第9章 磁敏式传感器
磁敏式传感器的原理及应用
磁敏式传感器的原理及应用1. 磁敏式传感器的原理磁敏式传感器是一种能够检测和测量磁场变化的装置。
它利用材料的磁敏特性,在磁场的作用下产生相应的电信号,从而实现对磁场的检测和测量。
1.1 磁敏效应磁敏效应是指材料在外加磁场作用下,呈现出磁介质性质的变化。
常见的磁敏效应包括磁电效应、霍尔效应和磁致伸缩效应等。
其中,磁电效应是磁敏式传感器工作的基础。
1.2 磁敏材料磁敏式传感器所使用的磁敏材料具有以下几个主要特点: - 高磁导率:磁敏材料能够有效地传导磁场,在外加磁场作用下形成较大的感应电流。
- 高磁阻率:磁敏材料对磁场的变化非常敏感,能够产生较大的电信号响应。
- 稳定性:磁敏材料的特性稳定,能够在较宽的温度范围内工作。
1.3 工作原理磁敏式传感器的工作原理基于磁电效应,即磁场变化引起材料电阻的变化。
当外加磁场发生变化时,磁敏材料内部的自由电荷受到磁力作用,导致电荷运动方向发生变化,从而改变了材料内部的电流分布和电阻。
2. 磁敏式传感器的应用磁敏式传感器的应用非常广泛,在许多领域中发挥着重要的作用。
2.1 位移检测磁敏式传感器可以用于测量物体的位移。
通过将磁敏材料与运动物体相连,并放置在磁场中,当物体发生位移时,磁敏材料的电阻发生变化,从而可以测量位移的大小。
2.2 速度检测磁敏式传感器还可以用于监测物体的速度。
通过将磁敏材料与运动物体相连,并放置在磁场中,当物体以一定速度运动时,磁敏材料的电阻发生变化,从而可以测得物体的速度。
2.3 磁场检测磁敏式传感器能够检测磁场的变化。
当磁场发生变化时,磁敏材料的电阻也会发生变化,从而可以检测磁场的强度和方向。
2.4 电流检测磁敏式传感器还可以用于检测电流。
通过将磁敏材料与电流回路相连,当电流通过时,磁场的变化会引起磁敏材料的电阻变化,从而可以测量电流的大小。
2.5 磁导航磁敏式传感器可以应用于磁导航领域。
通过检测磁场的变化,磁敏式传感器可以确定物体的方向和位置,从而实现导航功能。
第9章磁敏式传感器
1. 什么是霍尔效应?为什么半导体材料适合于作霍尔元件? 2. 霍尔元件能够测量哪些物理参数?
3. 简述霍尔传感器的特点。
4. 简述霍尔位移传感器的工作原理。 5. 什么是磁阻效应?
Xi’an Jiaotong University
接近开关和无触点开关、计数器;无接触线位移传 感器;力、加速度等参数的测量;精密倾斜角测量等。
R1、R2 线性、角度、旋转位 移传感器,可以测量磁场 强度。
磁敏电阻位移传感器
Xi’an Jiaotong University
磁敏二极管、三极管
磁敏二极管
P型和N型电极由高阻材料制成,I为本征区。I区的r 面粗糙,设置成高复合区(r区),目的是使电子-空穴 对易于在粗糙表面复合而消失;另一面比较光滑。
霍尔式传感器的材料
霍尔元件由霍尔片、四根引线和壳体组成。
霍尔元件多采用N型半导体材料(高的电阻率和载流 子的迁移率)。目前最常用的霍尔元件材料有锗(Ge)、 硅(Si)、锑化铟(InSb)、砷化铟(InAs)等半导体材料。
Xi’an Jiaotong University
霍尔式传感器的测量电路
霍尔元件的转换效率较低,实际应用中,可将几个霍尔 元件的输出串联或采用运算放大器放大,以获得较大的UH。
Xi’an Jiaotong University
磁敏二极管、三极管应用
1-待测物,2-激励线圈,3-铁芯,4-放大器,5-磁敏二极管探头
Xi’an Jiaotong University
作 业
问答题: 1. 什么叫压电晶体的居里点? 2. 什么是正压电效应?什么是逆压电效应? 3. 压电式传感器的测量电路中为什么要加入前置放大器? 电荷放大器有何特点? 4. 试说明为什么不能用压电传感器测量变化比较缓慢的 信号?
磁敏式传感器.课件
06
磁敏式传感器的发展趋势与展望
新材料的应用
高磁导率材料
01
利用具有高磁导率的材料,提高磁敏式传感器的灵敏度和响应
速度。
稀有金属材料
02
采用稀有金属材料,如稀土元素,以改良传感器的性能和稳定
性。
复合材料
03
通过将不同材料的优点结合,开发出具有优异性能的复合磁敏
材料。
新工艺的研发
薄膜工艺
利用薄膜工艺制备超薄、高灵敏度的磁敏元件, 提高传感器的精度和稳定性。
磁通元件
利用磁通效应,将磁场变化转化为 电压变化,从而检测磁场强度。
信号处理电路
01
02
03
放大器
将磁敏元件输出的微弱信 号进行放大,提高信号的 信噪比。
滤波器
对信号进行滤波处理,去 除噪声干扰,提高信号的 稳定性。
调制解调器
将磁敏元件输出的模拟信 号转换为数字信号,便于 后续处理。
输出装置
显示器
位置检测
位置检测概述
位置检测是控制系统中不可或缺的一环,磁 敏式传感器可用于位置检测。
位置检测原理
磁敏式传感器通过检测磁场的变化,判断物 体的位置和运动轨迹。
位置检测应用
在机器人、自动化生产线、医疗器械等领域 ,位置检测的应用越来越广泛。
位置检测优缺点
磁敏式传感器具有非接触、精度高等优点, 但也存在对环境磁场干扰敏锐等缺点。
具有较高的灵敏度。
线性输出
磁敏式传感器的输出信号与磁 场强度成线性关系,使得测量 结果更为准确可靠。
稳定性好
经过特殊工艺处理,磁敏式传 感器具有较好的温度特性和长 期稳定性。
抗干扰能力强
由于磁场不易受到电场、温度 等因素的干扰,因此磁敏式传 感器在复杂环境下仍能保持较
磁敏传感器概要课件
当电流通过一个导体时,如果有一个外部磁场作用在导体上,那么导体的电阻值 会产生变化。利用这个电阻值的变化可以测量外部磁场的大小和方向。磁阻传感 器具有较高的灵敏度和响应速度。
磁致伸缩效应
总结词
磁致伸缩效应是磁敏传感器另一种重要的技术原理,它利用磁场改变材料的长度和体积,从而检测磁场强度和方 向。
以满足不同应用场景的需求。
通过技术创新和规模化生产,实 现成本与性能的最佳平衡,是磁
敏传感器发展的关键。
标准化与互操作性
为了提高磁敏传感器的市场竞争 力,需要制定统一的标准和规范 ,促进产品的互换性和互操作性
。
标准化有助于提高产品质量、降 低生产成本、促进产业升级和技
术创新。
建立磁敏传感器的标准体系,推 动产业协同发展,是未来发展的
随着物联网技术的发展,磁敏 传感器在智能家居、智慧城市 等领域的应用前景广阔。
磁敏传感器在新能源领域的应 用,如风力发电、太阳能逆变 器等,具有巨大的市场潜力。
成本与性能的平衡
降低磁敏传感器的成本是市场推 广的关键,需要优化生产工艺和
降低材料成本。
在追求低成本的同时,需要保证 传感器的性能稳定性和可靠性,
PART 04
磁敏传感器的发展趋势与 挑战
பைடு நூலகம்
技术创新与突破
磁敏传感器技术不断进步,新型材料和工艺的应用提高了传感器的灵敏度和可靠性 。
集成化与微型化成为磁敏传感器的发展趋势,有助于降低成本、减小体积和重量。
磁敏传感器与其他传感器的集成,实现多参数测量,提高了测量精度和可靠性。
应用领域的拓展
磁敏传感器在智能制造、机器 人、航空航天、医疗等领域的 应用逐渐增多。
详细描述
磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器是一种基于磁场效应的传感器,具有可靠的工作性能,可以检测磁场的强度和方向。
在磁敏传感器中,磁场在磁环中旋转形成磁轴,当外部磁场的方向和磁轴一致时,则产生相应的信号。
典型结构
磁敏传感器的典型结构是由一个铁环及一个线圈组成,磁环上的线圈就是信号传感器,其作用是将受到影响的磁场转换为电信号,磁环用于捕捉外界磁场,其形状及大小对磁敏传感器的性能有较大影响,另外,磁敏传感器中一般采用蛇形线圈,以增大线圈的感应面积,提高传感器的灵敏度。
工作原理
当外部磁场作用于磁环上时,磁环上的线圈会因为磁感应而产生电动势,从而产生电流,将外部磁场信号转换为电信号,进而检测外部磁场的方向与强度。
该原理就是:利用磁环和线圈对外部磁场做变化,使磁场导致线圈感应出电动势,从而得到需要的信号。
应用
磁敏传感器应用十分广泛,它可以用于检测轴承内的磁场,从而实现动态寿命监测;可以用于检测磁铁吸附位置,进行形状及方位的测量;可以用于安全控制,当有外部磁场作用于磁敏传感器时,该传感器以特定频率发出报警信号;可以用于智能控制,通过磁敏传感器可以检测到物体的位置及方位,从而实现自动控制或仿生控制等等。
- 1 -。
磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器(Magnetic Sensors)是物理传感器中最为重要的一种,用来检测某一事物的磁场强度。
它可以测量磁场相对于一个特定标准的强度,以及磁场的方向。
磁敏传感器可以用来检测永久磁体、自发磁体、非永久磁体以及其它磁性物质的磁场。
磁敏传感器的工作原理是:当检测到的磁场变化时,传感器的电容变化,或者变化传感器内部的负载电阻,从而改变传感器电路的输出电流,从而获得磁场的数据。
磁敏传感器可以分为三类:磁敏电阻传感器、磁敏半导体传感器和磁敏磁芯传感器。
它们的工作原理都大体相同,只是在实现技术上有所不同。
磁敏电阻传感器是由一个特殊的磁敏半导体电阻片和一个可变
电阻器构成的电路。
当检测到的磁场变化时,电路中的磁敏电阻片会产生变化,而可变电阻器则会做出准确的调节,从而提供准确的测量数据。
磁敏半导体传感器是由磁敏半导体构成的一个电路。
当检测到的磁场变化时,磁敏半导体会产生变化,从而改变电路的输出电压,从而获得磁场的准确数据。
磁敏磁芯传感器是由一个特殊的磁芯和一个电阻构成的电路。
当检测到的磁场变化时,磁芯会对电阻产生感应,通过测量电阻对外界磁场的反应来获得磁场的数据。
磁敏传感器的应用非常广泛,目前已经应用在工业自动化、家用
电器、航空、航天等方面。
未来,磁敏传感器在更多领域得到应用,并可以为社会带来更多的好处。
磁敏传感器原理
磁敏传感器是一种利用磁场变化来检测和测量物理量的器件。
其原理基于霍尔效应,即当电流垂直于外磁场通过导体时,在导体垂直于磁场和电流的方向上会产生电势差,这个电势差被称为霍尔电势差。
由于磁敏传感器内部装有霍尔元件,当有磁场及其方向变化时,霍尔元件能够检测到磁场强度和方向的变化,并将其转换为电信号输出。
磁敏传感器具有高灵敏度、高分辨率和高可靠性的特点,因此在许多领域都有广泛的应用。
例如,在无刷直流电机中,磁敏传感器可以用来检测转子位置和转速,从而实现电机的无接触控制。
此外,磁敏传感器还被广泛应用于测量电流、磁场、位置、速度和角度等物理量,并且在自动化控制、汽车电子、智能家居等领域也有着广泛的应用。
随着科技的不断发展,磁敏传感器的性能和可靠性也在不断提高。
目前,磁敏传感器已经从实验室走向了市场,成为一种重要的传感器类型。
未来,随着新材料、新工艺和新技术的应用,磁敏传感器的性能将会得到进一步提升,应用领域也将进一步扩大。
磁敏传感器(讲)课件
磁通门技术
总结词
磁通门技术利用铁磁材料的磁化强度随磁场强度变化的特点 来检测磁场。
详细描述
铁磁材料在磁场中被磁化后,其磁化强度随磁场强度的变化 而变化。通过测量铁磁材料的磁化强度,可以间接地检测磁 场。磁通门技术具有较高的灵敏度和线性度,因此在高精度 磁场测量中得到广泛应用。
隧道效应
总结词
隧道效应是利用电子在两个金属间通过隧道穿透的原理来检测磁场。
磁敏传感器容易受到噪声干扰 ,如电磁干扰、电源波动等, 影响测量精度。
成本较高
相对于一些其他传感器,磁敏 传感器的制造成本较高。
稳定性不足
磁敏传感器的稳定性有待提高 ,需要定期校准和维护。
改进方向
温度补偿技术
研究和发展温度补偿技术,以减小温 度对磁敏传感器的影响。
噪声抑制技术
采用先进的信号处理技术,抑制噪声 干扰,提高测量精度。
常工作。
汽车电子
用于检测车辆的磁场变化,如 发动机点火、车轮转速等,提 高车辆的安全性和稳定性。
环保监测
用于检测环境中的磁场变化, 如气体泄漏、地下水污染等,
保障环境和人类健康。
02
磁敏传感器的原理
霍尔效应
总结词
霍尔效应是磁敏传感器中最常用的一种效应,利用半导体材料在磁场中导电时 产生的电动势来检测磁场。
通过检测磁性材料的磁性特征,可以 判断材料的种类、磁性状态等,用于 材料科学、冶金等领域。
电流测量
直流电流检测
磁敏传感器可以检测直流电流的大小,常用于电源管理、电机控制等领域。
交流电流检测
通过检测交流电产生的磁场,磁敏传感器能够测量交流电流的幅值和频率,广泛应用于电力系统和自 动化控制领域。
位置和角度检测
磁敏式传感器资料
其他应用场景
电机电流监测
在电机控制系统中,磁敏式传感器可以监测电机的电流大小和变化,用于过流保护和电 机控制。
磁场异常检测
在某些特定应用中,如磁共振成像、核磁共振等,磁敏式传感器可以用于检测磁场异常 和信号变化。
04
磁敏式传感器的技术参数
灵敏度与分辨率
灵敏度
磁敏式传感器对磁场变化的响应程度,通常以输出电压或电流表示。高灵敏度传感器能够检测微弱的磁场变化, 提高测量精度。
根据实际测量需求选择合适的 测量范围,确保传感器能够准
确检测目标磁场。
灵敏度
选择高灵敏度的传感器,能够 更好地检测微弱磁场变化,提 高测量精度。
线性度
选择线性度好的传感器,能够 减小测量误差,提高测量准确 性。
稳定性
选择稳定性好的传感器,能够 保证长期使用过程中性能稳定
,降低误差。
使用方法与步骤
安装
02
磁敏式传感器概述
定义与工作原理
定义
磁敏式传感器是一种能够检测磁场变 化的传感器,通过将磁场变化转换成 电信号,实现对磁场参数的测量。
工作原理
磁敏式传感器利用磁敏元件(如霍尔 元件、磁阻元件等)感知磁场的变化 ,通过内部的电路将磁场信号转换成 电信号输出。
分类与应用
分类
磁敏式传感器根据工作原理和结构可分为霍尔元件、磁阻元件、磁通门等类型。
维护与保养建议
定期检查
定期检查传感器的外观、连接线和固定情况,确保传感器正常工作。
清洁
定期清洁传感器表面,保持清洁状态,避免灰尘和污垢影响测量精度。
更换元件
如发现传感器内部元件损坏或老化,应及时更换,保证传感器性能稳 定。
存储
在长期不使用时,应将传感器存放在干燥、避光的地方,避免潮湿、 高温和腐蚀等环境因素影响传感器的性能和使用寿命。
磁敏式传感器的工作原理
磁敏式传感器的工作原理嗨,朋友们!今天咱们来聊一聊特别神奇的磁敏式传感器。
这东西啊,就像是一个超级敏锐的小侦探,对磁场的变化那可是明察秋毫呢。
先来说说磁敏式传感器到底是个啥吧。
你可以把它想象成一个有特殊能力的小玩意儿,它的主要任务就是感知周围磁场的各种变化。
那它为啥能有这个本事呢?这就和它内部的构造以及物理原理分不开啦。
我有个朋友小李,他是个电子设备迷。
有一次我们俩聊到磁敏式传感器的时候,他眼睛都放光了。
他跟我说:“你知道吗?磁敏式传感器就像是磁场世界里的耳朵,能听到磁场发出的那些‘悄悄话’。
”我当时就被他这个比喻给逗乐了,不过仔细想想,还真是这么回事呢。
磁敏式传感器有好几种类型,像霍尔传感器就是比较常见的一种。
这霍尔传感器的工作原理就像是一场巧妙的电荷舞会。
在一块半导体薄片的两端通上电流,这时候如果在垂直于电流的方向加上磁场,嘿,神奇的事情就发生了。
那些电荷就像是一群听话的小士兵,在磁场这个指挥官的影响下,它们开始往一边偏移了。
这样一来,在半导体薄片的另外两边就会产生一个电压差。
这个电压差可不得了,它就像是一个信号旗,告诉我们周围磁场的情况呢。
我当时就问小李:“这电荷怎么就这么听话,说偏移就偏移啊?”小李笑着说:“这就是物理的魅力呀,就好像风一吹,树叶就跟着动一样自然。
”还有磁阻传感器,这东西的工作原理也很有趣。
你可以把磁阻传感器里面的电阻材料想象成一条布满了小障碍的道路。
正常情况下,电流在这个材料里流动就像汽车在路上行驶,还算顺畅。
可是一旦有磁场靠近,就好像突然在路上设置了一些无形的路障,电流流动就变得困难起来了,电阻就增大了。
反过来,如果磁场的方向或者强度改变了,这些“路障”的布局也会跟着改变,电阻也就跟着变了。
这多神奇啊!我跟小李讨论这个的时候,我们都感叹大自然的规律真是妙不可言。
咱们再说说这些磁敏式传感器在实际生活中的应用吧。
就拿汽车来说,现在很多汽车里都安装了磁敏式传感器。
比如说在汽车的速度检测系统里,通过磁敏式传感器来检测车轮转动时磁场的变化,从而准确地算出汽车的速度。
磁敏传感器
在磁敏传感器中,霍尔元件及霍尔传感器的生产量是最大的。它主要用于无 刷直流电机(霍尔电机)中,这种电机用于磁带录音机、录像机、XY 记录仪、 打印机、电唱机及仪器中的通风风扇等。另外,霍尔元件及霍尔传感器还用于测 转速、流量、流速及利用它制成高斯计、电流计、功率计等仪器。
额定控制电流 Ic 为使霍尔元件在空气中产生 10℃温升的控制电流。Ic 大小 与霍尔芯片的尺寸有关,尺寸越小,Ic 越小。一般为几 mA—几十 mA(尺寸大 的可达数百 mA)。
不等位电势(也称为非平衡电压或残留电压)Uo 和不等位电阻 Ro 霍尔元件在额定控制电流作用下,不加外磁场时,其霍尔电势电极间的电 势为不等位电势。它主要与两个电极不在同一个等位面上及其材料电阻率不均等 因素有关。可以用输出的电压表示,或用空载霍尔电压 UH 的百分数表示,一般 Uo 不大于 10mV 或±20%UH。 不等位电势与额定控制电流之比称为不等位电阻。Uo 及 Ro 越小越好。 灵敏度 kH 灵敏度是在单位磁感应强度下,通以单位控制电流所产生的霍尔电势。 寄生直流电势 UOD 在不加外磁场时,交流控制电流通过霍尔元件而在霍尔电势极间产生的直流 电势为 UOD。它主要是由电极与基片之间的非完全欧姆接触所产生的整流效应 造成的。 霍尔电势温度系数 α α 为温度每变化 1℃霍尔电势傍晚的百分率。这一参数对测量仪器十分重要。 若仪器要求精度高时,要选择 α 值小的元件,必要时还要家温度补偿电路。 电阻温度系数 β β 为温度每变化 1℃霍尔元件材料的电阻变化率(用百分比表示)。 (3)温度补偿及不等位电势补偿 温度补偿
第9章 磁敏式传感器 36页PPT
霍尔元件在测量电路中一般有两种表示方法。 霍尔元件的基本电路
霍尔元件的转换效率较低,实际应用中,可将几个 霍尔元件的输出串联或采用运算放大器放大,以获 得较大的UH。
霍尔元件的连接电路
2、霍尔元件的材料及主要特性参数
霍尔元件多采用N型半导体材料(高的电阻率和载 流子的迁移率)。目前最常用的霍尔元件材料有锗 (Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)等半 导体材料。
IcIR P0(1R P 0T (1 ) R i0 T (1 ) T)
当温度变化ΔT时,为使霍尔电势不变则必须有如下关系:
U H 0K H 0Ic0BK HIcBU H
K H 0(1 T)BR IP0(1R P 0T (1 ) R i0T (1 ) T)
函数,所以同时要考虑温度补偿问题 。
温度误差及其补偿
常用的补偿电路包括:恒流源激励并联分流电阻 补偿电路;恒压源激励输入回路串联电阻补偿电 路;电桥补偿电路;以及采用正、负不同温度系 数的电阻或合理选取负载电阻的阻值补偿电路等 等。
ቤተ መጻሕፍቲ ባይዱ
假选设用初的始补温偿度电为阻TR0P时0,有被如分下流参掉数的:电霍流尔为元Ip件0,的激输励入电电流阻Ic为0,R霍i0, 尔元件的灵敏度KH0。
主要特性:
磁电特性:电阻的增量与磁场的平方成正比;与 磁场的正负无关;
温度特性:温度系数影响大;
频率特性:工作频率范围大;磁感应的范围比霍 尔元件大。
3、磁敏电阻的应用
磁头;接近开关和无触点开关;也可用于位 移、力、加速度等参数的测量。
R1、R2
磁敏电阻位移传感器
9.3 磁敏二极管和磁敏三极管
《磁敏传感器介绍》课件
磁敏传感器在工厂自动化、机器人技术和生 产线控制中起到关键作用。
2 汽车行业
用于车辆导航、制动系统、空调系统和倒车 雷达等汽车应用中。
3 医疗设备
4 消费电子
应用于MRI机器、心脏起搏器和血液测量等医 疗设备中。
用于智能手机、平板电脑和游戏手柄等消费 电子产品中。
磁敏传感器的性能评价指标
1 灵敏度
磁敏传感器的分类和类型
磁电传感器
利用磁电效应将磁场转换为电信号,如霍尔传感器和磁电电流传感器。
磁阻传感器
根据磁场的磁阻变化来测量磁场强度,如磁阻式位置传感器和磁阻角度传感器。
磁感应传感器
利用磁感应效应测量磁场强度和方向,如磁感应式位置传感器和磁感应式角度传感器。
磁敏传感器的应用领域
1 工业自动化
磁敏传感器介绍
欢迎来到《磁敏传感器介绍》PPT课件。本课程将为您详细介绍磁敏传感器的 定义、原理和应用领域,以及评价指标和创新技术。让我们一起探索这个引 人入胜的领域!
磁敏传感器的定义和原理
磁敏传感器是一种能够检测和测量磁场强度和磁场变化的设备。它们基于磁敏效应工作,如霍尔效应、磁电效 应和磁致伸缩效应。这些传感器在广泛的应用中发挥着关键的作用。
3
低功耗
优化电路设计和材料选择以降低功耗。
磁敏传感器的创新技术
量子磁敏传感器
利用量子效应实现更高灵敏度和 更低功耗的磁敏传感器。
人工智能应用
结合人工智能算法分析传感器数 据,提高复杂环境下的性能。
物联网集成
将磁敏传感器与物联网技术相结 合,实现智能化和远程监测。
总结和展望
通过本课程,我们了解了磁敏传感器的定义、原理、分类、应用领域、性能 评价指标以及创新技术。未来,随着技术的不断发展,磁敏传感器将在更多 领域发挥关键作用,带来更多惊喜和突破。
磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器的工作原理
磁敏传感器是一种特殊的传感器,它可以通过受外界磁场影响而发出信号,从而判断并处理外界物理信息。
它因其具有稳定、无损耗、可靠性高及抗干扰能力强而广泛应用于各种机电设备中。
磁敏传感器的工作原理主要分为三种:
一、磁复用原理:当外界磁场发生变化时,传感器内固定的磁体原子会出现相应的微小运动,这一运动由传感器转换器转换为电讯号,最终表现为改变的输出信号。
二、磁桥原理:此类传感器具有极高的精度,它利用磁场引起抵消力对横桥相对应的角度变化,探测磁场的变化,然后通过放大器放大此变化,最后将变化转换成电流。
三、液体磁力数字原理:磁感应式旋转编码器利用光电头和聚合物液体磁力计角度拆分可以达到高精度,因为液体在外界磁场的影响下会出现微小变化,可以将其转换为电讯号,从而实现方位角度的精确检测。
- 1 -。
磁敏式传感器 ppt课件
磁敏式传感器
1
主要内容
7.1 磁电感应式传感器 7.2 霍尔式传感器
2
3
7.1 磁电感应式传感器
磁电感应式传感器又称感应式或电动式传感器, 是利用电磁 感应原理将被测量(如振动、位移、转速等)转换成电信号的一种 传感器
它不需要辅助电源, 就能把被测对象的机械量转换成易于测量 的电信号,是一种有源传感器
7
变磁通式磁电传感器(用于角速度测量)
43 2 1 NS
31 7
A 6
A
5
5
6
(a)
(b)
主要靠改变磁路的磁通大小进行测量,即改变磁路的磁阻
8
图(a)为开磁路变磁通式:线圈、磁铁静止不动, 测量 齿轮安装在被测旋转体上,随被测体一起转动。每转动一个齿, 齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次, 线圈中 产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的 乘积。
传感器线圈产生感应电动势,接上负载后,线圈中有电流流过 而发热。
12
测量误差
当传感器的工作温度发生变化或受到外 界磁场干扰、受到机械振动或冲击时, 其灵敏度将发生变化,从而产生测量误 差,其相对误差为:
dSI dBdLdR
SI B L R
SI
I0 v
NBL RRf
即其测量误差来源于B、L、R三个方面
10
7.1.2
当测量电路接入磁电传感器电路时,磁电传感器的输出电
流Io为:
I0
E RRf
NBLv RRf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
I0
传E
感
器R
指示器
Rf
传感器的电流灵敏度为
磁敏式传感器
13
非线性误差 (B旳影响)
主要原因:当磁电式传感器在进行
v
测量时,传感器线圈会有电流流过,
N
S
这时线圈会产生一定旳交变磁通,
此交变磁通会叠加在永久磁铁产生
旳传感器工作磁通上,造成气隙磁
通变化。
这种影响分为两种情况:附加电场 与工作电场方向相同(敏捷度增 大),或反之。
14
温度误差 (L和R旳影响)
当振动频率远不小于传感器固有频率时,传感器旳敏捷度接近为 一种常数,它基本上不随频率变化,即在这一频率范围内,传感 器旳输出电压与振动速度成正比关系,这一频段就是传感器旳理 想工作频段
在振动频率更高(过大)旳情况下,线圈阻抗增长,传感器敏捷 度会伴随振动频率旳增长反而下降
16
7.1.2 测量电路
U H K H IB KZ
32
转速旳测量(利用霍尔元件旳开关特征)
转速为: r N n N r/s
t tn
或: 2 f 2 r 2 N rad/s
tn
33
1k
a
100k
N S
c
d 4.7k
H
R
-
f
A
输出波形
Eb
12V
M
b 4.7k
+ A741 Uo
1k
100k
采用霍尔元件旳转速测量电路:磁转子M旋转带动磁极旋转,霍尔元 件H感受到磁场强度发生变化,产生旳霍尔电势经差动运算放大器A放大 后输出矩形波,输出信号可反应转子旳转速。
角位移:e NBSw
假如导体旳运动方向与磁场方向成θ角呢?
5
恒磁通式传感器
磁路系统产生恒定旳 直流磁场,磁路中旳 工作气隙固定不变, 所以气隙中磁通是恒 定不变旳。
磁电磁敏式传感器课件
多功能化与智能化发展
总结词
磁电磁敏式传感器正朝着多功能化和智能化方向发展。
详细描述
多功能化是指传感器能够同时检测多种物理量,如磁场、温度、压力等。这可以通过在传感器结构中集成多个敏 感元件和信号处理电路来实现。智能化则是指传感器具备自校准、自诊断和自适应能力,能够根据环境变化进行 自动调整,提高测量精度和可靠性。
温度特性
温度稳定性
磁电磁敏式传感器在温度变化时,其 输出值的变化程度较小,具有较好的 温度稳定性。
温度补偿
为了减小温度对传感器输出的影响, 通常需要进行温度补偿,如采用热敏 电阻等元件实现温度补偿。
03
磁电磁敏式传感器的设计与 制造
设计原则
精度与灵敏度
稳定性与可靠性
设计时应考虑传感器精度和灵敏度,以确 保其能够准确、快速地响应磁场变化。
05
磁电磁敏式传感器的性能指 标与评价
灵敏度与分辨率
灵敏度
衡量传感器输出变化量与输入变化量之比, 是传感器的一项重要性能指标。磁电磁敏式 传感器的灵敏度高,能够检测微弱的磁场变 化。
分辨率
传感器能够分辨的最小输入变化量,反映传 感器的测量精度。磁电磁敏式传感器的分辨
率较高,能够准确测量磁场微小变化。
详细描述
磁电磁敏式传感器能够测量磁场的大小和方向,通过测量地球磁场或人工磁场,可以用于地质勘查、 矿产资源勘探等领域。在航空航天领域,磁力计可以用于检测和导航,而在电机控制中,它可以检测 电机的磁场强度和位置,实现精准控制。
电流测量
总结词
磁电磁敏式传感器能够非接触地测量电流,具有高精度、高灵敏度和宽测量范围的特点 。
工作原理
通过测量磁场的变化,将磁场的 变化转换为电信号,从而实现对 物理量的检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RH
1 ne 1 RH pe
RH 被定义为霍尔传感器的霍尔系数,霍尔系数由材料性质决定。 它决定霍尔电势的强弱。 (2)灵敏度: 设
RH KH d
IB U H RH d
则 KH 既为霍尔元件的灵敏度
9
UH=KH IB
UH KH IB
霍尔元件的灵敏度就是指在单位磁感应强度和单位控制电流作用时, 所能输出的霍尔电势的大小。
UH =KHIBcos
6
2. 工作原理
霍尔效应是物质中的运动电荷受磁场中洛仑兹(Lorentz)力作用而产生 的一种特性。
霍尔元件(设为N 型半导体)臵于磁场B中,当通以电流I 时,运动电荷 (载流子电子)受磁场中洛仑兹力fL 的作用,向垂直于B 和电流I的方向偏 移,其方向符合右手螺旋定律,即运动电荷(电子)有向某一端积聚的现 象,使霍尔元件一端面产生负电荷积聚,另一端面则为正电荷积聚。由于 电荷聚积,产生静电场,该静电场对运动电荷(电子)的作用力fE 与洛仑兹 力fL方向相反,阻止其偏转,当二力相等时,电荷积累达到动态平衡,此时
磁场强度。由于 UGN3501M 的灵敏度为
14mV / mT ,则在 0~50A 电流范围内, 其输出电压变化为0~4.2V。
22
霍尔钳形电流表(交直流两用)
豁口
压舌
霍尔式电流谐波分析仪
23
3. 霍尔高斯计(特斯拉计)
磁铁
霍尔元件
在磁场强度为0.1T时,UGN3501M 的典型输出电压为1400mV,因此可以 制成0.1T的高斯计,如图所示。电源电 压为8~16V。在5、6脚接一个 20的调 零电位器,在1、8脚接一可调灵敏度的10k电位器及内阻常数最小 为10k/V的电压表。若在5、 6两脚上各接一只47电阻后,再接 20电位器,其线性范围可达0.3T。
过霍尔元件,从而产 生与电流成正比的霍
线性霍尔IC
尔电压。
I→B→UH
21
下面以 UGN3501M 霍尔传感器为例,
阐明其测量电流的原理。
标准软磁材料圆环中心直径为40mm, 截面积为 4×4mm2 (方形),圆环上有
一缺口,放入霍尔传感器,圆环上绕有
11 匝线,并通过检测电流。根据磁路理 论,可以算出电流为50A时,可产生0.3T
UH=KH IB
基本电路
ห้องสมุดไป่ตู้
由于霍尔元件必须在磁场与控制电流作用下,才会产生霍尔电势
UH ,所以在测量中,可以把 I 和 B 的乘积,或者 I ,或者 B 作为 输入信号,则霍尔元件的输出电势分别正比于 I B 或 I 或 B 。
11
2. 霍尔元件的驱动方式
霍尔元件的控制电流可以采用恒流驱动或恒压驱动。
磁敏式传感器是利用半导体中的自由电子或空穴随磁场改变运动方向这 一特性而制成的一种传感器。分为体型和结型两大类。
体型:霍尔传感器(InSb,InAs,Ge,Si,GaAs)和磁敏电阻(InSb,InAs); 结型:磁敏二极管(Ge,Si)、磁敏三极管(Si)。 9.1 霍尔传感器 9.2 磁敏电阻 9.3 结型磁敏管
当霍尔元件作开关使用时,要选择灵敏度高的霍尔器件。
14
三、集成霍尔器件
将霍尔元件及其放大电路、温度补偿电 路和稳压电源等集成在一个芯片上构成独立 器件 ——集成霍尔器件(也称集成霍尔传感 器) 。 不仅尺寸紧凑便于使用,而且有利于减 小误差,改善稳定性。 根据功能的不同,集成霍尔器件分为霍 尔线性集成器件和霍尔开关集成器件两类。 尽管硅的载流子浓度较小,制作霍尔元件时灵敏度较低,但是由 于硅集成电路工艺非常成熟,所以仍把硅材料作为集成霍尔传感器的 主要材料。
26
霍尔式接近开关用于限位作用
在右图中,当磁铁随运动部件移动到 距霍尔接近开关几毫米时,霍尔IC的输出 由高电平变为低电平,经驱动电路使继电 器吸合或释放,控制运动部件停止移动, 起到限位的作用。
霍尔式接近开关用于转速测量
f n 60 ( r / min) 4
软铁分流翼片
开关型霍尔IC
27
5. 霍尔转速传感器
24
4. 霍尔计数装置(接近开关)
UGN3501T具有较高的灵敏度,能感受到很小的磁场变化,因 而可以检测铁磁物质的有无,利用这一特性可以制成计数装臵。
从图中还可以看出,霍尔元件也是一种接近开关。
25
霍尔式接近开关 当磁铁的有效磁极接近、并 达到动作距离时,霍尔式接近开 关动作。霍尔接近开关一般还配 一块钕铁硼磁铁(永磁)。 用开 关型霍尔IC也能完成接近开关的 功能,但是它只能用于铁磁材料 的检测,并且还需要建立一个较 强的闭合磁场。
由于材料电阻率与载流子浓度和其迁移率 有关,即 1 1 或 ne pe RH 则 ,于是得到 RH=。
要想霍尔电势强,材料的电阻率必须要高,且迁移率也要大。虽然金属 导体的载流子迁移率很大,但其电阻率低;绝缘体电阻率很高,但其载流子 迁移率低。因此,只有半导体材料为最佳的霍尔传感器材料。
1.位移测量 3.霍尔高斯计 5.霍尔转速传感器 7.霍尔电机 2.霍尔电流传感器 4.霍尔计数装置(接近开关) 6.霍尔开关电子点火器 8.液位控制
18
1.位移测量
霍尔位移传感器可制成两种结构。在梯度磁 场中放臵一个霍尔元件。当控制电流 I 恒定不变时, 霍尔电势UH 与磁感应强度成正比;若磁场在一定 范围内沿x方向的变化梯度 dB / dx 为一常数,则当 霍尔元件沿 x 方向移动时,霍尔电势变化为
1
9.1 霍尔传感器
霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。
1879 年美国物理学家霍尔( E.H.Hall )首先在金属材料中发 现了霍尔效应, 但由于金属材料的霍尔效应太弱而没有得到应用。 随着半导体技术的发展, 开始用半导体材料制成霍尔元件, 由于它 的霍尔效应显著而得到应用和发展。
在被测转速的转轴 上安装一个齿盘,也可 选取机械系统中的一个 齿轮。
(a)
(b)
13
4. 霍尔电势的输出电路
霍尔元件是一种四端器件,本身不带放大器。霍尔电势一般在毫伏 量级,在实际使用时必须加差分放大器。霍尔元件大体分为线性测量和 开关状态两种使用方式,因此,输出电路有两种结构。
(a)线性应用
(b)开关应用
当霍尔元件作线性测量时,最好选用灵敏度低一点、不等位电势小、 稳定性和线性度优良的霍尔元件。
优点:灵敏度高、线性度好、稳定性高、体积小、重量轻、 寿命长、安装方便、功耗小、频率高(可达1MHz)、耐高温、 耐震动、不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 已广泛应用于非电量测量、自动控制、计算机装臵和现代军 事技术等各个领域。
2
按功能可将它们分为:霍尔线性器件和霍尔开关器件 。前者 输出模拟量,后者输出数字量。 霍尔线性器件的精度高、线性度好; 霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回 跳、位臵重复精度高(可达m级)。 采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可 达-55℃~150℃。
一、霍尔效应和工作原理
二、霍尔元件的应用电路
三、集成霍尔器件 四、霍尔传感器的应用
3
一、霍尔效应和工作原理
1. 霍尔效应
霍尔效应原理图
图形符号
一块半导体薄片,其长度为l ,宽度为b ,厚度为d ,当它被臵 于磁感应强度为B的磁场中,如果在它相对的两边通以控制电流I,且 磁场方向与电流方向正交,则在半导体另外两边将产生一个大小与控 制电流I 和磁感应强度B 乘积成正比的电势UH,这一现象称为霍尔效 应,该电势称为霍尔电势,半导体薄片就是霍尔元件。
(a)恒流驱动
(b)恒压驱动
12
3. 霍尔元件的连接方式
除了霍尔元件基本电路形式之外,如果为了获得较大的霍尔输出电 势,可以采用几片叠加的连接方式。 图(a)为直流供电情况。控制电流端并联,由W1、W2调节两个元 件的输出霍尔电势,A、B为输出端,则它的输出电势为单片的两倍。 图(b)为交流供电情况。控制电流端串联,各元件输出端接输出 变压器 B 的初级绕组,变压器的次级便有霍尔电势信号叠加值输出。
第9章 磁敏传感器
磁电式传感器是通过磁电作用将被测非电量转换成电信号的一种传感器。 主要有磁电感应式传感器、磁栅式传感器和磁敏式传感器。 磁电感应式传感器是利用导体和磁场发生相对运动产生感应电势,该类 传感器只适用于动态测量,可直接测量振动物件的速度或旋转体的角速度。 磁栅式传感器是利用磁头和磁栅相对移动,从而在磁头上感应出电信号, 此类传感器属于数字式传感器的一种。
霍尔电势除了与材料的载流子迁移率和电阻率有关,同时还与霍尔元件 的几何尺寸有关。一般要求霍尔元件灵敏度越大越好,霍尔元件的厚度 d 与 KH 成反比,因此,霍尔元件的厚度越小其灵敏度越高(一般0.1mm)。
10
二、霍尔元件的应用电路
1. 基本测量电路
控制电流 I 由电源 E 供给,电位器 W 调节控制电流 I 的大小。霍尔元件输 出接负载电阻 RL,RL 可以是放大器的 输入电阻或测量仪表的内阻。
15
1. 霍尔线性集成器件
霍尔线性集成器件的输出电压与外加磁场强度在一定范围内呈线 性关系,有单端输出和双端输出(差动输出)两种电路。其内部结构 如图所示。
16
2. 霍尔开关集成器件
开关型集成霍尔传感器是把霍尔器件的电压经过一定的阈值甄别处 理和放大,而输出一个高电平或低电平的数字信号。 由霍尔元件、放大器、施密特整形电路和集电极开路输出等部分组 成。 BOP为工作点“开”的磁场强度, BRP为释放点“关”的磁场强度。 锁定型:当磁场强度超过工作点开时,其输出导通;而在磁场撤销 后,其输出状态保持不变,必须施加反向磁场并使之超过释放点,才能 使其关闭。
19
2. 霍尔电流传感器(霍尔传感器测电流)
霍尔传感器广泛用于测量电流,从而可以制成电流过载检测器 或过载保护装臵;在电机控制驱动中,作为电流反馈元件,构成电 流反馈回路。