江苏省2019-2020学年上学期初中七年级期中考试数学试卷

合集下载

2019-2020学年江苏省徐州市邳州市七年级(上)期中数学试卷(PDF版 含解析)

2019-2020学年江苏省徐州市邳州市七年级(上)期中数学试卷(PDF版 含解析)



【解答】解:∵a、b 互为相反数,c、d 互为倒数,
∴a+b=0,cd=1,
∴ (a+b) cd=0


故答案为: .
14.(3 分)如图,用含 a、b 的代数式表示图中阴影部分的面积 ab πb2 .
【解答】解:阴影部分面积=ab
₰₰ ₰₰
ab

故答案为:ab πb2.
15.(3 分)已知 a﹣2b+1=2,则 4﹣2a+4b= 2 . 【解答】解:∵a﹣2b+1=2, ∴a﹣2b=1, ∴原式=4﹣2a+4b+2018=4﹣2(a﹣2b)=4﹣2=2. 故答案为:2.
C. ,3
D. ,3
【解答】解:单项式的系数为 ,次数为 3;
故选:D.
6.(3 分)下列各组单项式中,是同类项的是( )
A.a2 与 2a
B.5ab 与 5abc
C. m2n 与 nm2
D.x3 与 23
【解答】解:A.a2 与 2a 相同字母的指数不相同,不是同类项,故本选项不合题意; B.5ab 与 5abc 所含字母不尽相同,不是同类项,故本选项不合题意;
填写在答题卡相应位置)
9.(3 分)﹣2019 的倒数是
₰.
【解答】解:﹣2019 的倒数是 ₰ .
故答案为: ₰ . 10.(3 分)据有关部门统计,2019 年“清明节”期间,广东各大景点共接待游客约 14420000
人次,将数 14420000 用科学记数法表示为 1.442×107 . 【解答】解:将数 14420000 用科学记数法表示为 1.442×107. 故答案为:1.442×107.
A.①、②

江苏省常熟市七年级上期中考试数学试题(有答案)(精选)

江苏省常熟市七年级上期中考试数学试题(有答案)(精选)

常熟市第一学期期中考试初一数学试卷一、选择题(每题3分,共30分)1.-4的相反数是( ▲ )A .4B .-4C .-14D .142.在-3π,3.1415,0,-0.333…,-227,-∙∙15.0 ,2.010010001…中,有理数有( ▲ ) A .2个 B .3个 C .4个 D .5个3.下列各式中,正确的是( ▲ )A.y x y x y x 2222-=- B.ab b a 532=+ C .437=-ab ab D .523a a a =+ 4.如果a a =,则( ▲ )A .a 是正数B .a 是负数C .是零D .a 是正数或零5.在式子1 x ,2 +5 y ,0.9,−2a ,−32y ,x + 13中,单项式的个数是( ▲ ) A 、5个 B 、4个 C 、3个 D 、2个6.一只蚂蚁从数轴上A 点出发爬了4个单位长度到了表示-1的点B ,则点A 所表示的数是 ( ▲ )A .-3或5 B .-5或3 C .-5 D .37.下列说法: ①最大的负整数是1-;②a 的倒数是a 1;③若ab 、互为相反数,则1a b =-;④3)2(-=32-; ⑤单项式223x y -的系数是-2;⑥多项式422+-xy xy 是关于,y 的三次多项式。

其中正确的结论有 ( ▲ )A .1个B .2个C .3个D .4个8.当=2时,代数式a 3+b +1值为3,那么当=-2时,代数式a 3+b +1的值是 (▲ )A .-3B .1C .-1D .29.一个商标图案如图中阴影部分,在长方形ABCD 中,AB =8cm ,BC =4cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是 ( ▲ )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+ 10、若m =3,n =5且m -n >0,则m +n 的值是 ( ▲ )A .-2B .-8或 -2 C. -8或 8 D .8或-2二、填空题(2分一空,共20分)11如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____▲______.12.近年,随着交通网络的不断完善,我市近郊游持续升温。

江苏省徐州市2023-2024学年上学期期中七年级数学模拟试卷(一)(含答案)

江苏省徐州市2023-2024学年上学期期中七年级数学模拟试卷(一)(含答案)

2023 2024学年度第一学期期中模拟试卷七年级数学试题(一)一.选择题(每小题3分,共24分)1.-3.14的绝对值是( )A 3.14B πC -3.14D 2.2023年十一假期,某旅游景点的旅游人数是53 900 000人,请把这个数用科学计数法表示出来( )A.539×105B. 53.9×106C. 5.39×107D. 0.539×1083.下列各数是无理数的是( )A 99.9B 3.141141114C -2πD -(-2.1)4.小明去徐州宣武市场进裤子,进价为a 元,将进价提高50%后作为售价,今年“十一”国庆节期间又以8折的价格促销,打折后的价格是为( ) A 0.5a 元 B 1.5a 元 C 0.05a 元 D 1.05a 元5 -2.754表示( )A.4个-2.75相乘B. 4个2.75相乘C. 4个2.75相乘的相反数D.-2.75乘以46.下列计算,正确的是( )A.2x+3y=5xyB.3a+4ab=7abC.6xy-5yx=xyD.7m 2-6n 2=m 2n 27.若|a -11|与(b+10)2互为相反数,则a +b 的值为( )A.1B. 21C.-1D.1或-18. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则|m|﹣cd+的值为( )A .-1B .2C .-1或2D .3或-3二.填空题(每小题4分,共32分)9. 根据如图所示的程序计算,若输入的x 值为5时,输出的值为﹣3,则输入值为0时,输出值为 .10.请写出一个小于-3的无理数_____________________.11.在数轴上,如果点A 所表示的数是﹣3,点B 到点A 的距离等于5个单位长度,且点B 位于原点左侧,那么点B 所表示的数是 .14.3112. 定义:若a ﹣b =0,则称a 与b 互为平衡数,若3x 2﹣5与-x +4互为平衡数,则代数式9x 2+3x ﹣7= .13.请写出一个-3.5x 2y 的同类项 .14. 如图所示,三张正方形纸片①,②,③分别放置于长(m +n ),宽(m +p )的长方形中,正方形①,②,③的边长分别为m ,n ,p ,且m >n >p ,则阴影部分周长为 .,﹣11,,﹣1.0200200016. 有理数a ,b ,c在数轴上的位置如图所示,化简|a +b ﹣c |﹣|c ﹣a |+2|b +c |= .三.解答题(共84分)17.(8分)在数轴上画出表示-1.5,-(-3.5),,0.75的点,并按从小到大的顺序,用“<”号把这些数连接起来.18.(16分)计算:(3)(-+)×(-36); (4)-12023-×[4-(-2)5].212--19.(10分)化简:(1)16x+4.5y-8x+3.5y ; (2)3(2m 2-n 2)-2(3n 2-2m 2).20.(8分)为了求的值,可令,则,因此,所以;仿照以上推理计算出S=1+2+22+23+…+299的值23201113333+++++L 23201113333S =+++++L 23201233333S =++++L 2012331S S -=-2012312S -=23. (8分)今年夏季恶劣天气较多,交通事故频发,一辆警车从位于一条东西走向的主干道上的某交警大队出发,一整天都在这条主干道上来回处理事故,如果规定向东行驶为正,这辆警车这天处理交通事故的行车情况(单位:千米)如下:+6,﹣4,﹣1,﹣5,+7,﹣6,+3,+10,+4,﹣2;请问:(1)第几个交通事故刚好发生在交警大队门口?(2)当处理完最后一个事故时,该车辆在交警队的什么方向,距离交警队多远?(3)如果警车的耗油量为每千米0.25升,那么这一天该警车从出发值勤到回到交警大队共耗油多少升?25.(9分)点A 、B 在数轴上分别表示有理数a 、b ,则A 、B 两点之间的距离表示为AB ,在数轴上AB 两点之间的距离AB =|a ﹣b |.请回答下列问题:(1)数轴上表示x 和2的两点之间的距离为5,则有理数x 是 .(2)若|x ﹣5|+|x +2|=9,则x 的值为 .(3)的最小值是 .13++-x x参考答案:一、选择:1、A ;2、C ;3、C ;4、D ;5、C ;6、C ;7、A ;8、B ;二、填空:9、1;10、答案不唯一,如-π,-4.121121112…等等;11、-8;12、20;13、答案不唯一,如2x 2y ,-5x 2y 等等;14、4m ;15、4;16、b+2c ;三、解答:17、数轴上表示要注意写原数;<-1.5<0.75<-(-3.5);18.(1)利用加法的交换律和结合律简便计算,原式=-10+6=-4;(2)把除以一个不为零的数变为乘以它的倒数,再利用乘法法则计算,原式=2;(3)利用乘法分配律简便计算,原式=-42+27-24=-39;(4)原式=-1-12=-13;19.(1)8x+8y ;(2)10m 2-9n 2;20.设S=1+2+22+…+299,①则2S=2+22+…+299+2100,②②-①,得:S=2100-1;21.(1)3xy-24x+3;(2)45;22.(1),;(2),;(3);23.(1)6-4=2,2-1=1,1-5=-4,-4+7=3,3-6=-3,-3+3=0,故第7个交通事故刚好发生在交警大队门口;(2)6-4-1-5+7-6+3+10+4-2=12(千米),答:处理完最后一个事故,车辆在交警队东边12千米处;212--11101⨯111101-()11+n n 111+-n n 20202019202011=-(3)6+4+1+5+7+6+3+10+4+2=48(千米),48+12=60(千米),60×0.25=15(升),答:共耗油15升;24.(1)方案一:2400×5+1000(m-5)=(1000m+7000)元;方案二:2400×5×0.8+1000×0.8m=(800m+9600) 元;(2)当m=10时,按方案一需付款1000×10+7000=17000(元),按方案二需付款800×10+9600=17600(元),17000<17600,故按方案一购买合算;25.(1)7或-3;(2)当x在-2左侧时,(9-7)÷2=1,x=-2-1=-3;当x在5右侧时,x=5+1=6;(3)当-1≤x≤3时,最小值是1-(-3)=4.。

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

2019-2020学年七年级上学期期中考试数学试卷一.选择题(每小题4分,共32分,每小题只有一个选项是符合题目要求的.)1.下列各数中无理数是()A.…B.C.D.02.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)33.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab;C.﹣x2y+2x2y=x2y D.3a2+2a2=5a44.下列说法中不正确的是()A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是05.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()@A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)28.观察下列图形,照此规律,第5个图形中白色三角形的个数是()—A.81 B.121 C.161 D.201二.填空题(本大题有8小题,每小题3分,共24分)9.某水库的水位下降1米,记作﹣1米,那么+米表示.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为.11.多项式3a2+2b3的次数是.12.若m2﹣2m=1,则2019+2m2﹣4m的值是.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)-袋号①②③④⑤质量﹣5《+3+9﹣1﹣6其中,质量最标准的是号(填写序号).15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:.16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为."三.解答题(本大题有9小题,共84分,解答时应写出文字说明或演算步骤.)17.计算:(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).18.计算:(1)(﹣+)×(﹣36);(2)﹣12018﹣×[4﹣(﹣3)2].19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列{﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)21.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次)第二次第三次第四次第五次第六次第七次+15﹣8|+6+12﹣4+5﹣10(1)B地在A地哪个方向,与A地相距多少千米(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升"23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分'起步价7元+燃油附加费1元超出3km不超出6km的部分元/km超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米&25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在处.A.第3台B.第3台和第4台之间、C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为.参考答案与试题解析一.选择题(共8小题)1.下列各数中无理数是()A.…B.C.D.0(【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、是无理数,故本选项符合题意;D、不是无理数,故本选项不符合题意;故选:C.2.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)3】【分析】先计算各选择支,再判断结果为负数的选项.【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab!C.﹣x2y+2x2y=x2y D.3a2+2a2=5a4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式不能合并,不符合题意;C、原式=x2y,符合题意;D、原式=5a2,不符合题意,故选:C.4.下列说法中不正确的是(),A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是0【分析】根据有理数的分类、相反数、绝对值的性质即可一一判断.【解答】解:A、0既不是正数,也不是负数,正确,本选项不符合题意;B、0是整数,故本选项符合题意;C、0的相反数是零,正确,故本选项不符合题意;[D、0的绝对值是0,正确,故本选项不符合题意,故选:B.5.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a【分析】由数轴可得a<0<b,且|a|>b,根据绝对值的含义易得答案.【解答】解:由数轴可得:a<0<b,且|a|>b∵﹣a=|a|¥∴﹣a>b故选:A.6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定【分析】根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.【解答】解:根据题意列得:在甲批发市场茶叶的利润为40(﹣m)=20(m+n)﹣40m=20n﹣20m;在乙批发市场茶叶的利润为60(﹣n)=30(m+n)﹣60n=30m﹣30n,;∴该商店的总利润为20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),∵m>n,∴m﹣n>0,即10(m﹣n)>0,则这家商店盈利了.故选:A.7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)2【分析】利用非负数的性质判断即可.【解答】解:A、a2≥0,不符合题意;*B、|a|≥0,不符合题意;C、a2+2≥2>0,符合题意;D、(a﹣3)2≥0,不符合题意,故选:C.8.观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【分析】由第一个图形中白色三角形的个数是1、第二个图形中白色三角形的个数是1+1×3=4、第三个图形中白色三角形的个数是1+4×3=13,从而得出第四个图形中白色三角形的个数是1+13×3=40、第五个图形中白色三角形的个数是1+40×3=121.【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二.填空题(共8小题)9.某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.`【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.故答案为:该水库的水位上升米.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为×1012km.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=×1012,—故答案为:×1012km.11.多项式3a2+2b3的次数是3.【分析】根据多项式次数的定义:次数最高次项的次数进行填空即可.【解答】解:多项式3a2+2b3的次数是3,故答案为3.12.若m2﹣2m=1,则2019+2m2﹣4m的值是2021.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵m2﹣2m=1,∴原式=2019+2(m2﹣2m)=2019+2=2021.故答案为:2021.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是﹣3.【分析】由相反数的含义及两点之间距离的表示方法,设表示点A的数为x,则表示点B 的数为﹣x,由题意得|x﹣(﹣x)|=6,结合A在B的左边,可得答案.【解答】解:∵A,B表示互为相反数的两个点∴设表示点A的数为x,则表示点B的数为﹣x∵这两点的距离为6∴|x﹣(﹣x)|=6(∴2|x|=6∴|x|=3∵A在B的左边∴x<﹣x∴x<0∴x=﹣3,即点A表示的数为﹣3.故答案为:﹣3.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)①②③④⑤《袋号+9﹣1﹣6质量﹣5《+3其中,质量最标准的是④号(填写序号).【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据﹣5,+3,+9,﹣1,﹣6直接得出答案.【解答】解:∵①的质量是100﹣5=95(克),②的质量是100+3=103(克),【③的质量是100+9=109(克),④的质量是100﹣1=99(克),⑤的质量是100﹣6=94(克),∴最接近100克的是④,故答案为:④.15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:练习本每本元,小明买了a本,共付款元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本元,小明买了a本,共付款元.、16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三.解答题(共9小题)17.计算:】(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).【分析】(1)原式先计算绝对值,以及乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值.【解答】解:(1)原式=4+8﹣15=12﹣15=﹣3;(2)原式=﹣﹣=﹣15.18.计算:(1)(﹣+)×(﹣36);@(2)﹣12018﹣×[4﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣18+24﹣16=﹣10;(2)原式=﹣1﹣×(﹣5)=﹣1+1=0.19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.&【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣22<﹣3<﹣|﹣2|<0<﹣(﹣1).20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)【分析】根据合并同类项的法则即可求出答案.【解答】解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5/=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+221.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.$22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣8+6+12﹣4+5﹣10}+15(1)B地在A地哪个方向,与A地相距多少千米,(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升【分析】(1)把7次记录相加,根据和的情况判断点B与点A的关系即可;(2)求出每次记录时与点A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再乘以计算即可得解.【解答】解:(1)0+15﹣8+6+12﹣4+5﹣10=16.所以B在A地的东面,与A相距16千米;)(2)0+15=15,15﹣8=7,7+6=13,13+12=25,25﹣4=21,21+5=26,26﹣10=16,∵26最大,∴离开A地最远是26千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60,60×=18(升).答:共耗油18升.23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.~(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.【分析】(1)利用题中的新定义计算即可得到结果;(2)根据数轴得出b<0<a,且|a|<|b|,再计算即可.【解答】解:(1)根据题中的新定义得:2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+5=6;(2)从a,b在数轴上的位置可得a+b<0,a﹣b>0,¥∴a⊙b=|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣2b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分元/km"超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为(﹣)元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米【分析】(1)利用支付的车费=起步价+燃油附加费+超过3千米的费用,代入数据计算即可;(2)利用支付的车费=起步价+燃油附加费+超出3km不超出6km的部分的费用+超出6km的部分的费用,列出代数式即可;(3)利用(2)中代数式建立方程求得答案即可.【解答】解:(1)支付车费:7+1+(5﹣3)×=(元),故答案为:;(2)7+1+×3+(x﹣6)=8++﹣=﹣(元),故答案为:(﹣);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:﹣=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在C处.A.第3台B.第3台和第4台之间C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为2450.【分析】(1)根据阅读材料即可求解;(2)根据(1)中所得结论,可以分两种情况寻找到规律即可求解;(3)根据连续整数的和的计算公式即可求解.【解答】解:(1)根据题意,得直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处,直线上有5台机床A1、A2、A3、A4、A5,供应站P应设在中间一台机床A3处,直线上有7台机床A1、A2、A3…A7供应站P应设在中间一台机床A4处故选C.(2)当n为偶数时,P应设在第台和台之间的任何位置;当n为奇数时,P应设在第台的位置.(3)(1+99)÷2=50,所以当x=50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值(1+49)×49=2450.故答案为50、2450.。

2019-2020学年江苏省常州市七年级(上)期中数学试卷(解析版)

2019-2020学年江苏省常州市七年级(上)期中数学试卷(解析版)

2019-2020学年江苏省常州市七年级(上)期中数学试卷一、选择题(每题3分) 1.(3分)4-的相反数是( ) A .4 B .4-C .14-D .142.(3分)在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有( ) A .2个B .3个C .4个D .5个3.(3分)若3,2,0mm n n==<且,则m n +的值是( ) A .1-B .1C .1或5D .1±4.(3分)如果||a a =,则( ) A .a 是正数B .a 是负数C .a 是零D .a 是正数或零5.(3分)下列说法:①若a 、b 互为相反数,则0a b +=;②若0a b +=,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-; ④若1ab=-,则a 、b 互为相反数.其中正确的结论有( ) A .1个B .2个C .3个D .4个6.(3分)已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .1B .5C .5-D .1-7.(3分)一个商标图案如图中阴影部分,在长方形ABCD 中,8AB cm =,4BC cm =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是( )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+8.(3分)在一列数1x ,2x ,3x ,⋯中,已知11x =,且当2k …时,11214([][])44k k k k x x ---=+--(符号[]a 表示不超过实数a 的最大整数,例如[2.6]2=,[0.2]0)=,则2014x 等于( ) A .1B .2C .3D .4二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温. 据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 人.10.(2分)比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号).11.(4分)单项33x y-的系数是 ,次数是 次;多项式242xy xy -+是 次 项式.12.(1分)一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是 .13.(1分)绝对值不大于5的所有整数的积是 . 14.(1分)若三个非零有理数a ,b ,c 满足||||||1a b c a b c ++=,则||abc abc= . 15.(1分)若5a b ab +=,则11a b+= . 16.(1分)设22P y =-,23Q y =+,且31P Q -=,则y 的值为 . 17.(1分)当k = 时,多项式22(1)325x k xy y xy +----中不含xy 项.18.(2分)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 ,依次继续下去⋯,第2014次输出的结果是 .三、解答题 19.(3分)计算 (1)20(5)(18)-+---; (2)21293()12(3)23-÷+-⨯+-;(3)4211(10.5)[2(3)]3---⨯⨯--;(4)222172(3)(6)()3-+⨯-+-÷-.20.(5分)先化简,再求值:2214(1)2(1)(42)2x x x x --++-,其中3x =-.21.(6分)已知代数式2232A x xy y =++,2B x xy x =-+. (1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值. 22.(5分)观察下列算式,你发现了什么规律? 212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;⋯ (1)根据你发现的规律,计算下面算式的值;22221238++⋯+= (2)请用一个含n 的算式表示这个规律:2222123n ++⋯+= .23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品? (3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额. 24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2). 请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含 1.5-、π这两个数,且只含有5个整数[画在数轴(2)上]; (3)同时满足以下三个条件:[画在数轴(3)上] ①至少有100对互为相反数和100对互为倒数; ②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.25.(10分)当5x =, 4.5y =时,求2221212()()2(1)333kx x y x y x y --+-+--+的值.一名同学做题时,错把5x =看成5x =-,但结果也正确,且计算过程无误,求k 的值.2019-2020学年江苏省常州市七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分) 1.(3分)4-的相反数是( ) A .4B .4-C .14-D .14【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解. 【解答】解:4-的相反数是4. 故选:A .【点评】此题主要考查相反数的意义,解决本题的关键是熟记相反数的定义. 2.(3分)在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有( ) A .2个B .3个C .4个D .5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有3.1415,0,0.333-⋯,227-,0.15-,共有5个. 故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 3.(3分)若3,2,0mm n n==<且,则m n +的值是( ) A .1-B .1C .1或5D .1±【分析】根据绝对值的定义得到3m =或3-,2n =或2-,由于m 、n 异号,所以当3m =时,2n =-;当3m =-时,2n =,然后分别计算m n +即可.【解答】解:||3m =,||2n =, 3m ∴=或3-,2n =或2-,又0mn<,即m 、n 异号, ∴当3m =时,2n =-,则321m n +=-=;当3m =-时,2n =,则321m n +=-+=-. 故选:D .【点评】本题考查了绝对值:若0a >,则||a a =;若0a =,则||0a =;若0a <,则||a a =-. 4.(3分)如果||a a =,则( ) A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【分析】根据绝对值的性质进行分析:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .【点评】考查了绝对值的性质.5.(3分)下列说法:①若a 、b 互为相反数,则0a b +=;②若0a b +=,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-; ④若1ab=-,则a 、b 互为相反数.其中正确的结论有( ) A .1个B .2个C .3个D .4个【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①只有符号不同的两个数叫做互为相反数,∴若a 、b 互为相反数,则0a b +=,故本小题正确;②0a b +=,a b ∴=-,a ∴、b 互为相反数,故本小题正确; ③0的相反数是0,∴若0a b ==时,ab-无意义,故本小题错误;④1ab=-,a b ∴=-,a ∴、b 互为相反数,故本小题正确. 故选:C .【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0. 6.(3分)已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .1B .5C .5-D .1-【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为()()()()()()b c a d b c a d b a c d a b c d +--=+-+=-++=--++⋯(1), 所以把3a b -=-、2c d +=代入(1) 得:原式(3)25=--+=. 故选:B .【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“-”,括号里的各项都改变符号.运用这一法则添括号.7.(3分)一个商标图案如图中阴影部分,在长方形ABCD 中,8AB cm =,4BC cm =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是( )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+【分析】作辅助线DE 、EF 使BCEF 为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依面积公式计算即可. 【解答】解:作辅助线DE 、EF 使BCEF 为一矩形. 则2(84)4224CEF S cm ∆=+⨯÷=, 24416ADEF S cm =⨯=正方形,290164360ADF S cm ππ⨯==扇形, ∴阴影部分的面积224(164)84()cm ππ=--=+.故选:A .【点评】本题主要考查了扇形的面积计算,关键是作辅助线,并从图中看出阴影部分的面积是由哪几部分组成的.8.(3分)在一列数1x ,2x ,3x ,⋯中,已知11x =,且当2k …时,11214([][])44k k k k x x ---=+--(符号[]a 表示不超过实数a 的最大整数,例如[2.6]2=,[0.2]0)=,则2014x 等于( ) A .1B .2C .3D .4【分析】首先由11x =和当2k …时,1124([][])44k k k k x x ---=--求得:2x ,3x ,4x ,5x ,6x ,7x ,8x ,9x 的值,则可得规律:n x 每4次一循环,又由201445032÷=⋯,可知20142x x =,则问题得解.【解答】解:由11x =且当2k …时,根据1124([][])44k k k k x x ---=--可得: 22x =,33x =,44x =,51x =, 62x =,73x =,84x =,91x =,⋯n x ∴每4次一循环,201445032÷=⋯, 201422x x ∴==,故选:B .【点评】此题考查数字的变化规律,理解取整函数,解题的关键是找到规律:n x 每4次一循环.二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温. 据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 52.0310⨯ 人.【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:20.3万5203000 2.0310==⨯, 故答案为:52.0310⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(2分)比较大小:(8)-+ > |9|--; 23- 34-(填“>”、“ <”、或“=”符号).【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小;①首先化简,然后比较出即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出.【解答】解:①(8)8-+=-,|9|9-=-,89->-, (8)|9|∴-+>-;②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>.【点评】本题主要考查了有理数大小比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.(4分)单项33x y -的系数是 13- ,次数是 次;多项式242xy xy -+是 次项式.【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答.【解答】解:单项33x y -的系数是13-,次数是4次,多项式242xy xy -+是三次三项式.【点评】根据单项式的单项式的系数是单项式前面的数字因数,次数是单项式所有字母指数的和;多项式是由单项式组成的,常数项也是一项,多项式的次数是“多项式中次数最高的项的次数”.12.(1分)一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是 7± .【分析】一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.【解答】解:一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A 表示的数是:7±.故答案是:7±.【点评】本题考查了绝对值的定义,根据实际意义判断A 的绝对值是7是关键. 13.(1分)绝对值不大于5的所有整数的积是 0 .【分析】根据绝对值的性质列出算式,再根据任何数同0相乘都等于0解答. 【解答】解:由题意得,(5)(4)(3)(2)(1)0123450-⨯-⨯-⨯-⨯-⨯⨯⨯⨯⨯⨯=.故答案为:0.【点评】本题考查了有理数的乘法,准确列出算式并观察出有0因数是解题的关键. 14.(1分)若三个非零有理数a ,b ,c 满足||||||1a b c a b c ++=,则||abc abc= 1- . 【分析】由||||||1a b c a b c++=知,a 、b 、c 中有一个为负数,故能求||abc abc 的值. 【解答】解:||||||1a b c a b c++= a ∴、b 、c 中有一个为负数,另外两个为正数,∴||1abc abc=- 故答案为1-.【点评】本题主要考查有理数除法的知识点,比较简单. 15.(1分)若5a b ab +=,则11a b+= 5 . 【分析】根据分式的运算法则即可求出答案. 【解答】解:5a b ab +=,∴5a bab+=, ∴115a b+=, 故答案为:5【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.(1分)设22P y =-,23Q y =+,且31P Q -=,则y 的值为 52. 【分析】将P 与Q 代入31P Q -=中计算即可求出y 的值. 【解答】解:根据题意得:3(22)(23)1y y --+=, 去括号得:66231y y ---=, 移项合并得:410y =,解得:52y =. 故答案为:52【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.17.(1分)当k = 3 时,多项式22(1)325x k xy y xy +----中不含xy 项. 【分析】不含有xy 项,说明整理后其xy 项的系数为0. 【解答】解:整理只含xy 的项得:(3)k xy -, 30k ∴-=,3k =.故答案为:3.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0. 18.(2分)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去⋯,第2014次输出的结果是 .【分析】根据运算程序进行计算,然后得到从第2次开始到第7次输出每6次为一个循环组依次循环,用(20141)-除以6,再根据商和余数的情况确定第2014出输出的结果. 【解答】解:第2次输出的结果是6, 第3次输出:1632⨯=,第4次输出:358+=, 第5次输出:1842⨯=,第6次输出:1422⨯=,第7次输出:1212⨯=,第8次输出:156+=, 第9次输出:1632⨯=,⋯,(20141)6335-÷=余3,∴第2014次输出的结果与第4次输出的结果相同,是8.故答案为:3,8.【点评】本题考查了函数值的求解,读懂运算程序并通过计算得到从第2次开始到第7次输出每6次为一个循环组依次循环是解题的关键. 三、解答题 19.(3分)计算 (1)20(5)(18)-+---; (2)21293()12(3)23-÷+-⨯+-;(3)4211(10.5)[2(3)]3---⨯⨯--;(4)222172(3)(6)()3-+⨯-+-÷-.【分析】(1)根据有理数的加减混合运算法则进行计算即可求解; (2)根据有理数的混合运算顺序进行计算即可求解;(3)根据有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号内的即可求解;(4)先算乘方,再算乘除,最后算加减即可求解. 【解答】解:(1)20(5)(18)-+--- 20518=--+ 7=-(2)21293()12(3)23-÷+-⨯+-3689=-+-+4=(3)4211(10.5)[2(3)]3---⨯⨯--111(29)23=--⨯⨯-11(7)6--⨯-716=-+16=(4)222172(3)(6)()3-+⨯-+-÷-4929(6)9=-+⨯+-⨯ 491854=-+- 85=-【点评】本题考查了有理数的混合运算,解决本题的关键是熟练有理数混合运算顺序,同时注意符号的变化.20.(5分)先化简,再求值:2214(1)2(1)(42)2x x x x --++-,其中3x =-.【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值. 【解答】解:原式224422236x x x x x =---+-=-, 当3x =-时,原式9615=--=-.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 21.(6分)已知代数式2232A x xy y =++,2B x xy x =-+. (1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值.【分析】(1)将A 、B 代入,然后去括号、合并同类项求解; (2)与x 的取值无关说明x 的系数为0,据此求出y 的值. 【解答】解:(1)2222322()A B x xy y x xy x -=++--+22232222x xy y x xy x =++-+- 522xy y x =+-;(2)522(52)2xy y x y x y +-=-+,2A B -的值与x 的取值无关,520y ∴-=解得:25y =. 【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则. 22.(5分)观察下列算式,你发现了什么规律? 212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;⋯(1)根据你发现的规律,计算下面算式的值;22221238++⋯+= 204 (2)请用一个含n 的算式表示这个规律:2222123n ++⋯+= .【分析】(1)观察不难发现,从1开始的平方数的和,分母都是6,分子为最后一个数与比它大1的数的积再乘以比这个数的2倍大1的数的积; (2)根据规律写出含n 的算式即可. 【解答】解:(1)22228(81)(281)12382046⨯+⨯+++⋯+==;(2)2222(1)(21)1236n n n n ++++⋯+=.故答案为:204;(1)(21)6n n n ++.【点评】此题考查数字的变化规律,难点在于观察出分子的变化情况.23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品? (3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额. 【分析】(1)根据表格将300与5相加即可求得周一的产量;(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量,同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数;(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,与300与7的积相加即可得到工艺品一周共生产的个数;(4)用计划的2100乘以单价60元,加超额的个数乘以50,减不足的个数乘以80-,即为一周工人的工资总额.【解答】解:(1)周一的产量为:3005305+=个;(2)由表格可知:星期六产量最高,为300(16)316++=(个),星期五产量最低,为300(10)290+-=(个),则产量最多的一天比产量最少的一天多生产31629026-=(个);(3)根据题意得一周生产的服装套数为:⨯+++-+-+++-+++-3007[(5)(2)(5)(15)(10)(16)(9)]210010=+=(套).2110答:服装厂这一周共生产服装2110套;(4)(5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-=个,根据题意得该厂工人一周的工资总额为:⨯+⨯=(元).2110605010127100【点评】此题考查了有理数的混合运算的应用,此类题常常结合生产、生活中的热点问题,是近几年中考的必考题型,认真阅读,理解题意是解此类题的关键.24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含 1.5-、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【分析】(1)和(2)可以直接根据题意,在数轴上包含这个点,用实心圆点,不包含这个点,用空心圆圈即可;(3)由于数轴上2-到2之间有无数个实数,并且包含1和1-,也不大于3,小于4,由此即可画出图形.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:【点评】此题考查了有理数大小的比较,用到的知识点是相反数、倒数、实数与数轴的对应关系,在数轴上包含这个点用实心圆点,不包含这个点用空心圆圈,数轴上的点与实数是一一对应的关系.25.(10分)当5x =, 4.5y =时,求2221212()()2(1)333kx x y x y x y --+-+--+的值.一名同学做题时,错把5x =看成5x =-,但结果也正确,且计算过程无误,求k 的值. 【分析】原式去括号合并后,由错把5x =看成5x =-,但结果也正确,且计算过程无误,得到x 系数为0,求出k 的值即可. 【解答】解:原式222222122222(4)323333kx x y x y x y k x y =-+-+-+-=-+-, 由错把5x =看成5x =-,但结果也正确,且计算过程无误,得到243k =.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷(解析版)

2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷(解析版)

2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .203.(2分)下列计算正确的是( ) A .22321a a -= B .22423m m m += C .2222ab a b a b -+=D .22234m m m -=-4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 ;3-的倒数是 .10.(2分)单项式22ab -的系数是 ,次数是 .11.(2分)比较大小:3- 2.5-(填“>”、“ <”或“=” ). 12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 C ︒.星期 星期一 星期二 星期三 星期四 星期五 星期六 星期日 气温/C ︒0~62~7-1~6-2~5-4~3-5~3-2~913.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 .14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 . 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 . 16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 .17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 .18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 .三、解答题(本大题共8小题,共64分) 19.(16分)计算:(1)42-+= ;42--= ;42-⨯= ;42-÷= . (2)3(4)8(2)⨯--÷-; (3)1511()()361224-+÷-(4)422(13)12(4)---⨯÷-. 20.(9分)计算: (1)3257x y x y -++-; (2)222(5)(23)x x x x ---+.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元); 星期一 星期二 星期三 星期四 星期五 星期六星期日 本周合计 27-70-2001383-m120n(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = . (2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费. (1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <, (1)原点O 的位置在 ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A与点B 之间,且靠近点B (2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” ) ②化简:|1||1|a b -++.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离. 【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况: 情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索 【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解答】解:通过求4个排球的绝对值得: | 1.5| 1.5-=,|0.5|0.5-=,|0.6|0.6-=, 0.5-的绝对值最小.所以乙球是最接近标准的球. 故选:B .【点评】此题考查学生对正负数及绝对值的意义掌握,解答此题首先要求出四个球标准的克数和低于标准的克数的绝对值进行比较. 2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .20【分析】直接利用有理数的混合运算法则计算得出答案. 【解答】解:原式812=+ 20=.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键. 3.(2分)下列计算正确的是( ) A .22321a a -=B .22423m m m +=C .2222ab a b a b -+=D .22234m m m -=-【分析】根据合并同类项的法则即可求出答案. 【解答】解:22232a a a -=,故选项A 不合题意; 22223m m m +=,故选项B 不合题意;2ab -与22a b 不是同类项,所以不能合并,故选项C 不合题意; 22234m m m -=-,正确,故选项D 符合题意.故选:D .【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解: 3.14-是有限小数,属于有理数;0是整数,属于有理数;|2|2--=-,是整数,属于有理数;227是分数,属于有理数. ∴无理数有π、0.3030030003⋯共2个.故选:B .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身【分析】直接利用有理数的性质以及无理数的性质分别分析得出答案. 【解答】解:A 、任意两个有理数的和必是有理数,正确;B 、任意有理数的绝对值必是正有理数,错误,利用0的绝对值等于0;C 、任意两个无理数的和必是无理数,错误,利用0=;D 、任意有理数的平方必定大于或等于它本身,错误,例如2(0.1)0.010.1=<.故选:A .【点评】此题主要考查了实数运算,正确掌握相关性质是解题关键.6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④【分析】根据绝对值的性质,有理数的分类对各小题分析判断即可得解. 【解答】解:①a -不一定是非正数;故不符合题意; ②||a --一定是0或负数;故不符合题意; ③相反数等于它本身的数是0;故符合题意; ④绝对值大于它本身的数是负数.故符合题意; 故选:D .【点评】本题考查了正数和负数,以及绝对值的性质,解题时应熟练掌握有理数的分类,此题难度不大,易于掌握.7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数【分析】根据绝对值的意义解答即可. 【解答】解:因为||1a …, 所以11a -剟, 所以210a -…, 即21a -是非正数. 故选:C .【点评】此题考查绝对值的意义,非负数的性质,以及有理数的分类,解题的关键是掌握绝对值的意义.8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<【分析】根据有理数的加法法则得出0a >,||||a b >,再比较即可. 【解答】解:0a b +>Q ,0b <,0a ∴>,||||a b >,a b b a ∴-<<-<,故选:D .【点评】本题考查了有理数的大小比较和有理数的加法,能根据有理数的加法法则得出0a >和||||a b >是解此题的关键.二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 3 ;3-的倒数是 . 【分析】根据倒数以及相反数的定义即可求解.【解答】解:3-的相反数是3;3-的倒数是13-.故答案是:3,13-.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(2分)单项式22ab -的系数是 4- ,次数是 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式22ab -的系数是224-=-,次数是2. 故答案为:4-,2.【点评】考查了单项式的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.(2分)比较大小:3- < 2.5-(填“>”、“ <”或“=” ). 【分析】根据两个负数比较大小,其绝对值大的反而小比较即可. 【解答】解:|3|3-=,| 2.5| 2.5-=, 3 2.5>Q , 3 2.5∴-<-,故答案为:<.【点评】本题考查了有理数的大小,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 9C ︒.【分析】先求出每天的温差,再比较即可.【解答】解:606-=,7(2)9--=,6(1)7--=,5(2)7--=,3(4)7--=,3(5)8--=,927-=,所以未来一周中一天温差最大为9C ︒, 故答案为:9.【点评】本题考查了有理数的大小比较和有理数的减法,能求出每天的温差是解此题的关键. 13.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 10510⨯千克 .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将50 000 000 000千克用科学记数法表示为:10510⨯千克. 故答案为:10510⨯千克.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 1(0)a b a b b÷=⨯≠ .【分析】根据题意直接用字母表示出来即可. 【解答】解:根据题意得: 1(0)a b a b b÷=⨯≠;故答案为:1(0)a b a b b÷=⨯≠.【点评】此题考查了列代数式,解题的关键是读懂题意,用字母表示出来. 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 8 . 【分析】根据合并同类项的法则即可求出答案. 【解答】解:62m x y -Q 与16n x y +的和为0,16n ∴+=,26m =,解得3m =,5n =, 538n m ∴+=+=.故答案为:8.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 3- . 【分析】直接去括号进而把已知代入求出答案. 【解答】解:5x y -=Q ,2m n +=, ()()y m x n ∴+-- ()y x m n =-++ 52=-+3=-.故答案为:3-.【点评】此题主要考查了整式的加减运算,正确将原式变形是解题关键.17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 2或4- . 【分析】根据数轴上两个点之间的距离即可求解.【解答】解:因为点A 表示的数是1-,A 、B 两点之间的距离为3, 所以点B 表示的数是2或4-.【点评】本题考查了数轴,解决本题的关键是距离点A 三个单位长度的点有两个. 18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 3 .【分析】由图示知,当输入的数大于5时,输出12x ;当输入的数小于4时,输出3x +,按此规律计算即可.【解答】解:把3x =-代入程序中,得330-+=,把0x =代入程序中,得033+=,把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, 把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, ⋯我们发现,从第3次开始,结果以6,3循环,(1002)249-÷=,则第100次输出的结果为3.故答案为:3.【点评】本题考查了代数式求值,根据图示程序正确代入求值是解题的关键.三、解答题(本大题共8小题,共64分)19.(16分)计算:(1)42-+= 2- ;42--= ;42-⨯= ;42-÷= .(2)3(4)8(2)⨯--÷-;(3)1511()()361224-+÷- (4)422(13)12(4)---⨯÷-.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用乘法分配律计算得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【解答】解:(1)422-+=-;426--=-;428-⨯=-;422-÷=-;故答案为:2-;6-;8-;2-;(2)原式124=-+8=-;(3)原式151(24)(24)(24)3612=⨯--⨯-+⨯- 8202=-+-10=;(4)原式162416=-+÷292=-. 【点评】此题主要考查了有理数的混合运算,正确掌握相关计算法则是解题关键.20.(9分)计算:(1)3257x y x y -++-;(2)222(5)(23)x x x x ---+.【分析】(1)直接合并同类项进而计算得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)3257x y x y -++-(35)(27)x y =-++-25x y =-;(2)222(5)(23)x x x x ---+2221023x x x x =--+-283x x =--.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式222222346692ab a b ab a b ab a b =-++-=,将2a =-,12b =代入得:原式12442=⨯⨯=. 【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元);(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = 658 .(2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .【分析】(1)根据题意列出代数式,把300m =代入解答即可;(2)根据题意列出代数式解答即可.【解答】解:(1)把300m =代入2770200138312027702001383300120658n m =--++-++=--++-++=;故答案为:658;(2)根据题意可得:20013812032770m n =---+++,即358m n =-【点评】此题考查列代数式,关键是根据题意列出代数式解答即可.23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)【分析】图中阴影部分的面积=正方形的面积-半圆面积2⨯.【解答】解:阴影部分的面积224x x π=-当4x =时,2224 3.144 3.444x x π-=-⨯=.【点评】要能从图中找到阴影部分的面积是有哪些规则图形的差或者和组成的,分别找到其面积进行和差运算.此题中的关系主要是图中阴影部分的面积=正方形的面积-半圆面积2⨯.24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费.(1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?【分析】(1)分别利用:①当0200x <… 时,②当200300x <… 时,③当300x > 时,分别得出关系式即可;(2)直接把320x =代入函数关系式求出答案.【解答】解:(1)①当0200x <… 时,用水量3x =②当200300x <… 时,用水量6005(200)5400x x =+-=-③当300x > 时,用水量6005006(300)6700x x =++-=-;(2)由题意可得:670063207001220x -=⨯-= (元).【点评】此题主要考查了列代数式,正确分类讨论是解题关键.25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <,(1)原点O 的位置在 C ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A 与点B 之间,且靠近点B(2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” )②化简:|1||1|a b -++.【分析】(1)由0ab <,0a b +<,可知a ,b 异号,故原点O 的位置在点A 与点B 之间;(2)①由2a b -=结合(1)的结论,可知1a <,1b >-;②根据绝对值的定义化简即可.【解答】解:(1)0ab <Q ,0a b +<,∴原点O 的位置在点A 与点B 之间,且靠近点A .故答案为:C(2)①2a b -=Q ,原点O 的位置在点A 与点B 之间,且靠近点A ,1a ∴<,1b <-,故答案为:<、<;②1a <Q ,1b <-,10a ∴-<,10b +<,|1||1|11a b a b a b ∴-++=-+--=--.【点评】本题主要考查数轴和绝对值,熟练掌握绝对值的定义是解题的关键.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况:情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.【分析】(1)分三种情况讨论求解;(2)根据两点间的距离公式即可求解;(3)根据两点间的距离公式即可求解.【解答】解:(1)情况二:若0a …,0b < 时,A 、B 两点之间的距离:||AB a b a b =+=-; 情况三:若0a <,0b < 时,A 、B 两点之间的距离:||||AB b a a b =-=-;(2)Q 点C 对应的数c ,点C 到A 、B 两点的距离相等,a c cb ∴-=-,2c a b ∴=+,即1()2c a b =+; (3)Q 点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍, ()a d n d b ∴-=-,(1)a nb d n ∴+=+.【点评】本题考查了数轴,绝对值,数轴上两点间的距离的表示,准确列出等式是解题的关键.。

2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷解析版

2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷解析版

2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号写在括号内)1.(2分)﹣7的相反数是()A.﹣7B.﹣C.7D.12.(2分)下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1B.﹣3(x﹣1)=﹣3x+1C.﹣3(x﹣1)=﹣3x﹣3D.﹣3(x﹣1)=﹣3x+33.(2分)某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元4.(2分)下列说法:①正整数、负整数和零统称为整数;②面积为2的正方形的边长a可以用数轴上的点表示;③绝对值相等的两个非零有理数的商为1,其中正确的是()A.①②B.①③C.②③D.①②③5.(2分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.46.(2分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在空格内)7.(2分)写出一个负有理数.8.(2分)﹣ab2的系数是,次数是.9.(2分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为.10.(2分)比较大小:﹣0.6﹣.11.(2分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是.12.(2分)若4a2b2n+1与﹣a m b3是同类项,则m+n=.13.(2分)数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为.14.(2分)把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.(2分)在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),使计算所得数最小,则这个最小数是.16.(2分)如图,圆桌周围有20个箱子,按顺时针方向编号1~20,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2020圈,求4号箱内有颗红球.三、解答题(本大题共10小题,共68分.)17.(12分)计算:(1)12﹣7﹣15;(2)(﹣4)﹣(﹣5)﹣5.5﹣3(3)(﹣3)××(﹣)×(4)(﹣12)÷(﹣4)×18.(6分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2)﹣12+[(﹣4)2﹣(1﹣32)×2]19.(6分)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.20.(6分)某文具店在一周的销售中,盈亏情况如表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.(6分)已知a>0,b<0,且a+b<0,请利用数轴比较a,b,﹣a,﹣b的大小,并用“<”号连接.22.(6分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④;⑤1+3+5+7+9=52;…(2)请写出第n个等式;(3)利用(2)中的等式,计算21+23+25+ (99)23.(6分)父亲看到嘉悦在做一道数学题:“化简:(ax2+6x+8)﹣(6x+5x2+2)”.(1)父亲说:“如果这个问题的标准答案是常数,你能得到a的值么?”(2)父亲又说:“若代入x=﹣1,则这个式子的值是﹣2,你能求出a的值么?”请帮助嘉悦完成这两个任务,并说明理由.24.(6分)如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是,第n个正方形内圆的个数是.(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积.(结果保留π)②若a=10,请直接写出第2014个正方形中阴影部分的面积.(结果保留π)25.(6分)根据“算法”的约定:在数值转换机中,输入或输出的值写在“平行四边形”框内,计算程序(或步骤)写在“长方形”框内,菱形框则用于对结果作出是否符合要求的判定.因此画数值转换机必须注意框图的选择.(1)如图,当输入数字为1时,数值转换机输出的结果为;(2)嘉悦的爸爸存入1年期的定期储蓄10000元(假定1年期定期储蓄的年利率为4%)到期后本息和(本金和利息的和)自动转存1年期的定期储蓄.请画出数值转换机,并求出转存几次就能使本息和超过11000元?26.(8分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号写在括号内)1.(2分)﹣7的相反数是()A.﹣7B.﹣C.7D.1【分析】根据相反数的概念解答即可.【解答】解:﹣7的相反数为7,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2分)下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1B.﹣3(x﹣1)=﹣3x+1C.﹣3(x﹣1)=﹣3x﹣3D.﹣3(x﹣1)=﹣3x+3【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选:D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.3.(2分)某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【分析】首先根据“折”的含义,可得x变成x,是把原价打8折后,然后再用它减去10元,即是x﹣10元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣10)元出售,是把原价打8折后再减去10元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.4.(2分)下列说法:①正整数、负整数和零统称为整数;②面积为2的正方形的边长a可以用数轴上的点表示;③绝对值相等的两个非零有理数的商为1,其中正确的是()A.①②B.①③C.②③D.①②③【分析】①根据整数的定义即可得结论;②面积为2的正方形的边长为,数轴上的点与实数一一对应即可得结论;③根据绝对值的意义即可得结论.【解答】解:①正确.正整数、负整数和零统称为整数.②正确.面积为2的正方形的边长为,可以用数轴上的点表示.③错误.绝对值相等的两个非零有理数的商为±1.故选:A.【点评】本题考查了有理数的分类、绝对值、有理数的除法,解决本题的关键是熟练运用以上知识.5.(2分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.6.(2分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间【分析】根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.【解答】解:∵c<0,b=5,|c|<5,|d﹣5|=|d﹣c|,∴BD=CD,∴D点介于O、B之间,故选:D.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在空格内)7.(2分)写出一个负有理数﹣1.【分析】有理数包括正有理数、负有理数和0,所以所写的数只要小于0即可.【解答】解:所写的数只要小于0即可.例如﹣1.答案不唯一.【点评】本题主要考查负数的定义,为开放题,答案不唯一.8.(2分)﹣ab2的系数是﹣,次数是3.【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【解答】解:单项式﹣ab2的系数是﹣,次数是3,故答案为:﹣,3.【点评】此题主要考查了单项式,关键是掌握单项式的相关定义.9.(2分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为7.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据7800000用科学记数法表示为7.8×106.故答案为:7.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)比较大小:﹣0.6>﹣.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:|﹣0.6|=0.6,|﹣|=,∵0.6<,∴﹣0.6>﹣.【点评】本题考查了绝对值和有理数的大小比较等知识点,能熟记有理数的大小比较的法则的内容是解此题的关键,注意:两个负数比较大小,其绝对值大的反而小.11.(2分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是5.【分析】将所求式子化简后再将已知条件中a﹣b=2整体代入即可求值;【解答】解:∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.【点评】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.12.(2分)若4a2b2n+1与﹣a m b3是同类项,则m+n=3.【分析】根据同类项的定义求出m、n,再代入求出即可.【解答】解:∵4a2b2n+1与﹣a m b3是同类项,∴m=2,2n+1=3,∴n=1,∴m+n=2+1=3,故答案为:3.【点评】本题考查了同类项的定义,能熟记同类项定义的内容是解此题的关键,所含字母相同,并且相同字母的指数也相同的项,叫同类项.13.(2分)数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为a﹣b =a+(﹣b).【分析】根据有理数的减法法则解答即可.【解答】解:有理数的减法运算法则:减去一个数,等于加上这个数的相反数.∴有理数的减法运算法则可以用数学符号语言表述为:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b)【点评】本题主要考查了有理数的解法,熟记运算法则是解答本题的关键.14.(2分)把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为1000m+n.【分析】根据题意两位数乘以1000加上后三位数即可列出代数式.【解答】解:∵五位数是两位数m乘以1000,后边的三位数是n,∴组成的五位数为1000m+n.例如:23456=23×1000+456.故答案为1000m+n.【点评】本题考查了列代数式,解决本题的关键是理解题意准确列出代数式.15.(2分)在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),使计算所得数最小,则这个最小数是﹣107.【分析】把运算符号添加好,计算即可求出值.【解答】解:1﹣2×6×9=1﹣108=﹣107,故答案为:﹣107【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(2分)如图,圆桌周围有20个箱子,按顺时针方向编号1~20,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2020圈,求4号箱内有674颗红球.【分析】根据图形的变化规律即可求解.【解答】解:根据题意,可知第1圈红球在1、4、7、10、13、16、19号箱内,第2圈红球在2、5、8、11、14、17、20号箱内,第3圈红球在3、6、9、12、15、18号箱内,第4圈红球在1、4、7、10、13、16、19号箱内,…且第1、4、7、10…2020圈会在4号箱内丢一颗红球,所以1+3(n﹣1)=2020(n为正整数)解得n=674.故答案为674.【点评】本题考查了图形的变化规律问题,解决本题的关键是寻找规律式.三、解答题(本大题共10小题,共68分.)17.(12分)计算:(1)12﹣7﹣15;(2)(﹣4)﹣(﹣5)﹣5.5﹣3(3)(﹣3)××(﹣)×(4)(﹣12)÷(﹣4)×【分析】(1)原式利用减法法则计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法法则计算即可求出值;(4)原式从左到右依次计算即可求出值.【解答】解:(1)原式=12﹣22=﹣10;(2)原式=﹣4﹣3+5﹣5.5=﹣8;(3)原式=﹣3×××=﹣;(4)原式=12××=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2)﹣12+[(﹣4)2﹣(1﹣32)×2]【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=2×(﹣27)+12+15=﹣54+27=﹣27;(2)原式=﹣1+16+16=31.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.【分析】原式合并同类项,得到最简结果,将x的值代入计算,即可求出值.【解答】解:原式=(5﹣3﹣2)x2+(﹣5+6)x+(4﹣5)=x﹣1,当x=﹣3时,原式=﹣3﹣1=﹣4.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.20.(6分)某文具店在一周的销售中,盈亏情况如表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?【分析】利用加减法法则,先计算星期六的盈亏钱数,再怕门店星期六的盈亏..【解答】解:458﹣188+27.8+70.3﹣200﹣138.1+8=38因为38>0,所以星期六盈利了,盈余38元.【点评】本题考查了有理数的加减及正负数的意义,利用加减法计算出星期六的钱数是解决本题的关键.21.(6分)已知a>0,b<0,且a+b<0,请利用数轴比较a,b,﹣a,﹣b的大小,并用“<”号连接.【分析】根据已知条件吧a、b、﹣a、﹣b在数轴上表示出来,再比较即可.【解答】解:∵a>0,b<0,且a+b<0,∴|b|>|a|,在数轴上表示为:b<﹣a<a<﹣b.【点评】本题考查了数轴、有理数的加法法则和有理数的大小比较等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.22.(6分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④1+3+5+7=42;⑤1+3+5+7+9=52;…(2)请写出第n个等式;(3)利用(2)中的等式,计算21+23+25+ (99)【分析】(1)由1+3+5+7=16,16=42,即可得出结论;(2)由部分点阵图对应的等式,可得出第n个点阵图对应的等式;(3)由(2)的结论结合21+23+25+…+99=(1+3+…+99)﹣(1+3+…+19),即可求出结论.【解答】解:(1)1+3+5+7=16=42.故答案为:1+3+5+7=42.(2)∵1=12,1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52,…,∴1+3+…+(2n﹣1)=n2.(3)21+23+25+…+99=(1+3+…+99)﹣(1+3+…+19)=502﹣102=2400.【点评】本题考查了规律型:图形的变化类以及有理数的混合运动,根据各等式的变化,找出变化规律是解题的关键.23.(6分)父亲看到嘉悦在做一道数学题:“化简:(ax2+6x+8)﹣(6x+5x2+2)”.(1)父亲说:“如果这个问题的标准答案是常数,你能得到a的值么?”(2)父亲又说:“若代入x=﹣1,则这个式子的值是﹣2,你能求出a的值么?”请帮助嘉悦完成这两个任务,并说明理由.【分析】(1)原式去括号合并后,由结果是常数确定出a的值即可;(2)原式去括号合并后,把x=﹣1代入使其值为﹣2求出a的值即可.【解答】解:原式=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,(1)由标准答案是常数,得到a﹣5=0,解得:a=5;(2)把x=﹣1代入得:a﹣5+6=﹣2,解得:a=﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(6分)如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是16,第n个正方形内圆的个数是n2.(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积.(结果保留π)②若a=10,请直接写出第2014个正方形中阴影部分的面积100﹣25π.(结果保留π)【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④个图形圆的个数是42=16,…;可知第n个正方形中圆的个数为n2个;(2)阴影部分的面积等于正方形的面积减去圆的面积,由此列式后即可得到答案;从而推广运用得到结论.【解答】解:(1)图形①圆的个数是1,图形②圆的个数是4,图形③圆的个数是9,图形④圆的个数是16,…;第n个正方形中圆的个数为n2个;(2)①第一个S阴影=a2﹣π•()2=a2;第二个S阴影=a2﹣4•π•()2=a2;第三个S阴影=a2﹣9•π•()2=a2;②从以上计算看出三个图形中阴影部分的面积均相等,与圆的个数无关.第n图形中阴影部分的面积是S阴影=a2﹣n2•π•()2=a2;当a=10,第2014个阴影部分的面积为×102=100﹣25π.【点评】此题考查了规律型:图形的变化,认真观察图形,发现图形的变化规律,得出第n个正方形中圆的个数为n2个和圆面积的变化是解决此题的关键.25.(6分)根据“算法”的约定:在数值转换机中,输入或输出的值写在“平行四边形”框内,计算程序(或步骤)写在“长方形”框内,菱形框则用于对结果作出是否符合要求的判定.因此画数值转换机必须注意框图的选择.(1)如图,当输入数字为1时,数值转换机输出的结果为26;(2)嘉悦的爸爸存入1年期的定期储蓄10000元(假定1年期定期储蓄的年利率为4%)到期后本息和(本金和利息的和)自动转存1年期的定期储蓄.请画出数值转换机,并求出转存几次就能使本息和超过11000元?【分析】(1)根据数值转换机规定的程序列式计算即可求解;(2)先根据题意画出数值转换机,再根据数值转换机规定的程序列式计算即可求解.【解答】解:(1)12×2﹣6=1×2﹣6=2﹣6=﹣4<5,(﹣4)2×2﹣6=16×2﹣6=32﹣6=26>5.故数值转换机输出的结果为26;(2)如图所示:10000×(1+4%)=10400(元)10400×(1+4%)=10816(元)<11000元,10816×(1+4%)=11248.64(元)>11000元.故答案为:26.【点评】本题考查了有理数的混合运算,解题关键是弄清题意,根据题意把输入数代入,按程序一步一步计算.26.(8分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.【分析】(1)由题意列出方程可求解;(2)分两种情况讨论,列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动,结合数轴分类讨论分析即可.【解答】解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或=s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动①如上图,当t1=5s时,P在5,M在16,N在﹣38,再往前一点,MP之间的距离即包含8个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.【点评】本题考查了一元一次方程在数轴上的动点问题中的应用,理清题中的数量关系、数形结合,是解题的关键.。

2019-2020学年江苏省常州市武进区七年级(上)期中数学试卷

2019-2020学年江苏省常州市武进区七年级(上)期中数学试卷

2019-2020学年江苏省常州市武进区七年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)下列各个运算中,结果为负数的是()A.﹣(﹣4)B.|﹣4|C.﹣42D.(﹣4)22.(2分)地球离太阳约有15000000千米,15000000这个数用科学记数法可以表示为()A.0.15×l08B.1.5×106C.1.5×107D.15×1063.(2分)农工商出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意拿出两袋,它们的质量最多相差()A.0.2B.0.4C.25.2D.50.44.(2分)下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6C.a9÷a3=a3D.(a3)2=a65.(2分)一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为()A.B.C.D.6.(2分)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a 为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个7.(2分)实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n8.(2分)a是不为2的有理数,我们把称为a的“哈利数”,如3的“哈利数”是=﹣2,﹣2的“哈利数”是=,已知a1=5,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2019等于()A.B.C.D.5二、填空题(每小题2分,共20分)9.(2分)的相反数是.10.(2分)比较大小:﹣3.14﹣π(用“>”“<”“=”连接).11.(2分)在数3.16,﹣10,2π,﹣,0,1.2121121112…(每两个2之间依次多1个1),1.中有个无理数.12.(2分)代数式﹣的系数是.13.(2分)代数式2a+1与1﹣3a互为相反数,则a=.14.(2分)在数轴上,B点表示的数是﹣1,到点B的距离为2的点表示的数是.15.(2分)已知代数式3x﹣2y的值是﹣2.则代数式6x﹣4y﹣5的值为.16.(2分)若﹣5ab n﹣1与a m﹣1b3的差仍是单项式,则m+n=.17.(2分)将一根绳子对折一次后从中间剪一刀,绳子变成3段;对折两次后从中间剪一刀,绳子变成5段:将这根绳子对折n次后从中间剪一刀,绳子变成段.18.(2分)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是.三、计算题(每小题16分,共16分)19.(16分)(1)﹣3﹣18﹣(﹣26)+(﹣24)(2)(﹣+﹣)÷(﹣)(3)﹣81÷(﹣2)×+(﹣16)(4)﹣12﹣(1﹣0.5)×[2﹣(﹣3)2]四、计算与化简(20每小题10分,21题6分,共16分)20.(10分)(1)﹣3x2﹣2xy+6+3x2﹣5xy﹣8(2)﹣3(2b﹣3a)+2(2a﹣3b)21.(6分)先化简后求值2(3a2b﹣ab2)﹣3(a2b+4ab2),其中a=﹣1,b=.五、解答题(共32分)22.(6分)出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?23.(8分)图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的方法拼成一个边长为(m+n)的正方形,(1)请用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:;(2)观察图2写出(m+n)2,(m﹣n)2,mn三个代数式之间的等量关系:;(3)根据(2)中你发现的等量关系,解决如下问题:若a+b=9,ab=5,求(a﹣b)2的值.24.(8分)阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.又如,表示0的点D到点A的距离是1,到点B的距离是2.那么点D就不是【A,B】的好点,但点D是【B,A】的好点:知识运用:(1)如图1,点B是【D,C】的好点吗?(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?25.(10分)A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为10吨时,那么总运输费为多少元?2019-2020学年江苏省常州市武进区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.【解答】解:A、﹣(﹣4)=4,是正数;B、|﹣4|)=4,是正数;C、﹣42=﹣16,是负数;D、(﹣4)2=16,是正数,故选:C.2.【解答】解:将15000000用科学记数法表示为:1.5×107.故选:C.3.【解答】解:根据题意得:标有质量为(25±0.2)的字样,∴最大为25+0.2=25.2,最小为25﹣0.2=24.8,二者之间差0.4.故选:B.4.【解答】解:A、a2﹣a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确;故选:D.5.【解答】解:两块地的总产量为ma+nb,所以,这两块地平均每公顷的粮食产量为:.故选:C.6.【解答】解:①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.7.【解答】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.8.【解答】解:∵a1=5,∴a2=,a3=,a4=,a5=,∴该数列每4个数为1周期循环,∵2019÷4=504…3,∴a2019=a3=.故选:A.二、填空题(每小题2分,共20分)9.【解答】解:的相反数是﹣()=.10.【解答】解:∵|﹣3.14|=3.14<|﹣π|,∴﹣3.14>﹣π.故答案为:>.11.【解答】解:在数3.16,﹣10,2π,﹣,0,1.2121121112…(每两个2之间依次多1个1),1.中有2π,1.2121121112…(每两个2之间依次多1个1),一共2个无理数.故答案为:2.12.【解答】解:根据单项式系数的定义,单项式的系数为﹣.13.【解答】解:根据题意得:2a+1+1﹣3a=0,解得:a=2,故答案为:214.【解答】解:在点B的左侧,到点B的距离为2的点所表示的数为﹣1﹣2=﹣3,在点B的右侧,到点B的距离为2的点所表示的数为﹣1+2=1,故答案为:﹣3或1.15.【解答】解:∵3x﹣2y=﹣2,∴6x﹣4y﹣5=2(3x﹣2y)﹣5=2×(﹣2)﹣5=﹣9.故答案为:﹣9.16.【解答】解:根据题意,得m﹣1=1,n﹣1=3,解得m=2,n=4,所以m+n=2+4=6.故答案为:6.17.【解答】解:∵对折1次从中间剪一刀,有21+1=3;对折2次,从中间剪一刀,有22+1=5.∴对折n次,从中间剪一刀全部剪断后,绳子变成(2n+1)段.故答案为:(2n+1).18.【解答】解:依题意得:两数是关于﹣2和8的中点对称,即关于(﹣2+8)÷2=3对称,∵A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,∴A:3﹣2014÷2=3﹣1007=﹣1004.故答案为:﹣1004.三、计算题(每小题16分,共16分)19.【解答】解:(1)原式=﹣3﹣18+26﹣24=﹣19;(2)原式=(﹣+﹣)×(﹣36)=27﹣21+20=26;(3)原式=81××﹣16=16﹣16=0;(4)原式=﹣1﹣××(﹣7)=﹣1+=.四、计算与化简(20每小题10分,21题6分,共16分)20.【解答】解:(1)﹣3x2﹣2xy+6+3x2﹣5xy﹣8=(﹣3x2+3x2)+(﹣2xy﹣5xy)+(6﹣8)=﹣7xy﹣2;(2)﹣3(2b﹣3a)+2(2a﹣3b)=﹣6b+9a+4a﹣6b=13a﹣12b.21.【解答】解:原式=6a2b﹣2ab2﹣3a2b﹣12ab2=3a2b﹣14ab2,当a=﹣1、b=时,原式=3×(﹣1)2×﹣14×(﹣1)×()2=3×1×+14×=+=5.五、解答题(共32分)22.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=﹣13+21=8千米,所以小王在下午出车的出发地的东面,距离出发地8千米;(2)10×8+2×(5﹣3)+2×(10﹣3)+2×(5﹣3)+2×(6﹣3)=80+4+14+4+6=108元.23.【解答】解:(1)根据图形可得:方法1:(m﹣n)2方法2:(m+n)2﹣4mn故答案为:(m﹣n)2,(m+n)2﹣4mn.(2)由阴影部分的两个面积代数式相等,可得:(m﹣n)2=(m+n)2﹣4mn 故答案为:(m﹣n)2=(m+n)2﹣4mn(3)由题意得:(a﹣b)2=(a+b)2﹣4ab将a+b=9,ab=5代入上式得:(a﹣b)2=92﹣4×5=61答:(a﹣b)2的值是61.24.【解答】解:(1)∵BD=2,BC=1,BD=2BC∴点B是【D,C】的好点.故答案为:是;(2)设点P表示的数为x,分以下几种情况:①P为【A,B】的好点由题意,得x﹣(﹣40)=2(20﹣x),解得x=0,t=20÷2=10(秒);②A为【B,P】的好点由题意,得20﹣(﹣40)=2[x﹣(﹣40)],解得x=﹣10,t=[20﹣(﹣10)]÷2=15(秒);③P为【B,A】的好点由题意,得20﹣x=2[x﹣(﹣40)],解得x=﹣20,t=[20﹣(﹣20)]÷2=20(秒);④A为【P,B】的好点由题意得x﹣(﹣40)=2[20﹣(﹣40)]解得x=80(舍).⑤B为【A,P】的好点20﹣(﹣40)=2(20﹣x)∴x=﹣10t=[20﹣(﹣10)]÷2=15(秒);此种情况点P的位置与②中重合,即点P为AB中点.综上可知,当t为10秒、15秒或20秒,P、A和B中恰有一个点为其余两点的好点.25.【解答】解:(1)从A仓库运到D工地的水泥为:(20﹣x)吨,从B仓库将水泥运到D工地的运输费用为:[35﹣(20﹣x)]×9=(9x+135)元;(2)15x+12×(20﹣x)+10×(15﹣x)+[35﹣(20﹣x)]×9=(2x+525)元;(3)当x=10时,2x+525=545元;答:总运费为545元.。

江苏省连云港市七年级上学期期中考试数学试卷含答案

江苏省连云港市七年级上学期期中考试数学试卷含答案

江苏省连云港市七年级(上册)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣2015的倒数是( )A.2015 B.﹣2015 C.﹣D.2.下列各式计算正确的是( )A.6a+a=7a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab23.下列各式中的两项,不是同类项的是( )A.5a2b与﹣ba2B.34与43C.m3与43D.4.4x+8错写成4(x+8),结果比原来( )A.多4 B.少4 C.多24 D.少245.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )A.a+b<0 B.a﹣b<0 C.a•b>0 D.>06.若7﹣2x和5﹣x的值互为相反数,则x的值为( )A.4 B.2 C.﹣12 D.﹣77.一件衣服按原价的八折出售,价格为a元,则这件衣服的原价为( )A.元B.80%a元C.20%a元D.元8.下列说法中,正确的有( )①单项式﹣的系数是﹣2,次数是3;②﹣5π,0.333…都是无理数;③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;④平方等于本身数只有0和1.A.4个B.3个C.2个D.1个二、填空题(每小题3分,共30分)9.如果水位升高1.2米,记作“+1.2”米,那么水位下降0.7米,记作__________米.10.关于x的方程2x+a﹣5=0的解是x=﹣2,则a的值是__________.11.比较大小:__________(填“>”或“<”)12.地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为__________.13.数轴上有一点A,一只蚂蚁从点A出发爬了3个单位长度到了原点,则点A所表示的数是__________.14.若单项式﹣3x4a y与x8y b+4的和仍为单项式,则(a+b)2015=__________.15.如图所示是计算机程序计算,若开始输入x=﹣,则最后输出的结果是__________.16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x公顷旱地改为林地,则为可列方程为__________.17.已知x﹣2y=﹣3,则5+2x﹣4y=__________.18.已知|x|=0.19,|y|=0.99,且<0,则x+y的值是__________.三、解答题(共96分)19.画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.0,﹣2,﹣,+2.5,﹣|﹣3|20.计算(1)﹣(﹣)+(﹣);(2)﹣32;(3)(﹣)÷(﹣);(4)﹣14÷(﹣5)2×(﹣)﹣|﹣0.8﹣1|.21.化简:(1)2a﹣5b﹣3a+b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1).22.化简与求值(1)已知A=2m2+n2+2m,B=m2﹣n2﹣m,求A﹣3B;(2)先化简,再求值:2x2+(2xy﹣3y2)﹣2(yx+﹣2y2),其中(x+1)2+|y﹣2|=0.23.解方程:(1)5x+5=2﹣4x;(2)﹣=1.24.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.25.问题探究:观察下面由“※”组成的图案和算式,解答问题:1+3=4=()2=221+3+5=9()2=321+3+5+7=16=()2=42,…问题解决:(1)试猜想1+3+5+7+9…+29的结果为__________.(2)若n表示正整数,请用含n的代数式表示1+3+5+7+9+…+(2n﹣1)+(2n+1)的结果.问题拓展:(3)请用上述规律计算:1017+1019+…+2013+2015.26.(14分)某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为__________元,乙旅行社的费用为__________元;(用含a的代数式表示,并化简)(2)假如这个单位现组织包括管理员工在内的共15名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为m,则这七天的日期之和为__________.(用含m的代数式表示,并化简)(4)假如这七天的日期之和为56的整数倍数,则他们可能于十月多少号出发?(写出所有符合条件的可能性,并写出简单的计算过程)江苏省连云港市七年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣2015的倒数是( )A.2015 B.﹣2015 C.﹣D.【考点】倒数.【分析】根据倒数定义可知,﹣2015的倒数是﹣.【解答】解:﹣2015的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列各式计算正确的是( )A.6a+a=7a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、6a+a=7a,故此选项错误;B、﹣2a+5b无法计算,故此选项错误;C、4m2n﹣2mn2无法计算,故此选项错误;D、3ab2﹣5b2a=﹣2ab2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.3.下列各式中的两项,不是同类项的是( )A.5a2b与﹣ba2B.34与43C.m3与43D.【考点】同类项.【分析】根据同类项的概念逐项分析即可.【解答】解:B、是两个常数,是同类项;C、一个常数和字母不是同类项;A、D所含有的字母相同,并且相同字母的指数也相同,是同类项.故选C.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.4.4x+8错写成4(x+8),结果比原来( )A.多4 B.少4 C.多24 D.少24【考点】整式的加减.【分析】用4(x+8)﹣(4x+8),先去括号,然后合并同类项求解.【解答】解:4(x+8)﹣(4x+8)=4x+32﹣4x﹣8=24,即结果比原来多了24.故选C.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.5.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0【考点】数轴.【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.6.若7﹣2x和5﹣x的值互为相反数,则x的值为( )A.4 B.2 C.﹣12 D.﹣7【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:7﹣2x+5﹣x=0,移项合并得:3x=12,解得:x=4.故选A.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.一件衣服按原价的八折出售,价格为a元,则这件衣服的原价为( )A.元B.80%a元C.20%a元D.元【考点】列代数式.【分析】要求原价就要先设出未知数,找出本题的等量关系:原价×8折=售价,列出代数式即可.【解答】解:设原价为x元,则:x×0.8=a,解得:x=,故选A【点评】本题考查代数式的应用能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.8.下列说法中,正确的有( )①单项式﹣的系数是﹣2,次数是3;②﹣5π,0.333…都是无理数;③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;④平方等于本身数只有0和1.A.4个B.3个C.2个D.1个【考点】单项式;有理数;有理数的乘方;无理数.【分析】根据单项式的系数和次数的定义,无理数的定义,非负数的定义,数的平方进行判断即可.[来源:]【解答】解:①单项式﹣的系数是﹣,次数是3;错误;②0.333…是有理数;错误③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;正确;④平方等于本身数只有0和1;正确,故选C.【点评】本题考查了单项式的系数和次数的定义,无理数的定义,非负数的定义,数的平方,熟记各定义是解题的关键.二、填空题(每小题3分,共30分)9.如果水位升高1.2米,记作“+1.2”米,那么水位下降0.7米,记作﹣0.7米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水位升高1.2米,记作+1.2米,那么水位下降0.7米,记作﹣0.7米.[来源:学&科&网] 故答案为:﹣0.7.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.关于x的方程2x+a﹣5=0的解是x=﹣2,则a的值是9.【考点】一元一次方程的解.【分析】将x=﹣2代入方程进行计算,即可求出a的值.【解答】解:将x=﹣2代入方程2x+a﹣5=0得:﹣4+a﹣5=0,解得:a=9.故答案为:9.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.比较大小:>(填“>”或“<”)【考点】有理数大小比较.【专题】探究型.【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.【解答】解:∵﹣=﹣0.75<0,﹣=﹣0.8<0,∵|﹣0.75|=0.75,|﹣0.8|=0.8,0.75<0.8,∴﹣0.75>﹣0.8,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.12.地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为1.1×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故答案为:1.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.数轴上有一点A,一只蚂蚁从点A出发爬了3个单位长度到了原点,则点A所表示的数是±3.【考点】数轴.【分析】根据数轴的特点,分点A在原点左边与右边两种情况讨论求解.【解答】解:若点A在原点左边,则点A表示﹣3,若点A在原点右边,则点A表示3,所以点A表示±3.故答案为:±3.【点评】本题考查了数轴,难点在于要分点A在原点的左右两边两种情况.14.若单项式﹣3x4a y与x8y b+4的和仍为单项式,则(a+b)2015=﹣1.[来源:学&科&网]【考点】合并同类项.【分析】根据单项式能合并,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得a,b的值,根据负数的奇数次幂是负数,可得答案.【解答】解:由﹣3x4a y与x8y b+4的和仍为单项式,得4a=8,b+4=1,解得a=2,b=﹣3,(a+b)2015=(﹣1)2015=﹣1,故答案为:﹣1.【点评】本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.15.如图所示是计算机程序计算,若开始输入x=﹣,则最后输出的结果是﹣3.【考点】代数式求值.【专题】图表型.【分析】将x的值代入程序中计算即可得到结果.【解答】解:当x=﹣时,结果为:4×(﹣)+1=﹣1,当x=﹣1时,结果为:4×(﹣1)+1=﹣3,∵﹣3<﹣2,∴最后输出的结果是﹣3.故答案为:﹣3.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x公顷旱地改为林地,则为可列方程为20%(108+x)=54﹣x.【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故答案为:20%(108+x)=54﹣x.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.17.已知x﹣2y=﹣3,则5+2x﹣4y=﹣1.【考点】代数式求值.【分析】把x﹣2y=﹣3看作一个整体,把代数式整理为5+2x﹣4y=5+2(x﹣2y),进一步代入求得答案即可.【解答】解:∵x﹣2y=﹣3,∴5+2x﹣4y=5+2(x﹣2y)=5+2×(﹣3)=﹣1.故答案为:﹣1.【点评】此题考查代数式求值,掌握整体代入的思想是解决问题的关键.18.已知|x|=0.19,|y|=0.99,且<0,则x+y的值是±0.8.【考点】有理数的除法;绝对值;有理数的加法.【专题】计算题;实数.【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可求出x+y的值.【解答】解:∵|x|=0.19,|y|=0.99,且<0,∴x=0.19,y=﹣0.99;x=﹣0.19,y=0.99,则x+y=±0.8,故答案为:±0.8【点评】此题考查了有理数的除法,加法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题(共96分)19.画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.0,﹣2,﹣,+2.5,﹣|﹣3|【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:如图所示:﹣|﹣3|<﹣2<﹣<0<+2.5.【点评】本题考查了数轴,有理数的大小比较的应用,能在数轴上表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.计算(1)﹣(﹣)+(﹣);(2)﹣32;(3)(﹣)÷(﹣);(4)﹣14÷(﹣5)2×(﹣)﹣|﹣0.8﹣1|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣+﹣﹣=1﹣=﹣;(2)原式=﹣9××=﹣;(3)原式=(﹣+﹣)×(﹣36)=16﹣30+21=7;(4)原式=﹣1××(﹣)﹣=﹣=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.化简:(1)2a﹣5b﹣3a+b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1).【考点】整式的混合运算.【专题】计算题.【分析】(1)将同类项进行合并即可;(2)先去括号,然后再合并.【解答】解:(1)2a﹣5b﹣3a+b=﹣a﹣4b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1),=﹣4x2+2xy+4x2+4xy﹣4,=6xy﹣4.【点评】本题考查了合并同类项法则,单项式乘多项式,整式化简一般先去括号,然后合并同类项,细心运算即可.22.化简与求值(1)已知A=2m2+n2+2m,B=m2﹣n2﹣m,求A﹣3B;(2)先化简,再求值:2x2+(2xy﹣3y2)﹣2(yx+﹣2y2),其中(x+1)2+|y﹣2|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方;整式的加减.【专题】计算题;整式.【分析】(1)把A与B代入A﹣3B中,去括号合并即可得到结果;(2)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:(1)∵A=2m2+n2+2m,B=m2﹣n2﹣m,∴A﹣3B=2m2+n2+2m﹣3(m2﹣n2﹣m)=2m2+n2+2m﹣3m2+3n2+3m=﹣m2+4n2+5m;(2)∵(x+1)2+|y﹣2|=0,∴x=﹣1,y=2,则原式=2x2+2xy﹣3y2﹣2xy﹣3x2+4y2=﹣x2+y2=﹣1+4=3.【点评】此题考查了整式的加减﹣化简求值,非负数的性质,以及整式的加减,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x+5=2﹣4x;(2)﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:9x=﹣3,解得:x=﹣;(2)去分母得:2(2x﹣1)﹣(5x+1)=6,去括号得:4x﹣2﹣5x﹣1=6,移项合并得:﹣x=9,解得:x=﹣9.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.【考点】有理数的混合运算;解一元一次方程.【专题】新定义.【分析】各项分别利用题中的新定义计算即可得到结果.[来源:学+科+网]【解答】解:(1)根据题意得:(﹣2)⊗3=(﹣2)2﹣2×3=4﹣6=﹣2;(2)利用题中新定义化简(﹣3)⊗x=5得:9﹣3x=5,解得:x=;(3)根据题中的新定义化简2⊗x=4+2x,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x=6x+21,3⊗(2⊗x)=﹣4+x得:6x+21=﹣4+x,解得:x=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.问题探究:观察下面由“※”组成的图案和算式,解答问题:1+3=4=()2=221+3+5=9()2=321+3+5+7=16=()2=42,…问题解决:(1)试猜想1+3+5+7+9…+29的结果为225.(2)若n表示正整数,请用含n的代数式表示1+3+5+7+9+…+(2n﹣1)+(2n+1)的结果.问题拓展:(3)请用上述规律计算:1017+1019+…+2013+2015.【考点】规律型:数字的变化类.【分析】(1)根据已知得出连续奇数的和等于数字个数的平方;(2)根据已知得出连续奇数的和等于数字个数的平方,得出答案即可;(3)利用以上已知条件得出1017+1019+…+2013+2015=(1+3+5+…+2013+2015)﹣(1+3+5+…+1013+1015),求出即可.【解答】解:(1)1+3+5+7+9…+29=()2=152=225;(2)1+3+5+7+9+…+(2n﹣1)+(2n+1)=()2=(n+1)2;(3)1017+1019+…+2013+2015=(1+3+5+…+2013+2015)﹣(1+3+5+…+1013+1015)=()2﹣()2=10082﹣5082=7580002.【点评】此题主要考查了数字变化规律,培养学生通过特例分析从而归纳总结出一般结论的能力.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目的难点.26.(14分)某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为1500a元,乙旅行社的费用为1600a ﹣1600元;(用含a的代数式表示,并化简)(2)假如这个单位现组织包括管理员工在内的共15名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为m,则这七天的日期之和为7m.(用含m的代数式表示,并化简)(4)假如这七天的日期之和为56的整数倍数,则他们可能于十月多少号出发?(写出所有符合条件的可能性,并写出简单的计算过程)【考点】列代数式;代数式求值.【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=15代入(1)中的代数式,比较费用较少的比较优惠;(3)这七天的日期之和为m﹣3+m﹣2+m﹣1+m+m+1+m+2+m+3=7m;(4)讨论:当7m=56时;当7m=56×2时;当7m=56×3时;当7m=56×4时,分别求出m的值,再根据实际问题确定m的值,然后再计算m﹣3确定号出发日期.【解答】解:(1)甲旅行社的费用=a×2000×0.75=1500a;乙旅行社的费用=(a﹣1)×2000×0.8=1600a﹣1600;故答案为:1500a;1600a﹣1600;(2)将a=15代入得,甲旅行社的费用=1500×15=22500(元);乙旅行社的费用=1600×15﹣1600=22400(元)因为22500>22400元,所以乙旅行社更优惠;(3)m﹣3+m﹣2+m﹣1+m+m+1+m+2+m+3=7m,故答案为:7m;(4)由(3)结论:①设这七天的日期和是56,则7m=56,m=8,所以8﹣3=5,即5号出发;②设这七天的日期和是56的2倍,即112,则7m=112,m=16,所以16﹣3=13,即13号出发;③设这七天的日期和是56的3倍,即168,则7m=168,m=24,所以24﹣3=21,即21号出发;所以他们可能于十月5号或13号或21号出发.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)期中数学试卷

2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)期中数学试卷

2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)期中数学试卷一、选择题1.(3分)2-的绝对值是( ) A .12B .2±C .2D .2-2.(3分)下列方程中,是一元一次方程的是( ) A .30x +=B .34x x+= C .321x y += D .2512x x -=3.(3分)下面的说法正确的是( ) A .2-不是单项式 B .4-和4是同类项C .25abc 是五次单项式D .31x v++是多项式4.(3分)下列一组数:2.7,132-,0.6,2π,0.080080008⋯⋯其中是无理数的有( )个.A .0B .1C .2D .35.(3分)下列说法正确的是( ) A .平方是它本身的数只有0 B .立方是它本身的数是1± C .倒数是它本身的数是1±D .绝对值是它本身的数是正数6.(3分)a 的2倍与b 的13的差的平方,用代数式表示应为( )A .22123a b -B .2123a b -C .21(2)3a b -D .212()3a b -7.(3分)如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .23a b -B .48a b -C .24a b -D .410a b -8.(3分)若x 为有理数,||x x -表示的数是( ) A .正数 B .非正数 C .负数 D .非负数二、填空题9.(3分)太阳半径大约是696 000千米,用科学记数法表示为 米. 10.(3分)比较大小:56- 34-(填“>”、“ =”、“ <”号).11.(3分)数轴上点M 表示的有理数是3-,将点M 向右平移2个单位长度到达点N ,则N 表示的有理数为 .12.(3分)1x =-是方程310x m --=的解,则m 的值是 .13.(3分)若方程||2(3)70a a x ---=是一个一元一次方程,则a 等于 .14.(3分)a ,b 互为相反数,c ,d 互为倒数,则关于x 的方程2()3(1)20a b x cd x x ++--=的解为x = .15.(3分)若关于a ,b 的多项式2222(2)(2)a ab b a mab b +--++中不含ab 项,则m = . 16.(3分)若23a b -=,则924a b -+的值为 .17.(3分)定义一种新运算:a ※()3()a b a b b b a b -⎧=⎨<⎩,则当3x =时,2※4x -※x 的结果为 .18.(3分)如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,⋯,则第2019次输出的结果为 .三、简答题 19.计算(1)10(16)(24)---+- (2)4211[2(3)]6----20.解方程: (1)43(2)x x -=-; (2)12123x x+--=.21.若2(1)|2|0a b -++=,先化简:22225(3)2(7)a b ab a b ab ---,再求值.22.当k 取何值时,方程3(21)12x x -=-与关于x 的方程82(1)k x -=+的解相等?23.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以乙球门线为基准, 向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):m 10+,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上? (2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.24.四人做传数游戏:甲任报一个数传给乙,乙把这个数减1传给丙,丙再把所得的数的绝对值传给丁,丁把所听到的数减1报出答案:(1)如果甲报的数为x,则乙报的数为1x-,丙报的数为,丁报的数为;(2)若丁报出的答案为2,则甲报的数是多少?25.甲,乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?26.定义一种新运算:观察下列各式:=⨯+=1315383(1)35114-=⨯-=;=⨯+=;5455429-=⨯-=4(3)45317(1)请你算一算:(5)(6)--=;(2)请你想一想:a b=;(3)若()3-+的值.a b a ba b-=,请计算()(53)27.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为22a b -,图2中图形的面积为()(a b -⨯ );(用含有a 、b 的代数式表示)(2)由(1)可以得到等式: ; (3)根据你得到的等式解决下列问题:①计算:2268.531.5-②若42m n +=,求2222(1)(21)(21)m n m n +++---的值.28.如图,数轴上的三点A 、B 、C 分别表示有理数a 、b 、c .(O 为原点)(1)a b - 0,a c + 0,b c - 0. (用“<”或“>”或“=”号填空) 化简:||||||a b a c b c --++-(2)若数轴上两点A 、B 对应的数分别为3-、1-,点P 为数轴上一动点,其对应的数为x . ①若点P 到点A 、点B 的距离相等,则点P 对应的数x 为 ;②若点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P 以6个单位长度/秒的速度同时从原点O 向左运动.当点A 与点B 之间的距离为1个单位长度时,求点P 所对应的数x 是多少?2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)期中数学试卷参考答案一、选择题1.(3分)2-的绝对值是( ) A .12B .2±C .2D .2-【解答】解:2-的绝对值是2. 故选:C .2.(3分)下列方程中,是一元一次方程的是( ) A .30x +=B .34x x+= C .321x y += D .2512x x -=【解答】解:A 、是一元一次方程,故此选项正确;B 、是分式方程,故此选项错误;C 、是二元一次方程,故此选项错误;D 、是一元二次方程,故此选项错误;故选:A .3.(3分)下面的说法正确的是( ) A .2-不是单项式 B .4-和4是同类项C .25abc 是五次单项式D .31x v++是多项式【解答】解:A 、2-是单项式;B 、4-和4都是常数,所以是同类项;C 、25abc 是三次单项式;D 、31x v++是分式.故选:B .4.(3分)下列一组数:2.7,132-,0.6,2π,0.080080008⋯⋯其中是无理数的有( )个.A .0B .1C .2D .3【解答】解:2.7、0.6是有限小数,属于有理数;132-是分数,属于有理数;有理数有:2π,0.080080008⋯⋯共2个.故选:C .5.(3分)下列说法正确的是( ) A .平方是它本身的数只有0 B .立方是它本身的数是1± C .倒数是它本身的数是1±D .绝对值是它本身的数是正数【解答】解:A 、平方是它本身的数有0和1,故A 错误;B 、立方是它本身的数是1±和0,故B 错误;C 、倒数是它本身的数是1±,故C 正确;D 、绝对值是它本身的数是正数和0,故D 错误.故选:C .6.(3分)a 的2倍与b 的13的差的平方,用代数式表示应为( )A .22123a b -B .2123a b -C .21(2)3a b -D .212()3a b -【解答】解:a 的2倍与b 的13的差的平方,用代数式表示应为:21(2)3a b -;故选:C .7.(3分)如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .23a b -B .48a b -C .24a b -D .410a b -【解答】解:根据题意得:2[(3)]48a b a b a b -+-=-. 故选:B .8.(3分)若x 为有理数,||x x -表示的数是( ) A .正数B .非正数C .负数D .非负数【解答】解:(1)若0x 时,||0x x x x -=-=; (2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得||x x -表示的数是非正数. 故选:B . 二、填空题9.(3分)太阳半径大约是696 000千米,用科学记数法表示为 米. 【解答】解:696 000千米696= 000 000米86.9610=⨯米. 10.(3分)比较大小:56- 34-(填“>”、“ =”、“ <”号).【解答】解:510612-=-,39412-=-, 1091212>, 5364∴-<-故答案为:<11.(3分)数轴上点M 表示的有理数是3-,将点M 向右平移2个单位长度到达点N ,则N 表示的有理数为 . 【解答】解:根据题意画图如下:M 表示的有理数是3-,将点M 向右平移2个单位长度到达点N ,则N 表示的有理数为1-; 故答案为:1-.12.(3分)1x =-是方程310x m --=的解,则m 的值是 . 【解答】解:当1x =-时, 310m ∴---=, 4m ∴=-,故答案为:4-13.(3分)若方程||2(3)70a a x ---=是一个一元一次方程,则a 等于 . 【解答】解:根据一元一次方程的特点可得3021a a -≠⎧⎨-=⎩,解得3a =-.14.(3分)a ,b 互为相反数,c ,d 互为倒数,则关于x 的方程2()3(1)20a b x cd x x ++--=的解为x = .【解答】解:根据题意得:0a b +=,1cd =, 代入方程得:3(1)20x x --=, 去括号得:3320x x --=, 解得:3x =, 故答案为:315.(3分)若关于a ,b 的多项式2222(2)(2)a ab b a mab b +--++中不含ab 项,则m = . 【解答】解:原式2222222(2)3a ab b a mab b m ab b =+----=--, 由结果不含ab 项,得到20m -=, 解得:2m =. 故答案为2.16.(3分)若23a b -=,则924a b -+的值为 . 【解答】解:23a b -=,∴原式92(2)963a b =--=-=,故答案为:3.17.(3分)定义一种新运算:a ※()3()a b a b b b a b -⎧=⎨<⎩,则当3x =时,2※4x -※x 的结果为 .【解答】解:当3x =时,原式2=※34-※39(43)918=--=-=, 故答案为:818.(3分)如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,⋯,则第2019次输出的结果为 .【解答】解:开始输入的x 值为32,∴第1次输出结果为16,第2次输出结果为8, 第3次输出结果为4, 第4次输出结果为2,第5次输出结果为1, 第6次输出结果为4, 第7次输出结果为2, 第8次输出结果为1, 第9次输出结果为4,⋯∴从第3次输出开始,每3次一个循环,201922017-=,201736721÷=⋯,余数为1,∴输出结果为第3次的结果4,故答案为4. 三、简答题 19.计算(1)10(16)(24)---+- (2)4211[2(3)]6----【解答】解:(1)原式10162462418=-+-=-=-; (2)原式11(29)6=--⨯-,11(7)6=--⨯-,716=-+, 16=.20.解方程: (1)43(2)x x -=-; (2)12123x x+--=. 【解答】解:(1)去括号得:463x x -=-, 移项合并得:22x =, 解得:1x =;(2)去分母:63(1)2(2)x x -+=-, 去括号得:63342x x --=-,移项合并得:1x -=,解得:1x =-.21.若2(1)|2|0a b -++=,先化简:22225(3)2(7)a b ab a b ab ---,再求值.【解答】解:原式2222225152143a b ab a b ab a b ab =--+=-,2(1)|2|0a b -++=,1a ∴=,2b =-,则原式6410=--=-.22.当k 取何值时,方程3(21)12x x -=-与关于x 的方程82(1)k x -=+的解相等?【解答】解:方程3(21)12x x -=-,整理得:84x =, 解得:12x =, 把12x =代入方程82(1)k x -=+得: 83k -=,解得:5k =.23.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以乙球门线为基准, 向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):m10+,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.【解答】解:(1)可以回到球门线上,根据题意得:102512694140-++--+-=(m ), 则守门员最后能回到球门线上;(2)1028-=(m )102513-+=(m )10251225-++=(m )同理可得,守门员离开球门线的距离依次为(单位: m ):10,8,13,25,19,10,14,0,则守门员离开球门线的最远距离达25米;(3)根据题意得:守门员离开球门线的距离依次为(单位: m ):10,8,13,25,19,10,14,0, 其中13,25,19,14大于10(m )则对方球员有4次挑射破门的机会.24.四人做传数游戏:甲任报一个数传给乙,乙把这个数减1传给丙,丙再把所得的数的绝对值传给丁,丁把所听到的数减1报出答案:(1)如果甲报的数为x ,则乙报的数为1x -,丙报的数为 ,丁报的数为 ;(2)若丁报出的答案为2,则甲报的数是多少?【解答】解:(1)根据题意,甲报的数为x ,则乙报的数为1x -,丙报的数为|1|x -,丁报的数为|1|1x --,故答案为:|1|x -,|1|1x --;(2)设甲为x ,则|1|12x --=,解得:4x =或2x =-.所以甲报的数是4或者2-.25.甲,乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【解答】解:(1)甲店需付费:420(4)580520(560)⨯+-⨯=+-=+元;乙店需付费:x x xx x⨯+⨯⨯=+元;(4205)0.9(4.572)故答案为(560)x+;(4.572)x+;(2)到甲商店比较合算.当10⨯+=元,⨯+=元;到乙店需付费4.51072117 x=时,到甲店需付费51060110∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍,在乙店购买(104)-盒乒乓球,所需费用为:⨯+-⨯⨯=+=元.420(104)50.98027107答:能,在甲店购买4副乒乓球拍,在乙店购买6盒乒乓球更为省钱,此时需付款107元.26.定义一种新运算:观察下列各式:=⨯+=131538-=⨯-=;3(1)35114=⨯+=;5455429-=⨯-=4(3)45317(1)请你算一算:(5)(6)--=;(2)请你想一想:a b=;(3)若()3-+的值.a b a ba b-=,请计算()(53)【解答】解:(1)(5)(6)--556=-⨯-=-;31(2)5=+;a b a b(3)()3a b-=,即53-=,a b()(53)-+a b a b=-++5553a b a b2(5)a b =-6=故答案为:(1)31-;(2)5a b +;(3)原式=6.27.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为22a b -,图2中图形的面积为()(a b -⨯ );(用含有a 、b 的代数式表示)(2)由(1)可以得到等式: ;(3)根据你得到的等式解决下列问题:①计算:2268.531.5-②若42m n +=,求2222(1)(21)(21)m n m n +++---的值.【解答】解:(1)图1中图形的面积为22a b -,图2中图形的面积为()()a b a b -⨯+, 故答案为:a b +;(2)根据两个图形的面积相等可得22()()a b a b a b -=-+,故答案为:22()()a b a b a b -=-+;(3)①2268.531.5(68.531.5)(68.531.5)371003700-=-+=⨯=;②22222222(1)(21)(21)[(1)][21)(21)]m n m n m m n n +++---=+-+--+ [(1)(1)][(2121)(2121)]m m m m n n n n =+-++++-+++-218m n =++2(4)1m n =++42m n +=∴原式41=+5=.28.如图,数轴上的三点A 、B 、C 分别表示有理数a 、b 、c .(O 为原点)(1)a b - 0,a c + 0,b c - 0. (用“<”或“>”或“=”号填空) 化简:||||||a b a c b c --++-(2)若数轴上两点A 、B 对应的数分别为3-、1-,点P 为数轴上一动点,其对应的数为x . ①若点P 到点A 、点B 的距离相等,则点P 对应的数x 为 ; ②若点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P 以6个单位长度/秒的速度同时从原点O 向左运动.当点A 与点B 之间的距离为1个单位长度时,求点P 所对应的数x 是多少?【解答】解:(1)0a b -<,0a c +<,0b c -<; ||||||a b a c b c --++-=()()()a b a c b c --++--=a b a c b c -+++-+=2c故答案为:<,<,<;||||||=2a b a c b c c --++-.(2)①数轴上两点A 、B 对应的数分别为3-、1-,点P 到点A 、点B 的距离相等, ∴点P 对应的数3122x --==-; ②设运动t 秒时,点A 与点B 之间的距离为1个单位长度, 若此时A 没追上B ,则20.521t t -=- 解得:23t =, 则点P 表示2(6)43⨯-=-; 若此时A 追上并超过B ,20.521t t -=+解得:2t =,则点P 表示2(6)12⨯-=-. 故答案为:①2-;②点P 所对应的数x 是4-或12-.。

江苏省无锡市锡山区锡东片2019-2020学年第一学期七年级(上)期中数学试卷 含解析

江苏省无锡市锡山区锡东片2019-2020学年第一学期七年级(上)期中数学试卷  含解析

2019-2020学年七年级(上)期中数学试卷一.选择题(共10小题)1.2019的相反数的倒数是()A.B.C.2019 D.﹣20192.2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.下列运算正确的是()A.3a+2a=5a2B.2a2b﹣a2b=a2bC.3a+3b=3ab D.a5﹣a2=a34.已知﹣3x m﹣1y3与xy m+n是同类项,那么m,n的值分别是()A.m=2,n=﹣1 B.m=﹣2,n=﹣1 C.m=﹣2,n=1 D.m=2,n=1 5.下列说法正确的是()A.3不是单项式B.多项式x2﹣5xy﹣x+1的次数是5C.x2y的系数是0D.﹣x2y的次数为36.某种冰糕的储藏温度为﹣12±2℃,四个冷藏室的温度如下,那么不适合储藏这种冰糕的是()A.﹣9 B.﹣11 C.﹣12 D.﹣137.已知有理数a,b在数轴上表示的点如图所示,则下列式子中不正确的是()A.a•b<0 B.a+b<0 C.|a|<|b| D.b﹣a>08.当x=3时,代数式ax3+bx+2的值为1;则当x=﹣3时代数式ax3+bx+2的值为()A.﹣3 B.﹣1 C.1 D.39.按下面的程序计算,若开始输入x=2,则最后输出的结果是()A.﹣4 B.﹣5 C.﹣6 D.﹣710.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m个格子中所填整数之和是1684,则m的值可以是()A.1015 B.1010 C.1012 D.1018二.填空题(共8小题)11.用一个x的值说明“|x|=x”是错误的,这个值可以是x=.12.绝对值小于π的所有整数的积是.13.单项式的次数是.14.多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)中不含xy项,则m=.15.在数5,﹣3,﹣2,2,6中,任意选两个数相乘,所得的积最小,积是16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为千克.17.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为.18.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本.笔记本买来后,小明、小华分别比小敏多拿了7本和8本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏元.三.解答题(共8小题)19.把下列各数前的序号分别填入相应的集合内:①﹣2.5,②0,③(﹣4)2,④,⑤,⑥,⑦﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{ …};(2)负分数集合:{ …};(3)整数集合:{ …};(4)无理数集合:{ …}.20.(1)在数轴上把下列各数表示出来:﹣1,﹣|﹣2.5|,﹣(﹣2),(﹣1)100,﹣22(2)将上列各数用“<”连接起来:.21.计算:(1)7﹣(﹣3)+(﹣5)﹣|﹣8|(2)(﹣8)÷(﹣4)﹣(﹣3)3×(﹣1)(3)()×(﹣42);(4)﹣24÷(﹣5)×+|0.4﹣1|.22.计算:(1)x2+5y﹣4x2﹣3y﹣1(2)7a+3(a﹣3b)﹣2(b﹣a)23.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.24.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式的值.25.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.设甲车间用x箱原材料生产A产品.(1)用含x的代数式表示:乙车间用箱原材料生产A产品;(2)求两车间生产这批A产品的总耗水量;(3)若两车间生产这批产品的总耗水为200吨,则该厂如何分配两车间的生产原材料?(4)用含x的代数式表示这次生产所能获取的利润并化简.(注:利润=产品总售价﹣购买原材料成本﹣水费)26.如图,已知A地在数轴上表示的数为﹣16,AB两地相距50个单位长度.小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第8次行进后小明到达点P,此时点P与点B相距几个单位长度?8次运动完成后一共经过了几分钟?(3)若经过n次(n为正整数)行进后,小明到达点Q,请你直接写出:点Q在数轴上表示的数应如何表示?参考答案与试题解析一.选择题(共10小题)1.2019的相反数的倒数是()A.B.C.2019 D.﹣2019【分析】根据相反数的意义,倒数的定义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以2019的相反数是﹣2019;又﹣2019的倒数是﹣,所以2019的相反数的倒数是﹣.故选:B.2.2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:384000=3.84×105.故选:C.3.下列运算正确的是()A.3a+2a=5a2B.2a2b﹣a2b=a2bC.3a+3b=3ab D.a5﹣a2=a3【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此解答即可.【解答】解:A.原式=5a,故A错误;B.原式=a2b,故B正确;C.3a与3b不是同类项,不能合并,故C错误;D.a5与a2不是同类项,不能合并,故D错误.故选:B.4.已知﹣3x m﹣1y3与xy m+n是同类项,那么m,n的值分别是()A.m=2,n=﹣1 B.m=﹣2,n=﹣1 C.m=﹣2,n=1 D.m=2,n=1 【分析】根据同类项是字母相同,且相同字母的指数也相同列方程,可得m、n的值.【解答】解:∵﹣3x m﹣1y3与xy m+n是同类项,∴m﹣1=1,m+n=3,∴m=2,n=1,故选:D.5.下列说法正确的是()A.3不是单项式B.多项式x2﹣5xy﹣x+1的次数是5C.x2y的系数是0D.﹣x2y的次数为3【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项错误;B、多项式x2﹣5xy﹣x+1的次数是2次,故本选项错误;C、x2y的系数是1,故本选项错误;D、﹣x2y的次数为3,故本选项正确.故选:D.6.某种冰糕的储藏温度为﹣12±2℃,四个冷藏室的温度如下,那么不适合储藏这种冰糕的是()A.﹣9 B.﹣11 C.﹣12 D.﹣13【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣12﹣2=﹣14℃,﹣12+2=﹣10℃,适合储藏这种冰糕温度范围:﹣14℃至﹣10℃,A、﹣10℃<﹣9℃,则不适合储藏这种冰糕温度范围,故A符合题意;B、﹣14℃<﹣11℃<﹣10℃,则适合储藏这种冰糕温度范围,故B不符合题意;C、﹣14℃<﹣12℃<﹣10℃,则适合储藏这种冰糕温度范围,故C不符合题意;D、﹣214℃<﹣13℃<﹣10℃,则适合储藏这种冰糕温度范围,故D不符合题意;故选:A.7.已知有理数a,b在数轴上表示的点如图所示,则下列式子中不正确的是()A.a•b<0 B.a+b<0 C.|a|<|b| D.b﹣a>0【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【解答】解:由图可知,b<0<a,且|b|>|a|.A、∵b<0<a,∴a•b<0,不符合题意;B、根据有理数的加法法则,可知a+b<0,不符合题意;C、|a|<|b|,不符合题意;D、∵b<0<a,且|b|>|a|,∴b﹣a<0,符合题意.故选:D.8.当x=3时,代数式ax3+bx+2的值为1;则当x=﹣3时代数式ax3+bx+2的值为()A.﹣3 B.﹣1 C.1 D.3【分析】根据“当x=3时,代数式ax3+bx+2的值为3”,得到27a+3b+2=1,整理得27a+3b =﹣1,当x=﹣3时,代数式ax3+bx+2=﹣27a﹣3b+2=﹣(27a+3b)+2,整体代入即可得到答案.【解答】解:当x=3时,ax3+bx+2=27a+3b+2=1,∴27a+3b=﹣1,当x=﹣3时,=﹣27a﹣3b+2=﹣(27a+3b)+2=1+2=3故选:D.9.按下面的程序计算,若开始输入x=2,则最后输出的结果是()A.﹣4 B.﹣5 C.﹣6 D.﹣7【分析】根据运算程序把x的值代入进行计算即可得解.【解答】解:x=2时,[x+(﹣2)﹣4]÷2=(2﹣2﹣4)÷2=﹣2>﹣3,x=﹣2时,[x+(﹣2)﹣4]÷2=(﹣2﹣2﹣4)÷2=﹣4<﹣3,输出.故选:A.10.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m个格子中所填整数之和是1684,则m的值可以是()A.1015 B.1010 C.1012 D.1018【分析】根据题意可求得c=9,然后求得9+(﹣5)+1=5,然后按照规律可求得m的值.【解答】解:由题意可知:9+a+b=a+b+c,∴c=9.∵9﹣5+1=5,1684÷5=336…4,且9﹣5=4,∴m=336×3+2=1010.故选:B.二.填空题(共8小题)11.用一个x的值说明“|x|=x”是错误的,这个值可以是x=﹣1(任意负数都可以).【分析】直接利用绝对值的性质得出答案.【解答】解:∵用一个x的值说明“|x|=x”是错误的,∴这个值可以是x=﹣1(任意负数都可以).故答案为:﹣1(任意负数都可以).12.绝对值小于π的所有整数的积是0 .【分析】根据绝对值的性质和有理数的乘法列出算式,再根据任何数同零相乘都等于0列式计算即可得解.【解答】解:绝对值小于π的所有整数的积是(﹣3)×(﹣2)×(﹣1)×0×1×2×3=0.故答案为:0.13.单项式的次数是 3 .【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式的次数是:3.故答案为:3.14.多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)中不含xy项,则m=﹣3 .【分析】先将多项式合并同类项,再令xy项的系数为0.【解答】解:∵多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)=2x2﹣6xy﹣2y2﹣x2﹣2mxy ﹣2y2=x2+(﹣6﹣2m)xy﹣4y2,又∵多项式2(x2﹣3xy﹣y2)﹣(x2+2mxy+2y2)中不含xy项,∴﹣6﹣2m=0,解得m=﹣3.15.在数5,﹣3,﹣2,2,6中,任意选两个数相乘,所得的积最小,积是﹣18 【分析】取出两数,使其乘积最小即可.【解答】解:取﹣3和6,所得积最小,最小的积为﹣3×6=﹣18,故答案为:﹣18.16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为99 千克.【分析】根据题意列出算式解答即可.【解答】解:4筐白菜的总质量为25×4+(0.25﹣1+0.5﹣0.75)=99,故答案为:9917.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8 .【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:818.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本.笔记本买来后,小明、小华分别比小敏多拿了7本和8本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏 4.5 元.【分析】根据题意可以计算出原计划每人拿多少本,从而可以得到每本笔记本的价钱,从而可以得到小华应付给小敏多少钱.【解答】解:设小敏拿了x本,则小明拿了(x+7)本,小华拿了(x+8)本,∵最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,∴如果按照原计划每人应拿[x+(x+7)+(x+8)]÷3=(x+5)本,∴后来小明比原计划多拿了2本,需要支付3元,可知每本3÷2=1.5(元),∴小华比原计划多拿了3本,需要付给小敏3×1.5=4.5(元),故答案为:4.5.三.解答题(共8小题)19.把下列各数前的序号分别填入相应的集合内:①﹣2.5,②0,③(﹣4)2,④,⑤,⑥,⑦﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{ ③⑤⑥…};(2)负分数集合:{ ①④…};(3)整数集合:{ ②③…};(4)无理数集合:{ ⑤⑦…}.【分析】根据实数的分类,可得答案.【解答】解:(1)正数集合:{③⑤⑥…};(2)负分数集合:{①④…};(3)整数集合:{②③…};(4)无理数集合:{⑤⑦…}.故答案为:③⑤⑥;①④;②③;⑤⑦.20.(1)在数轴上把下列各数表示出来:﹣1,﹣|﹣2.5|,﹣(﹣2),(﹣1)100,﹣22(2)将上列各数用“<”连接起来:﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).【分析】(1)在数轴表示出各数即可;(2)根据各点在数轴上的位置从左到右用“<”连接起来即可.【解答】解:(1)如图所示,;(2)由图可知,﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).故答案为:﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).21.计算:(1)7﹣(﹣3)+(﹣5)﹣|﹣8|(2)(﹣8)÷(﹣4)﹣(﹣3)3×(﹣1)(3)()×(﹣42);(4)﹣24÷(﹣5)×+|0.4﹣1|.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=7+3﹣5﹣8=10﹣13=﹣3;(2)原式=2﹣27×=2﹣45=﹣43;(3)原式=﹣14+9+54=49;(4)原式=﹣16×(﹣)×(﹣)+0.6=﹣+=﹣.22.计算:(1)x2+5y﹣4x2﹣3y﹣1(2)7a+3(a﹣3b)﹣2(b﹣a)【分析】(1)合并同类项即可;(2)先去掉括号,再合并同类项即可.【解答】解:(1)x2+5y﹣4x2﹣3y﹣1=﹣3x2+2y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣a)=7a+3a﹣9b﹣2b+2a=12a﹣11b.23.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).并(1)用含x的式子表示图中阴影部分(三角形)的面积S,并化简;(2)计算当x=3时,阴影部分的面积.【分析】(1)利用两个正方形的面积减去3个空白三角形的面积即可;(2)把x的值代入求出答案.【解答】解:阴影部分(三角形)的面积S=42+x2﹣(4+x)×4﹣x2﹣×4×(4﹣x)=x2;(2)当x=3时,(cm2).24.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式的值.【分析】本题式子与字母x无关,将原式化简提出x,则含x的项为0,由此可得a与b 的关系,再将原代数式化简,代入a与b的关系式即可.【解答】解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7∴2﹣2b=0,b=1∵a+3=0,a=﹣3∴3(a2﹣2ab﹣b2)﹣(2a2﹣5ab+2b2)=3a2﹣6ab﹣3b2﹣3a2+ab﹣3b2=ab﹣6b2=﹣﹣6=﹣.25.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.设甲车间用x箱原材料生产A产品.(1)用含x的代数式表示:乙车间用(60﹣x)箱原材料生产A产品;(2)求两车间生产这批A产品的总耗水量;(3)若两车间生产这批产品的总耗水为200吨,则该厂如何分配两车间的生产原材料?(4)用含x的代数式表示这次生产所能获取的利润并化简.(注:利润=产品总售价﹣购买原材料成本﹣水费)【分析】(1)乙车间用(60﹣x)箱原材料生产A产品;(2)甲车间用x箱原材料生产A产品,则乙车间用(60﹣x)箱原材料生产A产品进行解答即可;(3)设甲车间用x箱原材料生产A产品,列出方程解答即可;(4)根据利润=产品总售价﹣购买原材料成本﹣水费列出代数式解答即可.【解答】解:(1)乙车间用(60﹣x)箱原材料生产A产品;故答案为:(60﹣x);(2)两车间生产这批A产品的总耗水为为4x+2(60﹣x)=2x+120;(3)设甲车间用x箱原材料生产A产品,由题意得2x+120=200,解得x=40,60﹣x=20.答:分配甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品;(4)根据题意可得:30[12x+10(60﹣x)]﹣80×60﹣5[4x+2(60﹣x)]=50x+12600.26.如图,已知A地在数轴上表示的数为﹣16,AB两地相距50个单位长度.小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第8次行进后小明到达点P,此时点P与点B相距几个单位长度?8次运动完成后一共经过了几分钟?(3)若经过n次(n为正整数)行进后,小明到达点Q,请你直接写出:点Q在数轴上表示的数应如何表示?【分析】(1)由题意可得点B位于点A的左侧或右侧,AB两地相距50单位长度,A地在数轴上表示的数为﹣16,可以得到B地在数轴上表示的数;(2)根据题意可以发现奇数次运动和偶数次运动是有一定规律的,从而可以得到第八次行进后小明到达点P,此时点P与点B相距几个单位长度和八次运动完成后一共经过了几分;(3)根据题意可以发现奇数次运动和偶数次运动是有一定规律的,从而可以写出n为偶数和奇数时,在数轴上点Q表示的数.【解答】解:(1)∵AB两地相距50单位长度,A地在数轴上表示的数为﹣16,∴点B表示的数为:﹣16﹣50=﹣66或﹣16+50=34,即B地在数轴上表示的数是﹣66或34;(2)∵B地在原点的右侧,∴B地在数轴上表示的数为34,第8次运动到点P为=﹣16+4=﹣12,∴点P与点B相距的单位长度为34﹣(﹣12)=46,8次运动完成后经过的时间为:(1+2+3+4+5+6+7+8)÷2=36÷2=18(分钟),即B地在原点的右侧,点P与点B相距46个单位长度,8次运动完成后一共经过了18分钟;(3)第1次运动到点:﹣16﹣1,第2次为:﹣16+1,第3次为:﹣16+1﹣3=﹣16﹣2,第4次为:﹣16+2,……照此规律:当n为奇数时,点Q表示的数为==;当n为偶数时,点Q表示的数为.即当n为奇数时,在数轴上点Q表示的数为:﹣16﹣;当n为偶数时,在数轴上点Q 表示的数为:﹣16+.。

江苏省七年级上学期期中考试数学试卷含答案

江苏省七年级上学期期中考试数学试卷含答案

江苏省七年级上学期期中统考数学试题一、选择题(本大题共6小题,共18.0分)1.-2的相反数是()A. B. C. D. 22.某人身份证号码是321084************,他的生日是()A. 8月10日B. 10月12日C. 1月20日D. 12月8日3.在代数式-8x2y,2x+3y,0,中,单项式有()A. 5个B. 4个C. 3个D. 2个4.某商店出售某品牌的面粉,面粉袋上标有质量为(20±0.4)kg的字样,从中任取一袋面粉,下列说法正确的是()A. 这袋面粉的质量可能为B. 这袋面粉的质量最多为C. 这袋面粉的质量一定为D. 这袋面粉的质量一定为20kg5.数轴上到表示-2的点距离为3的点表示的数为()A. B. C. 1或 D.6.已知a、b在数轴上的位置如图所示,下列结论错误的是()A. B. C. D.二、填空题(本大题共10小题,共30.0分)7.如果向东走2米记为+2米,则向西走5米可记为______米.8.比较大小:-2______-3.9.一个数的平方等于49,则这个数是______.10.若x=-2是方程2x-5=a的解,则a=______.11.已知地球上七大洲的总面积约为150000000km2,则数字150000000用科学记数法可以表示为______.12.单项式-的系数是______,次数是______.13.若4x3y n+2与-5x m+1y2是同类项,则m+n=______.14.如果a+b=2,那么代数式5a+5b-3的值是______.15.小明在某月历上圈出如图所示的呈十字形的5个数,如果圈出的五个数的和为65,那么其中最小的数为______.16.对于任意有理数a、b,规定:a☆b=-b a和a★b=a b-1,那么[(-2)★3]☆1=______.三、计算题(本大题共7小题,共42.0分)17.计算:(1)-20-(-14)+(-18)-13(2)12×(-)÷4(3)(--)×32(4)-5÷[(-3)2+2×(-5)]18.化简:(1)5x+(3y-2x)-y(2)3(m2-2m-1)-(2m2-3m)+319.先化简,再求值:(1)m2+4m-3m2-5m+6m2-2,其中m=3;(2)2(t2-2t)-(t2-2t)+3(t2-2t),其中t=-2.20.已知:代数轴上有理数m所表示的点到原点的距离为3个单位长度,a、b互为相反数且都不为零,c、d互为倒数,求3a+3b+(-3cd)-m2的值.21.已知:A=x2-2,B=2x2-x+3(1)化简:4A-2B;(2)若2A-kB中不含x2项,求k的值.22.小刚设计了一个如图所示的数值转换程序(1)当输入x=2时,输出M的值为多少?(2)当输入x=8时,输出M的值为多少?(3)当输出M=10时,输入x的值为多少?23.某校准备建一条5米宽的文化长廊,并按下图方式铺设边长为1米的正方形地砖,图中阴影部分为彩色地砖,白色部分为普通地砖.(1)如果长廊长8米,则需要彩色地砖______块,普通地砖______块;如果长廊长9米,则需要彩色地砖______块,普通地砖______块;(2)如果长廊长2a米(a为正整数),则需要彩色地砖______块;如果长廊长(2a+1)米(a为正整数),则需要彩色地砖______块;(3)购买时,恰逢地砖市场地砖促销,彩色地砖原价为100元/块,普通地砖原价为40元/块,优惠方案为:买一块彩色地砖赠送一块普通地砖.①如果长廊长x米(x为整数),用含x代数式表示购买地砖所需的钱数;②当x=51米时,求购买地砖所需钱数.四、解答题(本大题共3小题,共24.0分)24.现有以下八个数:①2,②,③-0.352,④-|-3|,⑤,⑥-π,⑦0.,⑧0.121121112…(每两个2之间依次多一个1),请将各数的序号填入相应的括号内.正有理数集合:(______…);负有理数集合:(______…);无理数集合:(______…).25.解下列方程:(1)7-2x=3+4(x-2)(2)26.邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C 三个村庄的位置;(2)C村离A村有多远?(3)若摩托车的油耗为每千米0.03L,求邮递员这次出行的耗油量.答案和解析1.【答案】D【解析】解:-2的相反数是:2.故选:D.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:∵他的身份证号码是321084************,∴他的生日是1月20,故选:C.根据他的身份证号码得出即可.本题考查了考查了用数字表示事件,能灵活数字表示的意义是解此题的关键.3.【答案】C【解析】解:在代数式-8x2y,2x+3y,0,中,单项式有:-8x2y,0,共3个.故选:C.直接利用单项式的定义分析得出答案.此题主要考查了单项式,正确把握单项式的定义是解题关键.4.【答案】B【解析】解:面粉袋上标有质量为(20±0.4)kg,其意义为:面粉的质量在19.6kg到20.4kg都是合格的.故选:B.根据(20±0.4)kg的字样,分别判断得结论.本题考查了正负数的意义.解决本题的关键是理解(20±0.4)的意义.5.【答案】C【解析】解:若要求的点在-2的左边,则有-2-3=-5;若要求的点在-2的右边,则有-2+3=1.所以数轴上到-2点距离为3的点所表示的数是-5或1.故选:C.数轴上,与表示-2的点距离为3的点可能在-2的左边,也可能在-2的右边,再根据左减右加进行计算.此题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.6.【答案】C【解析】解:根据实数a,b在数轴上的位置,可得a<-1<0<1<b,∴-b<a<-1<0<1<-a<b,∵a<1<b,∴选项A正确;∵-b<a<1,∴选项B正确;∵|a|<1<b,∴选项C错误;∵-b<-1<|a|,∴选项D正确.故选:C.首先根据数轴的特征,判断出-b,a、-1、0、1、-a,b的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.本题主要考查了实数与数轴,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.还考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.【答案】-5【解析】解:∵向东走2米记为+2米,∴向西走5米可记为-5米,故答案为:-5.根据题意,可以写出向西走5米记作多少,本题得以解决.本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.8.【答案】>【解析】解:在两个负数中,绝对值大的反而小,可求出-2>-3.故答案为:>.本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.9.【答案】±7【解析】解:∵(±7)2=49,∴这个数是±7.故答案为:±7.根据平方根的定义,即可解答.本题考查了平方根,解决本题的关键是熟记平方根的定义.10.【答案】-9【解析】解:把x=-2代入方程得:-4-5=a,解得:a=-9,故答案为:-9把x的值代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.【答案】1.5×108【解析】解:将150000000用科学记数法表示为:1.5×108.故答案为:1.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】- 5【解析】解:由单项式的系数和次数的定义可得:该单项式的系数为-,次数为5,故答案为:-;5.根据单项式系数即为前面的数字因数,次数为所有字母指数之和可得答案.本题主要考查单项式的系数和次数,掌握它们的定义是解题的关键.13.【答案】2【解析】解:∵4x3y n+2与-5x m+1y2是同类项,∴m+1=3,n+2=2,解得:m=2,n=0,则m+n=2.故答案为:2.直接利用同类项的定义分析得出答案.此题主要考查了同类项,正确把握定义是解题关键.14.【答案】7【解析】解:∵a+b=2,∴5a+5b-3=5(a+b)-3=5×2-3=10-3=7故答案为:7.首先把5a+5b-3化成5(a+b)-3,然后把a+b=2代入,求出算式的值是多少即可.此题主要考查了代数式求值的方法,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.15.【答案】6【解析】解:设中间的数是x,则其它四个数字分别是x-1,x+1,x-7,x+7.根据题意得:x-1+x+1+x+x-7+x+7=65,解得:x=13,则x-7=6,即最小的数是6.故答案是:6.设中间的数是x.根据日历上的数字关系:左右两个数字相差1,上下两个数字相差7,分别表示出其它四个数字,再根据它们的和是65,列方程即可求解.此题考查了一元一次方程的应用,解答本题的关键是要能够弄清日历上的数字关系,正确表示出其余四个数,难度一般.16.【答案】-1【解析】解:∵a☆b=-b a和a★b=a b-1,∴[(-2)★3]☆1=[(-2)3-1]☆1=4☆1=-14=-1,故答案为:-1.根据a☆b=-b a和a★b=a b-1,可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.【答案】解:(1)原式=-20+14-18-13=-51+14=-37;(2)原式=-12×÷4=-1;(3)原式=56-28-14=14;(4)原式=-5÷(9-10)=-5÷(-1)=5.【解析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)原式=5x+3y-2x-y=3x+2y;(2)原式=3m2-6m-3-2m2+3m+3=m2-3m.【解析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.19.【答案】解:(1)原式=4m2-m-2,当m=3时,原式=4×32-3-2=36-5=31;(2)原式=2t2-4t-t2+2t+3t2-6t=4t2-8t,当t=-2时,原式=4×(-2)2-8×(-2)=16+16=32.【解析】(1)原式合并同类项得到最简结果,将m的值代入计算即可求出值.(2)原式去括号合并得到最简结果,将t的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意得:m=±3,a+b=0,=-1,cd=1,则原式=3(a+b)+-3cd-m2=0-1-3-9=-13.【解析】利用绝对值的代数意义,相反数,以及倒数的性质求出各自的值,代入原式计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)原式=4(x2-2)-2(2x2-x+3)=4x2-8-4x2+2x-6=2x-14(2)2A-kB=2(x2-2)-k(2x2-x+3)=2x2-4-2kx2+kx-3k∵2A-kB中不含x2项,∴2-2k=0,∴k=1【解析】(1)根据整式的运算法则即可求出答案.(2)令含x2的项的系数为0即可求出k的值.本题考查整式的加减,解题的关键是熟练运用整式的加减法则,本题属于基础题型.22.【答案】解:(1)当x=2时,M==;(2)当x=8时,M=+1=5;(3)若+1=10,则x=18或x=-18(舍);若=10,则x=19(舍)或x=-21;综上,当输出M=10时,输入x的值为18或-21.【解析】(1)将x=2代入计算可得;(2)将x=8代入+1计算可得;(3)分别计算出+1=10和=10中x的值,再根据x的范围取舍即可得.本题主要考查代数式的求值,解题的关键是根据程序框图选择合适的关系式代入计算.23.【答案】12 28 14 41 3a3a+2【解析】解:(1)若长廊长8米,彩色砖需要3×=12(块),需要普通地砖2×8+3×=28(块)或5×8-12=28(块);米,彩色砖需要5+4+5==14(块),需要普通地砖2×9+4+5+4=41(块)或5×9-14=41(块);故答案为:12,28,14,31(2)若长廊长2a米,彩色砖需要3×=3a(块),若长廊长(2a+1)米,彩色砖需要a+1+a+a+1=3a+2(块);故答案为:3a,3a+2(3)①当x为奇数时,购买地砖所需的钱数为:=230x+10当x为偶数时,购买地砖所需的钱数为:②当x=51时,230x+10=11740元答:当x=51米时,购买地砖所需钱数为11740元.(1)观察图形,发现规律,计算得到结果;(2)根据图形中彩色砖和普通砖的关系,得结果;(3)①根据:所需钱数=彩砖钱数+普通砖钱数=彩砖数×彩砖单价+(需要总砖数-彩砖数)×普通砖单价,并对x的奇、偶进行讨论;②把x=51代入①中代数式直接得结果.本题考查了列代数式、求代数式的值等知识点.通过图表发现规律是解决本题的关键.注意对x的奇偶讨论.24.【答案】①②⑦③④⑤⑥⑧【解析】解:正有理数集合:(①②⑦);负有理数集合:(③④⑤);无理数集合:(⑥⑧);故答案为:①②⑦;③④⑤;⑥⑧.根据实数的概念,有理数和无理数的概念判断即可.本题考查的是实数的概念和分类,掌握有理数和无理数的概念是解题的关键.25.【答案】解:(1)7-2x=3+4(x-2)7-2x=3+4x-8,移项得:-2x-4x=3-8-7,-6x=-12,解得:x=2;(2)2(2x-1)=2x+1-6,则4x-2x=2+1-6,解得:x=-.【解析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母,进而合并同类项,再解方程.此题主要考查了一元一次方程的解法,正确解方程是解题关键.26.【答案】解:(1)如图所示:(2)C村离A村的距离为4-(-2)=6(km).(3)邮递员这次出行的耗油量为0.03×(2+3+9+4)=0.54(L).【解析】(1)根据路程画数轴表示;(2)由(1)可知:A表示-2,C表示4,4-(-2)就是C村离A村的距离;(3)总路程×0.03即可.本题考查了作图-复杂作图与数轴,本题的关键是根据题意找到三个村庄的位置,并掌握正负数表示的意义.。

2019-2020年七年级期中考试数学试卷

2019-2020年七年级期中考试数学试卷

11.2 C
A. 北京
B. 沈阳
C. 广州
D. 太原
3.如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是
4.下列运算正确的是
A.x2 x2 x4
C. x2 y 2x2 y x2 y
5.化简 1 16x 12 2 x 1 的结果是
4
A.2x 1
B.x 1
B.4x x 3y 3x 3y D.2 x 2 2x 2
C.5x 3
D.x 3
6.下面四个几何体中,同一个几何体从正面看和从左面看的形状图相同,这样的几何体共有
A.1个
B.2 个
C.3 个
D.4 个
7.有一个两位数,个位数字是 n ,十位数字是 m ,则这个两位数可表示为
记数法表示为
A.4.7 107
B.4.7 1011
C.4.7 1014
D.4.7 1015
9.“1285 个服务站点”,“ 4.1万辆公共自行车”,“日均租骑辆 32.54 万次”,“1小时免费”,···,自 2012 年
开通运营以来,太原公共自行车已经伴随太原市民走过近七个春秋.课外活动小组的同学们,在某双休日

1
2 3




5 3



= 5 0


5
19.(本题 6 分)
今年假期某校对操场进行了维修改造,如图是操场的一角.在长为 a 米,宽为 b 米的长方形场地中央,并排 这两个大小相同的篮球场,这两个篮球场之间以及篮球场与长方形场地边沿的距离都为 c 米. (1)直接写出一个篮球场的长和宽;(用含 a,b, c 的代数式表示) (2)用含字母 a,b, c 的代数式表示这两个篮球成=场占地面积的和,并求出当 a 42,b 36, c 4 时,这

2019-2020学年江苏省无锡市七年级(上)期末数学试卷 (解析版)

2019-2020学年江苏省无锡市七年级(上)期末数学试卷 (解析版)

2019-2020学年江苏省无锡市七年级(上)期末数学试卷一、选择题(共10小题).1.(3分)3-的相反数是( )A .3-B .13-C .3D .132.有理数a 、b 在数轴上的对应点的位置如图所示,则化简||a b +的结果正确的是( )A .a b +B .a b -C .a b -+D .a b --3.(3分)已知32x y -与23n y x 是同类项,则n 的值为( )A .2B .3C .5D .2或34.(3分)下列计算正确的是( )A .43a a -=B .223n n n +=C .23m m m -=-D .32a a a -+=-5.(3分)下列方程为一元一次方程的是( )A .34x --=B .232x x +=+C .112x -=D .232y x -=6.(3分)下列说法错误的是( )A .两点之间线段最短B .对顶角相等C .同角的补角相等D .过一点有且只有一条直线与已知直线平行7.(3分)长方形纸板绕它的一条边旋转一周形成的几何体为( )A .圆柱B .棱柱C .圆锥D .球8.(3分)已知点A ,B ,C 为平面内三点,给出下列条件:①AC BC =;②2AB BC =;③12AC BC AB ==.选择其中一个条件就能得到“点C 是线段AB 中点”的是( ) A .① B .③ C .①或③ D .①或②或③9.(3分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为( )A .114134x x -=-B .3441x x +=+C .114134x x +=+D .3(4)4(1)x x +=+10.(3分)甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A .56元B .60元C .72元D .80元二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为 .12.(2分)多项式22x y xy -的次数是 .13.(2分)写出一个解为1的一元一次方程 .14.(2分)已知α∠与β∠互为余角,3824α'∠=︒,则β∠= .15.(2分)若代数式22x x -的值为5,则代数式2363x x --的值为 .16.(2分)如图,已知OC OA ⊥,OD OB ⊥.若148AOB ∠=︒,则COD ∠= .17.(2分)如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M 、N (小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN = cm .18.(2分)长方体纸盒的长、宽、高分别是10cm ,8cm ,5cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是 cm .三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)112|3|(22)2⨯+---; (2)20202(1)29(3)--+÷-.20.(8分)解方程:(1)4(1)3x x +=-;(2)3123x x +-= 21.(6分)先化简,再求值:22222[2()1](4)a b ab a b ab ----.其中12a =,4b =-. 22.(8分)如图,P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;过点P 画OA 的垂线,垂足为D ;(2)点C 到直线OB 的距离是哪一条垂线段的长度?(3)请直接写出线段PC 、PD 、OC 的大小关系.(用“<”号连接)23.(6分)由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加 个.24.(8分)我们规定,如果两个角的差是一个直角,那么这两个角互为足角.其中的一个角叫做另一个角的足角.(1)如图,直线经过点O,OE平分COB∠,OF OE⊥.请直接写出图中BOF∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数.25.(10分)小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?26.(10分)如图1,在33⨯的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若2-、1-、0、1、2、3、4、5、6,这9个数也能构成九宫归位图,则此时每行、每列及每条对角线的3个数字之和都为;(2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a的代数式分别表示这6个数);(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的选项标号涂黑.1.(3分)3-的相反数是( )A .3-B .13-C .3D .13解:3-的相反数是3,故选:C .2.(3分)有理数a 、b 在数轴上的对应点的位置如图所示,则化简||a b +的结果正确的是( )A .a b +B .a b -C .a b -+D .a b --解:由数轴可得:0a b <<,||||a b >||a b a b ∴+=--故选:D .3.(3分)已知32x y -与23n y x 是同类项,则n 的值为( )A .2B .3C .5D .2或3解:32x y -与23n y x 是同类项,3n ∴=,故选:B .4.(3分)下列计算正确的是( )A .43a a -=B .223n n n +=C .23m m m -=-D .32a a a -+=- 解:A 、结果是3a ,故本选项错误;B 、结果是3n ,故本选项错误;C 、结果是m -,故本选项正确;D 、结果是2a ,故本选项错误;故选:C .5.(3分)下列方程为一元一次方程的是( )A .34x --=B .232x x +=+C .112x -=D .232y x -= 解:B 是二次的,C 不是整式方程,D 含有两个未知数,它们都不符合一元一次方程的定义.只有A 符合一元一次方程的定义.故选:A .6.(3分)下列说法错误的是( )A .两点之间线段最短B .对顶角相等C .同角的补角相等D .过一点有且只有一条直线与已知直线平行解:A 、两点之间线段最短,说法正确.B 、对顶角相等,说法正确.C 、同角的补角相等,说法正确D 、过直线外一点有且只有一条直线与已知直线平行,说法错误.故选:D .7.(3分)长方形纸板绕它的一条边旋转一周形成的几何体为( )A .圆柱B .棱柱C .圆锥D .球解:将长方形纸板绕它的一条边旋转,可得下面的几何体,故选:A .8.(3分)已知点A ,B ,C 为平面内三点,给出下列条件:①AC BC =;②2AB BC =;③12AC BC AB ==.选择其中一个条件就能得到“点C 是线段AB 中点”的是( ) A .① B .③ C .①或③ D .①或②或③解:①点C在线段AB上,且AC BC=,则C是线段AB中点故①不符合题意;②2AB BC=,C不一定是线段AB中点故②不符合题意;③12AC BC AB==,则C是线段AB中点,故③符合题意.故选:B.9.(3分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x尺,则符合题意的方程应为()A.114134x x-=-B.3441x x+=+C.114134x x+=+D.3(4)4(1)x x+=+解:设井深为x尺,依题意,得:3(4)4(1)x x+=+.故选:D.10.(3分)甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元解:设乙店每副耳机的进价为x元,则甲店每副耳机的进价为0.9x元,依题意有(117%)(120%)0.9 5.4x x+-+⨯=,解得60x=.故乙店每副耳机的进价为60元.故选:B.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为43.3210⨯.解:33200这个数字用科学记数法表示为43.3210⨯.故答案为:43.3210⨯.12.(2分)多项式22x y xy -的次数是 3 . 解:多项式22x y xy -的次数为:3.故答案为:3.13.(2分)写出一个解为1的一元一次方程 10x -= .解:设1a =,则方程可化为:0x b +=;把1x =代入上式得到:10b +=,解得1b =-;所以,方程是:10x -=.14.(2分)已知α∠与β∠互为余角,3824α'∠=︒,则β∠= 5136︒'(或51.6)︒ . 解:α∠与β∠互为余角,3824α'∠=︒,9038245136β'∴∠=︒-︒=︒'(或51.6)︒.故答案为:5136︒'(或51.6)︒.15.(2分)若代数式22x x -的值为5,则代数式2363x x --的值为 12 .解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1216.(2分)如图,已知OC OA ⊥,OD OB ⊥.若148AOB ∠=︒,则COD ∠= 32︒ .解:OC OA ⊥,OD OB ⊥,90AOC BOD ∴∠=∠=︒,148AOB ∠=︒,1489058AOD ∴∠=︒-︒=︒,905832DOC AOC AOD ∴∠=∠-∠=︒-︒=︒.故答案为:32︒.17.(2分)如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M 、N (小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN = 8cm 或2 cm .解:本题有两种情形:(1)当A 、C (或B 、)D 重合,且剩余两端点在重合点同侧时,1122MN CN AM CD AB =-=-, 532=-=(厘米);(2)当B 、C (或A 、)C 重合,且剩余两端点在重合点两侧时,1122MN CN BM CD AB =+=+, 538=+=(厘米). 故两根木条的小圆孔之间的距离MN 是2cm 或8cm ,故答案为:2cm 或8cm .18.(2分)长方体纸盒的长、宽、高分别是10cm ,8cm ,5cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是 92 cm .解:如图所示:这个平面图形的周长的最小值是:588410292()cm ⨯+⨯+⨯=.故答案为:92三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)112|3|(22)2⨯+---; (2)20202(1)29(3)--+÷-.解:(1)112|3|(22)2⨯+--- 6322=++31=(2)20202(1)29(3)--+÷-143=--6=-20.(8分)解方程:(1)4(1)3x x +=-;(2)3123x x +-= 解:(1)去括号得:443x x +=-,移项合并得:51x =-, 解得:15x =-; (2)去分母得:32(3)6x x -+=,去括号得:3266x x --=,移项合并得:12x =.21.(6分)先化简,再求值:22222[2()1](4)a b ab a b ab ----.其中12a =,4b =-. 解:原式22222442432a b ab a b ab a b =---+=-. 当12a =,4b =-时,原式213()(4)23252=⨯⨯--=--=-. 22.(8分)如图,P 是AOB ∠的边OB 上的一点.(1)过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为D;(2)点C到直线OB的距离是哪一条垂线段的长度?(3)请直接写出线段PC、PD、OC的大小关系.(用“<”号连接)解:(1)如图所示,PC,PD即为所求;(2)点C到直线OB的距离是线段PC的长.(3)线段PC、PD、OC的大小关系为:PD PC OC<<.23.(6分)由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加4个.解:(1)如图2所示:(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加4个.故答案为:4.24.(8分)我们规定,如果两个角的差是一个直角,那么这两个角互为足角.其中的一个角叫做另一个角的足角.(1)如图,直线经过点O ,OE 平分COB ∠,OF OE ⊥.请直接写出图中BOF ∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数. 【解答】解(1)OE 平分COB ∠,BOE COE ∴∠=∠,OF OE ⊥,90BOF BOE ∴∠-∠=︒,90BOF COE ∠-∠=︒,BOF ∴∠的足角是COE ∠、BOE ∠.(2)设这个角的度数为x ︒,当090x <<时,290(180)3x x +=- 解得:18x =.当90180x <<时,290(180)3x x -=- 解得:126x =.∴这个角的度数为18︒或126︒.25.(10分)小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?解:(1)145150<.最多购买并使用两张代金券,∴最多优惠50元.(2)设小明一家应付总金额为x 元,当50100x <时,由题意得,25[50(50)0.6]15x x --+-⨯=.解得:150x =(舍去).当100150x <时,由题意得,50[50(50)0.6]15x x --+-⨯=.解得:212.5x =(舍去).当150x 时,由题意得,75[50(50)0.6]15x x --+-⨯=.解得:275x =,2757515185--=(元).答:小明一家实际付了185元.26.(10分)如图1,在33⨯的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若2-、1-、0、1、2、3、4、5、6,这9个数也能构成九宫归位图,则此时每行、每列及每条对角线的3个数字之和都为6;(2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a的代数式分别表示这6个数);(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.解:(1)2266-++=.(2)如图2所示:(3)右上角“?”所表示的数值为1.如图3,设右上角“?”所表示的数值为x,设空格中相应位置的数为m、n、p、q,由题意可得2++=++=-+=+++,m n x x p q m a p n g a可得2+++++=-+++++,m n x x p q m a p n q a即22x=,解得1x=.故右上角“?”所表示的数值为1.故答案为:6.。

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。

2019-2020学年江苏省南京市玄武区七年级(上)期中数学试卷

2019-2020学年江苏省南京市玄武区七年级(上)期中数学试卷

1.(2分)﹣5的倒数是()A.﹣5 B.C.D.52.(2分)若水位上升8m记作+8m,则水位下降2m,记作()A.﹣2m B.+2m C.+6m D.﹣3m3.(2分)2019年10月1日,为庆祝新中国成立70周年,南京在玄武湖举行了烟花灯光秀.据统计,当晚约有76万人欢聚在玄武湖园内及其周边观看这一表演.数据76万用科学记数法表示为()A.7.6×105B.7.6×106C.76×105D.0.76×106\4.(2分)下列各式中,运算正确的是()A.3a+2a=6a B.m+m2=m3C.3a2b﹣5ba2=﹣2a2b D.﹣2mn+5mn=﹣7mn5.(2分)在﹣3.5,8,,0,﹣,﹣43%,6.3,﹣2,﹣0.212112111…(每两个2之间依次多一个1)中,有理数有()A.4个B.5个C.6个D.7个6.(2分)已知a<0,a+b>0,则下列各式正确的是()A.a<﹣a<﹣b<b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<b<a<﹣a 7.(2分)已知A=2x2+3mx﹣x,B=﹣x2+mx+1,其中m为常数,若A+2B的值与x的取值无关,则m的值为()'A.0 B.5 C.D.﹣8.(2分)小东去批发市场购买了甲糖果20斤,价格为每斤x元;又购买了乙糖果10斤,价格为每斤y元.后来,他以每斤元全部卖出后,发现自己赔钱了.则下列判断正确的是()A.x=y B.x>yC.x<y D.x、y的大小关系不确定二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)一个数的平方是4,则这个数是.10.(2分)单项式的系数为;次数为.11.(2分)一个数加﹣0.5等于﹣3,则这个数是.<12.(2分)如图,若输入的值为﹣2,则输出的结果是.13.(2分)整式(a+b)的3倍与(a﹣b)的和是.14.(2分)已知代数式x2+2y+1的值是﹣3,则代数式1﹣2x2﹣4y的值是.15.(2分)若y枝铅笔的销售金额为x元,则代数式的实际意义是.16.(2分)如图,数轴上点A、B表示的数分别是a、b,则化简|a|﹣|b|+|a﹣b|的结果是.17.(2分)如图,在直角三角形ABC中,∠C是直角,AC=a,BC=b.分别以直角边AC 和BC为直径画半圆,则阴影部分的面积是.(用含有a、b的代数式表示且结果保留π)!18.(2分)如图是一个三角形数阵,仔细观察排列规律:按照这个规律继续排列下去,第21行第2个数是.三、解答题(本大题共9小题,共64分)19.(4分)在数轴上表示下列各数:﹣,0,﹣4,﹣(﹣2),|﹣3|,并用“<”号把它们连接起来.20.(16分)计算。

2019-2020南通市田家炳中学初一数学期中试卷及解析

2019-2020南通市田家炳中学初一数学期中试卷及解析

江苏省南通田家炳中学2019~2020学年度第一学期期中考试初一数学试卷(考试时间:120分钟,试卷总分:150分)一、选择题(共10题,每题3分)1. 把5952.1精确到十分位的近似数是( )A.5.1B.59.1C.60.1D.6.1 2.下列各数723,1,4,14.3,3.3,35-+--中,整数有a 个,负数有b 个,则=+b a ( ) A.3 B.4 C.5 D.63.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的距离, 即4960.1亿千米,用科学记数法表示1个天文单位=( )千米。

A.4104960.1⨯B.8104960.1⨯C.10104960.1⨯D.121.496010⨯ 4.下列结论中正确的是( ) A.单项式42yx π的系数是41,次数是4 B.单项式m 的次数是1,没有系数C.多项式3222++xy x 是二次三项式D.在0,45,,31,2,12xy y x a y x x π-+中整式有4个 5.如图,下列式子成立的是( )A.0>-b aB.0<+b aC.b a <-<0D.0<-<b a 6.已知16,52==b a ,且0>ab ,则b a -的值为( )A.1B.91或C.91--或D.11-或 7.有下列等式,①由b a b a 2525,-=-=得;②由b a bc ac ==得,;③由b a cbc a ==得,;④由b a cbc a 23,32==得;⑤由b a b a ==得,22,其中正确的有( )个。

A.2 B.3 C.4 D.5 8.已知整式6252=-x x ,则x x 5262-+的值为( ) A.9 B.12 C.18 D.249.阅读:关于x 方程b ax =在不同条件下解的情况如下:(1)当0≠a 时,有唯一解abx =;(2)当0,0==b a 时有无数解;(3)当0,0≠=b a 时无解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省无锡市2019-2020学年上学期初中七年级期中考试数学试卷(考试时间:100分钟 卷面总分:100分)一 细心选一选:要求细心(本大题共8小题,每题2分,共16题)1.2的相反数是 ( )A .2B .﹣2C .21D .21- 2.下列各个运算中,结果为负数的是 ( )A .|﹣2|B .﹣(﹣2)C .2)2(- D .22- 3.据统计,2015年上半年某港口共实现货运吞吐量92590 000吨,比去年同期增长24.5%.将 92590 000这个数用科学记数法可表示为 ( )A .61059.92⨯B .710259.9⨯C .4109259⨯D .610259.9⨯ 4.比a 的大5的数是 ( )A .a+5 B. )521(+a . C .+5 D .(a+5)5. 下列合并同类项中,正确的是 ( )A .3x +3y =6xyB .532532a a a =+ C .3mn -3nm =0 D .7x -5x =26.下列说法中,正确的个数有( ) 个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A .1B .2C .3D .4 7.国庆期间,某商店推出全店打8折的优惠活动,持贵宾卡的客户还可在8折的基础上再打9折.某人持贵宾卡买了一件商品共花了a 元,则该商品的标价是 ( )A .a 2017元B .a 1720元C .a 2518元D .a 1825元 8.如图,小惠设计了一个电脑程序,已知x 、y 为两个不相等的有理数,当输出的值M =24时,所输入的x 、y 中较大的数为( )A .48B .24C .12D .6二.细心填一填:要求细心(每空2分,共24分)9.﹣3的倒数等于_____ _____;绝对值不大于3的整数是____ ______. 10.比较大小,用“<”“>”或“=”连接:(1)﹣|﹣43|_____ _____﹣(﹣32); (2)﹣3.14____ ______﹣|﹣∏| 11.数轴上,到表示﹣5的点距离为2的点表示的数为_____ _____.12.多项式7324223173+--xy y x y x 最高次项的系数是_____ _____. 13.若代数式﹣2m b a 3与413b a n +是同类项,则m+n=____ ______14.如图所示,阴影部分的面积为 .15.若32a ﹣a ﹣2=0,则2625a a -+=_____ _____.16.对有理数a 、b 规定运算★如下:a★b=ba ab -,则﹣2★﹣4=______ ____. 17.若|a|=8,|b|=5,且a+b >0,那么a ﹣b=____ ______.18.如图,在各个手指间标记字母A ,B ,C ,D .请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A 开始数连续的正整数1,2,3,4,….当字母C 第2015次出现时,数到的数恰好是____ ______.二.用心做一做:并写出运算过程(本大题共8小题,共计60分)19.计算:(每题3分,共12分)(1)13)18()14(20----+- (2)20152)1(2321-⨯--+- (3))241()1276543(-÷-+- (4)2)3(3)315.01(1--⨯⎥⎦⎤⎢⎣⎡⨯-- 20.化简:(每题3分,共6分)(1)x x x x 352322+-+(2).先化简,再求值:)221()824(412---+-a a a ,其中21-=a .21.(本题6分) 已知a 、b 互为倒数,x 、y 互为相反数,m 是平方后得4的数. 求代数式220152016)(2015)(m y x ab -+-的值.22.(本题6分) 小黄做一道题“已知两个多项式A ,B ,计算A ﹣B .小黄误将A ﹣B 看作A+B ,求得结果是9x 2﹣2x+7.若B=x 2+3x ﹣2,请你帮助小黄求出A ﹣B 的正确答案。

23. (本题6分)已知有理数,,b a 在数轴上的位置如图所示。

(1)在数轴上标出b a --,的位置,并将b a b a --,,,用“<”连接;(2)化简a b a b a ---+24.(本题8分)观察下列等式: 111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+ (2)直接写出下列各式的计算结果:①201620151431321211⨯+⋅⋅⋅+⨯+⨯+⨯= ; ②1111122334(1)n n ++++=⨯⨯⨯+ ; (3)探究并计算:201620141861641421⨯+⋅⋅⋅+⨯+⨯+⨯25.(本题7分)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款 元.(用含x 的代数式表示)若该客户按方案二购买,需付款 元.(用含x 的代数式表示)(2)若x 等于30,通过计算说明此时按哪种方案更合算.(3)当x =30,你能给出一种更为省钱的购买方案吗?26.(9分) 如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足2a ++(c -7)2=0.(1) a = ,b = ,c = .(2) 若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合.(3) 点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2016-2017学年度第一学期初一数学期中考试答案一、选择题(每题2分,共16分.) 题号 (1) (2) (3) (4) (5) (6) (7) (8)答案 B D B A C B D C二、填空题(每空2分,共16分.)(9) 0,1,2,3;31±±±- ( 10) < > ( 11) 7-或3- (12)7- (13) 6 (14) 42m mn ∏- ( 15) 1 (16) 4 (17) 13或3 (18) 6045三、解答题:(本大题共10小题,共84分.)19. (1)原式=﹣20﹣14+18﹣13……………………..1分=﹣34+18﹣13………………………….2分=﹣29………………………………………….3分(2)原式=﹣1+1+2……………………………………………2分=2……………………………………………………3分(3)原式=﹣×(﹣24)+×(﹣24)﹣×(﹣24)…………………1分=18﹣20+14……………………………………………………………………2分=12;………………………………………………………………3分(4)原式=[1﹣(1﹣)]×|3﹣9|…………………………1分=(1﹣)×6…………………………………………2分=×6=1.……………………………3分20.(1) (1)原式=(3x 2﹣5x 2)+(2x+3x )…………1分=﹣2x 2+5x ;……………………..3分(2) 原式=﹣a 2+a-2﹣a+2 (1)=﹣a 2,…………………….2分当a=﹣时,原式=﹣.…………………..3分21. 解:∵a 、b 互为倒数,x 、y 互为相反数,m 是平方后得4的数,∴ab=1,x+y=0,m=±2,……………………………..3分(每个各一分)当m=2时,(ab )2015﹣﹣m 3=12015﹣﹣22=﹣3;……..4分 当m=﹣2时,(ab )2015﹣﹣m 3=12015﹣﹣(﹣2)2=-3.……..5分 ∴原式=-3……………………………..6分22. 解:∵A+B=9x 2﹣2x+7,B=x 2+3x ﹣2,∴A=9x 2﹣2x+7﹣(x 2+3x ﹣2)=9x 2﹣2x+7﹣x 2﹣3x+2=8x 2﹣5x+9……………………………..3分∴A ﹣B=8x 2﹣5x+9﹣(x 2+3x ﹣2)=8x 2﹣5x+9﹣x 2﹣3x+2=7x 2﹣8x+11.……………………………..6分23. (1)标出b a --,位置 (2分)b <-a < a < b (1分)(2)a b a b a ---+ 原式=-(a +b )-(a -b )-a=-3a (3分) 24. 111+-n n (2分) 20162015 (2分) 1+n n (2分) 40321007(2分)25. (1)200x +16000·············1分180x +18000·············2分(2)方案一:200x +16000=200×30+16000=22000(元),····················3分方案二:180x +18000=180×30+18000=23400(元),·······················4分而22000<23400∴按方案一购买较合算. ……………………………………………………………5分(3)解:先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带 (7)分26. (1)-2 ,1, 7 (3分)(2)4 (4分)(3) AB=3t+3,AC=5t+9, BC=2t+6 (7分)(4)不变3BC-2AB=12 (2分)。

相关文档
最新文档