圆锥与路径最短问题
08 立体图形上的最短路径问题
第8讲 立体图形上的最短路径问题一、方法技巧解决立体图形上最短路径问题:1.基本思路:立体图形平面化,即化“曲”为“直”2.“平面化”的基本方法:(1)通过平移来转化例如:求A 、B 两点的最短距离,可通过平移,将楼梯“拉直”即可(2)通过旋转来转化例如:求'A C 、两点的最短距离,可将长方体表面展开,利用勾股定理即可求例如:求小蚂蚁在圆锥底面上点A 处绕圆锥一周回到A 点的最短距离 可将圆锥侧面展开,根据“两点之间,线段最短”即可得解(3)通过轴对称来转化例如:求圆柱形杯子外侧点B到内侧点A的最短距离,可将杯子(圆柱)侧面展开,作点A关于杯口的对称点'A,根据“两点之间,线段最短”可知'A B即为最短距离3.储备知识点:(1)两点之间,线段最短(2)勾股定理4.解题关键:准确画出立体图形的平面展开图二、应用举例类型一通过平移来转化【例题1】如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想要到B点去吃可口的食物,请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?【答案】13cm【解析】试题分析:只需将其展开便可直观得出解题思路,将台阶展开得到的是一个矩形,蚂蚁要从B 点到A 点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.试题解析:解:展开图如图所示,13AB cm ==所以,蚂蚁爬行的最短路线是13cm类型二 通过旋转来转化【例题2】如下图,正四棱柱的底面边长为5cm ,侧棱长为8cm ,一只蚂蚁欲从正四棱柱底面上的A 点沿棱柱侧面到点C’处吃食物,那么它需要爬行的最短路径的长是多少?【答案】cm 412【解析】试题分析:解这类题应将立体图形展开,转化为平面图形,把空间两点的距离转化为平面上两点间的距离,利用“同一平面内两点间的最短路线是连接这两点的线段”进行计算.试题解析:解:如图1,设蚂蚁爬行的路径是AEC’(在面ADD’A’上爬行是一样的).将四棱柱剪开铺平使矩形AA’B’B 与BB’C’C 相连,连接AC’,使E 点在AC’上(如图2))(412810')('2222cm CC BC AB AC =+=++= 所以这只蚂蚁爬行的最短路径长为cm 412【难度】一般【例题3】如下图所示,圆柱形玻璃容器高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一苍蝇,试求蜘蛛捕获苍蝇充饥所走的最短路线的长度.【答案】34cm【解析】试题分析:展开后连接SF ,求出SF 的长就是捕获苍蝇的最短路径,过点S 作SE CD ⊥于E ,求出SE 、EF ,根据勾股定理求出SF 即可.试题解析:解:如下图所示,把圆柱的半侧面展开成矩形,点S ,F 各自所在的母线为矩形的一组对边上下底面圆的半周长为矩形的另一组对边.该矩形上的线段SF 即为所求的最短路线. 过点S 作点F 所在母线的垂线,得到SEF Rt ∆.34SF cm ==【难度】较易【例题4】(2015·红河期末)如下图,有一圆锥形粮堆,其主视图是边长为6m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是__________m (结果不取近似值)【答案】【解析】试题分析:求小猫经过的最短距离,首先应将其侧面展开,将问题转化为平面上两点间的距离的问题,根据展开图中扇形的弧长与圆锥底面周长相等可求展开图的扇形圆心角度数,故可得出展开图中90BAP ∠=︒,即可用勾股定理求出小猫经过的最短距离BP 长.试题解析:解:作出圆锥侧面展开后的扇形图如下图,设该扇形的圆心角度数为n , 由展开扇形圆弧长等于底面圆周长,可得180n AC BC ππ⋅=⋅, 再由6AC BC m ==,可得180n =︒, 故在展开的平面图形中,1180902BAC ∠=⨯︒=︒点B 到P 的最短距离为 )BP m ===【难度】一般类型三 通过轴对称来转化【例题5】桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖,问小虫至少爬多少厘米才能到达蜜糖所在位置?【答案】15厘米【解析】试题分析:把圆柱展开,得到矩形形状,A B 、的最短距离就是线段'BA 的长,根据勾股定理解答即可 试题解析:解:如图所示,作A 点关于杯口的对称点'A则'15BA ==厘米【难度】较易三、实战演练类型一 通过平移来转化1.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 dm .【答案】25dm【解析】试题分析:先将图形平面展开,再根据勾股定理进行解答试题解析:解:如图,三级台阶平面展开图为长方形,长为20dm ,宽为(2+3)×3dm ,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理可得x 2=202+[(2+3)×3]2,解得x =25.即蚂蚁沿着台阶面爬行到点B 的最短路程为25dm .【难度】较易类型二 通过旋转来转化2.(2015·陕西)有一个圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?【答案】13m【解析】试题分析:把圆柱沿AB 侧面展开,连接AB ,再根据勾股定理得出结论试题解析:解:展开图如图所示,12AC m =,5BC m =13AB m ===【难度】较易3.有一个圆柱体,如图,高4cm ,底面半径5cm ,A 处有一小蚂蚁,若蚂蚁欲爬行到C 处蚂蚁爬行的最短距离 .)cm【解析】试题分析:圆柱展开就是一个长方形,根据两点之间线段最短可求试题解析:解:∵4AB =,BC 为底面周长的一半,即5BC π=∴)AC cm ===【难度】较易4.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线-螺旋前进的,难道植物也懂得数学? 阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm ,绕一圈升高(即圆柱的高)40cm ,则它爬行一周的路程是多少?(2)如果树干的周长是80cm ,绕一圈爬行100cm ,它爬行10圈到达树顶,则树干高多少?【答案】(1)50cm ;(2)6m【解析】试题分析:(1)如下图,将圆柱展开,可知底面圆周长,即为AC 的长,圆柱的高即为BC 的长,求出AB 的长即为葛藤树的最短路程(2)先根据勾股定理求出绕行1圈的高度,再求出绕行10圈的高度,即为树干高 试题解析:解:(1)如图,O 的周长为30cm ,即AC =30cm高是40cm ,则BC =40cm ,由勾股定理得50AB cm ==故爬行一周的路程是50cm(2)O 的周长为80cm ,即AC =80cm绕一圈爬行100cm ,则AB=100cm ,高BC =60cm∴树干高=60×10=600cm =6m故树干高6m【难度】一般5.(2015·江阴市)如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,蚂蚁爬行的最短距离是 ( )A B C .1 D .2+【答案】B【解析】试题分析:根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出试题解析:解:∵蚂蚁从盒外的B点沿正方体的表面爬到盒内的M点∴蚂蚁爬行的最短距离是如图BM的长度∵无盖的正方体盒子的棱长为2,BC的中点为M∴1224A B=+=11A M=∴BM=故选:B【难度】较易6.已知O为圆锥顶点,OA、OB为圆锥的母线,C为OB中点,一只小蚂蚁从点C开始沿圆锥侧面爬行到点A,另一只小蚂蚁绕着圆锥侧面爬行到点B,它们所爬行的最短路线的痕迹如右图所示,若沿OA剪开,则得到的圆锥侧面展开图为()【答案】C【解析】试题分析:要求小蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果,再利用做对称点作出另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线. 试题解析:解:∵C 为OB 中点,一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A∴侧面展开图BO 为扇形对称轴,连接AC 即是最短路线∵另一只小蚂蚁绕着圆锥侧面爬行到点B ,作出C 关于OA 的对称点,再利用扇形对称性得出关于BO 的另一对称点,连接即可.故选C【难度】一般7.(2014·枣庄)图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为 cm .【答案】(cm【解析】试题分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果试题解析:解:如答图,易知△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,CD ==,∴12BE CD ==,在Rt △ACE 中,AE ==,∴从顶点A 爬行到顶点B 的最短距离为(cm【难度】一般8.一个圆锥的母线长为QA =8,底面圆的半径r =2,若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短路线长是________(结果保留根式)【答案】【解析】解:设圆锥的展开图扇形’QAA 的中心角'AQA ∠的度数为n ,则 822180n ππ⨯⨯⨯=,解得:90n = 即'90AQA ∠=在'Rt AQA 中,根据勾股定理'AA =【难度】一般9.如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm ,假若点B 有一只蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC 的中点P 处的食物,那么它爬行的最短路程是多少?【答案】【解析】试题分析:根据圆锥的主视图是等边三角形可知,展开图是半径是4的半圆,点B 是半圆的一个端点,而点P 是平分半圆的半径的中点,根据勾股定理就可求出两点B 和P 在展开图中的距离,就是这只蚂蚁爬行的最短距离试题解析:解:设圆锥的展开图的圆心角为n , 则422180n ππ⨯⨯⨯=, 解得:180n =︒ 即'180CAC ∠=︒在展开图中,'BA CC ⊥,4BA =,2AP =由勾股定理得,BP =点评:本题主要考查了圆锥的侧面展开图的计算,正确判断蚂蚁爬行的路线,把曲面的问题化为平面的问题是解题的关键【难度】较难10.(1)如图○1,一个无盖的长方体盒子的棱长分别为3BC cm =,4AB cm =,15AA cm =,盒子的内部顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙(盒壁的厚度忽略不计)假设昆虫甲在顶点1C 处静止不动,请计算A 处的昆虫乙沿盒子内壁爬行到昆虫甲1C 处的最短路程,并画出其最短路径,简要说明画法(2)如果(1)问中的长方体的棱长分别为6AB BC cm ==,114AA cm =,如图○2,假 设昆虫甲从盒内顶点1C 以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从 盒内顶点A 以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕 捉到昆虫甲?【答案】(1)1A E C →→就是最短路径 (2)5秒【解析】解:(1)如图二,将上表面展开,使上表面与前表面在同一平面内,即11A A D 、、三点共线,111538AA A D +=+= 114D C =根据勾股定理得1AC =如图三,将右侧面展开,使右侧面与下面在同一平面内,即1A B B 、、三点共线 1459AB BB +=+=,113B C =根据勾股定理得1AC =如图四,将右侧面展开,使右侧面与前表面在同一平面内,即A B C 、、三点共线. 437AB BC +=+=,15CC =根据勾股定理得1AC.在图四中,∵1ABE ACC ∽ ∴1BE AB CC AC= ∴457BE =,207BE =如图一,在1BB 上取一点E ,使207BE =,连接AE ,1EC ,1A E C →→就是最短路径 (2)如图五,设1C F x =,则3AF x =,5CF x =-在Rt ACF 中,根据勾股定理得222AF AC CF =+即:()()()22236614x x =++-解得:15x =,2172x =- ∵0x >∴5x =所以,昆虫至少需要5秒才能捉到昆虫甲.点评:在长方体中,经过它的表面,从一个顶点到另一个与它相对的顶点的最短距离是:在 长、宽、高中,以较短的两条边的和作为一条直角边,最长的边作为另一条直角边,斜边即 为最短路线长【难度】较难11.如图,A 是高为10cm 的圆柱底面圆上一点,一只蜗牛从A 点出发,沿30°角绕圆柱侧面爬行,当他爬到顶上时,他沿圆柱侧面爬行的最短距离是( )A. 10cmB. 20cmC. 30cmD. 40cm【答案】B试题分析:将圆柱侧面展开,连接AB ,根据三角函数求出AB 的长即可试题解析:解:根据题意得,10BC cm =,30BAC ∠=︒ ∴13010202A BC Sin cmB =÷︒=÷= 故选B .【难度】一般12.如图,是一个长4m ,宽3m ,高2m 的有盖仓库,在其内壁的A 处(长的四等分)有一只壁虎,B 处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为( )A .4.8B .5 D【答案】C【解析】有两种展开方法:①长方体展开成如图所示,连接A B 、,②将长方体展开成如图所示,连接A B 、【难度】较易13.(2015-2016·内蒙古包头)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B 距离C点5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是cm.【答案】25【解析】试题分析:要求正方体中两点之间的最短路径,最直接的作法就是将正方体展开,然后利用两点之间线段最短解答.试题解析:解:如图:(1(2(3所以需要爬行的最短距离是25.【难度】较难14.已知:如图,一个玻璃材质的长方体,其中6,4,8===BF BC AB ,在顶点E 处有一块爆米花残渣,一只蚂蚁从侧面BCSF 的中心沿长方体表面爬行到点E .则此蚂蚁爬行的最短距离为 .【解析】试题分析:要求蚂蚁爬行的最短距离,需要将立体图形转化为平面图形,将E 、O (设面BCSF 的中心为点O )所在的两个面展开,但展开图并非只有一种,而是两种,需要利用“两点之间,线段最短”,来一一求出线段EO 的长度,然后比较两种情况的结果,找出最短路径 试题解析:解:设面BCSF 的中心为点O ,根据题意,最短路径有下列两种情况:○1如图1,沿SF 把长方体的侧面展开,蚂蚁爬行的最短距离==○2如图2,沿BF 把长方体的侧面展开,蚂蚁爬行的最短距离==∵【难度】较难15.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计).【答案】1.3m【解析】试题分析:将容器侧面展开,建立A 关于EF 的对称点A’,根据两点之间线段最短可知A ’B 的长度即为所求试题解析:解:要求壁虎捉蚊子的最短距离,实际上是求在EC 上找一点P ,使P A+PB 最短, 过点A 作EC 的对称点A ’,连结A ’B ,则A ’B 与EF 的交点P 就是所求的点P因为两点之间,线段最短,A’B 的长即为壁虎捕捉蚊子的最短距离∵底面周长为1m∴'0.5A D m =, 1.2BD m =' 1.3A B m =【难度】一般类型三 通过轴对称来转化16.一只蚂蚁欲从圆柱形桶外的A 点爬到桶内的B 点处寻找食物,已知点A 到桶口的距离AC 为12cm ,点B 到桶口的距离BD 为8cm ,CD 的长为15cm ,那么蚂蚁爬行的最短路程是多少?【答案】25cm【解析】试题分析:如图,作点B 关于CD 的对称点B’,连结AB ’, 交CD 于点P ,连结PB ,则最短路线应该 是沿AP 、PB ’ 即可试题解析:解:如下图所示,作点B 关于CD 的对称点'B ,连结'AB ,交CD 于点P ,则蚂蚁的爬 行路线'A P B →→ 为最短,且'AP PB AP PB +=+在'Rt AEB 中,15AE CD ==,''=12820EB ED DB AC BD =++=+=由勾股定理知 '25AB =所以,蚂蚁爬行的最短路程是25cm【难度】一般。
中考专题1——立体图形中的最短路径问题
中考复习专题1——立体几何中的最短路径问题姓名:(蚂蚁沿阶梯、正方体、长方体、圆柱、圆锥外侧面吃食问题)1、台阶问题如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A 和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?2、圆柱问题有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?变式1:有一圆柱形油罐,已知油罐底面圆周长是12m,高AB是5m,要从点A处开始绕油罐一周建造梯子,正好到达A点的正上方B处,问梯子最短有多长?变式2:桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B处时,突然发现了蜜糖。
问小虫至少爬多少厘米才能到达蜜糖所在的位置。
ABABcABD C D 1C 1①421AC 1=√42+32=√25;②A B B 1CA 1C 1412AC 1=√62+12=√37;A B 1D 1D A 1C 1③412AC 1=√52+22=√29 .3、正方体问题 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B的最短距离是( ). (A )3 (B ) 5 (C )2 (D )14、长方体问题 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?分析:展开图如图所示,372925<<路线①即为所求。
小结:长、宽、高中,较短的两条边的和作为一条直角边,最长的边作为另一条直角边, 斜边长即为最短路线长。
5、圆锥问题 如图,已知O 为圆锥的顶点,MN 为圆锥底面的直径,一只蜗牛从M 点出发,绕圆锥侧面爬行到N 点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是( ).A BABA’ABCABC211AB A 1B 1D CD 1C 124ACB D练习:1、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
中考专题复习——最短路径问题
word专业资料-可复制编辑-欢迎下载A B C DABABL A BCDDO CP中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化)三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。
请在图中找出点P的位置,并计算PA+PB的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。
四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为。
4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN第2题张村李庄张村李庄AABB第1题第3题图(2)EBDACP+MN 的最小值为 。
第4题 第5题 第6题 第7题 5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
圆锥中最短路线.
∴ △ABB’是等边三角形 ∴ BB’=AB=6
答:蚂蚁爬行的最短路线为6.
2.已知O为圆锥的顶点,M为圆锥底面上一点,
点P在OM上.一只蜗牛从P点出发,绕圆锥侧 面爬行,回到P点时所爬过的最短路线的痕迹 如图所示.若沿OM将圆锥侧面剪开并展开, 所得侧面展开图是( )
3、圆锥形圣诞帽母线长30厘米底面半径10厘米从圆锥底面一点
出发绕圆锥侧面一周的最短距离是多少? P
A
B
4、如图,圆锥的底面半径为2,母线长为6,一只蚂蚁要从底 面圆周上一点B出发,沿圆锥侧面爬行到AC的中点D,问它爬 A 行的最短路线是多少? D B C
5.已知O为圆锥的顶点,M为圆锥底面上一点,
点P在OM上.一只蜗牛从P点出发,绕圆锥侧 面爬行,回到P点时所爬过的最短路线的痕迹 如图所示.若沿OM将圆锥侧面剪开并展开, 所得侧面展开图是( )
例:如图,圆锥的底面半径为1,母线长为3, 一只蚂蚁要从底面圆周上一点B出发,沿圆 锥侧面爬到过母线AB的轴截面上另一母线AC 上,问它爬行的最短路线是多少? A
练习:1.如图,已知O为圆锥的顶点,MN为圆
锥底面的直径,一只蜗牛从M点出发,绕圆锥 侧面爬行到N点时,画出所爬过的最短路线的 痕迹在侧面展开图中的位置
B B
A
A
C
B
C A
B
A
2.如图,圆柱的底面半径为3cm,高为4πcm,
一只蚂蚁从A点沿着圆柱的侧面爬行到与点A相 对的B点,则最短路线长为( )
【配套K12】中考数学 专题复习六 求最短路径问题
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
2021中考数学专题复习:圆锥侧面的最短路径问题(附答案详解)
2021中考数学专题复习:圆锥侧面的最短路径问题(附答案详解)1.如图,已知圆锥的底面半径是2,母线长是6.如果A是底面圆周上一点,从点A 拉一根绳子绕圆锥侧面一圈再回到A点,则这根绳子的长度可能是()A.8 B.11 C.10 D.92.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.33B.332C.32D.23.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.33m C.35m D.4m4.如图所示,圆锥底面的半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是( )5.如图圆柱的底面周长是10cm,圆柱的高为12cm,BC为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点A处爬到上底面点B处,那么它爬行的最短路程为( )A.10cm B.11cm C.13cm D.12cm6.如图,已知圆锥的底面半径是2,母线长是6.如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,则这根绳子的长度可能是()A.8 B.9 C.10 D.117.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A.B.C.D.8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2C.3D.49.如图,有一个圆锥,高为8 cm ,直径为12 cm .在圆锥的底边B 点处有一只蚂蚁,它想吃掉圆锥顶部A 处的食物,则它需要爬行的最短路程是()A .8 cmB .9 cmC .10 cmD .11 cm10.已知圆锥的底面半径为r =20cm ,高h =2015cm ,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A 点,求蚂蚁爬行的最短距离.11.请阅读下列材料:问题:如图(1),一圆柱的高为5dm ,底面半径为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.小明设计了两条路线:路线1:侧面展开图中的AC .如下图(2)所示:设路线1的长度为1l ,则()22222221552525l AC AB AC ππ==+=+=+,路线2:高线AB + 底面直径BC .如上图(1)所示:设路线2的长度为2l ,则()()2222510225l AB AC =+=+=, ∵()22221225252252580l l ππ-=+-=->,∴2212l l > ∴12l l >,所以要选择路线2较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm ,高AB 为5dm”继续按前面的路线进行计算.请你帮小明完成下面的计算:路线1:221l AC ==___________________;22∵21l 22l ,∴1l 2l (填>或<) 所以应选择路线_________(填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.12.如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC 的度数;(2)如果A 是底面圆周上一点,从点A 拉一根绳子绕圆锥侧面一圈再回到A 点,求这根绳子的最短长度.13.如图,圆锥母线的长l 等于底面半径r 的4倍,(1)求它的侧面展开图的圆心角.(2)当圆锥的底面半径r =4cm 时,求从B 点出发沿圆锥侧面绕一圈回到B 点的最短路径的长14.(1)解方程:4(x +1)2-169=0;(2)一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是多少?15.圆锥的底面半径为1,母线长为6,一只蚂蚁要从底面圆周上一点B 出发,沿圆锥侧面爬行一圈再回到点B,问它爬行的最短路线是多少?16.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC是一条蜜糖线,一只蚂蚁从A沿着圆锥表面最少需要爬多远才能吃到蜜糖?17.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.18.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是_____.19.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为_____.20.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为__________.21.已知圆锥底面半径为1,母线长为4,地面圆周上有一点A,一只蚂蚁从点A出发沿圆锥侧面运动一周后到达母线PA中点B,则蚂蚁爬行的最短路程为(结果保留根号)22.如图,圆锥的底面半径为2,母线长为8,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A处的最短路程是_________.23.圆锥的底面周长为23,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为______.24.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.25.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形,点是母线的中点,一只蚂蚁从点出发沿圆锥的表面爬行到点处,则这只蚂蚁爬行的最短距离是_______cm.26.如图,已知圆锥的底面半径是2,母线长是6,如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,则这根绳子的最短长度是________.27.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为5cm,母线()OE OF长为5cm.在母线OF上的点A处有一块爆米花残渣,且2=,一只蚂FA cm蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为____cm.28.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为6 cm,母线OE(OF)长为9cm.在母线OF上的点A处有一块爆米花残渣,且FA = 3cm.在母线OE上的点B处有一只蚂蚁,且EB = 1cm.这只蚂蚁从点B处沿圆锥表面爬行到A点,则爬行的最短距离为cm.29.如图,一个圆柱形水杯深20cm,杯口周长为36cm,在杯子外侧底面A点有一只蚂蚁,它想吃到杯子相对的内壁上点B处的蜂蜜,已知点B距离杯子口4cm,不考虑杯子的厚度,蚂蚁爬行的最短距离为________ 。
圆锥曲线最短距离
圆锥曲线最短距离
圆锥曲线最短距离的问题,可以通过以下两种思路进行解答:
第一种,对于从该平面上的定点出发到椭圆上一点的最短距离的问题,可以采用仿射变换。
通过仿射变换将椭圆仿射为圆,并将仿射后的定点与圆心连线,再减去半径,即得到了该点到圆心的距离。
再将此距离按照仿射的规则转化为原来xOy坐标系的距离,即为所求。
第二种,对于从椭圆上的动点出发到定点最短距离的问题,可以将该点的坐标进行三角换元,得到P(acosθ,bsinθ),再利用两点间的距离公式求得最短距离。
如果该椭圆的焦点在坐标轴上,可以使用单独将椭圆方程中的x或y
配成完全平方,再使用三角换元的方式求解。
如果仍对圆锥曲线最短距离问题有疑问,可以请教数学老师或查阅相关数学书籍。
最短路径问题专项练习题
最短路径问题专项练习题最短路径问题专项练,包括蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题以及线段最短问题。
原理是两点之间,线段最短;垂线段最短,可以通过构建“对称模型”实现转化。
最短路径问题指的是在给定的图中,找到从一个起点到达一个终点的最短路径。
其中,线段最短问题可以分为同侧和异侧两种情况。
对于异侧的情况,只需要连接这两点,与直线的交点即为所求;对于同侧的情况,需要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求。
证明时可以利用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题。
解决最值问题时,利用轴对称的性质和三角形的三边关系是常用的方法。
但在应用中,要注意审题,不要只关注图形,而忽略题意要求,以免答非所问。
选址问题的关键是将各条线段转化为一条线段。
根据三角形的三边关系,如果两点在一条直线的同侧,则过两点的直线与原直线的交点处构成线段的差最大;如果两点在一条直线的异侧,则过两点的直线与原直线的交点处构成的线段的和最小。
根据最大值或最小值的情况,可以选择其中一个点的对称点来解决问题。
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题。
因此,在解决最短路径问题时,可以利用轴对称、平移等变换将不在一条直线上的两条线段转化为一条直线上,从而解决问题。
例2中,要使厂部到A、B两点距离相等,可以作AB的垂直平分线与EF的交点。
要使厂部到A、B两村的水管最短,可以作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求。
例3中,要使从A到B的路程最短,只要AM+BN最短。
因此,可以将MN平移至AC,使两线段在同一平行方向上,连接BC的线段即为最短的,此时点N即为建桥位置,XXX即为所建的桥。
精品资料整理范文范例研究参考1.桥的建造如图2所示,建造一座桥,过点A作AC垂直于河岸,使AC等于河宽。
初中数学最短路径问题典型题型及解题技巧
初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。
这对于我们解决此类问题有事半功倍的作用。
理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。
教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。
考的较多的还是“饮马问题”。
知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
解:连接AB,线段AB及直线L的交点P ,就是所求。
(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要及河垂直)解:1.将点B 沿垂直及河岸的方向平移一个河宽到E ,2.连接AE 交河对岸及点M,则点M 为建桥的位置,MN 为所建的桥。
必修二1.2最短路径问题
题型一 几何体的展开与折叠
【例1】 有一根长为3π cm,底面半径为1 cm的 圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并
使铁丝的两个端点落在圆柱的同一母线的两端,
则铁丝的最短长度为多少?
思维启迪
把圆柱沿这条母线展开,将问题转
化为平面上两点间的最短距离.
1.如图,一圆锥的底面半径为2, 母线PB的长为6,D为PB的中 点.一只蚂蚁从点A出发,沿着圆 锥的侧面爬行到点D,则蚂蚁爬行 的最短路程为 。
置,故线段AC的长度即为铁丝的最短长度.
AC AB 2 BC 2 5 π cm, 故铁丝的最短长度为5π cm.
探究提高
求立体图形表面上两点的最短距离
问题,是立体几何中的一个重要题型.这类题目的
特点是:立体图形的性质和数量关系分散在立体 图形的几个平面上或旋转体的侧面上.为了便于发 现它们图形间性质与数量上的相互关系,必须将 图中的某些平面旋转到同一平面上,或者将曲面 展开为平面,使问题得到解决.其基本步骤是:展 开(有时全部展开,有时部分展开)为平面图形, 找出表示最短距离的线段,再计算此线段的长.
பைடு நூலகம்
探究提高 解决这类题的关键是弄清楚旋转后所
形成的图形的形状,再将图形进行合理的分割,
然后利用有关公式进行计算.
题型三
多面体的表面积及其体积
【例3】 一个正三棱锥的底面边长为6,侧棱长 为 15,求这个三棱锥的体积.
思维启迪
本题为求棱锥的体积问题.已知底面
边长和侧棱长,可先求出三棱锥的底面面积
和高,再根据体积公式求出其体积. 解 如图所示, 正三棱锥S—ABC. 设H为正△ABC的中心,
连接SH,
则SH的长即为该正三棱锥的高.
圆锥最短路径问题
圆锥最短路径问题
圆锥最短路径问题是一个经典的几何问题,它可以用数学方法求解。
问题描述:设有一个圆锥,底部半径为R,高度为H。
从锥尖出发,沿着锥侧面到达底部任意一点,求最短路径。
解决方法:我们可以将圆锥展开为一个扇形,扇形的圆心角为360度,以锥的锥尖为圆心,圆的半径等于锥的高度H。
现在的问题是,在扇形上选取一个弧,使得所对的圆心角最小。
根据圆锥的几何性质,可以得出以下公式:
sin(圆心角/2) = R / (R^2 + H^2)^(1/2)
根据这个公式,可以求得圆心角/2的大小,再乘以2即可得到最小圆心角。
最后,将圆心角代入圆的周长公式:
l = 2 * π * R * (圆心角/360)
即可求得最短路径的长度l。
中考专题立体图形中的最短路径问题
中考复习专题1——立体几何中的最短路径问题 姓名: (蚂蚁沿阶梯、正方体、长方体、圆柱、圆锥外侧面吃食问题)1、台阶问题 如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想, 这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?2、圆柱问题 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?变式1:有一圆柱形油罐,已知油罐底面圆周长是12m ,高AB是5m ,要从点A处开始绕油罐一周建造 梯子,正好到达A 点的正上方B 处,问梯子最短有多长?变式2: 桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米 的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的 B 处时,突然发现了蜜糖。
问小虫至少爬多少厘米才能到达蜜糖所在的位置。
3、正方体问题 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是( ). (A )3 (B ) 5 (C )2 (D )1A BABcABCABD C D 1C 1①421AC 1=√42+32=√25;②A B B 1CA 1C 1412AC 1=√62+12=√37;A B 1D 1D A 1C 1③412AC 1=√52+22=√29 .4、长方体问题 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?分析:展开图如图所示,372925<<路线①即为所求。
小结:长、宽、高中,较短的两条边的和作为一条直角边,最长的边作为另一条直角边, 斜边长即为最短路线长。
5、圆锥问题 如图,已知O 为圆锥的顶点,MN 为圆锥底面的直径,一只蜗牛从M 点出发,绕圆锥侧面爬行到N 点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是( ).练习:1、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计), 圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
圆锥侧面最短路径问题
圆锥侧面最短路径问题嘿,朋友们,今天咱们来聊聊一个有趣又不那么简单的问题——圆锥侧面最短路径。
听上去好像高深莫测,其实呢,这事儿就像喝茶,慢慢品味才好。
想象一下,你在一个圆锥形的冰淇淋上面,想从顶端滑到底边,最短的路怎么走呢?哈哈,别担心,我们这就来解开这个谜题,轻松愉快,绝不让你觉得头大。
圆锥就像个巨大冰淇淋筒,那细细的尖尖就像是冰淇淋球,底部则是宽宽的筒口。
咱们可以把圆锥展开,变成一个扇形,真是神奇啊!就像把冰淇淋摊开了一样,瞬间一切都清晰可见。
这时候,问题来了,怎么在这个扇形上画出最短的线,连接圆锥的顶点和底边呢?这就有点像你在朋友圈发照片,得找个最佳角度才能让自己看起来更帅气。
说到最短路径,咱们先得明确目标,就像买东西时知道自己想要啥,才不会在商场里转晕了头。
咱们的目标就是从圆锥的顶点滑到底边,要尽量短。
这时候,脑子里闪过一个聪明的点子,想想看,直线永远是最短的,没错,就是这么简单!所以在展开的扇形上,咱们画一条直线,看看结果。
哇,简直一目了然,直线就是那条无敌的路径,绝对不走弯路!不过,别以为问题就这么解决了。
这个直线的长度和圆锥的大小、角度都有关系。
你想,咱们的冰淇淋球如果特别大,那你从顶端到底边就得滑得久一点。
再比如,如果这个圆锥特别尖,滑下去的感觉可能就像坐过山车一样,刺激得很,真是让人又爱又恨。
跟吃冰淇淋一样,嘴巴流冰淇淋的汁水,走这条最短路径也得注意,别让周围的环境搞得一团糟。
周围的摩擦力、风的方向,甚至是小虫子的干扰,都会影响你的滑行体验。
这种感觉就像在生活中,有时候你计划得再好,也难免会遇到一些意外的事情。
哈哈,生活就是这样,让人哭笑不得。
想象一下,如果咱们能在圆锥的侧面上设置一些小标志,像指路牌一样,能告诉你哪里是最短路径,简直太好了!可是,现实中并没有这样的标志,我们只能依靠自己的智慧,像侦探一样,去找出那条最优的路线。
真是考验智商和勇气啊,大家准备好了吗?而且啊,圆锥侧面的最短路径问题不仅仅是个数学问题,还是一个有趣的挑战,就像人生中的种种抉择。
圆锥侧面上最短路径问题ppt课件
3.对最短距离问题或最短路“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
圆柱知识盘点:
( 圆 柱 的 高
A
B
O
C
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
知识准备
1、两点之间,
。
2、直线外一点与直线上各点连
接的所有线段中,
。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
圆锥知识盘点:
no
R
h
r
O
3、 S侧S扇 形n 3 6 R021 2lRrR
S 全 S 侧 S 底 S 扇 S 圆 rR r2
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
(底面圆的周长)
圆柱的侧面积=圆柱的高×底面圆周长 圆柱的全面积=侧面积+两个底面积
S侧 =2 rh S全=2rh+2r2
)
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
问题解决
解:设圆锥的侧面展开图为扇形ABB’, ∠BAB’=n°
连接BB’,即为蚂蚁爬行的最短路线
∵ 圆锥底面半径为1,母线长为4
∴ 2π= 4nπ
B’
180
解得: n=90 ∴ △ABB’是直角三角形
A
4
∴ BB’= 42 42 4 2
B
C1ຫໍສະໝຸດ 答:蚂蚁爬行的最短路线为 4 . 2
问题情境二
BB′, 则B点C是BB′的C中点,解过垂:垂点足将B足为圆作D为锥B. D沿.⊥ABA展C,开垂成足扇为形DA. BB′,
解∠=r行∠ BB::足×B36AD的B03A它 将 为 B°6=AD.最′ 在0D爬 圆 =D=°23短.R=6=rl行 锥0t1Δ路×36°2,的 沿 A030A线°B6°AB.最 在 0C是=B°中短 展 R=33.垂答 解,t1Δ路 开B2B::3足∠AA0DB.线 成 它 将 B为B°AB∴∴∠答垂CDD爬 圆是 扇 A23∠中 .∴∴∠BB答:足Dr行 锥l3∴∴∠形 A答D6∠B3B:=,它为的 沿0B3AD=∠AABBB:它′66BA.3最D爬在∠ ==DA0AB0D23′B.B爬.=它D°B短B=R展23rl行,B=A=′trl行′ ×A36路,爬1开=DA×的3623A023B的03D线0=°成B6rl行则 °=.6最在0.最C×在=0是36扇°中3°的点 0短3R短=R=23.6形°,6tt10.1最CΔ路Δ路在A答 022°3A°AB是 0,.0B线B短线:BR=BB°BA°ADBAC是tB1,CB是Δ路它 B中DA2中B23A则=D30,爬线′ 23B的 °,点363∠rl行 C0是..3∠C6中 3中.B,0是的233AAB点 6,B.BD在 最 A0B3=
如图,圆锥的底面半径为1,母线长为3, 一只蚂蚁要从底面圆周上一点B出发,沿圆 锥侧面爬到过母线AB的轴截面上另一母线AC 上,问它爬行的最短路线是多少?
A
B
C
问题解决
A
解:将圆锥沿AB展开成扇形ABB’
锥沿A B展开成扇形A BB′,解则解: 点:将C圆将是锥圆B沿B锥A′的B沿展中A开解B点成展:,扇将开过形圆成A点锥 B扇BB沿′,作形A则ABB
知识准备
1、线段公理 两点之间,线段最短
2、勾股定理 在Rt△ABC中,两直角边为a、b,斜边为c,则 a2+b2=c2.
问题情境一
如图,圆锥的底面半径为1,母线长为4,一 只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面 爬行一圈再回到点B,问它爬行的最短路线是多 少?
A
B
C
思维分析
B’
圆锥的侧面展开 图如图所示,连接 BB‘,则BB’为蚂蚁 爬行的最短路径.