解并掌握函数的性质,提高解决问题的能力。
四. 教学重难点1.二次根式的化简和运算;2.二次方程和二次不等式的解法;3.函数的性质的理解和应用。
五. 教学方法采用讲解法、问答法、案例分析法、小组讨论法等,结合多媒体教学,以提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学PPT和教学案例;2.准备相关习题和测试题,以便进行巩固和拓展;3.准备黑板和粉笔,以便进行板书。
七. 教学过程1.导入(5分钟):通过一个实际问题,引出二次根式、二次方程和二次不等式以及函数性质的重要性,激发学生的学习兴趣。
2.呈现(10分钟):讲解二次根式的基本概念和运算方法,通过PPT和板书进行展示,让学生理解和掌握。
3.操练(10分钟):让学生进行相关的练习,巩固对二次根式的理解和掌握。
4.巩固(10分钟):通过问答法,让学生回答二次方程和二次不等式的解法,并进行讲解和辅导。
5.拓展(10分钟):讲解函数的性质,并通过案例分析法,让学生理解和掌握。
6.小结(5分钟):对本节课的内容进行小结,让学生明确学习的主要内容。
7.家庭作业(5分钟):布置相关的习题,让学生进行巩固和提高。
北师大版八年级数学下册第四章 因式分解练习题
4D.4x2-4x-1第四章因式分解一、单选题1.下列各式从左到右的变形,是因式分解的是()A.x2-9+6x=(x+3)(x-3)+6x B.(x+5)(x-2)=x2+3x-10C.x2-8x+16=(x-4)2D.6ab=2a g3b2.如果x2+mx-14=(x+2)(x-7),那么m的值为().A.9B.-9C.-5D.53.多项式-6a2b+18a2b3x+24ab2y的公因式是()A.2ab B.-6ab C.-6a2b D.-6ab24.将2x2a-6xab+2x分解因式,下面是四位同学分解的结果:①2x(xa-3ab),①2xa(x-3b+1),①2x(xa-3ab+1),①2x(-xa+3ab-1).其中,正确的是()A.①B.①C.①D.①5.下列各式能用完全平方公式分解因式的是()A.x2+9B.x2-2x+4C.x2-x+16.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56B.60C.62D.88x27.下列多项式能用公式法分解因式的有()①x2﹣2x﹣1;①﹣x+1;①﹣a2﹣b2;①412.因式分解: x ﹣2 x 2 y + xy 2 = __________.﹣a 2+b 2;①x 2﹣4xy+4y 2;①m 2﹣m+1A .1 个B .2 个C .3 个D .4 个8.已知 ab =4,b ﹣a =7,则 a 2b ﹣ab 2 的值是()A .11B .28C .﹣11D .﹣289.小颖用下面四个图形拼成一个大长方形,并据此写出了一个把某多项式因式分解的等式,这个等式是()A . x 2 + 3x + 2 = ( x + 1)(x + 2)B . x 2 - 3x + 2 = ( x - 1)(x - 2)C . ( x + 1)(x + 2) = x 2 + 3x + 2D . x 2 + 3x + 2 = x( x + 3) + 210.若一个正方形的面积为(ɑ+1)(ɑ+2)+14,则该正方形的边长为( )A . a - 2B . a +32C . a + 2D . a +52二、填空题11.若将 3x 2 - mx + n 进行因式分解的结果为 (3x + 2)( x - 1) ,则 mn =_____.313.已知 x 、y 满足{ 2 x + y = 66,则 x 2﹣y 2 的值为______.x + 2 y = -6014.在日常生活中如取款、上网等都需要密码..一种用“因式分解”法产生的密码,方便记()忆.原理是:对于多项式x4-y4,因式分解的结果是(x-y)(x+y)x2+y2,若取x=9,y=9时,则各个因式的值是:x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3-xy2,取x=11,y=8时,用上述方法产生的密码是______(写出一个即可).三、解答题15.因式分解:(1)4x2-36(2)12ab2c-6ab(3)-2m3+8m2-12m16.对于二次三项式x2+2ax+a2,可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax-3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使x2+2ax-3a2中的前两项与a2构成完全平方式,再减去a2这项,使整个式子的值不变,最后再用平方差公式进步分解.于是x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1)x2+4x-12;(2)4x2-12xy+5y2.17.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:①m2﹣2mn+2n2﹣8n+16=0,①(m2﹣2mn+n2)+(n2﹣8n+16)=0①(m﹣n)2+(n﹣4)2=0,①(m﹣n)2=0,(n﹣4)2=0,①n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知①ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求①ABC 的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.18.常用的分解因式的方法有提取公因式法、公式法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2),这种分解因式的方法叫分组分解法,利用这种方法解决下列问题.(1)分解因式:a2-9-2ab+b2;a2-4bc+4ac-ab=0,判断①ABC的形状(2)①ABC三边a、b、c满足答案1.C2.C3.B4.C5.C6.B7.C8.D9.A10.B11.-212.x(x-y)213.25214.113014或11143015.(1)4(x+3)(x-3),(2)6ab(2bc-1),(3)-2m(m2-4m+6).16.(1)(x+6)(x-2);(2)(2x-y)(2x-5y)17.(1)9;(2)①ABC的最大边c的值可能是6、7、8、9、10;(3)8.18.(1)(a-b+3)(a-b-3);(2)①ABC的形状是等腰三角形。
北师大版八年级数学下册第四章-分解因式-(基础+提高)
第四章分解因式考点一:分解因式的概念1、下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)考点二:因式分解1、下列分解因式中,正确的个数为()x2+2xy+x=x(x2+2y);x2+4x+4=(x+2)2;—x2+y2=(x+y)(x—y)A.3个B.2个C.1个D.0个2、下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y23、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌4、若分解因式x2+mx-24=(x+3)(x+n),则m的值为。
已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),另一个因式为。
5、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=_______6、因式分解9a2(x-y)+4b2(y-x) x2+2xy+y2-4(m+1)(m﹣9)+8m.x2+4xy﹣5y24x2+4xy+y2﹣4x﹣2y﹣3.考点三:利用因式分解计算1、2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()。
A.1 B.﹣1 C.4032 D.40312、3(4+1)(42+1)(44+1)+13、考点四:利用因式分解化简求值1、已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值为.2、a+1+a(a+1)+a(a+1)2+……+a(a+1)2014= .3、已知a2+b2+4a﹣2b+5=0,则的值为()A.3 B.C.﹣3 D.4、已知x2+x-1=0,则代数式x3+2x2+2014= .5、化简求值:(2x-1)2(3x+2)+(2x-1)(3x+2)2-x(1-2x)(3x+2),其中x=1.考点五:利用因式分解证明整除问题1、能被下列数整除的是( )A.3B.5C.7D.92、已知58-1能被20-—30之间的两个整数整除,则这两个整数是 .3、如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如:自然数12321,从最高位到个位排出的一串数字是:1,2,3,2,1,从个位到最高排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如:22,545,3883,34543,…,都是“和谐数".(1)请你直接写出3个四位“和谐数";请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数",设其个位上的数字为x(,x为自然数),十位上的数字为y,求y与x的函数关系式.考点六:利用因式分解解决几何问题1、若、、为的三边长,且满足,,则的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、设是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为.3、已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.4、已知是△ABC的三边长,是△ABC的最短边且满足,求的范围。
北师大版八年级数学下册第四章《因式分解》复习 教案
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
北师大版八年级数学下册第四章《4.1 因式分解(1)》公开课课件
练习三 拓展应用
1. 计算: 7652×17-2352 ×17 解: 7652×17-2352 ×17 =17(7652 -2352)=17(765+235)(765 -235) =17 ×1000 ×530=9010000
2. 20042 +2004 能被2005 整除吗?
解: ∵20042+2004=2004(2004+1)
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题讲解
❖ 例1、用“>”或“<”号填空>: ❖ (1)已知a>b,则:3<a___3b; ❖ (2)已知a>b,则:-a_<__-b; ❖例(23、)把已下知列a>不b等,式则化:为-ax+>2a__或_-xb<+2a.的形式:
(1)2x>4; (2)-7x-5>-9x+3; (3)mx-1<0(其中m<0).
不等式的基本性质一
❖ 不等式的基本性质一: ❖ 不等式的两边同时加上(或都减去)同一个数或
同一个代数式,不等号的方向不变. ❖ 即:若a>b,则a+c>b+c,且a-c>b-c
不等式的基本性质一
❖ 例3、用“>”或“<”号填>空: ❖ (1)已知a>b, a+3>__ b+3; ❖ (2)已知a>b, a-5 __ b-5.
2a、b_当_x_取_a何值时,2x+1不小于-3x+2的相反数.
小结
❖ 1、生活中处处存在不等关系,我们可以用不 等式来解决生活中的实际问题.
❖ 2、不等式的概念. ❖ 3 、在解题过程中,一定要注意“负数”、“非
负数”、“大于”、“小于”、“不小于”等关键性词 语,只有真正理解其含义,才能正确列出不 等式. ❖ 4、不等式的基本性质一. ❖ 5、用作差法比较两个整式的大小.
⑹ 2x-
y≥0解: ⑴、⑶不是, ⑵ 、⑷、 ⑸、 ⑹是.
不等式的概念
❖ 例2、用不等式表示下列关用系不:等式表示不等
(1)x的一半不大于-2;关 的系 基是 础研,究在不表等示式时 (2)y与3的差大于0.5; 一定要抓住关键词
(3)a是负数;
语,弄清不等关系
解(:4)(b1是)非0.负5x数≤-. 2 (2)y-3>0.5
不等式的基本性质
不等式的概念
❖ 水果店的小王从水果批发市场购进100千克梨 和84千克苹果. 你能用“<”或“>”号连接梨和苹 果的进货量吗?100 > 84
不等式的概念
❖ 1、什么叫不等式? ❖ 用不等号“>”(或“<”、“≥”、“≤”)表示不等
关系的式子叫做不等式. ❖ 符号“≥”读作“大于或等于”,也可读作“不小于”;
不等式的基本性质二、三
❖ 不等式的基本性质二: ❖ 不等等号式的的方两向边不都变乘 .(或除以)同一个正ac数> ,bc 不 ❖ 即:如果a>b,c>0,则ac>bc,且 ❖ 不等式的基本性质三: ❖ 不等等号式的的方两向边改都变乘 .(或除以)同一个负ac数< ,bc 不 ❖ 即:如果a>b,c<0,则ac<bc,且
练一练
❖ 已知a<b<0,利用作差比较法比较下列各组 中两个式子的大小,并写出比较过程:
❖ (1)a-5与b-5; ❖ (2)2a+3与2b+3; ❖ (3)2a-3b与2a+b.
合作交流 解读探究
❖ 如果梨的价格是每千克3元,苹果的价格是每 千克4元.梨和苹果各买10千克.买哪种水果 花钱较多? 买0.5千克<呢? 用“>”或“<”号填空: ❖ 3<___4 ❖ 3×10<___4×10 ❖ 3÷2___4÷2
❖ (8) x的3倍与8的和比x的5倍大.
积极思考 解读教材
❖ 动脑筋: ❖ 在不等式5>3的两边同时加上或减去2,在横
线上填“>”或“<”: > ❖ 5+2 _>__ 3+2 ❖ 5-2 ___ 3-2
❖ 自己写一个不等式,在它两边同时加上、减 去同一个数,看看有什么样的结果.
❖ 从中你可以发现什么规律?
符号“≤”读作“小于或等于”,也可读作“不大于”. ❖ 如a≥0表示a>0或a=0. ❖ 形如3≠4、a≠b的式子, 也叫不等式. 它只表示
两边是不相等的关系,不能明确两边的大小.
不等式的概念
❖ 例1、下列各式中哪些是不等式,哪些不是?
❖ ⑴ x+1=2
⑵ 5x-3>1 ⑶ x-6
❖ ⑷ 11x-4≠6 ⑸ 7>4
不等式的基本性质一
❖ 例4、把下列不等式化为x>a 或 x<a的形 式.
❖ (解1):(x1+)6>两5边都减去6,(得2:)3x>2x-2 x+6-6>5-6, x>5-6 即: x>-1
(2)两边都减去2x,得: 3x-2x>2x-2x-2, 3x-2x>-2 即:x>-2
不等式的基本性质一
A、a>1/3 B、a<1/3 C、a>3 D、a< 33、若b是非负数,则一定有3b>b,你认为对 吗?为什么?
拓展迁延
❖ 1、有理<”号填空:<
<
❖ (1) a__>_b
(2) | a<| ___ | b | (3<)
a+b___0
❖ (4) a-b__b_0 (5) a+b_0__a-ab (6)
❖ (7) 6×3_>___4×3; (8) 6×(-3) <___ 4×(-3)
练一练
❖ 2、用适当的符号表示下列关系:
❖ (1) a是正数;
(2) a是非正数;
❖ (3) a与b的和小于5; (4) x与2的差大于-1;
❖ (5) x的4倍不大于7; (6) y的一半不小于3;
❖ (7) x与17的和比它的5倍小;
❖ 观察下列两组变形,你发现了什么?
❖ x+6>5
3x > 2x - 2
❖ x>5-6
3x - 2x > -2
❖ 把不等式的某一项变号后移到另一边.称为 移项,这与解一元一次方程中的移项相类似.
拓展迁延
❖ 如果a-b=0,那么a=b; ❖ 如果a-b>0,那么a>b; ❖ 如果a-b<0,那么a<b. ❖ 由此可见,要比较a与b的大小,可以先求出a
例题讲解
❖ 例解3:、因你为能5比>较1,5a当2和a2a>2的0时大,小根吗据?不等式基本 性质2,得:5a2>a2; 当a2 = 0时, 5a2 = a2; 故, 5a2≥a2.
随堂练习
A
❖ 1、已知3-2a<3-2b,则a( )b. ❖2、A如、果>方程6Bx-、2<a = 0的解C、大≥于1,则Da、的≤取 值范围是(C ).
(3)a<0
(4)b≥0
练一练
❖ 1、用“<” 、“=”或“>”号填空:
❖ (1) -7<____-5;
(2) (-3=)4____34;
❖ (3) (-4)>2____(-3)2; (4) |-0<.5| ___ |-1000|;
❖ (5) 3+4>____1+4; (6) 5>+3____12-5;
与b的差,再看这个差是正数、负数,还是0, 以此判断a、b的大小,这样的方法叫作“作差 比较法”.
拓展迁延
❖ 例5、比较x2-2x-15和x2-2x-8的大小. 解:∵ (x2-2x-15)-(x2-2x-8) = x2-2x-15-x2+2x+8 = -7<0 ∴ x2-2x-15 < x2-2x-8
❖ 自己写一个不等式,分别在它两边都乘以或 除以同一个正数,不等号方向有无变化?
合作交流 解读探究
❖ 在不等式12>9的两边同时乘(或除以)-2,在 横线上填“>”或“<”号: ❖ 1<2>9 ❖ 12×(-2)<___9×(-2) ❖ 12÷(-2)___9÷(-2)
❖ 自己写一个不等式,分别在它两边都乘以或 除以同一个负数,不等号方向有无变化?