人教版湖南2015届初中毕业学业考试数学综合检测试卷(2套)及答案
2015年度初三毕业及统一练习数学试卷附答案
2015年度初三毕业及统一练习数学试卷2015.5 学校姓名准考证号考生须知1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是A.点A与点C B.点A与点DC.点B与点C D.点B与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为A.70.1310⨯B.71.310⨯C.61.310⨯D.51310⨯3. 下面平面图形中能围成三棱柱的是A B C D4.如图,AB∥CD,AB与EC交于点F,如果EA EF=,110C∠=︒,那么E∠等于A.30︒B.40︒C.70︒D.110︒5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是A.23xx-⎧⎨⎩≥>B.23xx-⎧⎨⎩<≤C.23xx-⎧⎨⎩<≥D.23xx-⎧⎨⎩>≤6. 关于x的一元二次方程2210mx x--=有两个实数根,那么字母m的取值范围是A.1m≥-B.1m>-C.10m m≠≥-且D.10m m≠>-且7. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是DCBA021-2-1EACBDF频率1331224B .袋子中有1个红球和2个黄球,它们只有颜色上的区别, 从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 8. 代数式245x x -+的最小值是A .-1B .1C .2D .5 9. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是 A .240立方米B .236立方米C .220立方米D .200立方米10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5 6 7 8 人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时. 13.如图,A ,B ,C 三点都在⊙O 上,如果∠AOB =80°,那么∠ACB = °.14.请写出一个图象经过点(11-,),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式:.x (立方米)y (元)14609002601800NM BAOA CB15.如图,O 为跷跷板AB 的中点,支柱OC 与地面MN 垂直,垂足为点C ,且OC =50cm ,当跷跷板的一端B 着地时,另一端A 离地面的高度为 cm.16.右图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口 A ,B ,C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段 AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则123,,x x x 的大小关系是 .(用“>”、“<”或“=”连接)三、解答题(本题共30分,每小题5分)17.已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF . 求证:∠B =∠E .18. 计算:0-112sin60(3.14π)12()2+--+.19.解分式方程: 112x x x -=-.20.如果21m m -=,求代数式21)(1)(1)2015m m m -++-+(的值.21.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数ky x=的图象的一个交点为A (2,m ).(1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标. xAyOBCFDECBA555035302030CB Ax 2x 1x 322.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.四、解答题(本题共20分,每小题5分)23.如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60 ,菱形ABCD的面积为38,求DF的长.24.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:2010~2014年某市地铁运营的日均客流量统计表2014年某市居民乘地铁出行距离情况统计图根据以上信息解答下列问题:F EDCBA(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m 的值;(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为____________万人次;(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为____________万元.25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C 作⊙O 的切线,交AB 的延长线于点P ,联结PD .(1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长.26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照图 1a b c cb ac bac baGO PABCD E F上述证明勾股定理的方法,完成下面的填空:由图2可以得到 , 整理,得 , 所以 .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)图2图1图2图34444123123321213xOy29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为 ; (2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是 ; (3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.4444123123321213xO y参考答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BCA B DC DB CA二、填空题(本题共18分,每小题3分)题号 11 12 13 1415 16答案22(1)m x -7401y x=- , 答案不唯一100312x x x >>三、解答题(本题共30分,每小题5分) 17.证明:∵BF =CE ,∴BC =EF .……1分 ∵AC ∥DF ,∴∠ACB =∠DFE .……2分 ∵AC =DF ,∴ △ACB ≌△DFE .……4分∴∠B =∠E .……5分18.解:原式=3212322⨯+-+…4分 =33-....5分19.解:去分母得:2(2) 2.x x x x --=-…1分222 2.x x x x -+=-……2分2.x =-…….3分经检验,2x =-是原方程的解.…….4分所以,原方程的解是 2.x =-…….5分20. 解:原式=222112015m m m -++-+…1分=2222015m m -+……2分 =22()2015m m -+…….3分∵21m m -=, ∴原式=2017. …….5分21.(1)一次函数122y x =+的图象经过点A (2,m ), ∴3m =.∴点A 的坐标为(2,3). ………1分反比例函数ky x=的图象经过点A (2,3), ∴6k =………2分∴反比例函数的表达式为6.y x=……3分(2)(3,2)(3,2).P P --,………………5分22. 解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程得:…1分4.2,30.4.x y x y =+=-⎧⎨⎩………3分 解得: 6.5,2.3.x y ==⎧⎨⎩ ………4分答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米. ………5分 23.(1)证明: ∵CE =CD ,CF =CB ,∴四边形DBEF 是平行四边形..…….1分 ∵四边形ABCD 是菱形, ∴CD =CB ..…….2分 ∴CE =CF ,∴BF =DE ,∴四边形DBEF 是矩形..…….3分23.(2)过点D 作DG ⊥BC 于点G ,∴∠DGC =90°. ∵四边形ABCD 是菱形,∠A =60︒,∴∠BCD =60°. 在Rt △CDG 中,cos ∠BCD =12CG CD =, ∴设CG =x ,则CD =BC =2x ,DG =3x . ∵菱形ABCD 的面积为38,∴83BC DG ⋅=.∴2383x x ⋅=,得2x =±(舍负),∴DG =23..……. 4分 ∵CF =CD ,∠BCD =60°,∴∠DFC =30°. ∴DF =2DG =43..…….5分24.(1)15;…1分(2)483;…2分(3)1593.9.…2分25.(1)PD 与⊙O 相切于点D ..……. 1分 证明:联结OD∵在⊙O 中,OD OC =,AB CD ⊥于点E , ∴12∠=∠. 又∵OP OP =,∴OCP ∆≌ODP ∆. ∴OCP ODP ∠=∠.又∵PC 切⊙O 于点C ,OC 为⊙O 半径, ∴OC PC ⊥..……. 2分∴090OCP ∠=.∴090ODP ∠=.∴OD PD ⊥于点D . ∴PD 与⊙O 相切于点D ..……. 3分 (2)作FM AB ⊥于点M .∵090OCP ∠=,CE OP ⊥于点E ,∴03490∠+∠=,0490APC ∠+∠=.∴3APC ∠=∠.∵4cos 5APC ∠=,∴Rt △OCE 中,4cos 35CE OC =∠=.∵10CF =,∴152OF OC CF ===.∴4CE =,3OE =..……. 4分 又∵FM AB ⊥,AB CD ⊥,∴090FMO CEO ∠=∠=.ABCDEFG M3421FE D CBAPO G5BCAxO yD x =1y =2x -2y =2x 2-4x -2-13-2-4∵51∠=∠,OF OC =,∴OFM ∆≌OCE ∆.∴4FM CE ==,3OM OE ==. ∵在Rt △OCE 中,4cos 5PC OP APC =∠=,设4,5PC k OP k ==,∴3OC k =. ∴35k =,53k =.∴253OP =.∴163PE OP OE =-=,343PM OP OM =+=. 又∵090FMO GEP ∠=∠=,∴FM ∥GE .∴PGE ∆∽PFM ∆.∴GE PE FM PM =,即1633443GE=.∴3217GE =..……. 5分26.22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分 222a b c +=..……. 5分五、解答题27 . 解:(1)∵抛物线22y x mx n =++过点 A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 , ∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分所以40t -<≤..……. 7分28.(1)①作图.……. 1分ADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,设l 与,x y 轴的交点分别为,E F ,则1(,0)(0,1)2E F -,.∴52EF =..…….3分 ∵EOF MHE ∆∆∽∴MH ME OF EF =,即72152MH=.∴755MH =.∴点M 到直线21y x =+的距离为755..…….4分 ②135a =±..…….6分GF EBC(P )A DG F EC D A PBN MM 3—121H yOxEF y =2x +1(3)3b =-或374b =..…….8分。
2015年长沙市初中毕业生学业考试数学训练试卷(12)
2015年长沙市初中毕业生学业考试数学训练试卷(12)一.选择题(每题3分,共36分)1.下列运算准确是( ). A .632aa = B.()22323-=-⨯ C.21a a a= D.1882-= 2.如图,数轴上A B 、两点对应的实数分别是1和3,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( ).A.231-B.13+C.23+D.231+3.关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是( ).A.92k ≤B.92k <C. 92k ≥D. 92k > 4.如图,雷达探测器测得六个目标A B C D E F 、、、、、出现.按照规定 的目标表示方法,目标C F 、的位置表示为()()61205210.C F ,°、,°按照此方法在表示目标A B D E 、、、的位置时,其中表示不准确的是( ).A .()530A ,° B. ()290B ,° C. ()4240D ,° D. ()360E ,°第7题图5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可 获得20%,则这种电子产品的标价为( )A. 26元B. 27元C. 28元D. 29元6、若一元二次方程0632=++-m x x 的一个根为31=x ,则该方程的另一个根是( ) A 、12-=x B 、32-=x C 、52-=x D 、52=x7、随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人。
则这10位同学的年龄的中位数和平均数分别是(单位:岁)( ) A 、16和15 B 、16和15.5 C 、16和16 D 、15.5和15.5 8.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.9.已知函数21y x =与函数2132y x =-+的图象大致如图.若12y y <,则自变量x的取值范围是( ).A .322x -<< B. 322x x ><-或 C. 322x -<< D. 322x x <->或 10.如图3,四边形OABC 为菱形,点A B 、在以点O 为圆心的DE 上,若312OA =∠=∠,,则扇形ODE 的面积为( ) A.3π2 B. 2π C.5π2D. 3π 11.将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构成 一个正六边形,则这个正六边形的面积为( ) A.332cm 2 B.334cm 2 C.338cm 2 D.33cm 212.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推.若各种开本的矩形都相似,那么ABAD等于( ). A .0.618 B. 2C. 2D. 2二、填空题:(每题3分共24分)13.不等式642-<x x 的解集为 .14.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=________。
2015年湖南岳阳市初中毕业学业考试数学模拟试题和答案
2015年湖南岳阳市初中毕业学业考试数学模拟试题和答案.. 2015年岳阳市初中毕业学业考试数学模拟试题卷时量:90分钟满分:120分一、选择题(本大题8个小题,每小题3分,满分24分)1.下列计算错误的是()A. *****=0B. 9=C. 11()33-= D. 4216= 2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A .B .C .D .3.2015年岳阳元宵节灯展参观人数约为*****人,将这个数用科学记数法表示为4.710n ?,那么n 的值为()A .3B .4C .5D .64.一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是()A .三棱锥B .长方体C .球体D .三棱柱5.一组数据2,2,4,5,6的中位数是()A .2B .4C .5D .66.下列计算,正确的是()A .()*****x x =B .623a a a ÷=C .*****a a a ?=D .01303???= ???7.某次考试中,某班级的数学成绩统计图如下.下列说法错误..的是() A .得分在70~80分之间的人数最多 B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(≥60分)人数是26 8.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >2时,y 的值随x 的增大而增大.其中正确的结论有()A .1个B .2个C .3个D .4个.. 第7题图人数分数第8题图二、填空题(本大题8个小题,每小题4分,满分32分)9.|-2|=.10.分解因式:24x x -=.11.函数13y x =-中自变量x 的取值范围是.12.五边形的外角和为.13.如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,4AC cm =,8BD cm =,则这个菱形的面积是2cm .14.如图,四边形ABCD 是O 的内接四边形,∠DCE =60?,则∠BAD =______________.15,则圆锥的母线长是______________.第14题图16.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x+y ,x y );且规定P n (x ,y )=P 1(P n 1(x ,y ))(n 为大于1的整数).如P 1(1,2)=(3,1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,2).则P 2015(1,1)=______________.O D C BA 第13题图..三、解答题(本大题共8小题,满分64分,解答题应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:17-23÷(-2)×318. (本题满分6分)解不等式组211,48 1.x x x x -+??-+?19.(本题满分8分)先化简,再求值。
湖南省长沙市2015年初中毕业学业水平考试数学试题(附答案)
长沙市2015年初中毕业学业水平考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,为无理数的是()A.0.2 B.C.D.-5答案:C 【解析】本题考查无理数的概念,难度较小.根据无限不循环小数是无理数,得是无理数,故选C.2.下列运算中,正确的是()A.x3÷x=x4B.(x2)3=x6C.3x-2x=1 D.(a-b)2=a2-b2答案:B 【解析】本题考查整式的运算,难度较小.根据同底数幂相除,底数不变,指数相减,x3÷x=x3-1=x2,A错;根据幂的乘方,底数不变,指数相乘,(x2)3=x2³3=x6,B正确;3x-2x=(3-2)x=x,C错;根据完全平方公式知(a-b)2=a2-2ab+b2,D错,故选B.3.2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑.据统计,长沙地铁2号线每天承运力约为185000人次,则数据185000用科学记数法表示为()A.1.85³105B.1.85³104C.1.8³105D.18.5³104答案:A 【解析】本题考查科学记数法,难度较小.科学记数法是将一个数写成a³10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).185000=1.85³105,故选A.4.下列图形中,是轴对称图形,但不是中心对称图形的是()A B C D答案:B 【解析】本题考查轴对称图形与中心对称图形的概念,难度较小.轴对称图形沿对称轴折叠后可重合;中心对称图形绕对称中心旋转180度后与原图重合.选项A,C,D 既是轴对称图形,也是中心对称图形,故选B.5.下列命题中,为真命题的是()A.六边形的内角和为360度B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边答案:D 【解析】本题考查几何图形的基本性质,难度较小.六边形的内角和是(6-2)³180°=720°,A错;任意多边形的外角和都等于360°,与边数无关,B错;矩形的对角线相等,菱形的对角线互相垂直,C错;三角形任意两边的和大于第三边,D对,故选D.6.在数轴上表示不等式组的解集,正确的是()A B C D答案:A 【解析】本题考查解不等式组,难度较小.先分别解出不等式组里的每个不等式的解集,再求出它们的公共部分,即解不等式①得x>-2,解不等式②得x≤3,故不等式组的解集是-2<x≤3,其在数轴上的表示应为A,故选A.【易错分析】看数轴时要特别注意实心点和空心圈.7.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()A.平均数B.中位数C.众数D.方差答案:C 【解析】本题考查数据的分析应用,难度较小.根据众数的意义,众数是一组数据中出现次数最多的数据,对商家而言,理所当然关注鞋子尺码的众数,故选C.8.下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查答案:D 【解析】本题考查统计和概率的知识,难度较小.“打开电视机,正在播∠动物世界∴”这个事件可能发生,也可能不发生,它是随机事件,故A错误;“某种彩票的中奖”虽然概率很小,但它也是随机事件,买1000张,不一定中奖,故B错误;抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为二分之一,故C错误;“想了解长沙市所有城镇居民的人均年收入水平”,调查数据大、范围广,宜采用抽样调查,故D正确.综上,故选D.9.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:C 【解析】本题考查一次函数图象的性质,难度较小.一次函数y=-2x+1,因为k=-2<0,b=1>0,所以直线呈下降趋势,且经过y轴正半轴上一点,即图象经过第一、二、四象限,不经过第三象限,故选C.10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A B C D答案:A 【解析】本题考查钝角三角形高线的作图,难度较小.根据高线作法知BC边上的高应是过点A作BC的垂线,此时垂线与BC的延长线相交,交点是垂足,故选A.11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米答案:C 【解析】本题考查解直角三角形的应用,难度较小.在Rt△ABO中,∵,∴OA=OB²tanα=30tanα(米),故选C.12.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元答案:B 【解析】本题考查一元一次方程的应用,难度中等.设该电器的标价是x元,则实际销售价是0.8x元,成本是(0.8x-500)元,因为利润率为20%,所以(0.8x-500)²20%=500,解得x=3750(元),所以标价是3750元,成本是0.8x-500=2500(元),如果按同一标价打九折销售那么获得的纯利润为0.9³3750-2500=875(元),故选B.第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是_________.答案:【解析】本题考查概率公式,难度较小.摸出白球的概率.14.圆心角是60°且半径为2的扇形面积为_________(结果保留π).答案:【解析】本题考查扇形的面积计算,难度较小.因为(其中n是圆心角,r是半径),所以.15.把进行化简,得到的最简结果是_________(结果保留根号).答案:【解析】本题考查二次根式的化简,难度较小..16.分式方程的解为_________.答案:x=-5 【解析】本题考查解分式方程,难度较小.将方程的两边同时乘以最简公分母x(x-2),化为整式方程得5(x-2)=7x,解得x=-5,经检验x=-5是原分式方程的解,故原分式方程的解为x=-5.17.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是_________.答案:18 【解析】本题考查相似三角形的判定和性质,难度较小.∵DE∥BC,∴△ADE ∽△ABC,∴,即,解得BC=18.18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为_________.答案:4 【解析】本题考查圆周角定理、勾股定理、相似三角形的应用,难度中等.∵AB 是⊙O的直径,∴∠ACB=90°.在Rt△ABC中,由勾股定理得,又∵OD⊥BC,∴DO∥AC,∴△OBD∽△ABC,.∵AC=8,∴OD=4.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:.答案:本题考查实数的计算,难度较小.涉及的知识点有负指数幂、特殊角的三角函数值、绝对值、二次根式.解:原式.(6分)20.(本小题满分6分)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=2.答案:本题考查整式的化简求值,难度较小.解:原式=(x2-y2)-(x2+xy)+2xy=x2-y2-x2-xy+2xy=xy-y2.(3分)∵x=(3-π)0=1,(4分)∴当x=1,y=2时,原式=1³2-22=2-4=-2.(6分)21.(本小题满分8分)中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=_________,b=_________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在_________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?答案:本题考查频数分布表与频数分布直方图的理解与应用、中位数、样本估计总体,难度较小.读出图中的隐含信息是解题的关键.解:(1)a=60,b=0.15.(2分)(2)如图.(4分)(3)中位数会落在80≤x<90分数段.(6分)(4)(人),所以全校参加这次比赛的3000名学生中成绩“优等”的大约有1200人.(8分)22.(本小题满分8分)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC,BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD,BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.答案:本题考查菱形的性质、全等三角形的判定和性质、三角函数,难度较小.解:(1)证明:∵四边形ABCD是菱形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOF≌△COF(AAS).(4分)(2)如图.∵四边形ABCD是菱形,AB=2,∠ABC=60°,∴AD=AB,AC⊥BD于点O,,∴,∠CAD=60°.又∵α=30°,∴∠AEO=90°,∴.又∵△AOE≌△COF,∴,∴.(8分)23.(本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?答案:本题考查一元二次方程的应用(增长率问题),难度较小.解:(1)设该快递公司投递快递总件数的月平均增长率为x,则由题意可得10(1+x)2=12.1,(3分)解此方程得x1=0.1,x2=-2.1(不合题意,舍去).答:该快递公司投递快递总件数的月平均增长率为10%.(5分)(2)12.1³(1+0.1)=13.31(万件),.因为,所以该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,23-21=2(人).答:该公司6月份至少需要增加投递业务员2人.(9分)24.(本小题满分9分)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,),点D 在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.答案:本题考查与圆有关的计算与证明,难度中等.涉及的知识点有勾股定理、垂径定理、三角函数、切线的判定与性质、求点的坐标.解:(1)解法一:因为∠AOB为直角,所以AB是⊙M的直径.因为,所以⊙M的半径为.(2分)解法二:过点M分别作OB,OA的垂线,垂足分别为点E,F,连接OM,利用勾股定理与垂径定理可得⊙M的半径为.(2分)(2)证法一:因为在Rt△AOB中,,所以∠OAB=30°,∠ABO=60°.又因为∠COD=∠CBO,而∠COD=∠ABD,所以∠ABD=∠CBO=30°,故BD平分∠ABO.证法二:因为在Rt△AOB中,,所以∠OAB=30°,∠ABO=60°.又因为∠COD=∠CBO,而∠COD=∠ABD,所以∠ABD=∠CBO=30°,故BD平分∠ABO.(5分)(3)因为AB为⊙M的直径,所以过点A作直线l⊥AB,直线l与BD的延长线的交点即是所求的点E,此时直线AE必为⊙M的切线.易求得,∠ECA=∠EAC=60°,所以△ECA为边长等于的正三角形.设点E坐标为(x,y),,,所以点E坐标为.(9分)25.(本小题满分10分)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数的图象上所有“中国结”的坐标;(2)若函数(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k2-3k+2)x2+(2k2-4k+1)x+k2-k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?答案:本题考查一次函数、反比例函数及二次函数的图象与性质、求点的坐标、方程与函数的关系等,考查考生的阅读理解能力、分类讨论能力、逻辑推理能力,难度较大.解:(1)由题意可知“中国结”的横坐标x,纵坐标y均为整数,由于,显然x=0时,y=2.只要x取除零以外的整数时,y就不是有理数,此时y更不可能是整数,故一次函数的图象上只有一个“中国结”,其坐标为(0,2).(3分)(2)由于的图象是关于原点对称的双曲线,由题意可知,该双曲线的每一支上各只有一个“中国结”.由于k=xy,且k,x,y均是整数,结合整数的性质有①当k>0时,k=1=1³1=(-1)³(-1),相应“中国结”的坐标为(1,1),(-1,-1);②当k<0时,k=-1=1³(-1),相应“中国结”的坐标为(1,-1),(-1,1).(6分)(3)解法一:由题意可知,当k≠1且k≠2时,关于x的二次方程(k-1)(k-2)x2+(2k2-4k+1)x+k2-k=0有两个不等的整数根x1,x2,分解因式可以得到[(k-1)x+k][(k-2)x+(k-1)]=0,从而所以消去k得到x2(x1+2)=-1.由于x1,x2是整数,所以必有或者所以或者(舍去),所以,此时.由其图象可以得到其图象与x轴所围成的平面图形中(含边界),一共包含有6个“中国结”.(10分)解法二:由题意可知关于x的二次方程(k-1)(k-2)x2+(2k2-4k+1)x+k2-k=0有两个不等的整数根x1,x2,判别式Δ=(2k2-4k+1)2-4(k-1)(k-2)(k2-k)=1,所以由求根公式可得或,余下同解法一.解法三:由上述方法得方程的两个根为由于x1,x2为整数,所以必有与均为非零整数,所以令(m,n均为非零整数),消去k得到,.由于m,n均为非零整数,所以必有1-m=±1,从而m=2,n=-2,,余下同以上解法.解法四:由一元二次方程的根与系数关系可得余下同以上解法.26.(本小题满分10分)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.答案:本题考查二次函数的图象与性质、等边三角形的判定与性质、一元二次方程根与系数的关系、相似三角形的性质、不等式组的解法,难度较大.解:(1)由题意可得c,x2是方程ax2+bx+c=0的两根,所以,所以.又因为ac2+bc+c=0(a>0,c>0),所以.(3分)(2)△ABM不可能为等边三角形.由一元二次方程的根与系数关系可得,∵x1=2c,∴.又∵点A(2c,0)在对应的二次函数图象上,∴a(2c)2+2bc+c=0.∵c>0,∴.根据题中条件可得∴若△ABM为等边三角形,则必有,将代入此式并化简可得,,∴或.显然与矛盾,从而△ABM不可能为等边三角形.(6分)(3)∵△BPO∽△PAO,∴,即,∴ac=1.由一元二次方程的根与系数关系可得,∵x1=mc,∴.又∵点A(mc,0)在对应的二次函数图象上,∴a(mc)2+bmc+c=0.∵c>0,∴.根据题中条件可得∴0<m<1.∵S1=S2,∴,∴b2=8,∴.∵m>0,∴,∴,解得.∵0<m<1.∴.(10分)综评:本套试卷难度中等,命题指导思想明确,侧重双基,注重生活实际应用,试题基本覆盖了初中数学教学重点.一百分的基础分比较易得,压轴题第25,26题传承了2014年的命题趋势,最后一问都有一定的难度,集中展示数学丰富多彩的内涵和变化之美感,全面考查考生阅读理解,处理综合信息的能力,充分体现了中考的选拔功能.。
2015年初中毕业升学考试试卷数学含答案(真卷出击)
2015年初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.AB.C.5-D.52.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是5.若分式23x-有意义,则x 的取值范围是 A .3x ≠ B.3x = C.3x < D.3x > 6.不等式5x +≥8的解集在数轴上表示为A . B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为 A .9 B.8 C.7 D.6图 1图28.如图3,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是A .5cm B.4cm C.3cm D.2cm9.如图4,在正方形ABCD 的外侧作等边ADE △,则AEB ∠的度数为 A .10° B.12.5° C.15° D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是 A .19岁 B.20岁 C.21岁 D.22岁11.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1 B.2 C.3 D.4 12.如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是A .1.5 B.2 C.2.25 D.2.52015年初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.图3 图4 图5 图6二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)13= . 14.因式分解:29x -= .15.写出一个经过点(11),的一次函数解析式 . 16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有 只羊.17.关于x 的一元二次方程(3)(1)0x x +-=的根是 . 18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s时,BEF △是直角三角形. 三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(2010tan 45-+-°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.A B图8 图7(1)填空:ABC ∠= .BC = ; (2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全等,并加以证明. 21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是 ;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. 22.(本题满分8分) 如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m1.7321.414)图9 45°30°图10目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 2.24,1.123.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)24.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?图11如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥. (2)若4cos 35C DF ∠==,,求O ⊙的半径. 26.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论; (3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.2015年初中毕业升学考试 数学参考答案及评分标准图12图13(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分) 三、解答题: 19.本题满分6分.解:原式=811-+- ························································································ 3分=8- ································································································ 6分20.本题满分6分.(1)135ABC ∠=°,BC = ·········································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ········································· 3分证明:FD BC === ··············································· 4分9045135EFD ABC ∠=∠==°+?° ·································································· 5分 2EF AB ==EFD ABC ∴△≌△ ······················································································· 6分(说明:其他证法参照此法给分) 21.本题满分6分. 解:(1)12··································································································· 2分 (2)(方法一)这个游戏不公平. ··························································································· 3分 理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种.P ∴(和为奇数)=4263= ················································································ 4分 P (和为偶数)=13························································································ 5分(方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a aa--= ······················································································· 4分 21260000a = ························································································· 0a >1122a ∴≈ ····························································································· 5分经检验,1122a ≈是所列方程的根. 则2007到2009这两年装机容量的年增长率为11225001.24124%500-=≈ ················· 6分答:2007到2009这两年装机容量的年平均增长率约为124%. (3)(1 1.24)25205644.8+⨯= ····································································· 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ··········································· 8分 24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ······································ 1分6090(300)21000x x +-= ·············································································· 3分200x = ·················································································· 4分300200100-= ················································································ 5分答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90.0.20.6(300)90x x +-≥ ················································································ 6分 0.21800.690x x +-≥0.490x --≥225x ≤ ·············································································· 7分此时费用6090(300)y x x =+-3027000y x =-+ ············································································· 8分y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ······························ 9分 即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ······························································································· 10分 (说明:其他解法参照此法给分) 25.本题满分10分 (1)(方法一) 连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点. ··························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ········································ 2分MN AC ∴∥ ························································· 3分 AB 为O ⊙直径,90ACB ∴∠=°, ························· 4分90MNB ∴∠=°即MN BC ⊥ ···································· 5分(方法二)AB CD ⊥,90AED BEC ∴∠=∠=° ····················· 1分M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠ ··········································· 2分又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ····························································································· 3分又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=° ················································································· 4分 90BNE ∴∠=°,即MN BC ⊥. ····································································· 5分(方法三)AB CD ⊥,90AED ∴∠=° ········································································· 1分由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠ 又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ············································ 2分 又MED NEC ∠=∠ NEC CBE ∴∠=∠ ························································································ 3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ···················································································· 4分即有90CNE ∠=°,MN BC ∴⊥ ···································································· 5分 (2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠4cos cos 5A C ∴∠=∠=······································ 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =··········································································7分 又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△ BF DF AF BF∴= ································································································ 8分即3353x x x= 53x = ··································································································· 9分∴直径5204433AB x ==⨯= 则O ⊙的半径为103······················································································· 10分(说明:其他解法参照此法给分) 26.本题满分12分. 解:(1)44k E ⎛⎫--⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ······································································ 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ······································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 31241212123443PA PB k k PE k PF k ====++++, APB EPF ∠=∠PAB PEF ∴△∽△PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分(证法二)结论:EF AB ∥ ············································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 在Rt PAB △中,4tan 3PB PAB PA ∠== 在Rt PEF △中,443tan 334k PF PEF k PE +∠===+tan tan PAB PEF ∴∠=∠PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分。
湖南省益阳市2015年普通初中毕业学业考试数学试卷及答案
普通初中毕业学业考试数学试题卷 第1页(共4页)图2图1湖南省益阳市2015年普通初中毕业学业考试试卷及答案数 学注意事项:1.本学科试卷分试题湖南省益阳市2015年中考数学试题(word 版含答案)卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,是无理数的为AB .13C .0D .3-2.下列运算正确的是 A .236x x x ⋅= B .325()=x xC .2336()xy x y =D .632x x x ÷=3.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.8 4.一个几何体的三视图如图1所示,则这个几何体是 A .三棱锥 B .三棱柱 C .圆柱 D .长方体5.如图2,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错.误.的是 A .90ABC ∠=︒B .AC BD =C .OA OB =D .OA AD =6.下列等式成立的是姓 准考证号普通初中毕业学业考试数学试题卷 第2页(共4页)图4图5图 6图3A .123a b a b +=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a aa b a b=--++ 7.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为A .20(1+2x ) =80B .2×20(1+x ) =80C .20(1+x 2) =80D .20(1+x )2 =808.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为 A .1m > B .0m > C .1m -> D .10m -<< 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡...中对应题号后的横 线上)9.10.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 .11.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为 . 12.如图3,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则AB 的长为 .13.图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小棒.三、解答题(本大题共2小题,每小题8分,共16分)14.化简:2(1)(1)x x x +-+.15.如图5,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.四、解答题(本大题共3小题,每小题10分,共30分)16.如图6,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点 P 2恰好在直线l 上.普通初中毕业学业考试数学试题卷 第3页(共4页)图8图7(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.17.2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:(1)2014年益阳市的地区生产总值为多少亿元? (2)请将条形统计图中第二产业部分补充完整; (3)求扇形统计图中第二产业对应的扇形的圆心角度数.18.如图8,在□ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E . (1)求证:AC ⊥BD ;(2)若AB =14,7cos 8CAB ∠=,求线段OE 的长.五、解答题(本大题共2小题,每小题12分,共24分)19.大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料? 20.已知点P 是线段AB 上与点A 不重合的一点,且AP <PB .AP 绕点A 逆时针旋转角α(090)α︒<≤︒得到AP 1,BP 绕点B 顺时针也旋转角α得到BP 2,连接PP 1、PP 2. (1)如图9-1,当90α=︒时,求12PPP ∠的度数; (2)如图9-2,当点P 2在AP 1的延长线上时,求证:21P PP △∽2P PA △;普通初中毕业学业考试数学试题卷 第4页(共4页)图9-2 图9-1图9-3图10-1图10-2(3)如图9-3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .六、解答题(本题满分15分)21.已知抛物线E 1:2y x =经过点A (1,m ),以原点为顶点的抛物线E 2经过点B (2,2),点A 、B 关于y 轴的对称点分别为点A B ''、.(1)求m 的值及抛物线E 2所表示的二次函数的表达式;(2)如图10-1,在第一象限内,抛物线E 1上是否存在点Q ,使得以点Q 、B 、B '为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由; (3)如图10-2,P 为第一象限内的抛物线E 1上与点A 不重合的一点,连接OP 并延长与抛物线E 2相交于点P ',求PAA '∆与P BB ''∆的面积之比.普通初中毕业学业考试数学试题卷 第5页(共4页)益阳市2015年普通初中毕业学业考试数学参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分).二、填空题(本大题共5小题,每小题5分,共25分).9.4;10.1y x =(不唯一);11.23;12.3π;13.51n +.三、解答题(本大题共2小题,每小题8分,共16分).14.解:原式=2221x x x x ++-- ···················································································· 6分=1x +. ·········································································································· 8分 15.解:∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ················································ 4分 ∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒, ·············································································· 6分 ∴18050BDC ABD ∠=︒-∠=︒, ∴250BDC ∠=∠=︒. ····················································································· 8分四、解答题(本大题共3小题,每小题10分,共30分)16.解:(1)P 2(3,3). ································································································· 3分 (2)设直线l 所表示的一次函数的表达式为(0)y kx b k =+≠,∵点P 1(2,1),P 2(3,3)在直线l 上,∴2133k b k b +=⎧⎨+=⎩,,解得23k b =⎧⎨=-⎩,.∴直线l 所表示的一次函数的表达式为23y x =-. ································ 7分(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9),∴2639⨯-=,∴点P 3在直线l 上. 10分17.解:(1)237.519%1250÷=(亿元); ······································································· 3分(2)第二产业的增加值为1250237.5462.5550--=(亿元),画图如下:································ 7分(3)扇形统计图中第二产业部分的圆心角为550360158.41250⨯︒=︒.··············· 10分 18.解:(1)∵CAB ACB ∠=∠,∴AB CB =,普通初中毕业学业考试数学试题卷 第6页(共4页)∴□ABCD 是菱形.∴AC BD ⊥. ······························································································· 3分(2)在Rt △AOB 中,7cos 8AO OAB AB ∠==,14AB =,∴7491484AO =⨯=,在Rt △ABE 中,7cos 8AB EAB AE ∠==,14AB =,∴8167AE AB ==, ···················································································· 9分∴49151644OE AE AO =-=-=. ···························································· 10分 五、解答题(本大题共2小题,每小题12分,共24分)19.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,. ······································································ 3分解得451.5a b =⎧⎨=⎩,.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨. ················ 6分 (2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤, ·········································· 9分解得:10x ≥.答: 最多再生产10天后必须补充原材料. ··········································· 12分20.解:(1)由旋转的性质得:AP = AP 1,BP = BP 2.∵90α=︒, ∴12PAP PBP △和△均为等腰直角三角形,∴1245APP BPP ∠=∠=︒,∴121218090PPP APP BPP ∠=︒-∠-∠=︒. ·················································· 3分 (2)由旋转的性质可知12APP BPP △和△均为顶角为α的等腰三角形,∴12902APP BPP α∠=∠=︒-,∴1212180()1802(90)2PPP APP BPP αα∠=︒-∠+∠=︒-︒-=. ················· 5分 在21P PP △和2P PA △中,122PPP PAP α∠=∠=, 又212PP P AP P ∠=∠,∴21P PP △∽2P PA △. ················································································· 7分(3)如图,连接QB .∵l 1,l 2分别为PB ,P 2B 的中垂线,20题解图普通初中毕业学业考试数学试题卷 第7页(共4页)∴12EB BP =,212FB BP =.又BP =BP 2,∴EB FB =. 在Rt △QBE 和Rt △QBF 中, EB FB =,QB QB =, ∴Rt △QBE ≌Rt △QBF ,∴2122QBE QBF PBP α∠=∠=∠=.···························································· 9分由中垂线性质得:QP QB =, ∴2QPB QBE ∠=∠=α.由(2)知1902APP α∠=︒-,∴11180180(90)9022PPQ APP QPB ∠=︒-∠-∠=︒-︒--=︒αα,即 P 1P ⊥PQ .···························································································· 12分六、解答题(本题满分15分)21.解:(1)∵抛物线E 1经过点A (1,m ), ∴m =12=1.∵抛物线E 2的顶点在原点,可设它对应的函数表达式为2y ax =(0a ≠),又点B (2,2)在抛物线E 2上,∴222a =⨯,解得:12a =,∴抛物线E 2所对应的二次函数表达式为212y x =. ································· 3分(2)假设在第一象限内 ,抛物线E 1上存在点Q ,使得△QB B '为直角三角形,由图象可知直角顶点只能为点B 或点Q .①当点B 为直角顶点时,过B 作BQ B B '⊥交抛物线E 1于Q ,则点Q 与B 的横坐标相等且为2,将x =2代入y =x 2得y =4 , ∴点Q 的坐标为(2,4). ········································································ 5分 ②当点Q 为直角顶点时,则有222QB QB B B ''+=,过点Q 作QG BB '⊥于G , 设点Q 的坐标为(t ,t 2)( 0t >),则有()()()()222222222224t t t t ++-+-+-=,整理得:4230t t -=,∵0t >, ∴230t -=,解得1t2t =舍去),∴点Q 的坐标为3),综合①②,存在符合条件的点Q 坐标为(2,4)与3). ························· 9分(3)过点P 作PC ⊥x 轴,垂足为点C ,PC 交直线A A '于点E ,过点P '作P 'D ⊥x 轴,垂足为点D ,P 'D 交直线B B '于点F ,普通初中毕业学业考试数学试题卷 第8页(共4页)依题意可设P (c ,c 2)、P '(d ,212d ) (c >0,1c ≠),∵tan tan POC P OD '∠=∠,∴ 2212d c c d=,∴d =2c .········································· 12分 又A A '=2,B B '=4,∴222211211122111422242222PAA P BB AA PE c c S S c BB P F d '∆''∆'⋅⨯⨯--====⨯-''⋅⨯⨯-. ····························· 15分21题解图1 21题解图2。
16-2015年湖南郴州卷
2015年郴州市初中毕业学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(共8小题,每小题3分,满分24分)1.2的相反数是()A.-12B.12C.-2D.22.计算(-3)2的结果是()A.-6B.6C.-9D.93.下列计算正确的是()A.x3+x=x4B.x2·x3=x5C.(x2)3=x5D.x9÷x3=x34.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()5.下列图案是轴对称图形的是()6.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是()A.93,96B.96,96C.96,100D.93,1007.如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<08.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则EF=()A.3B.23C.3D.33第Ⅱ卷(非选择题,共106分)二、填空题(共8小题,每小题3分,满分24分)9.2015年5月在郴州举行的第三届中国(湖南)国际矿物宝石博览会中,成交额高达32亿元,3200000000用科学记数法表示为.10.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.11.分解因式:2a2-2=.中自变量x的取值范围是.12.函数y=1x-213.如图,已知直线m∥n,∠1=100°,则∠2的度数为.14.如图,已知AB是☉O的直径,点C在☉O上,若∠CAB=40°,则∠ABC的度数为.15.在m 2□6m □9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为 .16.请观察下列等式的规律:11×3=12 1-13 ,13×5=12 13-15 , 1=1 1-1 ,1=1 1-1 , ……则11×3+13×5+15×7+…+199×101= .三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算: 12 -1-2 0150+|- 3|-2sin 60°.18.解不等式组 2(x -1)≤-1, ①2x +3>1,②并把它的解集在数轴上表示出来.19.如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=m(m≠0)图象的一个交点.x(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2.20.郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了本书籍,扇形统计图中的m=,∠α的度数是;(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.21.自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵数.22.如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C 点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)23.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.24.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=2x(x>0)是减函数.证明:假设x1<x2,且x1>0,x2>0.f(x1)-f(x2)=2x1-2x2=2x2-2x1x1x2=2(x2-x1)x1x2,∵x1<x2,且x1>0,x2>0,∴x2-x1>0,x1x2>0,∴2(x2-x1)x1x2>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2),∴函数f(x)=2x(x>0)是减函数.根据以上材料,解答下面的问题:(1)函数f(x)=1x2(x>0),f(1)=112=1,f(2)=122=14.计算:f(3)=,f(4)=,猜想f(x)=1x2(x>0)是函数(填“增”或“减”);(2)请仿照材料中的例题证明你的猜想.25.如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的▱DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出▱DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.26.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B 点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s.当P点到达C点时,两点同时停止运动.连结PQ,设运动时间为t s.解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值?并求出最大值;(3)当△PQB为等腰三角形时,求t的值.答案全解全析:一、选择题1.C只有符号不同的两个数互为相反数,故2的相反数为-2,故选C.2.D负数的偶次幂是正数,(-3)2=9,故选D.3.B x2·x3=x2+3=x5,故选B.4.A正方体的主视图、左视图、俯视图都是正方形,故选A.5.A选项A中的图形符合轴对称图形的特征,故选A.6.B将这七科成绩从低到高排列为92,93,95,96,96,98,100,中间的数是96,即中位数是96,出现次数最多的数是96,即众数为96,故选B.7.C该一次函数的图象经过第一、二、四象限,所以k<0,b>0,故选C.8.A∵在矩形ABCD中,AD∥BC,∴∠DBC=∠ADB=30°,由题意知∠DBE=∠DBA=60°,∠E=∠A=90°,BE=AB=3,∴∠FBE=30°.在Rt△BEF=3.故选A.中,EF=BE·tan∠EBF=3×33评析本题考查了矩形的性质,折叠的性质以及解直角三角形,属容易题.二、填空题9.答案 3.2×109解析3200000000=3.2×109.10.答案3π解析该圆锥的侧面积为1×2π×1×3=3πcm2.211.答案2(a+1)(a-1)解析原式=2(a2-1)=2(a+1)(a-1).12.答案x≠2解析 因为x-2为分式1x -2的分母,所以x-2≠0,即x ≠2. 13.答案 80°解析 设∠1的对顶角为∠3,则∠3=∠1=100°,∵m ∥n,∴∠2+∠3=180°,∴∠2=180°-100°=80°.14.答案 50°解析 ∵AB 是☉O 的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴∠ABC=90°-∠CAB=90°-40°=50°.15.答案 12解析 画树状图如下:由图可知,共有4种等可能的结果,当第一个方框中填“+”或“-”,第二个方框中填“+”时,所得的代数式为完全平方式,所以所求概率为24=12.16.答案 50101解析 原式=12 1-13 +12 13-15 +12 15-17 +…+12 199-1101=12 1-13+13-15+…+199-1101=12 1-1101=50101. 评析 本题属阅读理解型规律探究题,从所给信息中找出规律是解题关键,属中档题.三、解答题17.解析 原式=2-1+ 3-2× 32(4分)=1.(6分)18.解析 解不等式①,得x ≤12,(2分)解不等式②,得x>-1,(4分)所以不等式组的解集是-1<x ≤12,(5分)在数轴上表示如下:(6分)19.解析 (1)把点A(1,2)代入y 1=kx,得k=2,(1分)所以正比例函数的表达式为y 1=2x.(2分)把点A(1,2)代入y 2=m x ,得m=2,(3分)所以反比例函数的表达式为y 2=2.(4分)(2)0<x<1.(6分)20.解析 (1)200;40;36°.(3分)(2)补图(略).(5分)(3)3 000×60200=900(本).(8分)21.解析 设樱花树的单价为x 元,根据题意,得(1分)3 000(1+50%)x +7 000-3 000x =30,(4分)解得x=200.(5分)经检验,x=200是所列分式方程的根且符合题意,(6分)则7 000-3 000x =4 000200=20(棵).(7分)答:樱花树的单价是200元,棵数为20棵.(8分)22.解析 如图,过点A 作AD ⊥BC 于点D,则AD 的长为点A 到河岸BC 的距离.(1分)由题意知∠BAD=30°,∠CAD=45°,∴在Rt △ADC 中,CD=AD,(2分)在Rt △ABD 中,BD=ADtan 30°,(3分)∵BD+CD=150,∴AD+ADtan 30°=150,(6分)即 1+ 3 AD=150,解得AD=3+ 3≈4503+1.73≈95.(7分)答:点A 到河岸BC 的距离约为95 m.(8分)23.解析 (1)证明:∵在▱ABCD 中,AD ∥BC,∴∠EAO=∠FCO.(1分)∵点O 是AC 的中点,∴AO=CO.(2分)又∵∠EOA=∠FOC,(3分)∴△AOE ≌△COF.(4分)(2)当EF ⊥AC 时,四边形AFCE 是菱形.(5分)理由如下:由(1)知△AOE ≌△COF,∴OE=OF.又∵AO=CO,∴四边形AFCE 是平行四边形.(7分)∴当EF ⊥AC 时,四边形AFCE 是菱形.(8分)24.解析 (1)19;116;减.(3分)(2)证明:假设x 1<x 2,且x 1>0,x 2>0.(4分)f(x 1)-f(x 2)=1x 12-1x 22=x 22-x 12x 12x 22=(x 2+x 1)(x 2-x 1)x 12x 22,(6分)∵x 1<x 2,且x 1>0,x 2>0,∴x 2+x 1>0,x 2-x 1>0,x 12x 22>0,∴(x 2+x 1)(x 2-x 1)x 12x 22>0, 即f(x 1)-f(x 2)>0,(9分)∴f(x 1)>f(x 2),∴函数f(x)=1x 2(x>0)是减函数.(10分)25.解析 (1)设抛物线的表达式为y=ax 2+bx+c(a ≠0),由已知条件,得c =4,16a +4b +c =0,36a +6b +c =6,(1分) 解得 a =23,b =-113,c =4,(2分) 所以抛物线的表达式为y=23x 2-113x+4.(3分)(2)证明:设直线OC 的表达式为y=kx(k ≠0),把点C(6,6)代入上式,得6=6k,解得k=1,∴直线OC 的表达式为y=x,∴OC 平分∠AOB,又∵OA=OB=4,∴OC⊥AB,即四边形AOBC的两条对角线互相垂直.(6分)(3)能.设点D的坐标为(m,0),如图,过点D作DE∥AB,交OB于点E,过点E作EF∥OC,交BC于点F,过点F作FG∥AB,交AC于点G,连结DG,则四边形DEFG是平行四边形,又OC⊥AB,则▱DEFG是矩形.设矩形DEFG的面积为S.易得:DE=∵EF∥OC,∴EFOC =BEOB,即62=4-m4,解得EF=322(4-m).(8分)∴S=DE·EF=·322(4-m)=-3(m2-4m)=-3(m-2)2+12,∴当m=2时,▱DEFG的面积最大,且最大面积为12,此时点D的坐标为(2,0).(10分)26.解析(1)如图,作CE⊥AB于点E,∵CD∥AB,DA⊥AB,∴四边形AECD是矩形,∴AE=CD=5,CE=AD=4,∴BE=AB-AE=8-5=3,在Rt△CBE中,BC=2+C E22+42∴t=51=5,即当t=5时,P、Q两点同时停止运动.(3分)(2)如图,作PF ⊥AB 于点F,根据题意,得AQ=t,BQ=8-t,BP=t.∵△BPF ∽△BCE,∴PF =BP ,即PF =t ,∴PF=4t.(4分)∴S=12BQ ·PF=12(8-t)·45t=-25(t-4)2+325,(6分)∴当t=4时,△PQB 的面积最大,且S max =325cm 2.(7分)(3)i.若BP=BQ,则t=8-t,解得t=4;(8分)ii.若QP=QB,则12t 8-t =35,解得t=4811;(10分) iii.若PQ=PB,则12(8-t)t =35,解得t=4011.综合以上,当t 等于4,4811,4011时,△PQB 为等腰三角形.(12分)评析 本题是四边形中的动点问题,着重考查了勾股定理、三角形相似的判定与性质、二次函数的最值、与等腰三角形有关的分类讨论.本题信息量大、综合性强,属难题.。
2015年湖南省长沙市中考数学试卷(含详细答案)
说明每买 1000 张,有可能中奖,也有可能不中奖,故 B 错误;C,抛掷一枚质地均匀的硬币一次,出现正 面朝上的概率为 1 ,故 C 错误;D,想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D
2
正确;故选:D。 【考点】统计和概率的知识
9.【答案】C
【解析】∵一次函数 y 2x 1中 k 2<0 , b 1>0 ,∴此函数的图象经过一、二、四象限,不经过第
坐标原点. 1 2 1 2
(1)当 x c 2,a 1
12
(2)当 x 2c 时,试问△ABM 能否为等边三角形?判断并证明你的结论;
(3)当
1
x
mc(m
0)
时,记
△MAB,△PAB
的面积分别为
S
,
S
,若△BPO∽△PAO ,
且S
11
S
2
,求
m
的值.
12
数学试卷 第 6 页(共 22 页)
湖南省长沙市 2015 年初中学业水平考试
,
AD AB
1 3
,
DE
6 ,则 BC
的长是
.
18.如图, AB 是 O 的直径,点 C 是 O 上的一点,若 BC 6, AB 10,OD BC 于点 D ,
则 OD 的长为
.
三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分 6 分)
答
为 185000 人次,则数据 185000 用科学计数法表示为
--------------------
()
__ __
A.1.85 105
B.1.85 104
2015年初中毕业生学业考试模拟试题及解析.pdf
11.如图,在 ABC 中, ACB 80 , ABC 60 .按以下步骤作图:① 以点 A 为圆心,小于
AC 的长为半径画弧, 分别交 AB 、AC 于点 E 、F ;②分别以点 E 、F 为圆心,大于 1 EF 2
的长为半径画弧,两弧相交于点 G ;③作射线 AG 交 BC 于点 D .则 ADB 的度数
(B) 4a5
(C) 2a6 .
(D) 4a 6 .
x 2 0,
4.不等式组
的解集为(
)
2x 6
(A) x 2 .
(B) x 3 .
5.如图,直线 a 与直线 b 被直线 c 所截, b
平行,则可将直线 b 绕着点 A 顺时针旋转(
(A ) 70 .
c
(B) 50 .
b
(C) 2 x 3 .
( D) x 2 .
)
(A) k 2 .
( B) k 1 .
2
二、填空题(每小题 3 分,共 18 分)
( C) 1 k 2 .
2
( D) 1 k 2 .
2
9.计算: 4 9
.
10.甲、乙二人一起加工零件.甲平均每小时加工 a 个零件,加工 2 小时;乙平均每小时加
工 b 个零件,加工 3 小时.甲、乙二人共加工零件
个.
2015 年初中毕业生学业考试模拟试题(一) ·数学
本试卷包括三道大题,共 24 小题,共 6 页.全卷满分 120 分.考试时间为 120 分钟.考试结束后,将 本试卷和答题卡一并交回. 注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域 内.
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.
完整word版,2015年湖南省普通高中学业水平考试数学试卷(word).doc
2015 年湖南省普通高中学业水平考试数学试卷本 卷包括 、填空 和解答 三部分, 量 120 分 , 分 100 分 一、 :本大 共 10 小 ,每小 4 分,共 40 分。
在每小 出的四个 中,只有一 是符合 目要求的。
1.已知集合 M={1,2} ,N={0,1,3} , M ∩N= ( )A .{1}B .{0,1}C .{1,2}D .{1,2,3}2.化 (1-cos30 )(1+cos30° )°得到的 果是 ( )A .3B .1C .0D .1 443.如 ,一个几何体的三 都是半径1 的 ,正视图侧视图几何体表面 ( )A .πB . 2πC .4πD . 434.直 x-y+3=0 与直 x+y-4=0 的位置关系 ( )A .垂直B .平行C .重合D .相交但不垂直5.如 , ABCD 是正方形,E CD 上一点,在 正方形中随机撒一粒豆子,落在阴影部分的概率 ( )俯视图EDCA .1B .1C .1D . 34r 32r r 4AB.已知向量 r,若 , 数 λ的 (a,3, 6 b a )6 1,2 bA .1B . 3C .1D .-3337.某班有 50 名学生,将其 1, 2,3,⋯, 50 号,并按 号从小到大平均分成 5, 从 班抽取 5 名学生 行某 ,若用系 抽 方法,从第一 抽取学 生的号 5, 抽取 5 名学生的号 是 () A .5,15,25, 35,45 B .5, 10, 20,30,40 C .5,8,13,23, 43 D .5,15, 26,36,468.已知函数 f(x)的 像是 不断的,且有如下 表:x -1 0 1 2 3 f(x) 8 4 -2 0 6函数 f(x)一定存在零点的区 是 ( )y A .(-1,0)B .( 0, 1)C .(1,2)D .(2,3) 2 9.如 ,点 (x,y)在阴影部分所表示的平面区域上,z=y-x 的最大 ()O A .-2 B .0 C .1D .210.一个蜂巢里有 1 只蜜蜂,第一天,它 出去找回了 1 个伙伴;第二天, 出去各自找回了 1 个伙伴;⋯⋯;如果 个找伙伴的 程 下去,第 有的蜜蜂都 巢后,蜂巢中一共有蜜蜂的只数 ( )A .2n -1B .2nC .3nD .4n2 x 2 只蜜蜂n 天所二、填空题:本大题共 5 小题,每小题 4 分,共 20 分.11.函数 f(x)= log(x-3)的定义域为 _________. 开始12.函数 y sin(2 x) 的最小正周期为 _______. 输入 x3否13.某程序框图如图所示,若输入的 x 值为 -4 ,x 0?则输出的结果为 __________. 是14.在 ABC 中,角 A,B,C 的对边分别为 a,b,c ,输出 x 输出 x已知, 1,则 sinC=_______. 结束c=2a sinA= 2 15.已知直线 l : x - y +2=0,圆 C :x 2 +y 2 = r 2(r>0),若直线 l 与圆 C 相切,则圆的半径是 r= _____.三、解答题:本大题共 5 小题,共 40 分.解答应写出文字说明 ,证明过程或演算步骤 . 16.(本小题满分 6 分)学校举行班级篮球赛,某名运动员每场比赛得分记录的径叶图如下: (1)求该运动员得分的中位数和平均数;(2)估计该运动员每场得分超过 10 分的概率 .2 3 5 7 830 1 2 0 0 417.(本小题满分 8 分)已知函数 f(x)=(x-m)2+2(1)若函数 f(x)的图象过点 (2,2),求函数 y=f(x)的单调递增区间; (2)若函数 f(x)是偶函数,求的 m 值.18.(本小题满分 8 分)D 1C 1已知正方体 ABCD- A 1 1 1 1A 1B 1B C D .(1)证明: D A// 平面 C BD ;1 1(2)求异面直线 D 1A 与 BD 所成的角 .DCAB19.(本小题满分 8 分)rr(2cos x,1), x R.已知向量 a (2sin x,1),br r(1)当 x= 时,求向量 a b 的坐标 ;4rr 个单位长度得到 g(x)(2)设函数 f(x)= a b ,将函数 f(x)图象上的所有点向左平移4的图象,当 x ∈[0,]时,求函数 g(x)的最小值 .220.(本小题满 10 分) 1 , n+1 n ,其中 ∈已知数列 { a n 满足N* .} a =2 a =a +2 n (1) 写出 a 2, a 3 及 a n ;(2)记设数列 { a n } 的前 n 项和为 S n ,设 T n = 1 + 1 +L + 1,试判断 T n 与 1 的关系;S 1 S 2 S n(3)对于 (2)中 S n ,不等式 S n ?S n-1+4S n -λ(n+1)S n -1≥0 对任意的大于 1 的整数 n 恒成立,求实数 λ的取值范围 .2015 年湖南省普通高中学 水平考 数学 卷参考答案 一、 ABCAC DABDB二 、填空 11.(3,+∞); 12. π; 13. 4; 14.1; 15. 2三 、解答 ( 分 40 分) 16.解: (1)中位数 10;平均数 9. ⋯ 4 分(2)每 得分超 10 分的概率 P=0.3. ⋯6 分17.解: (1) 依 , 2=(2-m)2 +2,解得 m =2,∞⋯ 2 分∴ f(x)=( x-2)2,∴ y=f(x) 的 增区 是⋯4 分+2(2,+ ).(2)若函数 f(x)是偶函数, f(-x)=f(x),⋯6 分即(-x-m)22,解得m=0.⋯8 分+2=(x-m) +218.(1) 明:在正方体中, D 1A ∥C 1B ,又 C 1B平面 C 1BD ,DA 平面 C BD ,∴ DA//平面 C BD.⋯4 分1 11 1 A 与 BD 所成的角是∠ C BD.⋯ 6 分(2) 解:∵ D A ∥CB ,∴异面直 D1111又 C 1BD 是等 三角形 . ∴∠ C 1BD= 60°.∴ D 1A 与 BD 所成的角是 60°. ⋯ 8 分19.解: (1)r( r2,1), r r(2 2, 2).⋯4 分依 , a2,1), b (a+b(2) 依 , f(x)=4sinxcosx+1=2sin2x+1,g(x)=2sin[2(x+)]+1=2cos2x+1,4∵ x ∈[0,] ,∴ ∈ [0, π,∴当π , g(x) min=-1.⋯ 8 分2 2x ]2x=20.解: (1) 依 a = a +2=4,a = a +2=6,依 {a n 2 1 3 2是公差 2 的等差数列,∴n⋯3 分}a =2n ;n111 1 , (2) ∵ S =n (n+1),∴ S nn(n 1) n n 1∴ T n (1 1 ) (1 1) L(1n1) 1 1<1⋯ 6 分22 3n 1 n 1(3) 依 n(n+1)?(n-1)n+4n(n+1)-λ(n+1)(n-1)n ≥0, 即(n-1)n+4-λ(n-1)≥0, 即 λ≤n4大于 1 的整数 n 恒成立,又 n 4 n14 1 15 ,n 1 4n 1n当且 当 n=3 , n取最小 5, 所以 λ的取 范 是 (-∞,5] ⋯10 分n 12015 年湖南省普通高中学业水平考试数学试卷本 卷包括 、填空 和解答 三部分, 量 120 分 , 分 100 分 一、 :本大 共 10 小 ,每小 4 分,共 40 分。
2015年中学学业水平模拟(二)数学试题附答案
2015年中学学业水平模拟(二)数学试题(本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共l0小题。
每小题3分。
共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国最长的河流长江全长约6300千米,用科学计数法表示为A .6.3× 102千米B .63 ×102千米C .6.3×103千米D .6.3×104 千米 2.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n mnm =22D .222)(mn n m =⋅3.如图,AB ∥CD ,BC ∥DE ,若∠B=40°,则∠D 的度数是A .40°B .140°C .160°D .60°4.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是 A .131 B .41 C .521 D .134 5.不等式组⎩⎨⎧->-<-32512x x 的解集是A .61<<xB .31<<-xC .31<<xD .61<<-x6.某单位3月上旬中的1至6日每天用水量的变化如图所示,那么这6天用水量的中位数是A .31.5B .32C .32.5D .337.分式方程111=-x 的解为 A .2=xB .1=xC .1-=xD .2-=x8.如图,以O 为位似中心将四边形ABCD 放大后得到四边形A′B′C′D′,若OA=4, OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为A .1:2B .1:4C .2:1D .4:19.若0)3()2(22=++-b a ,则2015()a b +的值是 A .0B .1C .-lD .201210.函数m mx y -=与)0(≠=m xmy 在同一坐标系内的图象可能是ABCD第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题。
初中毕业学业水平考试数学试卷(附答案)
2015年衡阳市初中毕业学业水平考试试卷数 学考生注意:1.本学科试卷共三道大题,满分120分,考试时量120分钟。
2.本试卷的作答一律答在答题卡上,选择题用2B 铅笔按涂写要求将你认为正确的选项涂黑;非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框。
直接在试题卷上作答无效。
一、选择题(本大题共12个小题,每小题3分,满分36分。
在每小题给出的四个选项中只有一项是符合题目要求的。
) 01.计算()012-+-的结果是【 D 】A .3-B .1C .1-D .3 02.下列计算正确的是【 A 】A .2a a a +=B .3332b b b = C .33a a a ÷= D .()257aa =03.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是【 C 】A .B .C .D .04.若分式21x x -+的值为0,则x 的值为【 C 】 A .2或1- B .0 C .2 D.1- 05.函数y =x 的取值范围为【 B 】A .0x ≥B .1x -≥C .1x ->D .1x ≥06.不等式组21x x -⎧⎨⎩≥<的解集在数轴上表示为【 B 】A .B .C .D .07.若等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为【 D 】A .11B .16C .17D .16或1708.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为【 A 】A .2-B .2C .4D .3- 09.下列命题是真命题的是【 A 】A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形10.在今年全国助残日捐款活动中,某班级第一小组七名同学积极捐出自己的零花钱,奉献自己的爱心。
他们捐款的数额分别是50205030255055、、、、、、(单位:元),这组数据的众数和中位数分别是 A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元 【 C 】11.绿苑小区在规划设计时准备在两栋楼房之间设置一块面积为900平方米的矩形绿地且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为【 B 】A .()10900x x -=B .()10900x x +=C .()1010900x +=D .()210900x x ++=⎡⎤⎣⎦ 12.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30,再向电视塔方向前进100米到达F 处又测得 电视塔顶端A 的仰角为60,则这个电视塔的高度AB 为【 C 】 A .B .51米C .()1米 D .101米二、填空题(本大题共824分。
2015年长沙市初中生毕业学业水平考试模拟试卷 数学(二)
2015年长沙市初中毕业学业水平考试模拟试卷数 学(二)注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共12个小题,每小题3分,共36分)1.-1,0,2,-3这四个数中最大的是A .-1B .0C .2D .-32.“比a 的2倍大1的数”用代数式表示是A .2(a +1)B .2(a -1)C .2a +1D .2a -13.下列多边形中,不能够单独铺满地面的是A .正三角形B .正方形C .正五边形D .正六边形4.因式分解x 2y -4y 的正确结果是A .y (x +2)(x -2)B .y (x +4)(x -4)C .y (x 2-4)D .y (x -2)25.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是 A .(0,1) B .(2,-1) C .(4,1) D .(2,3)6x 的取值范围为A .x ≥12B .x ≤12C .x ≥12-D .x ≤12- 7.如图,在四边形ABCD 中,AB ∥CD ,AD =BC ,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则下列结论一定正确的是A .∠HGF = ∠GHEB .∠GHE = ∠HEFC .∠HEF = ∠EFGD .∠HGF = ∠HEF8.已知3是关于x 的方程2x -a =1的解,则a 的值是A .-5B .5C .7D .29.五边形的外角和等于A .180°B .360°C .540°D .720°10.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA ',则点A '的坐标为A .(3,-6)B .(-3,6)C .(-3,-6)D .(3,6)第7题图 第12题图 第11题图11.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与直线AB有交点,则k 的值不可能是A .-5B .-13C .3D .5 12.如图,表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10.若此钟面显示3点45分时,A 点距桌面的高度为16,则钟面显示3点50分时,A 点距桌面的高度为A.22-B .16π+ C .18 D .19二、填空题(本题共6小题,每小题3分,共18分)13.一天有86 400秒,用科学记数法表示为 秒.14.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度.15.点1(2)A y ,、2(3)B y ,是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小 关系为1y 2y .16.在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB =OB =4,则AD = .17.如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是 .18.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题8分,第23、24小题每小题9分,第25、26小题每小题10分,共66分)19.计算:101272cos30(3)2π-⎛⎫-++- ⎪⎝⎭. 20.先化简,再求值:(x +1)2-(x +2)(x -2)x x 是整数.21.又到了暑假,学校组织老师分别到A 、B 、C 、D 四地旅游,学校按老师数量购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D 地的车票占全部车票的10%,请求出D 地车票的数量,并补全统计图;(2)若学校采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么张老师抽到去A 地的概率是多少?(3)若有一张车票,王老师和李老师都想要,决定采取抛掷一枚各面分别标有1、2、3、4的正四面体骰子的方法来确定,具体规则是:每人各抛掷一次,若王老师掷得着地一面的数字比李老师掷得着地一面的数字小,车票给王老师,否则给李老师.试用列表或画树状图的方法分析,这个规则对双方是否公平?第18题图 第14题图22.如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的角平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.23.我校初三2班在学校商店购买一些学习用品用作奖励,第一次用32元买了4支水性笔和6本笔记本;第二次用56元买了同样的水性笔12支和笔记本8本.(1)求每支水性笔和每本笔记本的价格;(2)期中考试后,班主任拿出100元奖励基金交给班长,购买上述价格的水性笔和笔记本共30件作为奖品,奖给期中考试表现突出的同学,要求笔记本数不少于水性笔数,共有多少种购买方案?请你一一写出.24.如图,CD切⊙O于点C,作⊙O的直径AB.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.(1)求证:AD是⊙O的切线;(2)如果⊙O的半径OA=3 cm,EC=4 cm,求GF的长.25.已知二次函数2(1)1(0)=-++>.y ax a x a(1)当a=1时,求二次函数2(1)1(0)=-++>的顶点坐标和对称轴;y ax a x a(2)二次函数2(1)1(0)y ax a x a=-++>与x轴的交点恒过一个定点,求出这个定点.(3)当二次函数2(1)100=-++>>时,x在什么范围内,y随x的增大而减小?y ax a x a()26.如图所示,抛物线与x轴交于A(-1,0)、B(2,0)两点,与y轴交于C(0,-2).以AB为直径作⊙M,过AC作直线,P为抛物线上一动点,过点P作PQ∥AC交y轴于Q点.(1)求抛物线所对应的函数的解析式及直线AC的解析式;(2)当P点在抛物线上运动时,直线PQ与抛物线只有一个交点,求交点的坐标;(3)D是⊙M上一点,连接AD和CD,当△ACD的面积最大时,求D点的坐标,此时△ACD的面积是多少?。
2015年湖南省衡阳市中考数学试卷-答案
湖南省衡阳市2015年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】原式123=+=。
故选D 。
【提示】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果。
熟练掌握运算法则是解本题的关键。
【考点】实数的运算;零指数幂 2.【答案】A【解析】A 、2a a a +=,故本选项正确;B 、33336b b b b +==,故本选项错误;C 、3312a a a a -÷==,故本选项错误;D 、525210()a aa ⨯==,故本选项错误。
故选A 。
【提示】根据合并同类项法则:同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解。
熟练掌握运算性质和法则是解题的关键。
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方 3.【答案】C【解析】从上面看外边是一个矩形,里面是一个圆,故选:C 。
【提示】根据俯视图是从上面看得到的图形,可得答案。
【考点】简单组合体的三视图 4.【答案】C【解析】由题意可得:20x -=且10x +≠,解得2x =。
故选:C 。
【提示】分式的值为0的条件是:(1)分子为0;(2)分母不为0。
两个条件需同时具备,缺一不可。
据此可以解答本题。
关键是掌握分式值为零的条件是分子等于零且分母不等于零。
注意:“分母不为零”这个条件不能少。
【考点】分式的值为零的条件 5.【答案】B【解析】根据题意得:10x +≥,解得:1x -≥。
故选:B 。
【提示】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围。
函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负。
【考点】函数自变量的取值范围 6.【答案】B【解析】不等式组的解集为:-21x ≤≤,其数轴表示为:,故选B 。
湖南邵阳数学-2015初中毕业学业考试试卷
2015年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算(﹣3)+(﹣9)的结果是()A.﹣12 B.﹣6 C.+6 D.12考点:有理数的加法.分析:根据有理数的加法运算法则计算即可得解.解答:解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.2.如图,下列几何体的左视图不是矩形的是()考点:简单几何体的三视图.分析:根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.解答:解:A、圆柱的左视图是矩形,不符合题意;B、圆锥的左视图是等腰三角形,符合题意;C、三棱柱的左视图是矩形,不符合题意;D、长方体的左视图是矩形,不符合题意.故选:B.点评:本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.3. 2011年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣7米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 05米用科学记数法表示为5×10﹣8米.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()A.棋类B.书画C.球类D.演艺考点:扇形统计图.分析:根据扇形统计图中扇形的面积越大,参加的人数越多,可得答案.解答:解:35%>30%>20%>10%>5%,参加球类的人数最多,故选:C.点评:本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°考点:平行线的性质.分析:先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.解答:解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.已知a+b=3,ab=2,则a2+b2的值为()A. 3 B.4C.5D.6考点:完全平方公式.分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.解答:解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选C点评:本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.7.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选B.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.8.不等式组的整数解的个数是()A. 3 B.5C.7D.无数个考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:,解①得:x>﹣2,解②得:x≤3.则不等式组的解集是:﹣2<x≤3.则整数解是:﹣1,0,1,2,3共5个.故选B.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC 的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()考点:动点问题的函数图象.专题:数形结合.分析:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.解答:解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB=,∴y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,在Rt△CEF中,∵tanC=,∴y=tanC•CF=tanC•(2m﹣t)=﹣tanB•t+2mtanB(m≤t≤2m).故选B.点评:本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围.10.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π考点:旋转的性质;弧长的计算.专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.二、填空题(共8小题,每小题3分,满分24分)11.多项式a2﹣4因式分解的结果是(a+2)(a﹣2).考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).点评:此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△BEC.考点:全等三角形的判定;平行四边形的性质.专题:开放型.分析:由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.解答:解:∵四边形ABCD是平行四边形,∴AD=B C,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与△CEB中,,∴△ADF≌△BEC(AAS),故答案为:△ADF≌△BEC.点评:本题考查了三角形全等的判定,平行四边形的性质,平行线的性质,根据平行四边形的性质对边平行和角相等从而得到三角形全等的条件是解题的关键.13.下列计算中正确的序号是③.①2﹣=2;②sin30°=;③|﹣2|=2.考点:二次根式的加减法;绝对值;特殊角的三角函数值.分析:根据二次根式的加减法、三角函数值、绝对值,即可解答.解答:解:①2﹣=,故错误;②sin30°=,故错误;③|﹣2|=2,正确.故答案为:③.点评:本题考查了二次根式的加减法、三角函数值、绝对值,解决本题的关键是熟记相关法则.14.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是.考点:概率公式.分析:用正确的个数除以选项的总数即可求得选对的概率.解答:解:∵四个选项中有且只有一个是正确的,∴他选对的概率是,故答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.15.某正n边形的一个内角为108°,则n= 5 .考点:多边形内角与外角.分析:易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.解答:解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.点评:考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.16.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= ﹣1 .考点:根的判别式.分析:根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.解答:解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.点评:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.考点:解直角三角形的应用-坡度坡角问题.分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.解答:解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识进行求解.18.抛物线y=x2+2x+3的顶点坐标是(﹣1,2).考点:二次函数的性质.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(﹣1,2).故答案为:(﹣1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.三、解答题(共3小题,满分24分)19.解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简(﹣)•,再从0,1,2中选一个合适的x的值代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x=1代入计算即可求出值.解答:解:原式=•=,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质.分析:(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.解答:(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.点评:此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.四、应用题(共3个小题,每小题8分,共24分)22.(8分)(2015•邵阳)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B 0.5<t≤120C 1<t≤1.5 aD 1.5<t≤230E t>2 10请根据图表信息解答下列问题:(1)a= 35 ;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.考点:条形统计图;用样本估计总体;频数(率)分布表;中位数.分析:(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.解答:解:(1)a=100﹣(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1. 5;(4)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.点评:本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.23.(8分)(2015•邵阳)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?考点:二次函数的应用.分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.解答:解:(1)S=y(x﹣20)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.点评:此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).24.(8分)(2015•邵阳)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.考点:相似三角形的应用.分析:根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.解答:解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.点评:此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键.五、综合题(共2个小题,25题8分,26题10分,共18分)25.(8分)(2015•邵阳)已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.考点:菱形的判定;平行四边形的判定;作图-旋转变换.分析:(1)根据题意作出图形即可;(2)首先根据作图得到MN是AC的垂直平分线,然后得到DE等于BC的一半,从而得到DE=EF,即DF=BC,然后利用一组对边平行且相等的四边形是平行四边形进行判定即可;(3)得到BD=CB后利用邻边相等的平行四边形是菱形进行判定即可.解答:解:(1)如图所示:(2)∵根据作图可知:MN垂直平分线段AC,∴D、E为线段AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,∵将△ADE绕点E顺时针旋转180°,点D的像为点F,∴EF=ED,∴DF=BC,∵DE∥BC,∴四边形BCFD是平行四边形;(3)当∠B=60°时,四边形BCFD是菱形;∵∠B=60°,∴BC=AB,∵DB=AB,∴DB=CB,∵四边形BCFD是平行四边形,∴四边形BCFD是菱形.点评:本题考查了菱形的判定、平行四边形的判定及基本作图的知识,解题的关键是能够了解各种特殊四边形的判定定理,难度不大.26.(10分)(2015•邵阳)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n=,求n的值.考点:反比例函数与一次函数的交点问题.分析:(1)由k=1得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B两点的坐标;(2)先由k=2得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B两点的坐标;再求出直线AB的解析式,得到直线AB与y轴的交点(0,2),利用三角形的面积公式,即可解答.(3)根据当k=1时,S1=×1×(1+2)=,当k=2时,S2=×2×(1+3)=4,…得到当k=n时,S n=n(1+n+1)=n2+n,根据若S1+S2+…+S n=,列出等式,即可解答.解答:解:(1)当k=1时,直线y=x+k和双曲线y=化为:y=x+1和y=,解得,,∴A(1,2),B(﹣2,﹣1),(2)当k=2时,直线y=x+k和双曲线y=化为:y=x+2和y=,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB=×2×1+×2×3=4;(3)当k=1时,S1=×1×(1+2)=,当k=2时,S2=×2×(1+3)=4,…当k=n时,S n=n(1+n+1)=n2+n,∵S1+S2+…+S n=,∴×(…+n2)+(1+2+3+…n)=,整理得:,解得:n=6.点评:本题考查了一次函数与反比例函数的交点,解决本题的关键是联立函数解析式,组成方程组,求交点坐标.在(3)中注意找到三角形面积的规律是关键.友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
中考真题J0002--2015长沙市中考数学试卷
2015年长沙市初中毕业学业水平考试试卷数 学一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分) 1、下列实数中,为无理数的是( ) A.0.2 B.12D.-52、下列运算中,正确的是( )A.34x x x ÷= B.236()x x =C.321x x -=D.()222a b a b -=-3、2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承运力约为185000人次,则数据185000用科学计数法表示为( )A.51.8510⨯B.41.8510⨯C.51.810⨯D. 418.510⨯4、下列图形中,是轴对称图形,但不是中心对称图形的是( )5、下列命题中,为真命题的是( )A.六边形的内角和为360°B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边 6、在数轴上表示不等式组的解集,正确的是( )7、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应23.5A.平均数B.中位数C.众数D.方差 8、下列说法中正确的是( )A.“打开电视机,正在播《动物世界》”是必然事件B.某种彩票的中奖概率为千分之一,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查 9、一次函数y=-2x+1的图像不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限10、如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )11、如图,为测量一颗与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )30.tan A α米 .30sin B α米 .30tan C α米 .30cos D α米12、长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( ) A.562.5元 B.875元 C.550元 D.750元 二、填空题13.一个不透明的袋子中装有3个黑球,2个白球,这些球的形状、大小、质地完全相同,即除颜色外无其他差别,在看不见球的条件下,随机从袋中摸出1个球,则摸出白球的概率是 。