2015年中考数学模拟试题(3)附答案

合集下载

广东省深圳市2015届中考数学模拟试卷(三)及答案解析

广东省深圳市2015届中考数学模拟试卷(三)及答案解析

2015年广东省深圳市中考数学模拟试卷(三)一、选择题:(本大题共12题,每小题3分,共36分)1.﹣9的绝对值是()A.9 B.﹣9 C.±9 D.2.将x2﹣16分解因式正确的是()A.(x﹣4)2B.(x﹣4)(x+4)C.(x+8)(x﹣8)D.(x﹣4)2+8x3.下列计算正确的是()A.b2•b3=b6B.(﹣a2)3=a6C.(ab)2=ab2D.(﹣a)6÷(﹣a)3=﹣a34.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5﹣﹣﹣66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.根据下列图形提供的信息,一定能得到∠1>∠2的是()A.B. C.D.6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元7.下列四个事件中,是随机事件(不确定事件)的是()A.小明上学经过十字路口时遇到绿灯B.通常加热到100℃,水会沸腾C.明天我市最高气温为60℃D.深圳去年数学中考时间为6月8日8.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF的度数是()A.50°B.60°C.80°D.100°9.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.对角线互相垂直且相等的四边形是矩形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的菱形是正方形11.如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y 轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=x B.y=x+1 C.y=x+2 D.y=x+312.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.192二、填空题:(本大题共12题,每小题3分,共36分)13.已知x=﹣2是关于x的方程x2﹣x+c=0的一个根,则c的值是.14.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是.15.正整数按如图的规律排列,写出第n行、第n+1列的数字为16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.三、解答题:(共52分)17.计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°.18.先化简,再求值:,其中,x为方程x2+2x﹣15=0的实数根.19.2011年日本核电站泄漏事件使我国电子产品出口受到严重影响,在这种情况下,有两个电子仪器厂仍然保持着良好的增长执着势头.(1)下面两幅统计图反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填充:①一厂、二厂的技术人员占厂内总人数的百分比分别是和(结果精确到1%)②一厂、二厂五月份的产值比四月份分别增长了万元和万元(2)下面是一厂、二厂五月份的销售额占当月产品销售总额的百分率统计表,则五月份一厂国外销售产值为万元,二厂在国内销往外地的产值为万元20.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)21.某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?22.如图,平面直角坐标系中,直线y=x+3与坐标轴分别交于A、B两点.动点P从A点出发沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为,1,2(长度单位/秒),点E同时从O点出发沿OB以(长度单位/秒)的速度运动,直线EF∥x轴交BA于点F,设运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,点P和点E同时停止运动.请解答下列问题(1)求A、B两点的坐标;(2)作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F是菱形,则t的值是多少?(3)当t=2时,是否存在点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.23.已知,函数y=ax2+x﹣1(a≠0)的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图1,平行于x轴的直线交抛物线于E、F两点,若以线段EF为直径的圆M经过点B,求线段MA的长;(3)如图2,设二次函数y=ax2+x﹣1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(4)在(3)中,若圆与x轴另一交点点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2﹣x﹣1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.2015年广东省深圳市中考数学模拟试卷(三)参考答案与试题解析一、选择题:(本大题共12题,每小题3分,共36分)1.﹣9的绝对值是()A.9 B.﹣9 C.±9 D.【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣9的绝对值是9,故选:A.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.将x2﹣16分解因式正确的是()A.(x﹣4)2B.(x﹣4)(x+4)C.(x+8)(x﹣8)D.(x﹣4)2+8x【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:x2﹣16=(x+4)(x﹣4).故选:B.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.3.下列计算正确的是()A.b2•b3=b6B.(﹣a2)3=a6C.(ab)2=ab2D.(﹣a)6÷(﹣a)3=﹣a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为b2•b3=b5,故本选项错误;B、应为(﹣a2)3=﹣a6,故本选项错误;C、应为(ab)2=a2b2,故本选项错误;D、(﹣a)6÷(﹣a)3=(﹣a)6﹣3=﹣a3,正确.故选D.【点评】本题主要考查同底数幂的乘法,同底数幂的除法,积的乘方,熟练掌握运算性质是解题的关键.4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5﹣﹣﹣66.5这组的频率是()A.0.4 B.0.5 C.4 D.5【考点】频数(率)分布表.【分析】首先正确数出在64.5﹣﹣﹣66.5这组的数据;再根据频率、频数的关系:频率=,进行计算.【解答】解:其中在64.5﹣﹣﹣66.5组的有65,66,64,65四个,则64.5﹣﹣﹣66.5这组的频率是=0.4.故选A.【点评】本题考查频率、频数的关系:频率=.5.根据下列图形提供的信息,一定能得到∠1>∠2的是()A.B. C.D.【考点】三角形的外角性质;对顶角、邻补角;直角三角形的性质;圆周角定理.【分析】分别根据对顶角的性质、两角互余的性质、三角形外角的性质及圆周角定理对各选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,故本选项错误;C、∵∠1是三角形的外角,∴∠1>∠2,故本选项正确;D、∵∠1与∠2是同弧所对的圆周角,∴∠1=∠2,故本选项错误.故选C.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角大于和它不相邻的任何一个内角是解答此题的关键.6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.下列四个事件中,是随机事件(不确定事件)的是()A.小明上学经过十字路口时遇到绿灯B.通常加热到100℃,水会沸腾C.明天我市最高气温为60℃D.深圳去年数学中考时间为6月8日【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【解答】解:A、小明上学经过十字路口时遇到绿灯是随机事件,故A正确;B、通常加热到100℃,水会沸腾是必然事件,故B错误;C、明天我市最高气温为60℃是不可能事件,故C错误;D、深圳去年数学中考时间为6月8日是不可能事件,故D错误;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF的度数是()A.50°B.60°C.80°D.100°【考点】翻折变换(折叠问题).【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=50°,则∠BDF即可求.【解答】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=50°∴∠EDF=∠ADE=50°∴∠BDF=180°﹣50°﹣50°=80°.故选:C.【点评】本题考查了全等三角形的性质及中位线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.9.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.【考点】概率公式;专题:正方体相对两个面上的文字.【专题】压轴题.【分析】让朝上一面上的数恰好等于朝下一面上的数的的情况数除以总情况数即为朝上一面上的数恰好等于朝下一面上的数的的概率.【解答】解:根据图看出只有6和3是对面,1和4是对面,2和5是对面;并且只有3在上面时6在下面,朝上一面上的数恰好等于朝下一面上的数的,抛掷这个立方体,朝上一面上的数恰好等于3的概率是.故选A.【点评】本题考查了统计与概率中概率的求法,要善于观察把图折成立方体时各个面是什么数字.用到的知识点为:概率=所求情况数与总情况数之比.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.对角线互相垂直且相等的四边形是矩形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】利用等边三角形的判定、矩形的判定、平行四边形及正方形的判定分别判断后即可确定正确的选项.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,正确;B、对角线互相垂直且相等的四边形是矩形,错误;C、一组对边平行且一组对角相等的四边形是平行四边形,正确;D、对角线相等的菱形是正方形,正确,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解等边三角形的判定、矩形的判定、平行四边形及正方形的判定,属于基础题,比较简单.11.如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y 轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=x B.y=x+1 C.y=x+2 D.y=x+3【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(﹣3,﹣1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用待定系数法确定PQ的解析式.【解答】解:分别把点A(a,1)、B(﹣1,b)代入双曲线y=﹣得a=﹣3,b=3,则点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(﹣3,﹣1),D点坐标为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,设直线CD的解析式为y=kx+b,把C(﹣3,﹣1),D(1,3)分别代入,解得,所以直线CD的解析式为y=x+2.故选C.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题.12.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.192【考点】一次函数综合题.【专题】规律型.【分析】首先求得点A与B的坐标,即可求得∠OAB的度数,又由△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,易求得OB1=OA=,A1B1=A1A,A2B2=A2A,则可得规律:OA n=(2n﹣1).根据A5A6=OA6﹣OA5求得△A5B6A6的边长,进而求得周长.【解答】解:∵点A(﹣,0),点B(0,1),∴OA=,OB=1,∴tan∠OAB==,∴∠OAB=30°,∵△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠A1B2A=∠A2B3A=∠OAB=30°,∴OB1=OA=,A1B2=A1A,A2B3=A2A,∴OA1=OB1=,OA2=OA1+A1A2=OA1+A1B2=+2=3,同理:OA3=7,OA4=15,OA5=31,OA6=63,则A5A6=OA6﹣OA5=32.则△A5B6A6的周长是96,故选C.【点评】此题考查了一次函数的性质、等边三角形的性质、等腰三角形的判定与性质以及三角函数的知识.此题难度较大,注意掌握数形结合思想的应用.二、填空题:(本大题共12题,每小题3分,共36分)13.已知x=﹣2是关于x的方程x2﹣x+c=0的一个根,则c的值是﹣6.【考点】一元二次方程的解.【分析】将x=﹣2代入已知方程,列出关于c的新方程,通过解新方程即可求得c的值.【解答】解:根据题意,得(﹣2)2﹣(﹣2)+c=0,解得c=﹣6.故答案是:﹣6.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32.【考点】垂径定理;勾股定理.【分析】连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.【解答】解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.正整数按如图的规律排列,写出第n行、第n+1列的数字为n2+n【考点】规律型:数字的变化类.【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【解答】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第n行第1列的数为:n2.则第n+1行第1列的数为:(n+1)2.又每行的数个数与对应列的数的个数相等.所以第n+1行第n+1列的数为(n+1)2﹣(n+1)+1=n2+n+1.根据如图,n2+n+1上面一个数是n2+n,即第n行第n+1列的数.故答案为:n2+n.【点评】此题考查数字的变化规律,解答此题的关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.16.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;圆周角定理;锐角三角函数的定义.【专题】压轴题.【分析】由题意可知,OE为对角线AC的中垂线,则CE=AE,S△AEC=2S△AOE=10,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.【解答】解:如图,连接EC.由题意可得,OE为对角线AC的垂直平分线,∴CE=AE,S△AOE=S△COE=5,∴S△AEC=2S△AOE=10.∴AE•BC=10,又BC=4,∴AE=5,∴EC=5.在Rt△BCE中,由勾股定理得:BE===3.∵∠EBC+∠EOC=90°+90°=180°,∴B、C、O、E四点共圆,∴∠BOE=∠BCE.另解:∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°﹣∠OBC=90°﹣(∠BCE+∠ECO)∴∠BOE+[90°﹣(∠BCE+∠ECO)]+∠EAO=90°,化简得:∠BOE﹣∠BCE﹣∠ECO+∠EAO=0∵OE为AC中垂线,∴∠EAO=∠ECO.代入上式得:∠BOE=∠BCE.∴sin∠BOE=sin∠BCE==.故答案为:.【点评】本题是几何综合题,考查了矩形性质、线段垂直平分线的性质、勾股定理、圆周角、三角函数的定义等知识点,有一定的难度.解题要点有两个:(1)求出线段AE的长度;(2)证明∠BOE=∠BCE.三、解答题:(共52分)17.计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用立方根定义计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣2++3﹣=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中,x为方程x2+2x﹣15=0的实数根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先化简分式,再求出x2+2x=15代入求解即可.【解答】解:=•,=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题主要考查了分式的化简求值及解一元二次方程,解题的关键是正确的化简分式.19.2011年日本核电站泄漏事件使我国电子产品出口受到严重影响,在这种情况下,有两个电子仪器厂仍然保持着良好的增长执着势头.(1)下面两幅统计图反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填充:①一厂、二厂的技术人员占厂内总人数的百分比分别是20%和8.3%(结果精确到1%)②一厂、二厂五月份的产值比四月份分别增长了1500万元和1000万元(2)下面是一厂、二厂五月份的销售额占当月产品销售总额的百分率统计表,则五月份一厂国外销售产值为1750万元,二厂在国内销往外地的产值为500万元【考点】条形统计图;折线统计图.【分析】(1)①由一厂和二厂和总人数和技术员的人数,可求得对应的技术员占的比例,②从折线图中可得出五月份的产值比四月份增长数;(2)利用五月份一厂国外销售产值=五月份一厂销售总产值×50%求解,二厂在国内销往外地的产值=五月份二厂销售总产值×20%求解即可.【解答】解:(1)从条形统计图中得出,一厂的人数=500+200+100+200=1000人,一厂技术员占的比例=200÷1000=20%,二厂的人数=700+100+150+250=1200人,二厂技术员占的比例=100÷1200≈8.3%,从折线图中得出一厂五月份的产值比四月份增长数=3500﹣2000=1500万元,二厂五月份的产值比四月份增长数=2500﹣1500=1000万元;故答案为:20%,8.3%,1500,1000.(2)五月份一厂国外销售产值为3500×50%=1750万元,二厂在国内销往外地的产值为2500×20%=500万元.故答案为:1750,500.【点评】本题考查的是条形统计图,折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】(1)已知看台有四个台阶组成,由图可看出DH由三个台阶组成,看台的总高度已知,则DH的长不难求得;(2)过B作BM⊥AH于M,则四边形BCHM是矩形,从而得到BC=MH,再利用三角函数可求得AD,AB的长.那么所用不锈钢材料的总长度l就不难得到了.【解答】解:(1)DH=1.6×=1.2(米);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH=BC=1∴AM=AH﹣MH=1+1.2﹣1=1.2.在Rt△AMB中,∠A=66.5°.∴AB=(米).∴l=AD+AB+BC≈1+3.0+1=5.0(米).答:点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【点评】此题主要考查学生对坡度坡角的理解及解直角三角形的综合运用能力.21.某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?【考点】一次函数的应用.【专题】压轴题;方案型;图表型.【分析】(1)用待定系数法求解析式;(2)设这次批发A种文具a件,根据题意求出取值范围,结合实际情况取特殊解后求解;(3)运用函数性质求解.【解答】解:(1)由图象知:当x=10时,y=10;当x=15时,y=5.设y=kx+b,根据题意得:,解得,∴y=﹣x+20.(2)当y=4时,得x=16,即A零售价为16元.设这次批发A种文具a件,则B文具是(100﹣a)件,由题意,得,解得48≤a≤50,∵文具的数量为整数,∴有三种进货方案,分别是①进A种48件,B种52件;②进A种49件,B种51件;③进A种50件,B种50件.(3)w=(x﹣12)(﹣x+20)+(x﹣10)(﹣x+22),整理,得w=﹣2x2+64x﹣460=﹣2(x﹣16)2+52.当x=﹣=16,w有最大值,即每天销售的利润最大.答:A文具零售价为16元,B文具零售价为14元时利润最大.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.22.如图,平面直角坐标系中,直线y=x+3与坐标轴分别交于A、B两点.动点P从A点出发沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为,1,2(长度单位/秒),点E同时从O点出发沿OB以(长度单位/秒)的速度运动,直线EF∥x轴交BA于点F,设运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,点P和点E同时停止运动.请解答下列问题(1)求A、B两点的坐标;(2)作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F是菱形,则t的值是多少?(3)当t=2时,是否存在点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)分别令x、y为0,求出点A、B的坐标;(2)此题需要分三种情况分析:点P在线段OA上,在线段OB上,在线段AB上;根据菱形的判定可知:在线段EF的垂直平分线上与x轴的交点,可求得一个;当点P在线段OB上时,形成的是三角形,不存在菱形;当点P在线段BA上时,根据对角线互相平分且互相垂直的四边形是菱形也可求解;(3)当t=2时,可求得点P的坐标,即可确定△BEP,根据相似三角形的判定定理即可求得点Q的坐标,解题时要注意答案的不唯一性.【解答】解:(1)当y=0时,x+3=0,解得:x=3,即A(3,0),当x=0时,y=3,即B(0,3);(2)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1),∵OE=FG,EP=FP,∠EOP=∠FGP=90°∴△EOP≌△FGP,∴OP=PG﹒又∵OE=FG=t,∠A=30°,∴AG==t,而AP=t,∴OP=3﹣t,PG=AP﹣AG=t﹣t=t,由3﹣t=t,解得:t=;②当点P在线段OB上时,形成的是三角形,不存在菱形;③当点P在线段BA上时,过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2),∵OE=t,∴BE=3﹣t,∴EF==3﹣t,∴MP=EH=EF=﹣t,又∵BP=2(t﹣6),在Rt△BMP中,BP•sin60°=MP即2(t﹣6)•=﹣t,解得:t=;(3)存在;理由如下:∵t=2,∴OE=,AP=2,OP=,将△BEP绕点E顺时针方向旋转90°,得到△B'EC(如图3),∵OB⊥EF,∴点B'在直线EF上,∵C点横坐标绝对值等于EO长度,C点纵坐标绝对值等于EO﹣PO长度,∴C点坐标为(﹣,﹣),过F作FQ∥B'C,交EC于点Q,则△FEQ∽△B'EC,由===,可得Q的坐标为(﹣,﹣);根据对称性可得,Q关于直线EF的对称点Q'(﹣,)也符合条件.【点评】本题考查了一次函数综合题,还考查了菱形的判定与性质以及相似三角形的判定与性质,解题的关键要注意数形结合思想的应用,还要注意答案的不唯一性,不要漏解.23.已知,函数y=ax2+x﹣1(a≠0)的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图1,平行于x轴的直线交抛物线于E、F两点,若以线段EF为直径的圆M经过点B,求线段MA的长;(3)如图2,设二次函数y=ax2+x﹣1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(4)在(3)中,若圆与x轴另一交点点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2﹣x﹣1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.【考点】二次函数综合题.【分析】(1)a≠0,此函数是二次函数,可由根的判别式求出a的值,以此确定其解析式;(2)由抛物线对称轴为x=2,设满足条件的圆的半径为R,点E在对称轴左侧,则E的坐标为(2﹣R,﹣R),而E点在抛物线y=﹣x2+x﹣1上,代入解析式中求出R即可解决问题;(3)设圆与x轴的另一个交点为C,连接PC,由圆周角定理知PC⊥BC;由于PB是圆的直径,且AB切圆于B,得PB⊥AB,由此可证得△PBC∽△BAO,根据两个相似三角形的对应直角边成比例,即可得到PC、BC的比例关系,可根据这个比例关系来设P点的坐标,联立抛物线的解析式即可求出P点的坐标;(4)连接CM,设CM与PB的交点为Q,由于C、M关于直线PB对称,那么PB垂直平分CM,即CQ=QM;过M作MD⊥x轴于D,取CD的中点E,连接QE,则QE是Rt△CMD的中位线;在Rt△PCB中,CQ⊥OB,QE⊥BC,易证得∠BQE、∠QCE都和∠CPQ相等,因此它们的正切值都等于(在(2)题已经求得);由此可得到CE=2QE=4BE,(2)中已经求出了CB的长,根据CE、BE的比例关系,即可求出BE、CE、QE的长,由此可得到Q点坐标,也就得到M点的坐标,然后将点M代入抛物线的解析式中进行判断即可.【解答】解:(1)当a≠0时,△=1+4a=0,a=﹣,此时,图象与x轴只有一个公共点.∴函数的解析式为:y=﹣x2+x﹣1;(2)由(1)知,抛物线的解析式为y=﹣x2+x﹣1.则y=﹣x2+x﹣1=﹣(x﹣2)2.点A的坐标是(0,﹣1).∵以线段EF为直径的圆M经过点B,EF∥x轴,。

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

某某省某某市宝安区2015届中考数学模拟试题一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.162.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m23.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB 交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a=.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= cm.15.在数据1,2,3,1,2,2,4中,众数是.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.18.先化简,再求值:,其中x=2.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.2015年某某省某某市宝安区中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m2【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于256520有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:256520m2=2.57×105m2,故选:C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,判断得出即可.【解答】解:A、一个游戏的中奖概率是,则做5次这样的游戏不一定会中奖,故此选项错误;B、为了解某某中学生的心理健康情况,应该采用抽样调查的方式,故此选项错误;C、事件“小明今年中考数学考95分”是可能事件,此选项正确;D、若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则甲组数据更稳定,故此选项错误;故选:C.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵ =,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.【点评】本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0及一次函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,一次函数y=ax+b数的图象过第一、二、三象限,反比例函数图象在第一三象限,选项C符合;(2)当a<0,b<0时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,即∠OBC的余弦值为.故选:C.【点评】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了特殊角的三角函数值的求法,要熟练掌握.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π【考点】弧长的计算;旋转的性质.【分析】先根据Rt△AB C中,∠C=90°,∠A=30°,AB=4求出BC及AC的长,再根据弧长的计算公式求出、的长,那么阴影部分的周长=AC+的长+A′C′+的长,将数值代入计算即可.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AB=4,∴∠ABC=60°,BC=AB=2,AC=BC=2,∴∠CBC′=∠ABA′=180°﹣60°=120°,∴的长==π,的长==,∴阴影部分的周长=AC+的长+A′C′+的长=2++2+π=4π+4.故选A.【点评】本题考查的是旋转的性质,弧长的计算,含30度角的直角三角形性质的应用,根据题意得出阴影部分的周长=AC+的长+A′C′+的长是解答此题的关键.12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= 2 cm.【考点】垂径定理;解直角三角形.【分析】过点O作OC⊥A B,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.【点评】本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.15.在数据1,2,3,1,2,2,4中,众数是 2 .【考点】众数.【分析】根据众数的定义就可以求解.【解答】解:众数是一组数据中出现次数最多的数据,本组数据中3和4各出现1次,1出现2次,2出现3次.出现次数最多的是2,所以众数是2.故填2.【点评】本题属于基础题,考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .【考点】勾股定理的逆定理;矩形的性质.【专题】几何综合题;压轴题;动点型.【分析】根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【解答】解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴当AM最短时,AM=AP÷2=2.4.【点评】解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】把()﹣1==3,tan45°=1代入计算,任何不等于0的数的0次幂都等于1.【解答】解:原式==3﹣(2﹣)+1=2+.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=,当x=2时,原式=1.【点评】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占的百分比及可求出A级和B级的学生人数.【解答】解:(1)读图可得:A类有10人,占总体的20%,所以总人数为10÷20%=50人,则D级的学生人数为50﹣10﹣23﹣12=5人.据此可补全条形图;(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%=10%;(3)读扇形图可得:A级占20%,所在的扇形的圆心角为360°×20%=72°;(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为500×66%=330人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是∠ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°∴AC是⊙O的切线;(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6,AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF==∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点评】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【考点】相似三角形的判定与性质;等腰直角三角形;矩形的性质;正方形的性质.【专题】证明题;动点型.【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即: =,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出PG=,MG=,PH=,NH=,根据S=S梯形MGHN﹣S△PMG﹣S△PNH=,利用二次函数的性质当x=1时,S有最大值是,即可解答;(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.【解答】解:(1)令x=0得,y=4,∴C(0,4)∴OB=OC=4,∴B(4,0)代入抛物线表达式得:16a﹣8a+4=0,解得a=∴抛物线的函数表达式为(2)如图2,过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,由抛物线得:A(﹣2,0),设P(x,0),△PMN的面积为S,则PG=,MG=,PH=,NH=∴S=S梯形MGHN﹣S△PMG﹣S△PNH===∵,∴当x=1时,S有最大值是∴△PMN的最大面积是,此时点P的坐标是(1,0)(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA由抛物线得:A(﹣2,0),对称轴为直线x=1,∴OA=2,OC=4,OD=1①若△DOE∽△AOC,则∴,解得OE=2∴点E的坐标是(0,2)或(0,﹣2)若点E的坐标是(0,2),则直线DE为:y=﹣2x+2解方程组得:,(不合题意,舍去)此时满足条件的点F1的坐标为(,)若点E的坐标是(0,﹣2),同理可求得满足条件的点F2的坐标为(,)②若△DOE∽△COA,同理也可求得满足条件的点F3的坐标为(,)满足条件的点F4的坐标为(,)综上所述,存在满足条件的点F,点F的坐标为:。

2015初三中考3月模拟考试数学试卷附答案

2015初三中考3月模拟考试数学试卷附答案

2015初三中考3月模拟考试数学试卷时间:120分钟;满分120分第I 卷(选择题)一、单项选择题:每小题3分,共30分。

1.若A 为一数,且A =25×76×114,则下列选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×1162. 如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1 D .0<k <123.已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.1524.如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y ,高度为x ,则y 关于x 的函数图象大致是( )5.在x =-4,-1,0,3中,满足不等式组⎩⎪⎨⎪⎧x<2,2(x +1)>-2的x 值是( )A .-4和0B .-4和-1C .0和3D .-1和06. 将函数y =-3x 的图象沿y 轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A .y =-3x +2B .y =-3x -2C .y =-3(x +2)D .y =-3(x -2)7. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )A .AE =CFB .BE =FDC .BF =DED .∠1=∠2,第7题图)8. 在等腰△ABC 中,AB =AC ,其周长为20 cm ,则AB 边的取值范围是( ) A .1<AB <4 B .5<AB <10 C .4<AB <8 D .4<AB <109. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,则斜坡AB 的长为( )A .43米B .65米C .125米D .24米,第9题图)10. 如果点A(-2,y 1),B(-1,y 2),C(2,y 3)都在反比例函数y =kx (k >0)的图象上,那么y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 1二、填空题:每小题3分,共18分11. .计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,….归纳各计算结果中的个位数字规律,猜测266-1的个位数字是____.12. 若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1,y =1,⎩⎪⎨⎪⎧x =2,y =-1,则m =____,n =____.13. 函数y =x +1x -1的自变量x 的取值范围为____.14.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为____.15. 如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于____.,第15题图)16抛物线y =x 2-2x +3的顶点坐标是___三、解答题17.当2x 2+3x +1=0时,求(x -2)2+x (x +5)+2x -8的值.18. 一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:利润率=售价-进价进价×100%)19. 如图,直线l 1∶y =x +1与直线l 2∶y =mx +n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请你直接写出它的解;(3)直线l 3∶y =nx +m 是否也经过点P ?请说明理由.20.(12分)如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE⊥CD,AE 分别与CD ,CB 相交于点H ,E ,AH =2CH.(1)求sin B 的值;(2)如果CD =5,求BE 的值.21. )如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连结EF ,CG.(1)求证:EF∥CG;(2)求点C ,A 在旋转过程中形成的,与线段CG 所围成的阴影部分的面积.22. 如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C ,D 是二次函数图象上的一对对称点,一次函数的图象过点B ,D .(1)请直接写出D 点的坐标; (2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.参考答案:1-5.CBAAD 6-10 AABBB 11. 312. 4 2 13. x ≠114. 2x +56=589-x 15. 816. (1,2)17.解:原式=2x 2+3x -4,∵2x 2+3x +1=0,∴2x 2+3x =-1,∴原式=2x 2+3x -4=-1-4=-518.解:设这件外衣的标价为x 元,依题意得0.8x -200=200×10%,解得x =275,则这件外衣的标价为275元19.解:(1)∵(1,b)在直线y =x +1上, ∴当x =1时,b =1+1=2 (2)解是⎩⎪⎨⎪⎧x =1y =2 (3)直线y =nx +m 也经过点P ,∵点P(1,2)在直线y =mx +n 上,∴m +n =2,∴2=n×1+m ,这说明直线y =nx +m 也经过点P20.解:(1)∵∠ACB=90°,CD 是斜边AB 上的中线,∴∠ACH +∠BCD =90°,CD =BD ,∴∠B =∠BCD,∵AE ⊥CD ,∴∠CAH +∠ACH=90°,∴∠B =∠CAH,∵AH =2CH ,∴由勾股定理得AC =5CH ,∴CH ∶AC =1∶5,∴sinB =55 (2)∵sinB =55,∴AC ∶AB =1∶5,∵CD =5,∴AB =25,∴AC =2,则CE =1,在Rt △ABC 中,AC 2+BC 2=AB 2,∴BC =4,∴BE =BC -CE =321. 解:(1)在正方形ABCD 中,AB =BC =AD =2,∠ABC =90°,∵△BEC 绕点B 逆时针旋转90°得到△ABF,∴△ABF ≌△CBE ,∴∠FAB =∠ECB,∠ABF =∠CBE =90°,AF =EC ,∴∠AFB +∠FAB=90°,∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG=∠AFG =90°,∴∠CFG =∠FAB=∠ECB,∴EC ∥FG ,∵AF =EC ,AF =FG ,∴EC =FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG (2)∵AD=2,E 是AB 的中点,∴FB =BE =12AB =12×2=1,∴AF=AB 2+BF 2=22+12=5,由平行四边形的性质,△FEC ≌△CGF ,∴S △FEC =S △CGF ,∴S阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90·π·22360+12×2×1+12×(1+2)×1-90·π·(5)2360=52-π422. (1)∵二次函数的图象与x 轴交于A(-3,0)和B(1,0)两点,∴对称轴是x =-3+12=-1.又点C(0,3),点C ,D 是二次函数图象上的一对对称点,∴D(-2,3) (2)设二次函数的解析式为y =ax 2+bx +c (a≠0,a ,b ,c 为常数),则⎩⎪⎨⎪⎧9a -3b +c =0,a +b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3,所以二次函数的解析式为y =-x 2-2x +3 (3)一次函数值大于二次函数值的x 的取值范围是x <-2或x >1。

2015年初三数学三模试题(含答案)

2015年初三数学三模试题(含答案)

2015年初三数学三模试题(含答案)重庆育才中学2015级初三(下)第三次诊断性考试数学试题(满分:150分,考试时间:120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,),对称轴公式为.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1.在,,,这四个数中,最大的数是(▲ ) A. B. C. D. 2.下图是我国几家银行的标志,其中是中心对称图形的有(▲ ) A. 1个 B. 2个 C. 3个 D. 4个 3.下列运算中,正确的是(▲ ) A. B. C.D. 4.二元一次方程组的解的情况是(▲ )A . B. C.D. 5.在中,的取值范围为(▲ ) A.且B. C.且 D.6.已知多项式,可求得另一个多项式的值为(▲ ) A. B. C. D.7.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为(▲ ) A.110° B.115° C.120° D.130° 8.下列说法正确的是(▲ ) A.在统计学中,把组成总体的每一个考察对象叫做样本容量. B.为了解全国中学生的心理健康情况,应该采用普查的方式. C.一组数据6,8,7 ,8,8,9,10的众数和中位数都是8. D.若甲组数据的方差为,乙组数据的方差为,则甲组数据更稳定.第7题图第9题图 9.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,若∠CPD=20°,则∠CAP等于(▲ ) A.30° B .20° C.45° D.25° 10.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是(▲ )A. 124 B. 125 C. 126 D. 127 11.为了响应党的十八大建设“美丽重庆”的号召,位于重庆东北部的巫山县积极推进“ 美丽新巫山”工程,购回一批紫色三角盆景安放在桥梁中央的隔离带内,将高速公路打造成漂亮的迎宾大道.施工队在安放了一段时间的盆景后,因下雨被迫停工几天,随后施工队加快了安放进度,并按期完成了任务.下面能反映该工程尚未安放的盆景数y(盆)与时间x(天)的函数关系的大致图象是(▲ ) A. B. C. D. 12.如图,点在双曲线上,过点A作AC⊥x轴于点C,线段OA的垂直平分线交OC于点B,则△ABO的面积为(▲ ) A. B. C. D.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上. 13.电影《速度与激情7》于年月日在中国上映,获万人民币票房,请将这个数用科学计数法表示为▲ . 14.计算:▲ . 15.如图,在平行四边形中,点为边的中点,连接,交于点,则▲ .16.如图,是边长为的等边三角形,为边的中点,以为直径画圆,则图中影阴部分的面积为▲ (结果保留). 17.在、、、、、这六个数中,随机取出一个数,记为,那么使得关于的反比例函数经过第二、四象限,且使得关于的方程有整数解的概率为▲ . 18.如图,在矩形中,,点E、F分别是AD、BC上的点,且DE=CF=9,连接EF、DF、AF,取AF的中点为,连接,将沿BC方向平移,当点F到达点C时停止平移,然后将△GFB绕点顺时针旋转α(0°<α<90°),得到(点G的对应点为,点B的对应点为),在旋转过程中,直线与直线、分别相交于、,当是等腰三角形,且时,线段的长为▲ .三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.已知:如图,点B,F,C,E在同一条直线上,BF =CE,AC=DF,且AC∥DF.求证:∠B=∠E.20.2015年3月30日至5月11日,我校举办了以“读城记”为主题的校读书节暨文化艺术节.为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生中随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并将调查结果绘制了两幅不完整的统计图,请回答下列问题: A.“寻找星主播” 校园主持人大赛 B.“育才音超”校园歌手大赛 C.阅读之星评选 D.“超级演说家”演讲比赛(1)这次被调查的学生共有▲ 人,请你将统计图1补充完整.(2)在此调查中,抽到了初一(1)班3人,其中2人喜欢“育才音超”校园歌手大赛、 1人喜欢阅读之星评选.抽到了初二(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人,用列表或画树状图求出两人都喜欢阅读之星评选的概率.四、解答题:(本大题共个4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.化简下列各式:(1);(2).22.宾哥和君哥在华润广场前感慨楼房真高.君哥说:“这楼起码20层!”宾哥却不以为然:“20层?我看没有,数数就知道了!”君哥说:“老大,你有办法不用数就知道吗?”宾哥想了想说:“没问题!让我们来量一量吧!”君哥、宾哥在楼体两侧各选A、B两点,其中矩形CDEF表示楼体,AB=200米,CD=20米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(用含根号的式子表示)(2)若每层楼按3米计算,你支持宾哥还是君哥的观点呢?请说明理由.(精确到0.1,参考数据:≈1.73,≈1.41,≈2.24)23.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销,购进价格为每件10元.若售价为12元/件,则可全部售出,若每涨价0.1元,销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了,但售价比9月份在(1)的条件下的最高售价减少.结果10月份利润达到3388元,求的值(). 24.我们对多项式进行因式分解时,可以用待定系数法求解.例如,我们可以先设,显然这是一个恒等式.根据多项式乘法将等式右边展开有:所以,根据等式两边对应项的系数相等,可得:,解得或者 .所以 .当然这也说明多项式含有因式:和 . 像上面这种通过利用恒等式的性质来求未知数的方法叫做待定系数法. 利用上述材料及示例解决以下问题. (1)已知关于的多项式有一个因式为,求的值;(2)已知关于的多项式有一个因式为,求的值.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 25.如图,在菱形ABCD 中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(�1,0),(0,�3),直线x=1为抛物线的对称轴,点D 为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D 的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合),记A、B、C、P四点所构成的四边形面积为,若,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ沿边EQ翻折得到△ ,是否存在点Q使得△ 与△BEQ的重叠部分图形为直角三角形,若存在,请求出BQ的长,若不存在,请说明理由.命题人:宋飞达、宋建华、董晓艳、余其磷、石慧、李遵文、何贻勇、陈琴、刘念审题人:曾中君、沈顺重庆育才中学初2015级初三(下)第三次诊断性考试数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B A A C C B C D D B A 二、填空题题号13 14 15 16 17 18 答案三、解答题 19.证明:∵AC∥DF ∴∠ACB=∠DFE ∵BF=CE∴BF+CF=CE+CF 即,BC=EF 在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠B=∠E. 20.解:(1)这次被调查的学生共有 200 人;如图所示:(2)设用A表示喜欢阅读之星评选的学生,用B表示喜欢其他比赛的学生. A A B B BA B B B A B B B A A B B A A B B A A B B一共有20中等可能的结果,其中所选两名刚好都喜欢阅读之星评选的学生有2种结果.所以, = = 21.解:(1)原式= = 22.解:(1)设楼高为x米,则CF=DE=x米,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AC= x米,BD=x米,∴ x+x=200�20,解得x= =90(�1)(米),∴楼高90(�1)米.(2)x=90(�1)≈90(1.73�1)=90×0.73=65.7米>3×20米,∴我支持君哥的观点,这楼起码20层. 23.解:(1)设售价应为元,由题意得 . 解得:答:该文具店9月份销量不低于1100件,则售价应不高于15元. (2)10月份的进价:10(1+20%)=12(元) 由题意得:设,化解得:解得:所以,因为;所以 . 答:的值为40. 24.25.证明: (1) (2)如图1:过点E做SE平行于AD交AB于S点, , , , (3)如图2:过点E做EH平行于AD交AB延长线于H点, , , , 26.解:(1)由抛物线的对称轴直线x=1,A(�1,0)可知B(3,0),设抛物线y=a(x+1)(x�3),将C(0,�3)代入得:�3=�3a,即a=1,∴抛物线的解析式为:y=x2�2x�3,其顶点D坐标为:(1,�4).(2)设,易知直线的解析式为:,令,则,所以,(�。

2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。

设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。

5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。

2015年中考模拟数学试题(三)及答案

2015年中考模拟数学试题(三)及答案

2015年中考数学模拟测试卷(三)时间120分钟 满分120分 2015.4.11一、选择题(每小题3分共36分)1.对于任意实数x ,代数式53212+-x x 的值是一个( ▲ )A . 非负数B . 正数C .负数D . 整数2.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .10cmD .14cm3.某地,今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是( ) A .1月1日B .1月2日C .1月3日D .1月4日4.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A .4.8米B .6.4米C .9.6米D .10米5.下列运算正确的是A .a 3•a 2=a 6B .2a (3a ﹣1)=6a 3﹣1C .(3a 2)2=6a 4D .2a+3a=5a6.下列运算正确的是( ) A.x 4·x 3=x 12 B.(x 3)4=x 7 C.x 4÷x 3=x(x ≠0) D.x 4+x 4=x 87.关于函数y= 3x +1,下列结论正确的是A .图象必经过点(-2,5)B .y 随x 的增大而减小C .当x >—12时,y >0 D .图象经过第一、二、三象限 8.若a为有理数,则说法正确是( )[A .-a 一定是负数B .| a |一定是正数C .| a |一定不是负数D .-a 2一定是负数9.将y=2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是( ) A. y=2x 2+2 B. y=2(x+2)2 C. y=(x -2)2 D. y=2x 2-2 10.不等式组⎩⎨⎧><-01x x 的解集在数轴可表示为( ▲ )11.下列计算正确的是 ( )A .133-=-B .236a a a ⋅=C .22(1)1x x +=+D .=12.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A. 21元B. 19.8元C. 22.4元D. 25.2元二、填空题(每小题3分共24分)13.观察下面一列数,根据规律写出横线上的数。

2015年中考数学模拟试卷及答案(含答题纸)

2015年中考数学模拟试卷及答案(含答题纸)

9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3

2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图

湖北省宜昌市2015年中考数学模拟试卷(三)及答案解析

湖北省宜昌市2015年中考数学模拟试卷(三)及答案解析

2015年湖北省宜昌市中考数学模拟试卷(三)一、选择题1.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.62.用激光测距仪测量,从一座山峰发出的激光经过4×10﹣5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为()A.1.2×103米B.12×103米 C.1.2×104米D.1.2×105米3.设方程x2﹣5x﹣1=0的两个根是x1和x2,则x1+x2﹣x1x2的值是()A.﹣6 B.6 C.﹣4 D.44.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为()A.B.C.D.5.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>26.为了解决某小区居民的用电情况,一名同学随机抽查了15户家庭的日用电量,结果如下表则关于这15户家庭的日用电量,下列说法错误的是()A.众数是6度B.平均数是6.8度C.中位数是6度 D.极差是5度7.下列正方形方格中四个三角形中,与甲图中的三角形相似的是()A.B.C.D.8.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.B.C.D.9.如图,是一个圆曲隧道的截面,若路面AB宽为10米,净高CD为7米,则此隧道圆的半径OA 是()A.5 B.C.D.710.如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()A.(7,3) B.(4,5) C.(7,4) D.(3,4)11.下列命题中,真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相平分的四边形是平行四边形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相垂直的四边形是菱形12.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗B.6颗C.4颗D.2颗13.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.14.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,…则E(x,x2﹣2x+1)可以由E(x,x2)怎样平移得到?()A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位15.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm二、解答题16.计算:2﹣1﹣(π﹣2012)0+sin45°.17.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.18.如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为,求AC的长.19.今年“五一”假期,某数学活动小组组织一次登山话动.他们从山脚下点A出发沿斜坡AB到达点B,再从点B沿斜坡BC到达山巅点C,路线如图所示.斜坡AB的长为1 000米,斜坡BC的长为400米,在C点测得点B的俯角为30°.已知点A的海拔高度为121米,点C的海拔高度为921米.(1)求B点的海拔高度;(2)求斜坡AB的坡度(即∠A的正切值).20.小明、小华到某电脑销售公司参加社会实践活动,了解到2011年该公司销售的甲、乙两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.甲品牌电脑一月的销售量是二、三月销售量的平均数,小明用直方图表示在第一季度每个月甲品牌电脑销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在二月的销售量是第一季度甲品牌电脑销售量的百分之几?(2)已知该公司二月份甲品牌电脑的销售量比乙品牌电脑的销售量多20%,求乙品牌电脑在一月份销售了多少台?21.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.22.今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.23.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN 为等腰三角形.24.已知:如图,抛物线y=x2﹣x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M 的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.2015年湖北省宜昌市中考数学模拟试卷(三)参考答案与试题解析一、选择题1.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【解答】解:由俯视图易得最底层有2个立方体,第二层有1个立方体,那么共有2+1=3个立方体组成.故选A.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.2.用激光测距仪测量,从一座山峰发出的激光经过4×10﹣5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为()A.1.2×103米B.12×103米 C.1.2×104米D.1.2×105米【考点】科学记数法—表示较大的数.【分析】首先利用光速乘以时间可得两座山峰之间的距离,然后再利用科学记数法表示.【解答】解:4×10﹣5×3×108=12×103=1.2×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.设方程x2﹣5x﹣1=0的两个根是x1和x2,则x1+x2﹣x1x2的值是()A.﹣6 B.6 C.﹣4 D.4【考点】根与系数的关系.【分析】先利用根与系数的关系式求得x1+x2=5,x1x2=﹣1,再整体代入即可求解.【解答】解:∵x1、x2是方程x2﹣5x﹣1=0的两个根∴x1+x2=5,x1x2=﹣1∴x1+x2﹣x1x2=5+1=6.故选B.【点评】本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式是解题的关键.4.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为()A.B.C.D.【考点】几何概率.【分析】根据对称性,观察图形,分析可得阴影部分与整个圆面的面积之比,即为所求的概率.【解答】解:根据题意,AB、CD是水平放置的轮盘上两条互相垂直的直径;即圆面被等分成4个面积相等的部分.分析图示可得:阴影部分面积之和为4部分中的其中之一,即的圆面积;根据几何概率的求法,可得该小钢球最终停在阴影区域的概率为;故选A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>2【考点】一次函数的图象.【专题】压轴题.【分析】此题可根据两交点坐标直接取y2图象处于y1图象下方时x所满足的值即可.【解答】解:由图象可知:在(﹣1,1)左边,(2,2)的右边,y1>y2,∴x<﹣1或x>2.故选C.【点评】本题考查了函数的图象.对于有相应的函数值来求自变量的取值范围,应该从交点入手思考.6.为了解决某小区居民的用电情况,一名同学随机抽查了15户家庭的日用电量,结果如下表则关于这15户家庭的日用电量,下列说法错误的是()A.众数是6度B.平均数是6.8度C.中位数是6度 D.极差是5度【考点】极差;加权平均数;中位数;众数.【分析】众数是指一组数据中出现次数最多的数据;平均数是所有数据的和除以数据的个数;而中位数是指将一组数据按从小(或大)到大(或小)的顺序排列起来,位于最中间的数(或是最中间两个数的平均数);极差是最大数与最小数的差.【解答】解:A、数据6出现了5次,出现次数最多,所以众数是6度,故选项正确;B、平均数=(5×2+6×5+7×4+8×3+10×1)÷15=6.8度,故选项正确;C、本题数据共有15个数,故中位数应取按从小到大的顺序排列后的第8个数,所以中位数为7度,故选项错误;D、极差=10﹣5=5度,故选项正确.故选C.【点评】本题重点考查平均数,中位数,众数及极差的概念及求法.解题的关键是熟记各个概念.7.下列正方形方格中四个三角形中,与甲图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【解答】解:设小正方形的边长为1,那么已知三角形的三边长分别为,2,,所以三边之比为1:2:;A、三角形的三边分别为2、、3,三边之比为:::3,故本选项错误;B、三角形的三边分别为2、4、2,三边之比为:1:2:,故本选项正确;C、三角形的三边分别为2、3、,三边之比为:2:3:,故本选项错误;D、三角形的三边分别为、、34,三边之比为:::,故本选项错误;故选B.【点评】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.8.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.B.C.D.【考点】锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理.【分析】根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD 是直角三角形,然后根据正切函数的定义即可求解.【解答】解:连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC==故选B.【点评】本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键.9.如图,是一个圆曲隧道的截面,若路面AB宽为10米,净高CD为7米,则此隧道圆的半径OA 是()A.5 B.C.D.7【考点】垂径定理的应用.【专题】计算题.【分析】根据垂径定理得到AD=DB=AB=×10=5m,设半径OA=R,OD=CD﹣R=7﹣R,在Rt△OAD 中根据勾股定理得R2=(7﹣R)2+52,然后解方程求出R即可.【解答】解:∵OD⊥AB,∴AD=DB=AB=×10=5m,在Rt△OAD中,设半径OA=R,OD=CD﹣R=7﹣R,∴OA2=OD2+AD2,即R2=(7﹣R)2+52,解得R=,∴此隧道圆的半径OA是m.故选B.【点评】本题考查了垂径定理的应用:先从实物图中得到几何图形﹣﹣﹣﹣圆,然后利用垂径定理(垂直于弦的直径平分弦,并且平分弦所对的弧)得到等线段,最后利用勾股定理建立等量关系,解方程求解.10.如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()A.(7,3) B.(4,5) C.(7,4) D.(3,4)【考点】坐标与图形变化-旋转;一次函数的性质.【分析】旋转不改变图形的大小和性质,所得图形与原图形全等,根据全等三角形的性质,即可得到相应线段的长.【解答】解:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,∴横坐标为OA+OB=OA+O′B′=3+4=7.故选:A.【点评】要注意,解题的关键是:旋转前后线段的长度不变.11.下列命题中,真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相平分的四边形是平行四边形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相垂直的四边形是菱形【考点】命题与定理.【分析】根据矩形的判定方法对A进行判断;根据平行四边形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、两条对角线相等平行四边形是矩形,所以A选项错误;B、两条对角线互相平分的四边形是平行四边形,所以B选项正确;C、两条对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、两条对角线互相垂直的平行四边形是菱形,所以D选项错误.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.12.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗B.6颗C.4颗D.2颗【考点】概率公式.【分析】由从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程,又由再往盒中放进6颗黑色棋子,取得白色棋子的概率是,可得方程,联立即可求得x的值.【解答】解:设原来盒中有白棋x颗,黑棋y颗.∵取得白色棋子的概率是,∴,∵再往盒中放进6颗黑色棋子,取得白色棋子的概率是,∴,联立方程组解得x=4,y=6.经检验,x=4,y=6是原方程组的解.∴原来盒中有白色棋子4颗.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用是解此题的关键.13.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.【考点】菱形的性质.【分析】先求出∠A等于60°,连接BD得到△ABD是等边三角形,所以BD等于菱形边长.【解答】解:连接BD,∵∠ADC=120°,∴∠A=180°﹣120°=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AB=15.故选A.【点评】本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.14.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,…则E(x,x2﹣2x+1)可以由E(x,x2)怎样平移得到?()A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位【考点】二次函数图象与几何变换.【专题】压轴题;新定义.【分析】首先弄清E(x,x2﹣2x+1)和E(x,x2)所代表的函数,然后根据左加右减,上加下减的规律进行判断.【解答】解:E(x,x2﹣2x+1)即为y=x2﹣2x+1=(x﹣1)2;E(x,x2)即为y=x2;y=(x﹣1)2可由y=x2向右平移一个单位得出;故选D.【点评】主要考查的是函数图象的平移,弄清新标记的含义是解答此题的关键.15.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm【考点】弧长的计算.【专题】几何图形问题.【分析】本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:=4π,圆锥底面圆的半径:r==2(cm).【解答】解:弧长:=4π,圆锥底面圆的半径:r==2(cm).故选:C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、解答题16.计算:2﹣1﹣(π﹣2012)0+sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+×=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.【考点】勾股定理;等边三角形的判定.【专题】计算题;证明题.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD是等边三角形,再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.18.如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为,求AC的长.【考点】矩形的性质;菱形的判定与性质;解直角三角形.【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【解答】(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形;(2)解:∵∠ACB=30°,∴∠DCO=90°﹣30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=,∴DF=x.∴OC•DF=8.∴x=2.∴AC=4×2=8.【点评】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.19.今年“五一”假期,某数学活动小组组织一次登山话动.他们从山脚下点A出发沿斜坡AB到达点B,再从点B沿斜坡BC到达山巅点C,路线如图所示.斜坡AB的长为1 000米,斜坡BC的长为400米,在C点测得点B的俯角为30°.已知点A的海拔高度为121米,点C的海拔高度为921米.(1)求B点的海拔高度;(2)求斜坡AB的坡度(即∠A的正切值).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,根据在C点测得B点的俯角为30°,可得∠CBD=30°,继而可求得CD的长度,求出B点的高度;(2)根据(1)中求得B点的高度,AB=1000米,利用勾股定理求出AE的长度,易求得AB的坡度.【解答】解:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,∵在C点测得B点的俯角为30°,∴∠CBD=30°,又∵BC=400米,∴CD=400×sin30°=400×=200(米).∴B点的海拔为921﹣200=721(米).(2)∵BE=DF=721﹣121=600米,又∵AB=1000米,AE===800米,∴AB的坡度i AB===.故斜坡AB的坡度为3:4.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,要求同学们熟练掌握坡度的定义.20.小明、小华到某电脑销售公司参加社会实践活动,了解到2011年该公司销售的甲、乙两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.甲品牌电脑一月的销售量是二、三月销售量的平均数,小明用直方图表示在第一季度每个月甲品牌电脑销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在二月的销售量是第一季度甲品牌电脑销售量的百分之几?(2)已知该公司二月份甲品牌电脑的销售量比乙品牌电脑的销售量多20%,求乙品牌电脑在一月份销售了多少台?【考点】条形统计图;扇形统计图.【分析】(1)根据甲品牌电脑一月的销售量是二、三月销售量的平均数,可得二月份的销售量,根据二月份的销售量除以第一季度的销售量,可得答案;(2)根据甲品牌电脑的销售量比乙品牌电脑的销售量多20%,可得乙品牌二月份的销售量,根据乙品牌二月份的销售量除以二月份销售量所占的百分比,可得乙品牌第一季度的销售量,根据乙品牌第一季度的销售量乘以一月份所占的百分比,可得答案.【解答】解:(1)二月份的销售量为2×150﹣120=180(台);甲品牌电脑在二月的销售量是第一季度甲品牌电脑销售量的=40%;(2)设二月份乙品牌电脑的销售量为x台,根据题意,得(1+20%)x=180.解得x=150,乙品牌第一季度的销售量150÷30%=500,乙品牌电脑在一月份销售500×(1﹣38%﹣30%)=160(台).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.【考点】切线的性质;角平分线的性质;垂径定理;圆周角定理;相似三角形的判定与性质.【专题】综合题;压轴题.【分析】(1)连接OF,通过切线的性质证OF⊥FH,进而由FH∥BC,得OF⊥BC,即可由垂径定理得到F是弧BC的中点,根据圆周角定理可得∠BAF=∠CAF,由此得证;(2)求BF=FD,可证两边的对角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;观察上述两个式子,∠ABD、∠CBD是被角平分线平分∠ABC所得的两个等角,而∠CBF和∠DAB 所对的是等弧,由此可证得∠DBF=∠BDF,即可得证;(3)由EF、DE的长可得出DF的长,进而可由(2)的结论得到BF的长;然后证△FBE∽△FAB,根据相似三角形得到的成比例线段,可求出AF的长,即可由AD=AF﹣DF求出AD的长.【解答】(1)证明:连接OF∵FH是⊙O的切线∴OF⊥FH∵FH∥BC,∴OF垂直平分BC∴,∴∠1=∠2,∴AF平分∠BAC(2)证明:由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,∴∠BDF=∠FBD,∴BF=FD(3)解:在△BFE和△AFB中∵∠5=∠2=∠1,∠AFB=∠AFB,∴△BFE∽△AFB∴═,∴BF2=FE•FA∴,EF=4,BF=FD=EF+DE=4+3=7,∴∴AD=AF﹣DF=AF﹣(DE+EF)==【点评】此题主要考查了切线的性质、圆周角定理及相似三角形的判定和性质.22.今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.【考点】一元二次方程的应用.【分析】(1)设2011年热水器的财政补贴为x亿元,分别表示出2012年热水器的财政补贴、洗衣机的财政补贴、平板电视的财政补贴、空调的财政补贴,列一元一次方程求解;(2)根据题意列一元二次方程求解即可.【解答】解:(1)设2011年热水器的财政补贴为x亿元,则2012年热水器的财政补贴为1.1x,洗衣机的财政补贴1.2×1.1x、平板电视的财政补贴1.4×1.1x、空调的财政补贴×1.1x,根据题意列方程得:1.1x+1.2×1.1x+1.4×1.1x+×1.1x=264解得:x=5答:2011年热水器的财政补贴为5亿元;(2)设“十二五”的最后两年用于此项财政补贴的年平均增长率为m.根据题意列方程得:(264﹣a)+264+(264+a)+(264+a)×(1+m)+(264+a)(1+m)2=264×5.31+2.31a即(264+a)m2+3(264+a)m﹣0.31(a+264)=0,m2+3m﹣0.31=0解得:m1=3.1(舍去),x2=0.1.答:此项财政补贴的年平均增长率是10%.【点评】本题考查了一元二次方程的应用,正确读懂题目,解方程是本题的关键.23.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.。

2015届九年级中考模拟考试数学试题及答案

2015届九年级中考模拟考试数学试题及答案

2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分...为试题...卷和答...题.卷,答案要求......写.在答..题.卷上,在....试题..卷上作答不.....给.分... 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是 A .3B .31 C .3- D . 31-2.下列运算正确的是A . 523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②④C .③④D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --= 二、填空题(本大题共8小题,每小题3分,共24分)7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .①正方体 ②圆锥体 ③球体9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分)三、(本大题共4小题,每小题6分,共24分) 15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2(第12题图) CBA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l 2交于点E, BD 与l 4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2).根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;FEA(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?六、(本大题共2小题,每小题10分,共20分) 23. 已知抛物线22232y x mx m m =-++.(1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁 7%21~30岁 39%31~40岁 20%16~20岁 16%61~65岁 3% 41~50岁 15% 图(1)24.已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b10、25゜ 11、8 12、74 13、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分) 15、解:原式=1212222+⨯-+…………………………………………………3分 =222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1……………………………………………4分 将2=x 代入得:221=x………………………………………………………6分 17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r .∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C =90° ∴OD ∥AC ∴△OBD ∽△ABC . …………………………2分∴ODAC = OB AB,即12128r r-=解得:524=r ∴⊙O 的半径为524………………………4分A(2)四边形OFDE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF =∠B .∵∠DEF =12∠DOB ∴∠B =12∠DOB .∵∠ODB =90° ∴∠DOB +∠B =90° ∴∠DOB =60°∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形∴OD =DE ∵OD =OF ∴DE =OF ∴四边形OFDE 是平行四边形 ………7分∵OE =OF ∴平行四边形OFDE 是菱形. …………………………………8分20、(1) ∵l 2∥l 4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分 ∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分(2)(批改时注意若学生用计算器计算,中间答案会有少许不同,但最终答案一样) 过A 作AG ⊥l 4,交l 2于H ∵α=25° ∴∠ABE=25°∴ sin 0.42AHABE AB∠=≈ 解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜ ∴91.0cos ≈=∠ADAGDAG 解得:AD ≈43.96 ………………7分 ∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分 五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人) 31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分 (3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, 总体印象的满意率是5388.3%88%60=≈ …………………………………8分 ∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分F EGH根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分n =(1-m )(50+10×m 0.2)+(5-3-m )(20+10×m0.2) 即 n =-100m 2+80m +90 =-100(m -0.4)2+106. ……………………………7分∴当m =0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分) 23、解:∵()m m m x m m mx x y 222322222++-=++-=∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分 当m=0时,顶点坐标为(0,0) 当m=32-时,顶点坐标为(32-,94-) ……………………………………3分 ∵第三象限的平分线所在的直线为y=x ∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分 (2)∵m>0时,m m 222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分 设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分 ∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m mn ∴当21-=m 时,n 有最小值21- …………………………………10分 24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-; 过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t ∆=⋅=-⋅=-+. 即23142S t t =-+ .………………………………………2分(图①)(2)当23t <≤时,(如图②) OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒. ∴2113(32)222OPQ S OQ OP t t t t ∆=⋅=⋅-=-.即232S t t =-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t =-……………4分(2),0)或2(,0)3 …………………6分 (3)BMN ∆的周长不发生变化.延长BA 至点F ,使AF OM =,连结CF .(如图③)∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。

2015年中考数学模拟试题(一)附答案

2015年中考数学模拟试题(一)附答案

2015年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122.使1x-有意义的x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a2) 3的结果是(▲)A.2a5B.2a6C.6a6D.8a64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DCBAA'( 第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ . 11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形; (2)若AC 平分∠BAD ,求证:□ABCD 为菱形.(第19题)A BCD EF FED C B A ( 第13题 )C OB A (第14题)(第16题) A B D A'D' B' (第15题)20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°; (4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O C B A 空气质量等级天数统计图 空气质量等级天数占所抽取天数百分比统计图24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ?25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =1,AC =4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x 千克. (1)大号苹果的单价为 ▲ 元/千克;小号苹果的单价为 ▲ 元/千克;(用含x 的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题: ① 当x 为何值时,所获利润最大? ② 若所获利润为3385元,求x 的值.时间 池中有水(m 3)12:00 20 12:04 12 12:06 a12:14 b 12:20 56(第25题) (第24题) a t/min y /m 3 O 20 b 56AB CD27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN2015年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x…………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P (同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分21.解:(1)50; ·······································································································································2分 (2)5·································································4分(3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1.·······························································································2分∴有-b2×2=-1.∴b =4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分OC BAD26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG ,第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G N H IC'B'CA B。

5年中考3年模拟卷(数学)(附解析)13

5年中考3年模拟卷(数学)(附解析)13

第1页(共24页)页)5年中考3年模拟卷(数学)(附解析)13一、选择题 1.(3分)的倒数为(的倒数为( )A .B .C .2014D .﹣2014 2.(3分)如图所示的几何体的左视图是(分)如图所示的几何体的左视图是( )A .B .C .D .3.(3分)下列运算正确的是(分)下列运算正确的是( )A .6a 2b ﹣5a 2b=lB .a 2•a 3=a 5C .(﹣2ab 2)3=﹣6a 3bD .(a 3)2=a 54.(3分)如图,已知直线l 1∥l 2,则∠a 的度数为(的度数为()A .115°B .135°C .145°D .150° 5.(3分)在一次“爱心互助”捐款活动中,某班50名同学捐款的金额(单位:元)如下表所示,这个班学生捐款的众数和中位数分别是(这个班学生捐款的众数和中位数分别是( )金额/元5 10 15 20人数/人 1 26 21 2A .10,22B .10,10C .5,22D .5,106.(3分)不等式﹣≥1的正整数解是(的正整数解是( )A .0B .1C .0和1D .0或1 7.(3分)如图,等边△ABC 的边长为2,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上的中点,若∠ECF=30°时,EF +CF 的值为(的值为( )A.1 B.2 C. D.1+8.(3分)清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步)满足的方程为(行速度的2倍,设步行的速度为x km/h,则x满足的方程为(A.﹣=20 B.﹣=20 C.﹣= D.﹣=9.(3分)如图,已知四边形ABCD是菱形,BD为对角线,且∠A=72°,将△BCD分割成如图所示的三个等腰三角形,那么∠1+∠2+∠3=( )A.80° B.90° C.100° D.120°10.(3分)已知二次函数y=﹣x2﹣x+1,当自变量x取m时,对应的函数值大于0,设自变量分别取m﹣3,m+3时对应的函数值为y1,y2,则下列判断正确的是(),则下列判断正确的是(A.y1<0,y2<0 B.y1<0,y2>0 C.y1>0,y2<0 D.y1>0,y2>0二、填空题(共7小题,每小题3分,满分21分)11.(3分)计算:(1+)0﹣|﹣2|= .12.(3分)等腰三角形的顶角是70°,则其底角是,则其底角是 .13.(3分)因式分解:x3﹣xy2= .14.(3分)如图,Rt△ABC的斜边AB=18,Rt△ABC绕点O顺时针旋转后得到Rt△AʹBʹCʹ,则Rt△AʹBʹCʹ的斜边AʹBʹ上的中线CʹD的长度为的长度为 .15.(3分)用科学计算器计算:sin87°≈ (精确到0.01)16.(3分)如图,点P是正比例函数y=x与反比例函数y=(k≠0)在第一象限内的交点,P A⊥OP交x轴于点A,△POA的面积为6,则k的值是.的值是17.(3分)如图,把等边△ABC的外接圆对折,使点A的劣弧BC的中点M重合,折痕分别交AB、AC于D、E,若BC=6,则线段DE的长为的长为 .三、解答题.18.化简:•(1﹣).19.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.求证:∠BEC=∠DEC.20.为了了解“青年人对未来是否幸福的态度”,随机对75名大学生进行了问卷调查名大学生进行了问卷调查对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心人数30 8 12 (1)请将图中表格和条形统计图补充完整;)请将图中表格和条形统计图补充完整; (2)A 对应的圆心角∠1是 度;度;(3)某高校有大学生6000名,请估计充满信心和比较有信心的人数共约是多少人?名,请估计充满信心和比较有信心的人数共约是多少人?21.黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,≈1.73,≈2.45) (2)求∠ACD 的余弦值.的余弦值. 22.某超市欲购进A 、B 两种品牌的书包共400个,已知这两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.元.价位价位 品牌品牌 进价(元/个)个)售价(元/个)个) A 47 65 B 37 50 (1)求w 关于x 的函数关系式;的函数关系式;(2)如果购进两种书包的总费用不超过17800元,那么该商场如何进货才能获利最大?(提示:利润=售价﹣进价)售价﹣进价)23.有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下后,小丽先从中抽取一张,然后小明从余下 的卡片中再抽取一张.的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是的概率;的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请说明理由.24.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB . (1)求BC 的长;的长;(2)求证:PB 是⊙O 的切线.的切线.25.如图,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线y=x 2﹣3向右平移一个单位后得到的,它与y 轴负半轴交于点A ,点B 在该抛物线上,且横坐标为3. (1)求点M 、A 、B 坐标;坐标;(2)连接AB 、AM 、BM ,求∠ABM 的正切值;的正切值;(3)点P 是顶点为M 的抛物线上一点,且位于对称轴的右侧,设PO 与x 正半轴的夹角为α,当α=∠ABM 时,求P 点坐标.点坐标.26.概念理解.概念理解把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分﹣重拼”.如图①,一个有一组对边平形的四边形可以剖分﹣重拼为一个三角形;如图②,任意两个正方形可以剖分﹣重拼为一个正方形.可以剖分﹣重拼为一个正方形. 尝试操作尝试操作(1)如图③,把图中的三角形剖分﹣重拼为一个矩形(只要画出示意图,不需说明操作步骤); 阅读解释阅读解释(2)如何把一个矩形ABCD(如图④)剖分﹣重拼为一个正方形呢?操作如下:)剖分﹣重拼为一个正方形呢?操作如下:Ⅰ.画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;Ⅱ.图④中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.是正方形.请说明按照上述操作方法得到的四边形EBHG是正方形.2014年陕西省西安市铁一中中考数学模拟试卷(二)参考答案与试题解析一、选择题1.(3分)(2014•富阳市模拟)的倒数为(的倒数为( )A .B .C .2014D .﹣2014 【分析】根据倒数的定义进行解答即可.根据倒数的定义进行解答即可. 【解答】解:∵﹣2014×()=1,∴﹣2014是的倒数,的倒数,故选:D .【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.,那么这两个数互为倒数.2.(3分)(2015•巴彦淖尔)如图所示的几何体的左视图是(巴彦淖尔)如图所示的几何体的左视图是( )A .B .C .D .【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.解:从左向右看,得到的几何体的左视图是中间无线条的矩形. 故选D .【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.图中. 3.(3分)(2014•碑林区校级模拟)下列运算正确的是(碑林区校级模拟)下列运算正确的是( )A .6a 2b ﹣5a 2b=lB .a 2•a 3=a 5C .(﹣2ab 2)3=﹣6a 3bD .(a 3)2=a 5【分析】利用幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则判定即可.利用幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则判定即可.【解答】解:A 、6a 2b ﹣5a 2b=a 2b ,故选项A 错误;错误;B 、a 2•a 3=a 5,故选项B 正确;正确;C 、(﹣2ab 2)3=﹣6a 3b 6,故选项C 错误;错误;D 、(a 3)2=a 6,故选项D 错误;错误;故选:B .【点评】本题主要考查了幂的乘方与积的乘方,合并同类项及同底数幂的乘法,解题的关键是熟记幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则.记幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则.4.(3分)(2014•碑林区校级模拟)如图,已知直线l 1∥l 2,则∠a 的度数为(的度数为()A .115°B .135°C .145°D .150°【分析】先根据平行线的性质求出∠1的度数,再由对顶角的性质即可得出结论.的度数,再由对顶角的性质即可得出结论. 【解答】解:∵直线l 1∥l 2, ∴∠1=180°﹣130°=50°, ∴α=50°+65°=115°. 故选A .【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补. 5.(3分)(2014•碑林区校级模拟)在一次“爱心互助”捐款活动中,某班50名同学捐款的金额(单位:元)如下表所示,这个班学生捐款的众数和中位数分别是(位:元)如下表所示,这个班学生捐款的众数和中位数分别是( )金额/元5 10 15 20 人数/人1 26 212 A .10,22 B .10,10 C .5,22 D .5,10【分析】根据众数和中位数的定义进行解答,根据众数和中位数的定义进行解答,众数是出现次数最多的数,众数是出现次数最多的数,众数是出现次数最多的数,中位数是把中位数是把50个数据从小到大排列,最中间两个数的平均数,据此选择正确的答案.小到大排列,最中间两个数的平均数,据此选择正确的答案.【解答】解:根据题意可知捐款10元的人数有26人,即10是捐款的众数,是捐款的众数, 把50名同学捐款从小到大排列,最中间的两个数是10,10,中位数是10. 故选B .【点评】本题主要考查了众数与中位数的知识,解答本题要掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,此题难度不大.就会出错,此题难度不大.6.(3分)(2014•碑林区校级模拟)不等式﹣≥1的正整数解是(的正整数解是( )A .0B .1C .0和1D .0或1【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可. 【解答】解:去分母得:(x ﹣1)﹣3(x ﹣3)≥6, 去括号得:x ﹣1﹣3x +9≥6,移项、合并同类项得:﹣2x ≥﹣2, 系数化为1得:x ≤1, 所以不等式﹣≥1的正整数解为1.故选B .【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.不等式应根据不等式的基本性质.7.(3分)(2014•碑林区校级模拟)如图,等边△ABC 的边长为2,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上的中点,若∠ECF=30°时,EF +CF 的值为(的值为( )A .1B .2C .D .1+【分析】先根据等边三角形的性质求出AD 的长∠CAD 的度数,再由E 是AC 边上的中点,∠ECF=30°得出CF 是∠ACD 的平分线,故EF ⊥AC ,故EF=DF ,再根据∠EDF=∠CAD=30°得出AF=CF ,故AD=EF +CF ,由此可得出结论.,由此可得出结论.【解答】解:∵等边△ABC 的边长为2,AD 是BC 边上的中线,边上的中线, ∴AD=AB •sin60°=2×=,AD ⊥BC ,∠CAD=30°.∵E 是AC 边上的中点,∠ECF=30°, ∴CF 是∠ACD 的平分线,的平分线, ∴EF ⊥AC , ∴EF=DF .∵∠EDF=∠CAD=30°,∴AF=CF ,∴AD=EF +CF=. 故选C .【点评】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.8.(3分)(2016•桐城市模拟)清明节前,某班分成甲、乙两组去距离学校4km 的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min 到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h ,则x 满足的方程为(满足的方程为( ) A .﹣=20B .﹣=20C .﹣= D .﹣=【分析】首先表示出骑自行车速度为2xkm/h ,再根据时间=路程÷速度表示出去距离学校4km 的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min 可得方程.可得方程. 【解答】解:20min=h ,步行的速度为x km/h ,则骑自行车速度为2xkm/h ,由题意得:,由题意得:﹣=,故选C .【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄懂题意,表示出步行所用时间与骑自行车所用时间.骑自行车所用时间.9.(3分)(2014•碑林区校级模拟)如图,碑林区校级模拟)如图,已知四边形已知四边形ABCD 是菱形,BD 为对角线,且∠A=72°,将△BCD 分割成如图所示的三个等腰三角形,那么∠1+∠2+∠3=( )A .80°B .90°C .100°D .120°【分析】根据菱形的性质,知:∠C=∠A=72°;由于∠1、∠2、∠3所在的三角形都是等腰三角形,可根据等腰三角形的性质和三角形外角的性质进行求解.可根据等腰三角形的性质和三角形外角的性质进行求解. 【解答】解:∵四边形ABCD 是菱形,是菱形, ∴∠A=∠C=72°; ∵∠6=∠C=72°,∴∠3=180﹣2×72°=36°; ∵∠6=∠2+∠5=2∠2=72°, ∴∠2=36°;∵∠2=∠1+∠4=2∠1=36°, ∴∠1=18°;∴∠1+∠2+∠3=36°+36°+18°=90°. 故选:B .【点评】本题主要考查菱形的性质、等腰三角形的性质以及三角形外角的性质,得出各角的度数是解题关键.是解题关键.10.(3分)(2015•济南校级一模)已知二次函数y=﹣x 2﹣x +1,当自变量x 取m 时,对应的函数值大于0,设自变量分别取m ﹣3,m +3时对应的函数值为y 1,y 2,则下列判断正确的是则下列判断正确的是(( ) A .y 1<0,y 2<0 B .y 1<0,y 2>0 C .y 1>0,y 2<0 D .y 1>0,y 2>0【分析】求出二次函数与x 轴的交点坐标,从而确定出m 的取值范围,再根据二次函数图象上点的坐标特征解答即可.的坐标特征解答即可.【解答】解:令y=0,则﹣x 2﹣x +1=0, 整理得,2x 2+3x ﹣2=0,解得x1=﹣2,x 2=,所以,二次函数与x 轴的交点坐标为(﹣2,0),(,0), 所以,﹣2<m <,∵m ﹣3,m +3时对应的函数值为y 1,y 2, ∴y 1<0,y 2<0. 故选A .【点评】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点问题,求出函数图象与x 轴的交点并确定出m 的取值范围是解题的关键.的取值范围是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11.(3分)(2014•碑林区校级模拟)计算:(1+)0﹣|﹣2|= ﹣1 . 【分析】直接利用零指数幂的性质以及绝对值的性质化简求出即可.直接利用零指数幂的性质以及绝对值的性质化简求出即可.【解答】解:(1+)0﹣|﹣2| =1﹣2=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.12.(3分)(2014•碑林区校级模拟)等腰三角形的顶角是70°,则其底角是,则其底角是 55° .【分析】根据等腰三角形两底角相等列式进行计算即可得解.根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵等腰三角形的顶角是70°,∴底角=(180°﹣70°)=55°.故答案为:55°.【点评】本题考查了等腰三角形的性质,是基础题,主要利用了两底角相等的性质.本题考查了等腰三角形的性质,是基础题,主要利用了两底角相等的性质.13.(3分)(2015•宁夏)因式分解:x3﹣xy2= x(x﹣y)(x+y) .,再对余下的多项式利用平方差公式继续分解.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).一个多项式有公因式首先提取公因式,【点评】本题考查了用提公因式法和公式法进行因式分解,本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•碑林区校级模拟)如图,Rt△ABC的斜边AB=18,Rt△ABC绕点O顺时针旋9 .转后得到Rt△AʹBʹCʹ,则Rt△AʹBʹCʹ的斜边AʹBʹ上的中线CʹD的长度为的长度为【分析】由旋转可得AʹBʹ=AB,再根据直角三角形斜边上的中线等于斜边的一半可求得CʹDʹ. 【解答】解:由旋转的性质可知△ABC≌△AʹBʹCʹ,∴AʹBʹ=AB=18,为直角三角形,∵CʹDʹ为AʹBʹ的中线,且△AʹBʹCʹ为直角三角形,∴CʹDʹ=AʹBʹ=9,故答案为:9.是解题的关键.【点评】本题主要考查直角三角形的性质,由旋转的性质得到AʹBʹ=AB是解题的关键.15.(3分)(2014•碑林区校级模拟)用科学计算器计算:sin87°≈ 3.31 (精确到0.01) 【分析】熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数. 【解答】解:sin87°=3.316×0.9986=3.3113≈3.31.故答案为:3.31.【点评】本题结合计算器的用法,旨在考查对基本概念的应用能力,需要同学们熟记近似数的精确度.确度.16.(3分)(2014•碑林区校级模拟)如图,点P 是正比例函数y=x 与反比例函数y=(k ≠0)在第一象限内的交点,P A ⊥OP 交x 轴于点A ,△POA 的面积为6,则k 的值是的值是 6 .【分析】由P 在y=x 上可知△POA 为等腰直角三角形,为等腰直角三角形,过过P 作PC ⊥OA 于点C ,则可知S △POC =S△PCA=k ,可求得k 的值.的值.【解答】解:解: ∵P 点在y=x 上,上, ∴∠POA=45°,∴△POA 为等腰直角三角形,为等腰直角三角形, 过P 作PC ⊥OA 于C , 则S △POC =S △PCA =k , ∴S △POA =k=6, 故答案为:6.【点评】本题主要考查反比例函数k 的几何意义,由条件得出S △POC =S △PCA =k 是解题的关键.17.(3分)(2014•碑林区校级模拟)如图,把等边△ABC 的外接圆对折,使点A 的劣弧BC 的中点M 重合,折痕分别交AB 、AC 于D 、E ,若BC=6,则线段DE 的长为的长为 4 .【分析】连接AM 、OB ,则其交点O 即为此圆的圆心,根据正三角形的性质可知,∠OBC=∠OAD=30°,再根据直角三角形的性质及勾股定理可求出OB 的长;在Rt △AOD 中,进而可依据特殊角的三角函数值即可求出OD 的长,由垂径定理得出DE 的长即可.的长即可. 【解答】解:连接AM 、OB , 则其交点O 即为此圆的圆心;即为此圆的圆心; ∵△ABC 是正三角形,是正三角形,∴∠OBC=∠OAD=30°,DE ∥BC ,在Rt △OBF 中,BF=BC=×6=3, ∴OB==2,∴OA=OB=2;在Rt △AOD 中,∠DAO=30°, ∴OD=OA •tan30°=2×=2,DE=2DO=4. 故答案为:4.【点评】本题考查了等边三角形的性质,垂径定理,解直角三角形的性质,综合性比较强,难度适中.适中.三、解答题.18.(2014•碑林区校级模拟)化简:•(1﹣).【分析】先正确化简,再约分求解即可.先正确化简,再约分求解即可. 【解答】解:•(1﹣)=•=a +2.【点评】本题主要考查了分式的混合运算,解题的关键是正确化简并约分.本题主要考查了分式的混合运算,解题的关键是正确化简并约分.19.(2014•碑林区校级模拟)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED .求证:∠BEC=∠DEC .【分析】根据正方形的性质得出CD=CB ,∠DCA=∠BCA ,根据SAS 即可证出△BEC ≌△DEC ,再根据全等三角形的性质即可求解.再根据全等三角形的性质即可求解.【解答】证明:∵四边形ABCD 是正方形,是正方形, ∴CD=CB ,∠DCA=∠BCA , 在△BEC 与△DEC 中,中,,∴△BEC ≌△DEC (SAS ). ∴∠BEC=∠DEC .【点评】本题主要考查对正方形的性质、全等三角形的性质和判定等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.练地运用这些性质进行推理是解此题的关键. 20.(2014•福鼎市模拟)为了了解“青年人对未来是否幸福的态度”,随机对75名大学生进行了问卷调查卷调查对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心人数30 8 12 (1)请将图中表格和条形统计图补充完整;)请将图中表格和条形统计图补充完整; (2)A 对应的圆心角∠1是 120 度;度;(3)某高校有大学生6000名,请估计充满信心和比较有信心的人数共约是多少人?名,请估计充满信心和比较有信心的人数共约是多少人?【分析】(1)由充满信心的人数除以所占的百分比得到总人数,求出比较有信心的人数,补全表格及统计图即可;格及统计图即可;(2)求出比较有信心所占的百分比,乘以360度即可得到结果;度即可得到结果;(3)求出充满信心与比较有信心所占的百分比,乘以6000即可得到结果.即可得到结果. 【解答】解:(1)“比较有信心”的有75﹣(30+8+12)=25(人), 补全表格与统计图,如图所示:补全表格与统计图,如图所示:对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心 人数3025812(2)根据题意得:×360°=120°,则A 对应的圆心角∠1是120度;度; 故答案为:120; (3)根据题意得:6000×=4400(人),则充满信心和比较有信心的人数共约是4400人.人.【点评】此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,≈1.73,≈2.45)(2)求∠ACD 的余弦值.的余弦值.【分析】(1)连接AC ,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° AC=15,再根据∠D=90°利用勾股定理求得AD 的长后即可求周长和面积;的长后即可求周长和面积; (2)直接利用余弦的定义求解即可.)直接利用余弦的定义求解即可. 【解答】解:(1)连接AC ∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° AC=15又∵∠D=90° ∴AD===12(千米)(千米)∴周长=AB +BC +CD +DA=30+3+12=30+4.242+20.784≈55(千米)(千米)面积=S △ABC +S △ADC =112.5+18≈157(平方千米)(平方千米)(2)cos ∠ACD===…(8分)分)【点评】本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解.是从实际问题中整理出直角三角形并求解.22.(2014•碑林区校级模拟)某超市欲购进A 、B 两种品牌的书包共400个,已知这两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.元.价位价位 品牌品牌 进价(元/个)个)售价(元/个)个) A 47 65 B 37 50 (1)求w 关于x 的函数关系式;的函数关系式;(2)如果购进两种书包的总费用不超过17800元,那么该商场如何进货才能获利最大?(提示:利润=售价﹣进价)售价﹣进价) 【分析】(1)由总利润=A 种书包的利润种书包的利润++B 种书包的利润就可以求出w 关于x 的函数关系式;的函数关系式; (2)根据两种书包的总费用不超过17800元建立不等式求出x 的取值范围,由一次函数性质就可以求出结论;以求出结论; 【解答】解:(1)设购进A 种书包x 个,则购进B 种书包(400﹣x )个,由题意,得)个,由题意,得 w=(65﹣47)x +(50﹣37)(400﹣x ), w=18x +5200﹣13x , w=5x +5200.答:w 关于x 的函数关系式为w=5x +5200; (2)∵两种书包的总费用不超过17800元,元, ∴47x +37(400﹣x )≤17800, ∴x ≤300. ∵w=5x +5200. ∴k=5>0∴x=300时,w 最大=6700.∴购进B 种书包400﹣300=100个.个.∴购进A 种书包300个,B 种书包100个可获得最大利润,最大利润为6700元.元. 【点评】本题考查了利润=售价﹣进价的运用,总利润=A 种书包的利润种书包的利润++B 种书包的利润的运用,列一次函数的解析式解实际问题的运用,解答时求出函数的解析式是关键.列一次函数的解析式解实际问题的运用,解答时求出函数的解析式是关键.23.(2012•峨眉山市二模)有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下 的卡片中再抽取一张.的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是的概率;的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请说明理由. 【分析】(1)根据概率公式直接求解即可求得答案;)根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可,若不相等,则不公平,概率大的则有利.概率大的则有利.【解答】解:(1)∵有三张背面完全相同的卡片,小丽取出的卡片恰好是的有1种情况,种情况,∴小丽取出的卡片恰好是的概率为:;(2)∵=3, 画树状图得:画树状图得:∴一共有6种等可能的结果,种等可能的结果,两人抽取卡片上的数字之积是有理数的有2种,种, ∴P (小丽胜)=,P (小明胜)=,这个游戏规则不公平,对小明有利.这个游戏规则不公平,对小明有利.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.所求情况数与总情况数之比.24.(2013•湖州)如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB . (1)求BC 的长;的长;(2)求证:PB 是⊙O 的切线.的切线.【分析】(1)首先连接OB ,由弦AB ⊥OC ,劣弧AB 的度数为120°,易证得△OBC 是等边三角形,则可求得BC 的长;的长;(2)由OC=CP=2,△OBC 是等边三角形,可求得BC=CP ,即可得∠P=∠CBP ,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB ⊥BP ,继而证得PB 是⊙O 的切线.的切线. 【解答】(1)解:连接OB ,∵弦AB ⊥OC ,劣弧AB 的度数为120°, ∴弧BC 与弧AC 的度数为:60°, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 是等边三角形,是等边三角形, ∴BC=OC=2;。

2015年中考数学模拟考试试题和答案

2015年中考数学模拟考试试题和答案

2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。

A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。

11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。

人教新版2015中考数学模拟试题卷参考答案

人教新版2015中考数学模拟试题卷参考答案

人教新版2015中考数学模拟试题卷数学参考答案一、选择题(每小题3分,共30分)11.2 12.)21(21或=x 13.(-3,3) 14.-1 15.223 16.3317.1 18.89三、解答题(共9小题,共88分)19.(6分)解:原式 =212-1--31⨯+)(=4(说明:第一步中每计算正确一项得1分)20.(8分)解:原式= x y xy x x y x 222+-÷- =222y xy x xx y x +-∙- =2)(y x xx y x -∙- =yx -1当2=x ,1-=y 时原式=31121=+21.(8分)解法一:(1)(4分)在Rt △ABC 中,∠ABC=45o∵sin ∠ABC=ABAC,AB=6 ∴AC=AB ·sin45o=23226=⨯又∵∠ACD=90O,∠ADC=30OAD=2AC=26232=⨯答:调整后楼梯AD 的长为m 26(2)(4分)由(1)知:AC=BC=23,AD=26∵∠ACD=90O ,∠ADC=30O∴DC=AD ·cos30o=632326=⨯∴BD=DC-BC=)(或2-632363- 答:BD 的长为m )2363(-解法二:(1)(4分)∵∠ACB=90O ,∠ABC=45O∴AC=BC 设AC=BC=x ,又AB=6,∴2226=+x x解得231=x ,)(232舍-=x∴AC=BC=23∵∠ACB=90O , ∠ADC=30O∴AD=2AC=26答:调整后楼梯AD 的长为m 26(2)(4分)∵∠ACD=90O,AC=23,AD=26∴DC 2=AD 2-AC 2=()5423)26(22=-∴DC=63(负值舍去) ∴BD=DC-BC=2363-答:BD 的长为m )2363(-22.(10分)解法 一:(1)(2分)9.27%(2)(2分)612.7 (3)(2分)41.7 (4)(4分)设2000年我市每10万人中具有大学文化程度的人数为x 人.由题意得:3x -473=4402 x =1625∴4402-1625=2777(人)答: 2010年我市每10万人中具有大学文化程度人数比2000年增加了2777(人)解法二:(4)(4分)设2010年我市每10万人中具有大学文化程度比2000年增加了x 人, 由题意得3(4402-x )-473=4402 x =2777答: 2010年我市每10万人中具有大学文化程度 人数比2000年增加了2777(人)23.10分)解:(1)(5分) 证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90∴∠1+∠ECB=∠2+∠ECB,∴∠1=∠2又∵AC=CE=CB=CD,∴∠A=∠D= 45∴△ACB ≌△ECD,∴CF=CH(2)(5分) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE=45∴∠1=45, ∠2=45 又∵∠E=∠B= 45, ∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM , ∴ACDM 是平行四边形 又∵AC=CD, ∴ACDM 是菱形 24.解:(1)(7分)用列表法:由上表可知:有16种可能出现的结果.若关于x 的方程02=++c bx x 有 实数解,则需042≥-ac b ,而满足条件有10种结果.∴P (方程有实数解)=851610= (2)(3分)要使方程02=++c bx x 有两个相等的实数解,则需042=-ac b ,而满足条件有2种结果. ∴P (方程有两相等实数解)=81162= 25.解:(1)(6分)设第一批玩具每套的进价为x 元,则1045005.12500+=⨯x x 解得:x =50经检验:x =50是原方程的解.答: 第一批玩具每套的进价为50元.(2)(4分) 设每套玩具的售价为y 元,则%25)45002500()45002500()5.11(502500⨯+≥+-+⨯y 解得70≥y答: 每套玩具的售价至少为70元.26.(解:(1)连结OD , OB OD =,OBD ODB ∴∠=∠. PD PE =,PDE PED ∴∠=∠. PDO PDE ODE ∠=∠+∠P E D O B D =∠+∠ B E C O B D =∠+∠ 90=, PD OD ∴⊥.PD ∴是圆O 的切线. (2)①连结OP , 在Rt POC △中, 222OP OC PC =+2192x =+. 在Rt PDO △中, 222PD OP OD =-2144x =+.2144(0y x x ∴=+≤≤.(x 取值范围不写不扣分)②当x =147y =,PD ∴=EC ∴=而CB = 在Rt ECB △中,1tan 3CE B CB ==.27.解:(1)(3分)将A(3,0),B(4,1)代人)0(32≠++=a bx ax y得⎩⎨⎧=++=++134160339b a b a∴⎪⎩⎪⎨⎧-==2521b a ∴325212+-=x x y∴C(0,3)(2)(7分)假设存在,分两种情况,如图.①连接AC,∵OA=OC=3, ∴∠OAC=∠OCA=45O. ……1分 过B 作BD ⊥x 轴于D ,则有BD=1, 134=-=-=OA OD AD ,∴BD=AD, ∴∠DAB=∠DBA=45O.∴∠BAC=180O -45O -45O =90O……………2分 ∴△ABC 是直角三角形. ∴C(0,3)符合条件. ∴P 1(0,3)为所求.②当∠ABP=90O时,过B 作BP ∥AC,BP 交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC 的函数关系式为3+-=x y 将直线AC 向上平移2个单位与直线BP 重合. 则直线BP 的函数关系式为5+-=x y由⎪⎩⎪⎨⎧+-=+-=3252152x x y x y ,得⎩⎨⎧==⎩⎨⎧=-=1461y x y x 或 又B(4,1), ∴P 2(-1,6).综上所述,存在两点P 1(0,3), P 2(-1,6).另解②当∠ABP=90O时, 过B 作BP ∥AC,BP 交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC 的函数关系式为3+-=x y将直线AC 向上平移2个单位与直线BP 重合. 则直线BP 的函数关系式为5+-=x y ∵点P 在直线5+-=x y 上,又在325212+-=x x y 上. ∴设点P 为)32521,(),5,(2+-+-x x x x x ∴325215,2+-=+-x x x x 解得4,121=-=x x∴P 1(-1,6), P 2(4,1)(舍)综上所述,存在两点P 1(0,3), P 2(-1,6).(3)(4分) ∵∠OAE=∠OAF=45O ,而∠OEF=∠OAF=45O,∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF, ∠EOF=90O∵点E 在线段AC 上,∴设E )3,(+-x x ∴222)3(+-+=x x OE =9622+-x x∴OF OE S OEF ⋅=∆21=)962(212122+-=x x OE =2932+-x x =49)23(2+-x∴当23=x 时, OEF S ∆取最小值,此时233233=+-=+-x ,∴)23,23(E。

2015年中考数学模拟试卷附答案

2015年中考数学模拟试卷附答案

2015年中考数学模拟试卷说明:1.考试用时100 分钟.满分为 120 分。

2.所有作答必须在答题卡指定位置完成.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案;非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.在-2,-12,0,2四个数中,最大的数是( )A. -2B. -12 C. 0 D. 22.下列各数中,与3的积为有理数的是 ( ) A .2B .23C .32D .32-3.据统计,今年某市中考报名确认考生人数是96 200人,用科学记数法表示96 200为 ( ) A .49.6210⨯ B .50.96210⨯ C .59.6210⨯ D .396.210⨯ 4. 如图是某个几何体的三视图,则该几何体的形状是( ) A .长方体B .圆锥C .圆柱D .三棱柱 5.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9, 这5个数据的中位数是( ) A.6B .7C .8D . 96.如图,AB 是⊙O的直径,弦CD ⊥AB ,垂足为E, 如果AB =10,CD =8,那么线段OE 的长为( ) A.6 B.5C.4 D.3 7.下列式子正确的是( )A. x 6÷x 3=x 2B. (-1)1-=-1C.4m 2-=241mD.(a 2)4=a 68. 在平面直角坐标系内,点P(-2 ,3)关于原点的对称点Q 的坐标为 ( ) A .(2,-3) B .(2,3)C .(3,-2)D .(-2,-3)Q9.如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( ) A .46° B .44°C .36°D .22° (第9题图) 10.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为 ( ) A. 2% B.5% C. 10% D.20%二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上)11.不等式9>-3x 的解集是 .12.分解因式:x(x-2) +1= . 13.有三辆车按1,2,3编号,甲和乙两人可任意选坐一辆车. 则两人同坐3号车的概率为 .14.如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,测得竹竿与旗杆的距离DB =12m ,且OD=6m ,则旗杆AB 的高为m .15.如图,A ,B 两点的坐标分别是A (1,B 0),则ABO ∆的面积是 .(第14题图) 16.用一个圆心角为150°,半径为2cm 的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算: 0|2|(1--18.先化简,后求值:1)111(2-÷-+x xx ,其中x =-4. 19.在版面设计过程中,将一个半圆面三等分,请你用尺规作出图形,要求保留作图痕迹.A B四、解答题(二)(本大题3小题,每小题7分,共21分)20. 一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21. 据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒. 问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)(第21题图)22. 小明家离学校2千米,平时骑自行车上学.这天自行车坏了,小明只好步行上学.已知小明骑自行车的速度是步行速度的4倍,结果比平时慢了20分钟到学校.求小明步行和骑自行车的速度各是多少?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.已知:如图,在ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD 、BC 于E 、F 两点,连结BE ,DF . (1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.24.如图,已知反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C. (1)求反比例函数的解析式; (2)求证:△ACB ∽△NOM ;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式. (第24题图) 25. 如图,抛物线c bx x y ++-=221与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3。

四川省绵阳市中考数学模拟试题三(含解析)-人教版初中九年级全册数学试题

四川省绵阳市中考数学模拟试题三(含解析)-人教版初中九年级全册数学试题

某某省某某市2015届中考数学模拟试题三一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,某某省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一X车票,座位刚好靠窗口4.在函数y=中,自变量x的取值X围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8X甲票,4X乙票,总计用了112元.已知每X甲票比乙票贵2元,则每X甲票、每X乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,X华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若=3FN,求线段GT的长.2015年某某省某某市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,某某省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一X车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一X车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值X围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0 D.x≤﹣2【考点】函数自变量的取值X围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的X围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的X围,函数自变量的X围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8X甲票,4X乙票,总计用了112元.已知每X甲票比乙票贵2元,则每X甲票、每X乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每X甲票、每X乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每X甲票、每X乙票的价格分别是x元,y元,则,解得,答:每X甲票、每X乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,X华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为: =3.5,中位数为: =3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件,∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160 cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4 .【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值X围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520 .【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200 名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO 面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由于A、B关于抛物线的对称轴对称,根据对称轴方程求出B点的坐标,然后将它们代入抛物线的解析式可求出待定系数的值;OD平分∠BOC,那么直线OD的解析式为y=x,联立抛物线的解析式即可求出D点的坐标;(2)分两种情况讨论:①以AD为对角线的平行四边形AMDN,此时MD∥x轴,则M、D的纵坐标相同,由此可求得M点的坐标;②以AD为边的平行四边形ADNM,由于平行四边形是中心对称图形,可求得△ADM≌△ADN,即M、N纵坐标的绝对值相等,可据此求出M点的坐标;(3)由于BD的长为定值,若△BPD的周长最短,那么PB+PD应该最短,由于A、B关于抛物线的对称轴对称,连接AD,直线AD与对称轴的交点即为所求的P点,可用待定系数法求出直线AD的解析式,联立抛物线对称轴方程即可得到P点坐标.【解答】解:(1)∵OA=2,∴A(﹣2,0).。

2015年中考数学模拟试卷(三)A4版

2015年中考数学模拟试卷(三)A4版

2015年中考数学模拟试卷(三)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.6-的绝对值是【】A.6-B.6 C.16D.16-2.2013年高考于6月7日,8日举行.据悉,参加2013年普通高考的考生达900余万人,其中河南普通高考人数为716 300人,则河南普通高考人数用科学记数法可以表示为(保留两个有效数字)【】A.57.16310⨯人B.69.010⨯人C.57.210⨯人D.57.1610⨯人3.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠ACD的度数为【】A.40°B.35°C.50°D.45°D C BA-3-2-1012345-4-5第3题图第4题图4.如图,数轴上表示某不等式组的解集,则这个不等式组可能是【】A.1020xx+⎧⎨-⎩≥≥B.1020xx+⎧⎨-⎩≤≥C.1020xx+⎧⎨-⎩≤≥D.1020 xx+⎧⎨-⎩≥≥5. 五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是【 】A .20B .28C .30D .316. 如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体有【 】A .3个或4个B .4个或5个C .5个或6个D .6个或7个7. 已知二次函数2115722y x x =--+,若自变量x 分别取1x ,2x ,3x ,且1230x x x <<<,则对应的函数值1y ,2y ,3y 的大小关系正确的是【 】A .123y y y >>B .123y y y <<C .231y y y >>D .231y y y <<8. 如图,在平面直角坐标系中,⊙P 的圆心坐标为(3,a )(3a >),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是【 】A .4B .32+C .32D .33+二、填空题(每小题3分,共21分)9. 因式分解:228a -=__________________.10. 如图,在四边形ABCD 中,点M ,N 分别在AB ,BC 边上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥CD ,则∠B =___________.BA POyx左视图主视图主视图 俯视图FNMDC BA70°100°OBA第10题图 第11题图11. 如图,已知一扇形纸片的圆心角∠AOB 为120°,弦AB 的长为23cm ,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______.12. 方程组257x y x y +=⎧⎨-=⎩的解是_________.13. 从1-,1,2这三个数字中随机抽取一个数,记为a ,那么使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形的面积为14,且关于x 的不等式组212x ax a +⎧⎨-⎩≤≤有解的概率为_______. 14. 如图,抛物线2241y x x =--与y 轴交于点A ,其顶点为D ,点A'的坐标是(22),,将该抛物线沿AA'方向平移,使点A 平移到点A',则平移中该抛物线上A ,D 两点间的部分所扫过的面积是________.15. 在长为22,宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值为_________________. 三、解答题(本大题共8小题,满分75分)yxDA'AO16.(8分)先化简,再求值:222112x xx x x⎛⎫-+÷-⎪+⎝⎭,其中20171x=+.17.(9分)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.根据调查结果绘制了两幅不完整的统计图.人数时间段5% 30%100 90 80 70 60 50 4030 20 10DA CB图1 图2B CA D请你根据以上信息解答下列问题:(1)本次调查活动采取了_________调查方式.(2)计算本次调查的学生人数和图2选项C的圆心角度数.(3)请将图1中选项B的部分补充完整.(4)若该校有3 000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.18. (9分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形; (2)若AB =4,AD =8,求MD 的长.19. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NC DBMAABM NODC20.(9分)如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线kyx=的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)若点C的坐标为(4,4),点E的坐标为(4,2),则点A的坐标是_____.(2)若点C的坐标为(2,2),当点E在什么位置时,图中阴影部分的面积S最小?(3)若12ODOC=,S△OAC=2,求双曲线的解析式.A CDEO Byx21.(10分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,则剩下的工程由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元,工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.22. (10分)在Rt △ABC 中,∠ACB =90°,∠A =30°,D 是AB 的中点,DE ⊥BC ,垂足为点E ,连接CD .(1)如图1,DE 与BC 的数量关系是___________;(2)如图2,若P 是线段CB 上一动点(点P 不与点B ,C 重合),连接DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE ,BF ,BP 之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE ,BF ,BP 之间的数量关系.图1E B ACD图2FP E B A CD图3E BACD23. (11分)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴正半轴交于点A ,与y 轴交于点B ,过点B 作x 轴的平行线,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位长度的速度沿OA 向点A 运动,点Q 以每秒1个单位长度的速度沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交AC 于点E ,射线QE 交x 轴于点F .设动点P ,Q 运动的时间为t 秒.(1)求A ,B ,C 三点的坐标及抛物线的顶点坐标. (2)当t 为何值时,四边形PQCA 是平行四边形?(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值;若不是,请说明理由.(4)当t 为何值时,△PQF 是等腰三角形?FP E D A CQ BOxy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A
B
C
D
图1 2015年中考数学模拟试题(3)
(考试时间100分钟,本卷满分120分)
、答第Ⅰ卷前,考生务必将自已的姓名、考生号、考试科目等用铅笔填涂在答题卡上。

、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡. 、考试结束,考生将本试卷和答题卡一并交回。

14个小题,每小题3分,共42分) 在0,-2,1,12
这四个数中,最小的数是( )
A. 0
B. -2
C. 1
D. 12
计算()3
2a ,正确结果是( )
A. 5a
B.6a
C.8a
D.9a
数据26000用科学记数法表示为2.6×10n ,则n 的值是( )
A. 2
B. 3
C. 4
D. 5 在平面直角坐标系中,点A (2-,4)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 如图1,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是 当x=-2时,代数式x +1的值是( ) A. -1 B. -3 C. 1 D. 3
2所示,∠1+∠2=180°,∠3=100°,则∠4等于( ) .70° B.80° C.90° D.100° x
y 2=图象上的点是( )
.(2,4) B .(-1,2) C .(-2,-1) D .(2
1-,1-)
不等式组1
1
x x ≤⎧⎨
>-⎩的解集是( ) A. x >-1 B. x ≤1 C. x <-1 D. -1<x ≤1 要使式子1-x 在实数范围内有意义,则x 的取值范围是( ) A 、x ≥1 B 、x <1 C 、x ≤1 D 、x ≠1
11.图3是小敏同学6次数学测验的成绩统计表,该同学6次成绩的中位数是( ) A. 60分 B. 70分 C.75分 D. 80分
12.已知图4中的两个三角形全等,则∠α的度数是( ) A .72° B .60° C .58° D .50°
13.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( )
A.2
1
B.
23 C.33 D.3 14.如图5,⊙B 的半径为4cm ,
60=∠MBN , 点A 、C 分别是射线BM 、BN 上的动点,且直 线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的 长度是( ) A.cm 8 B.cm 6 C.cm 4 D.cm 2
二、填空题(本大题满分16分,每小题4分)
15.分解因式: x 2y ﹣2y 2x+y 3= .
16.用火柴棒按如图6所示的方式摆图形,按照这样的规律继续摆下去,第4个图需要 根火柴棒,第n 个图形需要 根火柴棒(用含n 的代数式表示) 17.方程02=-x x 的解是 .
18. 如图7, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运
动.设∠ACP =x ,则x 的取值范围是 . 三、解答题(本大题满分62分) 19.(满分10分,每小题5分)
分数 测验1 测验2 测验3 测验4 测验5 测验6
图3 图4 c
58° b a 72° 50° c a α
B
C
A
M N
图5
…… (1) (2) (3) 图6 图7
A B O C x P
(1)计算:sin30°+(﹣1)0+()﹣2﹣.
(2)化简:(a+1)(a-1)-a(a-1).
20.(满分9分)现在“校园手机”越来越受到社会的关注,为此某校九(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下统计图.
(1)求这次调查的家长人数,并补全图①;(3分)
(2)求图②中表示家长“赞成”的圆心角的度数;(3分)
(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?(3分)
21.(满分8分)今年春节期间,三亚南山文化苑和亚龙湾森林公园接待游客日均量共5万人次,共收取门票850万元,收费如下表所示:
问:三亚南山文化苑和亚龙湾森林公园接待游客日均量各多少万人?
22.(满分8分)在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°,游船向东航行100米后(B处),测得太婆尖、老君岭的仰角分别为30°、60°.
试问太婆尖、老君岭的高度为多少米?
1.732,结果精确到米). 23、(满分13分)如图9,四边形ABCD是正方形,ECF
△是等腰直角三角形,其中CE CF
=,
G是CD与EF的交点.
(1)求证:BCF DCE
△≌△;
(2)求证:DE
BF=.,DE
BF⊥
(3)若5
BC=,3
CF=,90
BFC
∠= ,
求:
DG GC的值.
24、(满分14分)如图10,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C
(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE 是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
AD
图9
图10
模拟试卷(3)参考答案
一.选择题BBCBA ADCDA CDBA 二、填空题
15.y (x ﹣y )2 16.21,5n+1 17.01=x , 12=x 18.30°≤x ≤90° 三、解答题
19.(1)解:原式=+1+4﹣=5.
(2) 化简:原式=a 2-1-a 2+a
=a -1
20. 解:设三亚南山文化苑接待游客日均量为x 万人,亚龙湾森林公园接待游客日均量y 万人,根据题意得,
解得:
答:三亚南山文化苑接待游客日均量为3.5万人,亚龙湾森林公园接待游客日均
量1.5万人. 21.(1)△111C B A 如图所示 (2)△222C B A 如图所示
(3)△333C B A 如图所示 (4)△222C B A 、△333C B A ;
△111C B A 、△333C B A
22.解:(1)∵由条形统计图,无所谓的家长有120人,根据扇形统计图,无所
谓的家长占20%,
∴家长总人数为120÷20%=600人。

反对的人数为600﹣60﹣1200=420人,据此补全图①如图所示:
(2)表示“赞成”所占圆心角的度数为:
600
60
×360°=36°。

(3)由样本知,持“反对”态度的家长人数有420人,占被调查人数的10
7
600420=, ∴该区家长中持“反对”态度的家长人数约有2500×
10
7
=1750人。

23.证明:(1)∵四边形ABCD 是正方形,
90BCF FCD ∠+∠= ∴, BC=CD
E C
F ∵△是等腰直角三角形,
CF CE =, 90ECD FCD ∠+∠= ∴.
B C F E C ∠=∠∴.
B C F D C ∴△≌△. (2):∵B C F D C E △≌△ ∴DE BF =
延长BF 交DC 于O ,交DE 于H , ∵BCF DCE △≌△ ∴CDE HBC ∠=∠ BOC DOH ∠=∠ ∴BOC ∆∽DOH ∆ ∴︒=∠=∠90OCB DHO DE BF ⊥
(3)在BFC △中,5BC =,3CF =,90BFC ∠= ,
2
222534B F B C F =-=-=∴.
B C F D C ∵△≌△

4DE BF ==∴,
90BFC DEC FCE ∠=∠=∠= .
D E F C ∴∥.
D G
E C G ∴△∽△
. x+y=5
128x+188y=850 x=3.5 y =1.5 B A
C A 1
B 1
C 1 A 2 C 2 B 2 B 3 A 3 C 3
x
y
::4:
==
∴.
D G G C D
E C F

=
=。

相关文档
最新文档