Artificial Neural Networks

合集下载

Artificial Neural Networks(人工神经网络)

Artificial Neural Networks(人工神经网络)
f ( )
Linear
f ( )
Saturating Linear
f ( )
+1


0

Logistic Sigmoid
Hyperbolic tangent Sigmoid
11
Gaussian
2016/1/12
AI:ANN
Two main problems in ANN
Architectures How to interconnect individual units? Learning Approaches How to automatically determine the connection weights or even structure of ANN?
- B-P Learning Objective:
Solution:
1 K ω arg min eDk ,Yk ω K k 1
*
ω ω ω ω
2016/1/12
17
AI:ANN
Learning Strategies: Competitive Learning Winner-take-all (Unsupervised) How to compete? - Hard competition Only one neuron is activated - Soft competition Neurons neighboring the true winner are activated.
Weight values for a hidden unit:
From T. M. Mitchell, Machine Learning, 2006

人工智能神经网络

人工智能神经网络

人工智能神经网络人工智能神经网络(Artificial Neural Networks,ANN)是一种模拟人脑神经网络的计算模型。

它由一些简单的单元(神经元)组成,每个神经元都接收一些输入,并生成相关的输出。

神经元之间通过一些连接(权重)相互作用,以完成某些任务。

神经元神经元是神经网络中的基本单元,每个神经元都有多个输入和一个输出。

输入传递到神经元中,通过一些计算生成输出。

在人工神经网络中,神经元的模型是将所有输入加权求和,将权重乘以输入值并加上偏差值(bias),然后将结果带入激活函数中。

激活函数决定神经元的输出。

不同类型的神经元使用不同的激活函数,如Sigmond函数、ReLU函数等。

每个神经元的输出可以是其他神经元的输入,这些连接和权重形成了一个图,即神经网络。

神经网络神经网络是一种由多个神经元组成的计算模型。

它以输入作为网络的初始状态,将信息传递到网络的每个神经元中,并通过训练来调整连接和权重值,以产生期望的输出。

神经网络的目的是通过学习输入和输出之间的关系来预测新数据的输出。

神经网络的设计采用层次结构,它由不同数量、形式和顺序的神经元组成。

最简单的网络模型是单层感知器模型,它只有一个神经元层。

多层神经网络模型包括两种基本结构:前向传播神经网络和循环神经网络。

前向传播神经网络也称为一次性神经网络,通过将输入传递到一个或多个隐藏层,并生成输出。

循环神经网络采用时间序列的概念,它的输出不仅与当前的输入有关,还与以前的输入有关。

训练训练神经网络是调整其连接和权重值以达到期望输出的过程。

训练的目的是最小化训练误差,也称为损失函数。

训练误差是神经网络输出与期望输出之间的差异。

通过训练,可以将网络中的权重和偏置调整到最佳值,以最大程度地减小训练误差。

神经网络的训练过程通常有两种主要方法:1.前向传播: 在此方法中,神经网络的输入通过网络经过一种学习算法来逐步计算,调整每个神经元的权重和偏置,以尽可能地减小误差。

神经网络

神经网络
人工神经网络
Artificial Neural Networks
小组成员徐渊\孙鹏\张倩\ 武首航:
目录
第一节:神经网络简介 第二节:神经网络基本模型 第三节:传播算法(BP) 第四节:遗传算法 第五节:模糊神经网络(FNN) 第六节:Hopfield网络模型 第七节:随机型神经网络 第八节:自组织神经网络
网络的理论模型。其中包括概念模型、知识模型、物理化学 模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体
的神经网络模型,以实现计算机模拟或准备制作硬件,包括 网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神 经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功 能、构作专家系统、制成机器人等等。
1, vi = 0, ui > 0 ui ≤ 0
如果把阈值θi看作为一个特殊的权值,则可改写为:
v
i
=
f (

n
w
其中,w0i=-θi,v0=1 为用连续型的函数表达神经元的非线性变换 能力,常采用s型函数: 1
j = 0
ji
v
j
)
f (u
i
) =
学习该网络一般选用HUBB学习规则。归结为神经元连接权的变化,表示 为: Δwij=αuivj若第i和第j个神经元同时处于兴奋状态,则它们之 间的连接应当加强
DALIAN UNIVERSITY
系统辨识
技术讲座
4
wij ——代表神经元i与神经元j之间的连接强度(模拟生物神经元之间突触连接 强度),称之为连接权; ui——代表神经元i的活跃值,即神经元状态; vj——代表神经元j的输出,即是神经元i的一个输入; θi——代表神经元i的阈值。 函数f表达了神经元的输入输出特性。在MP模型中,f定义为阶跃函数:

人工神经网络在本科教学质量智能评价中的应用

人工神经网络在本科教学质量智能评价中的应用

人工神经网络在本科教学质量智能评价中的应用
人工神经网络(Artificial Neural Networks,ANN)是一种生物启发式的计算模型,模拟人脑中神经元之间的相互连接与信息传递过程。

近年来,随着人工智能的快速发展,
人工神经网络在各个领域都得到了广泛的应用,包括教育领域。

本文将探讨人工神经网络
在本科教学质量智能评价中的应用。

人工神经网络可以用于学生成绩预测。

通过收集学生的历史成绩、考试信息、平时表
现等多种数据,可以建立一个包含输入层、隐藏层和输出层的神经网络模型。

通过训练模型,人工神经网络可以学习到学生的学习规律和特点,从而实现对未来成绩的预测。

这样
的评价方式不仅可以帮助教师及时了解学生的学习情况,调整教学策略,也可以提供学生
个人在课程中的表现和发展方向的参考。

人工神经网络还可以用于教学内容推荐。

通过收集学生的学习兴趣、知识需求等信息,可以建立一个神经网络模型。

通过训练模型,人工神经网络可以学习到学生的喜好和需求,从而向学生推荐符合其兴趣和需求的教学内容,提高学生的学习积极性和主动性。

人工神经网络在本科教学质量智能评价中具有广阔的应用前景。

通过人工神经网络的
建模和训练,可以实现对学生成绩的预测、学习行为的分析、教学内容的推荐以及学生学
习能力的评估。

这些应用不仅可以提高教学评价的客观性和准确性,也可以帮助教师更好
地了解学生的学习情况,提供有针对性的教学辅导,促进学生的全面发展。

神经网络简介

神经网络简介

神经网络简介神经网络(Neural Network),又被称为人工神经网络(Artificial Neural Network),是一种模仿人类智能神经系统结构与功能的计算模型。

它由大量的人工神经元组成,通过建立神经元之间的连接关系,实现信息处理与模式识别的任务。

一、神经网络的基本结构与原理神经网络的基本结构包括输入层、隐藏层和输出层。

其中,输入层用于接收外部信息的输入,隐藏层用于对输入信息进行处理和加工,输出层负责输出最终的结果。

神经网络的工作原理主要分为前向传播和反向传播两个过程。

在前向传播过程中,输入信号通过输入层进入神经网络,并经过一系列的加权和激活函数处理传递到输出层。

反向传播过程则是根据输出结果与实际值之间的误差,通过调整神经元之间的连接权重,不断优化网络的性能。

二、神经网络的应用领域由于神经网络在模式识别和信息处理方面具有出色的性能,它已经广泛应用于各个领域。

1. 图像识别神经网络在图像识别领域有着非常广泛的应用。

通过对图像进行训练,神经网络可以学习到图像中的特征,并能够准确地判断图像中的物体种类或者进行人脸识别等任务。

2. 自然语言处理在自然语言处理领域,神经网络可以用于文本分类、情感分析、机器翻译等任务。

通过对大量语料的学习,神经网络可以识别文本中的语义和情感信息。

3. 金融预测与风险评估神经网络在金融领域有着广泛的应用。

它可以通过对历史数据的学习和分析,预测股票价格走势、评估风险等,并帮助投资者做出更科学的决策。

4. 医学诊断神经网络在医学领域的应用主要体现在医学图像分析和诊断方面。

通过对医学影像进行处理和分析,神经网络可以辅助医生进行疾病的诊断和治疗。

5. 机器人控制在机器人领域,神经网络可以用于机器人的感知与控制。

通过将传感器数据输入到神经网络中,机器人可以通过学习和训练来感知环境并做出相应的反应和决策。

三、神经网络的优缺点虽然神经网络在多个领域中都有着广泛的应用,但它也存在一些优缺点。

人工神经网络行业现状分析报告

人工神经网络行业现状分析报告

人工神经网络行业现状分析报告人工神经网络行业现状分析报告一、概述人工神经网络(Artificial Neural Networks,简称ANN)是模仿生物神经网络(动物的中枢神经系统,特别是大脑)工作机制的一种计算模型,用于估计或近似函数,这些函数可以依赖于一大量的输入,并且通常是未知的。

在人工智能领域中,人工神经网络是一种重要的技术。

本报告将对人工神经网络行业的现状进行深入分析,包括市场规模、产业链、主要企业、竞争格局和发展趋势等方面。

二、市场规模根据市场研究机构的数据,全球人工神经网络市场规模持续增长,其中中国市场增长迅速。

截至2021年底,中国人工神经网络市场规模达到了数亿元人民币,预计到2025年将达到数十亿元人民币。

这个市场的增长主要得益于人工智能技术的快速发展、应用场景的不断拓展以及资本的持续投入。

三、产业链人工神经网络行业的产业链主要包括硬件、软件和解决方案三个环节。

硬件:人工神经网络的硬件主要包括GPU、FPGA、ASIC等芯片,以及服务器、工作站等计算设备。

这些硬件为人工神经网络的训练和推理提供了强大的计算能力。

软件:人工神经网络的软件主要包括深度学习框架、优化算法、编译器等。

这些软件为人工神经网络的构建、训练和部署提供了支持。

解决方案:人工神经网络的解决方案主要包括智能语音、智能图像、自然语言处理等,可以应用于金融、医疗、教育、安防等行业中。

四、主要企业谷歌:谷歌是全球最大的人工智能企业之一,其子公司DeepMind在人工神经网络领域具有很高的声誉。

DeepMind推出了多款具有里程碑意义的产品,如AlphaGo等。

Facebook:Facebook的人工智能实验室是全球领先的人工智能研究机构之一,其在自然语言处理、图像识别等领域具有很高的技术实力。

亚马逊:亚马逊的人工智能部门利用人工神经网络等技术,优化其产品推荐、客户服务等方面的体验。

百度:百度是中国最大的搜索引擎公司之一,其人工智能实验室在自然语言处理、语音识别、图像识别等领域具有很高的技术实力。

人工神经网络的应用领域介绍

人工神经网络的应用领域介绍

人工神经网络的应用领域介绍人工神经网络(Artificial Neural Network,ANN)是一种模板化的计算模型,通过模拟神经元之间的讯息传递来完成信息处理任务,模型类似于人类神经系统。

自从ANN的提出以来,已经发展出了多种神经网络模型,被广泛应用于各种领域。

本文将介绍人工神经网络的应用,以及其在不同领域的效果。

1. 计算机视觉计算机视觉领域可以使用人工神经网络来进行图像分类、识别以及目标检测等任务。

现在的神经网络可以完成人脸识别、图像分割以及文本识别等高级任务,通过深层次的学习,达到人类相似的表现。

在此领域中,最流行的是卷积神经网络(Convolutional Neural Network,CNN)模型,它可以有效地识别图像中的特征,例如边缘、形状、颜色等,使得神经网络可以快速地准确地识别图片中的物体。

2. 语音处理人工神经网络在语音处理领域也有广泛的应用,例如语音识别、语音合成、语音信号分析等。

在这个领域中,反向传播神经网络(Backpropagation Neural Network,BNN)和长短时记忆网络(Long-short term memory,LSTM)等模型都被广泛应用。

这些模型可以学习语音信号的不同特征,并将语音信号转化为文本,以帮助人们快速地理解口语交流。

3. 金融领域人工神经网络在金融领域中也有广泛的应用,例如预测股票价格、信用评级以及风险控制等。

神经网络可以通过学习大量的历史数据,并根据这些数据来预测未来的趋势。

往往人工神经网络到所产生的预测结果会比传统的统计预测准确度更高。

4. 工业控制工业控制是人工神经网络的另一种应用领域。

神经网络可以帮助系统自动控制,例如自动化生产线上的物品分类、质量检测等任务。

神经网络能够通过学习各种现有系统的运作方式,并从海量数据中提取规律和关系,进而优化生产流程和控制系统。

5. 医疗行业在医疗行业中,人工神经网络可以用于病理判断、癌症筛查以及模拟手术等领域,从而实现更准确的诊断、治疗以及手术操作。

人工神经网络及其在计算机科学中的应用

人工神经网络及其在计算机科学中的应用

人工神经网络及其在计算机科学中的应用人工神经网络(Artificial Neural Networks,ANN),简称神经网络,是一种基于人类神经系统结构的计算模型。

其由许多相互连接的基本单元——神经元(Neuron)构成,以模拟生物神经网络的功能和机制为目的,进而实现某种预期的算法或模式识别能力。

人工神经网络广泛应用于计算机科学中的数据挖掘、预测、识别等领域。

一、神经元神经元是人工神经网络的基本单元。

它由多个树突(Dendrite)和一个轴突(Axon)构成,为多输入单输出结构。

一个神经元的输出信号可以作为其它神经元的输入。

通常,每个树突的权重表示该输入的相对重要性。

一个格网中的神经元通常只与其相邻的神经元相连,使得整个神经网络具有分布式存储特性。

二、传输函数神经网络传输函数是神经网络的基础,通过自动调整,实现目标效果。

常用的传输函数包括S型函数、线性函数、半波正切函数等。

其中,S型函数最为广泛使用。

它具有充分考虑了非线性因素对神经元之间传递信号的影响等特点,可以很好地改善网络的收敛性和精度。

三、训练算法神经网络的训练过程就是通过反向传播错误(Back Propogation,BP)算法来自动调整网络的权值,以达到训练样本的正确分类目标。

神经网络反向传播算法,大致过程是:(1)前向传递信号;(2)计算输出误差;(3)反向传播误差;(4)调整输出权值;(5)计算隐层误差;(6)反向传播隐层误差;(7)调整隐层权值。

通过上述训练过程,神经网络可以自适应地学习处理复杂的输入输出映射关系。

四、应用领域1. 语音识别语音识别是近年来神经网络的研究方向之一。

正是由于其高度的模式识别能力,神经网络成为了语音信号处理的重要工具。

神经网络可以作为一个强大的模式识别机器,可以自适应地学习各种语音的模式和特征,从而实现语音的快速识别和转换。

2. 图像识别图像识别也是神经网络广泛应用的领域之一。

神经网络在图像识别领域的应用涉及到许多技术领域,包括人工智能、计算机视觉、机器学习等。

第一章ANN基本介绍

第一章ANN基本介绍

结构特征: 并行式处理
能力特征: 自学习
分布式存储
容错性
自组织
自适应性
18
神经网络的基本功能
联 想 记 忆 功 能
19
神经网络的基本功能
输入样本
神经网络
自动提取 非线性映射规则
输出样本
非线性映射功能
20
神经网络的基本功能




4
人脑与计算机信息处理机制的比较

系统结构


信号形式
信息存储 信息处理机制
5
人工神经网络概述
生物神经网络 – 人类的大脑大约有1.41011个神经细胞,亦称 为神经元。每个神经元有数以千计的通道同其 它神经元广泛相互连接,形成复杂的生物神经 网络。 人工神经网络 – 以数学和物理方法以及信息处理的角度对人脑 神经网络进行抽象,并建立某种简化模型,就 称为人工神经网络(Artificial Neural Network,缩写 ANN)。
15
神经网络建模特点:

非线性映照能力:神经网络能以任意精度逼近任 何非线性连续函数。在建模过程中的许多问题正 是具有高度的非线性。 并行分布处理方式:在神经网络中信息是分布储 存和并行处理的,这使它具有很强的容错性和很 快的处理速度。 自学习和自适应能力:神经网络在训练时,能从 输入、输出的数据中提取出规律性的知识,记忆 于网络的权值中,并具有泛化能力,即将这组权 值应用于一般情形的能力。神经网络的学习也可 以在线进行。
人们乐观地认为几乎已经找到了智能的关键。 许多部门都开始大批地投入此项研究,希望尽快占 11 领制高点。

深度学习分类

深度学习分类

深度学习的主要分类1. 有监督的神经网络(Supervised Neural Networks)1.1. 神经网络(Artificial Neural Networks)和深度神经网络(Deep Neural Networks)追根溯源的话,神经网络的基础模型是感知机(Perceptron),因此神经网络也可以叫做多层感知机(Multi-layer Perceptron),简称MLP。

单层感知机叫做感机,多层感知机(MLP) 即人工神经网络(ANN)。

一般来说有1~2个隐藏层的神经网络叫做(浅层)神经网络(Shallow Neural Networks)。

随着隐藏层的增多,更深的神经网络(一般来说超过5层)就叫做深度学习(DNN)。

然而,“深度”只是一个商业概念,很多时候工业界把3层隐藏层也叫做“深度学习”。

在机器学习领域,深度(Deep)网络仅代表其有超过5~7层的隐藏层。

需要特别指出的是,卷积网络(CNN)和循环网络(RNN)一般不加Deep在名字中的原因是:它们的结构一般都较深,因此不需要特别指明深度。

想对比的,自编码器(Auto Encoder)可以是很浅的网络,也可以很深。

所以你会看到人们用Deep Auto Encoder来特别指明其深度。

应用场景:全连接的前馈深度神经网络(Fully Connected Feed Forward Neural Networks),也就是DNN适用于大部分分类(Classification)任务,比如数字识别等。

但一般的现实场景中我们很少有那么大的数据量来支持DNN,所以纯粹的全连接网络应用性并不是很强。

1. 2. 循环神经网络(Recurrent Neural Networks)和递归神经网络(Recursive Neural Networks)虽然很多时候我们把这两种网络都叫做RNN,但事实上这两种网路的结构事实上是不同的。

而我们常常把两个网络放在一起的原因是:它们都可以处理有序列的问题,比如时间序列等。

人工神经网络

人工神经网络
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、 自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。

人工神经网络的定义

人工神经网络的定义

人工神经网络的定义
人工神经网络的定义
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。

人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。

国际着名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理” 这一定义是恰当的。

人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron)。

它几乎与人工智能——AI同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。

直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。

目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

人工神经网络是在现代神经科学的基础上提出来的。

它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

ann分类算法

ann分类算法

ann分类算法
Ann分类算法是一种基于人工神经网络(Artificial Neural Networks,ANN)的分类算法。

它模拟了人脑神经元之间的联结,通过构建多层神经网络并应用反向传播算法来进行训练和分类。

Ann分类算法的基本步骤如下:
1. 数据准备:收集并准备待分类的训练数据集和测试数据集。

2. 网络建模:构建多层神经网络,包括输入层、隐藏层和输出层。

输入层接收待分类的特征向量,输出层生成分类结果。

3. 权重初始化:随机初始化网络中的权重值。

4. 前向传播:将训练样本输入神经网络,并计算输出结果。

5. 计算误差:利用输出结果和标签值之间的差异来计算误差。

6. 反向传播:将误差进行反向传播,根据误差更新网络中的权重。

7. 重复训练:重复进行前向传播、误差计算和反向传播,直至网络收敛或达到预定的训练次数。

8. 测试分类:对测试数据集进行分类,观察分类准确率。

Ann分类算法的优点包括能够处理非线性问题、对噪声具有一
定的鲁棒性,以及能够自动提取特征等。

然而,它也存在一些缺点,比如需要大量的训练数据、网络结构的选择不够自动化等。

总之,Ann分类算法是一种基于神经网络的分类算法,能够在大量训练数据的基础上进行训练和分类,具有一定的优点和局限性。

人工神经网络概述

人工神经网络概述

参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。

人工神经网络

人工神经网络

人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。

人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。

国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。

” 这一定义是恰当的。

人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。

它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。

直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。

目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

人工神经网络是在现代神经科学的基础上提出来的。

它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

ANN人工神经网络结构定律性质理论分析

ANN人工神经网络结构定律性质理论分析

ANN人工神经网络结构定律性质理论分析人工神经网络(Artificial Neural Networks,ANNs)是一种模仿人脑神经网络系统的计算模型。

其通过建立一个由人工神经元组成的网络来模拟人脑神经细胞之间的连接和信息传递。

ANNs在多个领域中都有广泛的应用,如模式识别、数据挖掘、机器学习等。

在ANNs的研究中,研究者们不仅关注网络的应用性能,还对其结构的性质进行了深入的研究。

ANNs的结构性质理论分析是指对网络的拓扑结构、连接模式以及网络性能之间的关系进行研究和分析。

这些分析有助于我们更好地理解ANNs的工作原理以及提高其性能。

一项重要的研究任务是分析ANNs的拓扑结构对其性能的影响。

拓扑结构包括网络的层数、每层神经元的数量以及神经元之间的连接方式。

Kolmogorov定理是一种经典的结构性质理论,它指出一个足够大的ANN能够逼近任意连续函数。

根据这一定理,研究者们发展了许多不同结构的神经网络,如多层感知机、卷积神经网络等。

另一个重要的研究任务是分析ANNs中神经元之间的连接方式对网络性能的影响。

神经元之间的连接方式可以分为全连接、局部连接以及稀疏连接等。

全连接意味着每个神经元都与下一层或上一层的所有神经元相连,而局部连接意味着每个神经元只与一小部分神经元相连。

研究者们发现,对于特定的任务,适当的连接方式可以降低计算复杂度并提高网络性能。

此外,研究者们还关注ANNs中的权重分布和神经元激活函数对网络性能的影响。

权重分布指的是ANNs中每个连接上的权重值的分布情况。

神经元激活函数是ANNs中用来引入非线性因素的函数,它决定了神经元的输出。

研究者们通过分析不同的权重分布和激活函数对网络性能的影响,可以进一步优化网络结构。

研究ANNs的结构定律性质理论分析有助于我们更好地理解神经网络的工作原理,提高网络性能和应用效果。

在深度学习领域,研究者们还提出了一些经验性规则,例如神经网络的隐藏层数和神经元数量应该选择多少,以及如何选择激活函数和优化算法等。

人工神经元计算方法

人工神经元计算方法

人工神经元计算方法人工神经元(Artificial Neuron,AN)是一种数学模型,模拟了生物神经元的基本功能,广泛应用于人工神经网络(Artificial Neural Networks,ANN)中。

人工神经元的计算方法可以分为线性和非线性两类。

一、线性人工神经元计算方法:线性人工神经元是指输入与输出之间存在线性关系的神经元模型,它的计算方法可以用数学函数表达。

一个简单的线性人工神经元模型如下:\(y=\sum_{i=1}^{n}w_ix_i+b\)其中,\(x_i\)表示输入的第i个信号,\(w_i\)表示该信号对应的权重,b表示偏置,y表示神经元的输出。

线性人工神经元的计算过程如下:1.将输入信号和对应的权重相乘。

2.将所有乘积的结果相加。

3.将加和的结果加上偏置。

4.输出最终结果。

线性神经元的计算方法比较简单,但是其功能有限,只能对线性可分问题进行处理。

非线性问题需要通过引入激活函数来解决。

二、非线性人工神经元计算方法:非线性人工神经元是指输入与输出之间不存在直接线性关系的神经元模型,它的计算方法通常需要引入激活函数。

激活函数是一种非线性函数,可以将线性输入转化为非线性输出。

常见的激活函数有sigmoid函数、ReLU函数、tanh函数等。

sigmoid函数的表达式如下:\(f(x) = \frac{1}{1+e^{-x}}\)ReLU函数的表达式如下:\(f(x) = max(0,x)\)tanh函数的表达式如下:\(f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}\)非线性人工神经元的计算过程如下:1.将输入信号和对应的权重相乘。

2.将所有乘积的结果相加。

3.将加和的结果加上偏置。

4.将上述结果输入激活函数,得到最终输出。

非线性人工神经元的计算方法可以处理非线性问题,并具有较强的表达能力。

在构建复杂的神经网络时,非线性人工神经元的组合能够提高网络的表达能力和拟合能力。

神经网络讲解及实例

神经网络讲解及实例

连接的权值:两个互连的神经元之间相互作用的强弱。
神经元的动作:
n
net wi xi i1
yf(ne) t
(xi,wiR)
输出函数 f:也称作用函数,非线性。
y
y
y
1
1
1

net
(a)
阈值型
net 0
(b)
S型
0
net
(c)
伪线性型
f 为阈值型函数时:ysgnn wixi
i1
设wn1 ,点积形式: ysgW nTX ()
* 正确判决的关键: 输出层每个神经元必须有一组合适的权值。
* 感知器采用监督学习算法得到权值;
* 权值更新方法:δ学习规则。
算法描述
第一步:设置初始权值wij(1),w(n+1)j(1)为第j个神经元的阈值。 第二步:输入新的模式向量。
第三步:计算神经元的实际输出。
设第k次输入的模式向量为Xk,与第j个神经元相连的权向量为 W j( k ) [ w 1 j,w 2 j, ,w ( n 1 )j] T
第三阶段:复兴期,从1982年到1986年。 Hopfield的两篇论文提出新的神经网络模型; 《并行分布处理》出版,提出反向传播算法。
第四个阶段:1987年至今,趋于平稳。 回顾性综述文章“神经网络与人工智能” 。
人工神经网络的基本特点
(1)可处理非线性
(2)并行结构.对神经网络中的每一个神经元来说;其 运算都是同样的.这样的结构最便于计算机并行处理.
Ep
wjk
其中,Ep Ep nek t wjk nek t wjk
由 netk
j
wjk y j
式得到: nek t wjk wjk

knn算法与ann算法

knn算法与ann算法

KNN算法与ANN算法
KNN(K-Nearest Neighbors)算法和ANN(Artificial Neural Networks)算法都是常用的机器学习算法,但它们的原理和应用场景有所不同。

KNN算法是一种基于实例的学习算法,其基本思想是根据样本之间的距离来进行分类或回归预测。

具体来说,KNN 算法会选取与待分类样本最近的K个训练样本,然后通过对这K个样本的类别进行投票或加权投票来确定待分类样本的类别。

KNN算法简单易懂、计算效率高,但对于高维数据和噪声数据的处理能力较弱。

ANN算法是一种基于神经网络的学习算法,其基本思想是通过多层神经元的组合和非线性变换来实现复杂的模式识别和分类预测。

ANN算法具有良好的非线性拟合能力和泛化能力,能够适应各种复杂的数据模式。

但ANN算法的训练过程通常需要大量的数据和计算资源,并且容易陷入局部最优解或过拟合等问题。

因此,对于不同的问题,选择KNN算法或ANN算法可能会有不同的效果。

KNN算法适合处理简单的分类和回归问题,ANN算法适合处理复杂的模式识别和分类问题。

同时,在实际应用中,也可以将KNN算法和ANN算法结合起来,利用ANN算法对KNN算法的分类结果进行优化和提升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Conference on Prognostic Factors and Staging in CancerManagement:Contributions of Artificial Neural Networksand Other Statistical MethodsSupplement to Cancer Artificial Neural NetworksOpening the Black BoxJudith E.Dayhoff,Ph.D.1James M.DeLeo21Complexity Research Solutions,Inc.,Silver Spring,Maryland.2Clinical Center,National Institutes of Health,Be-thesda,Maryland.Presented at the Conference on Prognostic Factors and Staging in Cancer Management:Contributions of Artificial Neural Networks and Other Statistical Methods,Arlington,Virginia,September27–28, 1999.The authors would like to thank Dr.Richard Levine for his enlightening support and guidance in the development of this article.Address for reprints:Judith E.Dayhoff,Ph.D., Complexity Research Solutions,Inc.,12657En-glish Orchard Court,Silver Spring,MD20906; E-mail:DayhoffJ@Received December18,2000;accepted January 26,2001.Artificial neural networks now are used in manyfields.They have become well established as viable,multipurpose,robust computational methodologies with solid theoretic support and with strong potential to be effective in any discipline, especially medicine.For example,neural networks can extract new medical infor-mation from raw data,build computer models that are useful for medical decision-making,and aid in the distribution of medical expertise.Because many important neural network applications currently are emerging,the authors have prepared this article to bring a clearer understanding of these biologically inspired computing paradigms to anyone interested in exploring their use in medicine.They discuss the historical development of neural networks and provide the basic operational mathematics for the popular multilayered perceptron.The authors also describe good training,validation,and testing techniques,and discuss measurements of performance and reliability,including the use of bootstrap methods to obtain confidence intervals.Because it is possible to predict outcomes for individual patients with a neural network,the authors discuss the paradigm shift that is taking place from previous“bin-model”approaches,in which patient outcome and management is assumed from the statistical groups in which the patientfits.The authors explain that with neural networks it is possible to mediate predictions for individual patients with prevalence and misclassification cost considerations using receiver operating characteristic methodology.The authors illustrate theirfindings with examples that include prostate carcinoma detection,coronary heart disease risk prediction,and medication dosing.The authors identify and discuss obstacles to success,including the need for expanded databases and the need to establish multidisciplinary teams.The authors believe that these obstacles can be overcome and that neural networks have a very important role in future medical decision support and the patient management systems employed in routine medical prac-tice.Cancer2001;91:1615–35.©2001American Cancer Society.KEYWORDS:artificial neural networks,computational methodology,medicine,par-adigm.A rtificial neural networks are computational methodologies thatperform multifactorial analyses.Inspired by networks of biologi-cal neurons,artificial neural network models contain layers of simple computing nodes that operate as nonlinear summing devices.These nodes are richly interconnected by weighted connection lines,and the weights are adjusted when data are presented to the network during a“training”process.Successful training can result in artificial neural networks that perform tasks such as predicting an output value,classifying an object,approximating a function,recognizing a1615©2001American Cancer Societypattern in multifactorial data,and completing a known pattern.Many applications of artificial neural networks have been reported in the literature,and applications in medicine are growing.Artificial neural networks have been the subject of an activefield of research that has matured greatly over the past40years.Thefirst computational,train-able neural networks were developed in1959by Rosenblatt as well as by Widrow and Hoff and Widrow and Stearns.1–3Rosenblatt perceptron was a neural network with two layers of computational nodes and a single layer of interconnections.It was limited to the solution of linear problems.For example,in a two-dimensional grid on which two different types of points are plotted,a perceptron could divide those points only with straight line;a curve was not possible. Whereas using a line is a linear discrimination,using a curve is a nonlinear task.Many problems in discrim-ination and analysis cannot be solved by a linear ca-pability alone.The capabilities of neural networks were ex-panded from linear to nonlinear domains in1974by Werbos,4with the intention of developing a method as general as linear regression,but with nonlinear capa-bilities.These multilayered perceptrons(MLPs)were trained via gradient descent methods,and the original algorithm became known as“back-error propaga-tion.”Artificial neural networks were popularized by Rumelhart and McClelland.5A variety of neural net-work paradigms have been developed,analyzed,stud-ied,and applied over the last40years of highly active work in this area.6–9After the invention of the MLP and its demonstra-tion on applied problems,mathematicians established afirm theoretical basis for its success.The computa-tional capabilities of three-layered neural networks were proven by Hornik et al.,10who showed in their general function approximation theorem that,with appropriate internal parameters(weights),a neural network could approximate an arbitrary nonlinear function.Because classification tasks,prediction,and decision support problems can be restated as function approximation problems,thisfinding showed that neural networks have the potential for solving major problems in a wide range of application domains.A tremendous amount of research has been devoted to methods of adjusting internal parameters(weights)to obtain the best-fitting functional approximations and training results.Neural networks have been used in many different fiitary applications include automatic target recognition,control offlying aircraft,engine combus-tion optimization,and fault detection in complex en-gineering systems.Medical image analysis has re-sulted in systems that detect tumors in medical images,and systems that classify malignant versus normal cells in cytologic tests.Time series predictions have been conducted with neural networks,including the prediction of irregular and chaotic sequences.11–14 More recently,decision support roles for neural net-works have emerged in thefinancial industry15-17and in medical decision support.18Applications of neural networks to such a broad spectrum offields serves to substantiate the validity of researching the use of neural networks in medical applications,including medical decision support.Be-cause of the critical nature of medical decision-mak-ing,analytic techniques such as neural networks must be understood thoroughly before being deployed.A thorough understanding of the technology must in-clude the architecture of the network,its paradigm for adjusting internal parameters to reflect patterns or predictions from the data,and the testing and valida-tion of the resulting network.Different formulations for benchmarking or measuring performance must be understood,as well as the meaning of each measured result.It is equally important to understand the capa-bilities of the neural network,especially for multivar-iate analysis,and any limitation that arises from the network or from the data on which the network is trained.This article is intended to address the need for bringing an increased understanding of artificial neu-ral networks to the medical community so that these powerful computing paradigms may be used even more successfully in future medical applications.In the next section,we discuss multifactorial anal-ysis,the building of multifactorial databases,and the limitations of one-factor-at-a-time analysis.In the third section we consider the internal architecture of a neural network,its paradigm for adjustment(training) of internal parameters(weights),and its proven capa-bilities.In the fourth section we discuss measure-ments of the performance of neural networks,includ-ing the use of verification data sets for benchmarking a trained network,the receiver operating characteris-tic(ROC)plot,and confidence and prediction inter-vals.In thefifth section we discuss the uses of neural networks in medical decision support systems.The sixth section summarizes our majorfindings concern-ing the current role of neural networks in medicine, and Section7concludes with a vision of the emerging uses of neural networks in medicine. MULTIFACTORIAL ANALYSISNeural networks can play a key role in medical deci-sion support because they are effective at multifacto-rial analysis.More specifically,neural networks can employ multiple factors in resolving medical predic-1616CANCER Supplement April15,2001/Volume91/Number8tion,classification,pattern recognition,and pattern completion problems.Many medical decisions are made in situations in which multiple factors must be weighed.Although it may appear preferable in medi-cal decision-making to use a single factor that is highly predictive,this approach rarely is adequate because there usually is no single definitive factor.For exam-ple,there usually is no single laboratory test that can provide decisive information on which to base a med-ical action decision.Yet a single-factor approach is so easy to use that it is tempting to simplify a multifac-torial situation by considering only one factor at a time.Yet it should be clear that,when multiple factors affect an outcome,an adequate decision cannot be based on a single factor alone.When a single-factor approach is applied to the analysis of multifactorial data,only one factor is varied at a time,with the other factors held constant.To illustrate the limitations of this approach,consider a situation in which a chemist employs a one-factor-at-a-time analysis to maximize the yields from a chemi-cal reaction.19Two variables are used:reaction time and temperature.First,the chemist fixes the temper-ature at T ϭ225°C,and varies the reaction time,t ,from 60minutes to 180minutes.Yields are measured and results are plotted (Fig.1).A curve suggested by the points is shown,leading to the conclusion that for T ϭ225°C,the best reaction time is 130minutes,in which the yield is approximately 75g.After a classic one-variable-at-a-time strategy,the chemist now fixes the reaction time at the “best”value of 130minutes,and varies the temperature T from 210°C to 250°C.Yield data are plotted in Figure 2,which shows an approximate peak at 225°C.This tempera-ture is the same as that used for the first series of runs;again,a maximum yield of roughly 75g is obtained.The chemist now believes he is justified to conclude that the overall maximum is a yield of approximately 75g,achieved with a reaction time of 130minutes and a temperature of 225°C.Figure 3shows the underlying response surface for this illustrative example.The horizontal and verti-cal axes show time and temperature.Yield is repre-sented along a third axis,directed upward from the figure,perpendicular to the axes shown.Contour lines (curves along which yields are the same)are plotted at 60,70,80,90,and 91g of yield,and the contours form a hill rising up from the two-dimensional plane of the graph.The actual peak occurs at 91g of yield,at a temperature of 255°C and a time of 67minutes.The one-variable-at-a-time approach led to the conclusion of a peak yield of 75g at 225°C and 130minutes,which is only part of the way up the hill depicted in Figure 3;the point selected by the chemist with the one-variable-at-a-time approach was not at the top of the hill (the true optimum point).Limitations of the one-variable-at-a-time analysis become starkly obvi-ous with this specific example.If you only change one variable at a time and attempt to maximize results,you may never reach the top of the hill .Although this illustration is of a single algorithm,the illustration serves to demonstrate the point that utilizing the one-variable-at-a-time approach some-times can be devastating to the analysis results.Be-cause predictive analysis,via artificial neural networks and other statistical methods,is treated as a global minimization problem (e.g.,minimizing the difference between the predictor’s output and the real data re-sult),minimization,like maximization in thechemicalFIGURE 1.First set of experiments showing yield versus reaction time,withthe temperature held fixed at 225°C.Reproduced with permission from Box GEP,Hunter WG,Hunter JS.Statistics for experimenters.New York:John Wiley &Sons,1978.FIGURE 2.Second set of experiments showing yield versus temperature,with the reaction time held fixed at 130minutes.Reproduced with permission from Box GEP,Hunter WG,Hunter JS.Statistics for experimenters.New York:John Wiley &Sons,1978.Artificial Neural Networks/Dayhoff and DeLeo 1617reaction yield example,can be missed by the single factor approach.We submit the following conclusions from this illustrative example:1.Searching for a single key predictive factor is not the only way to search2.Knowing a single key predictive factor is not the only way to be knowledgeable3.Varying a single factor at a time,and keeping other factors constant,can limit the search results.Neural network technology is intended to address these three key points.The inputs of a neural network are comprised of one or many factors,putatively re-lated to the outputs.When multiple factors are used,their values are input simultaneously.The values of any number of these factors then can be changed,and the next set of values are input to the neural network.Any predictions or other results produced by the net-work are represented by the value(s)of the output node(s),and many factors are weighted and com-bined,followed by a weighting and recombining of the results.Thus,the result or prediction does not have to be due to a single key predictive factor but rather is due to a weighting of many factors,combined and recombined nonlinearly.In a medical application,the problem to be solvedcould be a diagnostic classification based on multiple clinical factors,whereby the error in the diagnosis is minimized by the neural network for a population of patients.Alternatively,the problem could be the clas-sification of images as containing either normal or malignant cells,whereby the classification error is minimized.Both the diagnostic problem and the im-age analysis problem are examples of classification problems,in which one of several outcomes,or classes,is chosen or predicted.A third example would be predicting a drug dosage level for individual pa-tients,which illustrates a function fitting application.In medical decision-making,in which tasks such as classification,prediction,and assessment are im-portant,it is tempting to consider only a single defin-itive variable.However,we seldom have that luxury because usually no single factor is sufficiently defini-tive,and many decisions must be made based on weighing the presence of many factors.In this case,neural networks can provide appropriate decision support tools because neural networks take into ac-count many factors at the same time by combining and recombining the factors in many different ways (including nonlinear relations)for classification,pre-diction,diagnostic tasks,and function fitting.Building Multifactorial DatabasesThe building of modern medical databases has sug-gested an emergent role for neural networks in med-ical decision support.For the first time in history,because of these growing databases,we have the abil-ity to track large amounts of data regarding substantial and significant patient populations.First,there is a need to analyze data to further our understanding of the patterns and trends inherent in that data,and to ascertain its predictive power in supporting clinical decision-making.Equally important is the need for feedback between the analysis of results and the data collection process.Sometimes the analysis of results indicates that the predictive ability of the data is lim-ited,thus suggesting the need for new and different data elements during the collection of the next set of data.For example,results from a new clinical test may be needed.As each database is analyzed,neural net-works and statistical analysis can demonstrate the ex-tent to which disease states and outcomes can be predicted from factors in the current database.The accuracy and performance of these predictions can be measured and,if limited,can stimulate the expansion of data collection to include new factors and expanded patient populations.Databases have been established in the majority of major medical institutions.These databases origi-nally were intended to provide data storage andre-FIGURE 3.True model representing yield versus reaction time and temper-ature,with points shown for the one-variable-at-a-time approach.Reproduced with permission from Box GEP,Hunter WG,Hunter JS.Statistics for experi-menters.New York:John Wiley &Sons,1978.1618CANCER Supplement April 15,2001/Volume 91/Number 8trieval for clinical personnel.However,there now is an additional goal:to provide information suitable for analysis and medical decision support by neural net-works and multifactorial statistical analysis.The result of an initial analysis will provide new information with which to establish second-generation databases with an increased collection of data relevant for diagnostic purposes,diagnostic studies,and medical decision support.Comparisons of computerized multivariate anal-ysis with human expert opinions have been performed in some studies,and some published comparisons identify areas in which neural network diagnostic ca-pabilities appear to exceed that of the experts.20,21Because of their success,neural networks and certain other multifactorial analyses can be viewed as new and enhanced tools for extracting medical informa-tion from existing databases,and for providing new information to human experts for medical decision support.Traditionally,expert opinions have been de-veloped from the expert’s practical clinical experience and mastery of the published literature.Currently we can,in addition,employ neural networks and multi-variate analysis to analyze the multitude of relevant factors simultaneously and to learn the trends in the data that occur over a population of patients.The neural network results then can be used by the clini-cian.Today,each physician treats a particular selection of patients.Because a particular type of patient may (or may not)visit a particular physician,the physi-cian’s clinical experience becomes limited to a partic-ular subset of patients.This “localized knowledge”possibly could be captured and distributed using neu-ral network and related multifactorial techniques.In addition,this “localized knowledge”could be ex-panded to more of a “global knowledge”by applying the computational methods to expanded patient da-tabases.A physician then could have access to neural networks trained on a population of patients that is much larger than the subset of patients the physician sees in his or her practice.When a neural network is trained on a compen-dium of data,it builds a predictive model based on that data.The model reflects a minimization in error when the network’s prediction (its output)is com-pared with a known or expected outcome.For exam-ple,a neural network could be established to predict prostate biopsy study outcomes based on factors such as prostate specific antigen (PSA),free PSA,complex PSA,age,etc.(Fig.4).The network then would be trained,validated,and verified with existing data for which the biopsy outcomes are known.Performance measurements would be taken to report the neural network’s level of success.These measurements could include the mean squared error (MSE),the full range of sensitivity and specificity values (i.e.,the ROC plot associated with the continuous variable output [0–1]of the neural network),and confidence and prediction intervals.The trained neural network then can be used to classify each new individual patient .The predicted classification could be used to support the clinical decision to perform biopsy or support the decision to not conduct a biopsy.This is a qualitativelydifferentFIGURE 4.Neural network for predict-ing the outcome of a prostate biopsy study.PSA:prostate specific antigen.Artificial Neural Networks/Dayhoff and DeLeo 1619approach(a paradigm shift)compared with previous methods,whereby statistics concerning given patient populations and subpopulations are computed and published and a new individual patient then is refer-enced to the closest matching patient population for clinical decision support.With previous methods,the average outcome for each patient population or sub-population is used during decision-making.With this new multivariate approach,we are ushering in a new era in medical decision support,whereby neural net-works and multifactorial analysis have the potential to produce a meaningful prediction that is unique to each patient.Furthermore,applying ROC methodol-ogy to model outputs can tailor the decision for the individual patient further by examining the“cost”tradeoffs between false-positive and false-negative classifications.WHAT IS INSIDE THE BLACK BOX?Artificial neural networks are inspired by models of living neurons and networks of living neurons.Artifi-cial neurons are nodes in an artificial neural network, and these nodes are processing units that perform a nonlinear summing function,as illustrated in Figure5. Synaptic strengths translate into weighting factors along the interconnections.In artificial neural net-works,these internal weights are adjusted during a “training”process,whereby input data along with cor-responding desired or known output values are sub-mitted to the network repetitively and,on each repe-tition,the weights are adjusted incrementally to bring the network’s output closer to the desired values.Par-ticular artificial neurons are dedicated to input or output functions,and others(“hidden units”)are in-ternal to the network.Neural networks were pioneered by Rosenblatt as well as Widrow and Hoff and Widrow and Stearns.1–3 Rosenblatt was interested in developing a class of models to describe cognitive processes,including pat-tern recognition,whereas the latter two groups fo-cused on applications,such as speech recognition and time series predictions(e.g.,weather models).Other early contributors included Anderson,22Amari,23 Grossberg,24Kohonen,25Fukushima,26and Cooper,59 to name a few of the outstanding researchers in this field.These contributions were chronicled by Ander-son and Rosenfeld.27The majority of the early models, such as the preceptron invented by Rosenblatt,1had two layers of neurons(an input layer and an output layer),with a single layer of interconnections with weights that were adjusted during training.However, some models increased their computational capabili-ties by adding additional structures in sequence be-fore the two-layer network.These additional struc-tures included opticalfilters,additional neural layers withfixed random weights,or other layers with un-changing weights.Nevertheless,the single layer of trainable weights was limited to solving linear prob-lems,such as linear discrimination,–drawing a line,or a hyperplane in n dimensions,to separate two areas (no curves allowed).8In1974,Werbos4extended the network models beyond the perceptron,a single trainable layer of weights,to models with two layers of weights that were trainable in a general fashion,and that accom-plished nonlinear discrimination and nonlinear func-tion approximation.This computational method was named“back-error propagation.”Neural networks later were popularized in1986by Rumelhart and Mc-Clelland.5By far the most popular architecture currently is the multilayered perception(MLP),which can be trained by back-error propagation or by other training methods.The MLP typically is organized as a set of interconnected layers of artificial neurons.Each arti-ficial neuron has an associated output activation level, which changes during the many computations that are performed during training.Each neuron receives inputs from multiple sources,and performs a weighted sum and a“squashing function”(also known as an“activation”function)(Fig.6).The most popular squashing function is the sigmoid function,as follows:f͑x͒ϭ11ϩe͑Ϫx͒(1)in which x is the input to the squashing function and, in the neural network,is equal to S j(node j),the sum of the products of the incoming activation levels with their associated weights.This incoming sum(for node j)is computed as follows:S jϭ͸iϭ0n w ji a i(2)in which w ji is the incoming weight from unit i,a i is the activation value of unit i,and n the number of units that send connections to unit j.A“bias”unit(nϭ0)is included(Fig.5).8The computation of the weighted sum(Equation2)is followed by application of the sigmoid function,illustrated in Figure6,or another nonlinear squashing function.Artificial neurons(nodes)typically are organized into layers,and each layer is depicted as a row,or collection,of nodes.Beginning with a layer of input neurons,there is a succession of layers,each intercon-nected to the next layer.The majority of studies utilize three-layer networks in which the layers are fully in-1620CANCER Supplement April15,2001/Volume91/Number8terconnected.This means that each neuron is con-nected to all neurons in the next layer,as depicted in Figure 7.Each interconnection has an associated “weight,”denoted by w,with subscripts that uniquely identify the interconnection.The last layer is the out-put layer,and activation levels of the neurons in this layer are considered to be the output of the neural network.As a result,the general form of Equations 1and 2becomesa j,k ϩ1ϭ11ϩexp ͑Ϫ͸wji,k a i,k͒(3)in which a i,k represents the activation values of node i in layer k,and w ji,k represents the weight associated with the connection from the ith node of the kth layer to the jth node of layer k ϩ1.Because there typically are three layers of nodes,there then are two layers of weights,and k ϭ1or 2.Initially,the weights on all the interconnections are set to be small random numbers,and the network is said to be “untrained.”The network then is pre-sented with a training data set,which provides inputs and desired outputs to the network.Weights are ad-justed in such a way that each weight adjustment increases the likelihood that the network will compute the desired output at its output layer.Attaining the appropriate parameter values (weights)in the neural network requires “training.”Training is comprised of many presentations of data to the neural network,and the adjustment of its inter-nal parameters (weights)until appropriate results are output from the network.Because training can be difficult,a tremendous number of computational op-tions and enhancements have been developed to im-prove the training process and its results.Adjustment of weights in training often is performed by agradientFIGURE 5.Illustration of an artificialneural network processing unit.Each unit is a nonlinear summing node.The square unit at the bottom left is a bias unit,with the activation value set at 1.0.S j ϭincoming sum for unit j,a j ϭac-tivation value for unit j,and w ji ϭweight from unit i to unitj.FIGURE 6.The sigmoid function.Artificial Neural Networks/Dayhoff and DeLeo 1621。

相关文档
最新文档