第7章 二次曲面
第七章第5节几种常见的二次曲面
x x 0 2 y y 0 2 z z 0 2 R 2
特殊地:球心在原点时方程为
x2y2z2R2 4
例 2求 与 原 点 O 及 M 0 ( 2 ,3 ,4 )的 距 离 之 比 为 1 :2 的 点 的 全 体 所 组 成 的 曲 面 方 程 .
与平面 z z1 (|z1|c)的交线为圆.
24
截面上圆的方程
x2
y2
a2 c2
(c2
z12).
z z1
(2 ) abc,
x2 a2
ay22
az22
1
球面
方程可写为 x2y2z2a2.
25
(二)抛物面
x2 y2 z ( p与 q同号) 2 p 2q
cz22
1
双叶双曲面
o
y
x
37
五、小结
曲面方程的概念 F (x ,y,z)0 . 旋转曲面的概念及求法. 柱面的概念(母线、准线). 椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
38
习题 75 P235
A组
1(1)2,, 3(2)4 (), 4,5
39
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
20
四、二次曲面
曲面方程: F(x,y,z)0
二次曲面: 三元二次方程所表示的曲面称之.
如 x2(y1)2z21
相应地平面被称为一次曲面.
如2xy3z0
讨论二次曲面方法:截痕法: 特殊的二次曲面.
21
(一)椭球面
x2 y2 z2 a2 b2 c2 1
椭球面与
高数第七章7-4
2 2
( x − x 0 ) + ( y − y0 ) + ( z − z 0 )
2
=R
2
(球面方程的标准式 球面方程的标准式) 球面方程的标准式
2 2 2 2 特殊地: 特殊地:球心在原点时方程为 x + y + z = R
将方程(1)展开得 将方程(
2 2 2 x 2 + y 2 + z 2 − 2 x0 x − 2 y0 y − 2 z0 z + x0 + y0 + z0 − R = 0
例1
求与原点O 及 M 0 ( 2,3,4) 的距离之比为 1 : 2 是曲面上任一点, 设 M ( x , y , z ) 是曲面上任一点, 根据题意有
的点的全体所组成的曲面方程. 的点的全体所组成的曲面方程. 解
| MO | 1 = , | MM 0 | 2
( x − 2) + ( y − 3) + (z − 4)
yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 同理: 同理:
轴旋转一周的旋转曲面方程为 轴旋转一周的旋转曲面方程为 旋转曲面方程
f y, ± x2 + z2 = 0. xoy 坐标面上的已知曲线 f ( x , y ) = 0 绕 y 轴旋转
一周的旋转曲面方程为 一周的旋转曲面方程为
o
x
z
(3) 旋转曲面 定义 一条平面曲线 绕其所在平面上的一条定 直线旋转一周所成的曲面 称为旋转曲面 旋转曲面. 称为旋转曲面. 这条定直 线这条定直线叫旋转曲 ( y , z ) = 0 绕 z 轴旋转一周所得 的旋转面方程。 的旋转面方程。 设旋转面上任意一点 M ( x , y , z ) 是由 yOz 平 面的曲线 f ( y , z ) = 0 上 一点 M1 (0, y1 , z1 ) 绕 z 轴旋转而得的, 则 轴旋转而得的,
微积分第七章空间解析几何与向量代数
第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
天津大学线性代数教材第七章
记 B = STAS, 知 B 是对称矩阵, 是二次型 g(Y ) 的矩阵.
7.2 化二次型为标准形
· 149 ·
如果所作的线性替换 X = SY 是满秩的, 则 S 是可逆矩阵, 线性替换 Y = S−1X 可把 g(Y ) 还原到 f (X), 此时的二次型 f 与 g 是等价的.
定义 7.1.4 设 A, B 为 n 阶矩阵, 若存在 n 阶可逆矩阵 S 使得
津 数 因此, 一个二次型能否化成标准形, 用矩阵的语言来说, 就是对称矩阵 A 能否与一个对 学 角矩阵合同. 由于 S 是可逆矩阵, 所以 r(A) = r(STAS) = r(B). 因此, 二次型 f 的标准形 天 大 中不为零的平方项的项数等于二次型 f 的秩.
津 7.2.1 正交线性替换法
天 实二次型的矩阵为实对称矩阵. 由定理 6.3.4 知, 对于实对称矩阵 A, 必存在 n 阶正交矩
阵 Q, 使得 QTAQ = Q−1AQ = diag(λ1, λ2, . . . , λn), 其中 λ1, λ2, . . . , λn 为矩阵 A 的全部
特征值, 即一个实对称矩阵合同于一个对角矩阵. 因此, 一个实二次型一定能化为标准形.
版 所 f (x1, x2, . . . , xn) =a11x21 + 2a12x1x2 + 2a13x1x3 + · · · + 2a1nx1xn 院 + a22x22 + 2a23x2x3 + · · · + 2a2nx2xn + · · · + annx2n
(7.1)
学 权 称为数域 P 上的 (n 元) 二次型. 当 P = R 时称之为实二次型. 版 令 aij = aji(i > j), 则 2aijxixj = aijxixj + ajixjxi(i > j), 于是 (7.1) 式可写成
高等数学下册知识点
高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
高等数学第七章:曲面及其方程
4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2
z2 c2
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 c2
z2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
x
y z
y2
(2)椭圆
a
2
z2 c2
1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21
同济第五版高数下第七章课件
向量代数与空间解析几何
一 基本要求
1.理解空间直角坐标系 理解空间直角坐标系. 理解空间直角坐标系 2.理解向量的概念及其表示 掌握单位向量、 理解向量的概念及其表示; 理解向量的概念及其表示 掌握单位向量、 方向余弦、 方向余弦、向量的坐标表达式以及用坐标表 达式进行向量运算的方法. 达式进行向量运算的方法. 3.掌握向量的运算 线性运算、内积、外积). 掌握向量的运算(线性运算 内积、外积) 掌握向量的运算 线性运算、 4.了解两个向量垂直、平行的条件. 了解两个向量垂直、平行的条件. 了解两个向量垂直
分别求适合下列条件的直线方程: 例5 分别求适合下列条件的直线方程: (1)通过点 )通过点(1,0,-3)且与平面 3 x − 4 y + z − 10 = 0 且与平面 垂直; 垂直; (2)通过点 通过点(1,0, -2)且与平面 3 x + 4 y − z + 6 = 0 通过点 且与平面 平行,又与直线 x − 3 = y + 2 = z 垂直; 垂直; 平行 又与直线
(
)
(
P0
)
l
例2 解
r uuu 已知向量OA
的模为8,且已知它与 轴和 的模为 且已知它与x轴和 且已知它与
π
r uuu ,求 OA 的坐标表达式. 的坐标表达式. 求 3
y轴正向的夹角均为 轴正向的夹角均为
r uuu 设与 OA 同向的单位向量为
1 其中 cos α = cos β = cos = 3 2 又 cos γ = ± 1 − cos α − cos β = ±
• 一般式 • 截距式
Ax + By + Cz + D = 0
高等数学-几种常见的二次曲面
母线 平行于 z 轴;
准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
y x l1
x z l3
z l2 y
母线 平行于 y 轴;
x
准线 xoz 面上的曲线 l3.
y
9
注:柱面方程与坐标面上的曲线方程容易混淆,应该
例如 :
11
下面我们重点讨论母线在坐标面,旋转轴是坐标轴 的旋转曲面.
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
z
若点 M1(0, y1, z1) C, 则有 f ( y1, z1) 0
当绕 z 轴旋转时, 该点转到
求旋转曲面方程C时,平面
z oy
27
z
4. 椭圆锥面
z
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
xx
o yy
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
绕 y 轴旋转时得旋转曲面方程:
o
f ( y, x2 z2 ) 0
y
例3. 旋转抛物面
x
特点:母线C为抛物线,旋转轴L为抛物线的对称轴。
例如:将yoz平面上的抛物线C: z2 2 py
绕 y 轴旋转一周所产生的抛物面为:
计算机图形学-第7章-消除隐藏线和隐藏面
可能的四种形体
隐藏线和隐藏面
不可见的线和面分别称为隐藏线和隐藏面。 隐藏线和面不仅仅有形体自身的,而且还 有形体之间互相遮挡的。消除它们即称为 消除隐藏线和消除隐藏面。
形体之间互相遮挡的隐藏线
当我们显示线条图或用笔式绘图仪或其 它线画设备绘制线条图形时,要解决的 主要是消除隐藏线的问题。而当用光栅 扫描显示器显示物体的明暗图形时,就 必须要解决消除隐藏面的问题。
设n={A,B,C},而
n
A ( y j )(zi z j ) i 1 n
B (zi z j )(xi x j ) i 1 n
C (xi x j )( yi y j ) i 1
式中若 i n,则j=i+1;否则i=n,j=1。 以上算法适合任何平面多边形。
非平面但接近平面的多边形的最佳逼近平面 的法矢量也可用此算法求出。为避免在程序 中出现两种计算平面外矢量的方法,建议凸 多边形也采用该算法计算外法矢量。多边形 所在平面的方程可写成
Ax By Cz D 0
其中 D ( Ax0 By0 Cz0 ,)
(x0 , y0 , z0 ) 为平面上任意一点。
7.2.2 深度检验
深度检验是比较位于同一条投射线的若干 个点的深度坐标(一般为z坐标),以确定 哪个点是可见的,将可见点表示出来。消 隐时必须进行深度检验。一般将需要比较 的各点的z坐标按递增或递减排序,也可从 中选出最大或最小的z坐标。至于选最大或 最小与所选的坐标系有关。
7.2.1 平面多边形的外法矢量
为了判别物体上各表面是朝前面还是朝后
面,需求出各表面(平面多边形)指向体外
的法矢量。设物体在右手坐标系中,多边
形顶点按逆时针排列。当多边形为凸多边
形时,则其法矢可取成多边形相邻两边矢
高等数学第七章:二次曲面
实际上,只要把方程以z轴为基准轴,绕z轴按逆时针
旋转 4 ,即做变换
x 2 ( X Y ), y 2 ( X Y ), z Z
2
2
原方程可化为 Z= 1(X2 -Y2) 2
可知,曲面是一个双曲抛物面。
坐标旋转公式
规定:坐标旋转是以坐标原点为中心进
行的。原右手系法则,规定将坐标系xoy
1. 椭球面
x2
y2
z2
1
( a, b, c均大于0).
a2 b2 c2
易知,|x|≤a, |y|≤b, |z|≤c. 为了了解曲面形状,先
以平行于 xy 面的平面z=z0(|z0|≤c)截曲面,得到 截线方程为
x2 a2
y2 b2
1
z02 c2
,
z z0.
因1 z02 0,
y y0.
5. 双叶双曲面
x2 y2 z2 1 a2 b2 c2
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
z
x2 y 2 1 z02 ,
a2 b2
c2
z z0. 双曲线 Nhomakorabeay x0
以平行于xz面的平面 y=y0截曲面, 所得截线方程为
x2 z 2 1 y02 ,
a2 c2
b2
双曲线
y y0.
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y2 b2
z2 c2
x02 a2
1, 椭圆
y y0.
6、方程 7、方程 8、方程 9、方程
x 2 y 2 z 2 0 ——(椭圆)锥面 a2 b2 c2
8.二次型与二次曲面
a=b ? a=b=c ? a=b ?
b=c ?
a=b ?
(二)、λ1 、λ2 不为零,λ3 = 0
λ1 x2+λ2 y2= c z + d y2 o x2 5 2p + 2q = z ( p、q同号) 椭圆抛物面 y2 = z ( p、q同号) o x2 双曲抛物面 6 2p - 2q 2 2 2 2 x y x y o o 8 a 2 - b 2 =1 7 a 2 + b 2 =1
x2 + y2 + z2 =1 例1:求曲线C: x2 + y2 -x =0 在xOy , zOx 坐标面上的投影.
(z≥0) ,
解:
x2 + y2 + z2 =1 在xOy面上的投影为 x2 + y2 -x =0 往zOx 面上投影: x2 + y2 + z2 =1 (消去y) x2 + y2 -x =0 z2 + x = 1 y =0 x2 + y2 -x =0 z =0
柱面特点: 含有两个变量的方程在空间表示柱面. C: f ( x,y )=0 ( z为母线) S: f (x,y)=0
z=0
柱面名称:与母线名称对应.
(1).椭圆柱面
x2 y2 2 1 2 a b
z
当 a=b 时,为圆柱面:
x2 y2 a2
o x
y
(2).双曲柱面
z
x2 z2 2 2 1 a b
2 2
√2 2 0 √2 2
0
1
0
,
f(x,y,z)=6x2-2y2+6z2+4xz+8x-4y-8z -2=0 .
高等数学第七章第六部分
一、旋转曲面 二、二次曲面
研究空间曲面有两个基本问题:
(1)已知曲面作为点的轨迹时,求曲面方程. (讨论旋转曲面)
(2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)
一、旋转曲面
定义 以一条平面曲线绕其平面上的一条直线旋 转一周所成的曲面称为旋转曲面.
这条定直线叫旋转曲面的轴.
原点也叫椭圆抛物面的顶点.
与平面 z z1 (z1 0)的交线为椭圆.
x2
2
pz
1
y2 2qz1
1
z z1
当 z 1 变动时,这种椭 圆的中心都在 z轴上.
z
与平面 z z1 (z1 0)不相交.
(2)用坐标面 xo(yz0)与曲面相截
截得抛物线
x2
2 pz
z
z
o y
x
p0, q0
xo
y
p0, q0
特殊地:当 pq时,方程变为
x2 y2 z (p0) 旋转抛物面 2p 2p (由 xo面z 上的抛物线 x2 2pz绕它的轴
旋转而成的)
与平面 z z1 (z1 0)的交线为圆.
x2
y2
2pz1
z z1
当 z 1 变动时,这种圆 的中心都在 z轴上.
z
x a
2 2
z c
2 2
1 ,
y
0
y2 b2
z2 c2
1.
x 0
o x
y
椭球面与平面 z z1 的交线为椭圆
第七章-3.-曲面方程
z
C
M1 (0, y1, z1 )
f ( y1, z1) = 0
当绕 z 轴旋转时, 该点转到 M(x, y, z) , 则有
M(x, y, z)
z = z1,
x + y = y1
2 2
o
y
故旋转曲面方程为
x
f ( ± x2 + y2 , z) = 0
当曲线 C 绕 y 轴旋转时,方程如何?
z
C : f ( y, z) = 0
=1
z = z1
同样 y = y1 ( y1 ≤ b ) 及 的截痕 也为椭圆. 椭圆截面的大小随平面位置的变化而变化.
椭球面与平面 z = z1 的交线为椭圆
x y + 2 =1 a2 b 2 2 2 2 (c z1 ) 2 (c z1 ) 2 c c z = z1 | z1 |< c
f (± x + y , z) = 0
2 2
柱面 如,曲面F(x, y) = 0表示母线平行 z 轴的柱面. 又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面 椭球面 抛物面:
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 + =z 2 p 2q 双曲面: 单叶双曲面 双叶双曲面 x2 y2 x2 y2 + 2 + 2 =1 = 1 2 2 a b a b 2 2 x y 椭圆锥面: + 2 = z2 a2 b
当 z1 变动时,这种圆 的中心都在 z 轴上.
x y + = z ( p 与 q 同号) 2 p 2q
双曲抛物面(马鞍面) 用截痕法讨论: 设 p > 0, q > 0 图形如下:
《高等数学》第7章空间向量与空间解析几何精编版
M OQ F OP F sin
O Q
P
F L
向量积
定义 给定两个向量 a和b,a和b的向量积(或外积)仍是一个
向量,记作a
b,其大小为
ab
a
b
sin
(a,b),其
方向规定为与
a和b都垂直,且a,b,
a
b 构成右手系.
向量积模的几何意义 以 a,b为邻边的平等四边形的面积.
右手系规则图示
x1 x2
x
O M1 P
( x2 x1 )2 ( y2 y1 )2 (z2 z1 )2
M2
Q y1
y2 y
M2 (Q )
两点间距离公式:
d M1M2 x2 x1 2 y2 y1 2 z2 z1 2
特别地,点 M ( x , y , z) 与原点O ( 0 , 0 , 0 ) 的距离:
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z
Ⅲ
Ⅱ
Ⅳ
Ⅰ
O
Ⅶx
Ⅴ
Ⅷ
Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第
I卦限.在xOy面的上方,从第I卦限开始,按逆时
,则:
a
b
ay by
az bz
, ax bx
az bz
, ax bx
ay
by
例题
已知ABC的顶点分别是A(1,2,3),B(3,4,5),
C(2,4,7),求ABC的面积.
解:
第七章 图形的表示
数学中的点、线、面是其所代表的真实世界中的 对象中的一种抽象,它们之间存在着一定的差距。例 如,数学中的平面是二维的,它没有厚度,体积为0; 而在真实世界中,一张纸无论多么薄,它也是一个三 维体具有一定的体积。这种差距造成了在计算机中以 数学方法描述的形体可能是无效的,即在真实世界中 可能不存在。尽管在有的情况下要构造无效形体,但 用于计算机辅助设计与制造系统设计生产的形体必须 是有效的,所以在实体造型中必须保证实体的有效性 ,原则上的标准是要求“客观存在”。
第7章 图形的表示
图形的表示方法一直是计算机图形学关注的主要问 题。在计算机图形学发展的旱期,计算机图形系统的性 能较差,线框模型是表示三维物体的主要方法。线框模 型仅仅通过定义物体边界的直线和曲线来表示三维物体 ,其特点是模型简单目运算速度较快,但由于每一条直 线或四线都是单独构造出来的,不存在面的信息,因此 三维物体信息的表示不全面,在许多场合不能满足要求 。事实上,研究表示复杂形体的模型与数据结构是计算 机造型等技术的关键。经过近20年的发展,买体的边界 表示法、扫描表示法、构造的实体几何法及八叉树表示 法等已经发展成熟。
7.2 实体表示的三种模型
形体在计算机中常用线框模型、表面模型和实体 模型三种模型来表示。线框模型是在计算机图形学和 CAD、CAM领域中最早用来表示形体的模型,并且至 今仍在广泛应用。线框模型是用顶点和棱边表示形体 ,其特点是结构简单,易于理解,并是表面和实体模 型的基础。如前所述,用线框模型表示形体时曲面的 轮廓线无法随视角的变化而改变;线框模型无法给出 全部连续的几何信息,只有顶点和棱边,不能明确地 定义给定的点与形体之间的关系,以致不能用线框模 型处理计算机图形学和CAD、CAM领域中的多数问题 ,如图7.8所示。
高等数学第七章课件.ppt
a
(2) 三角形法则
b
向量的加法符合下列运算规律:
((12))交结换合律律::aa
b b
cb
(aa.
b)
c
a
a a
(b
b
c ).
多个向量相加,可以按照三角形法则.
负向量:大小相a 等但方向a相反的向量.
减法:a b a (b)
ab
b
a
ab
特例:a
(a)
0.
b
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
λα
φ1 = φ φ1=π- φ
Prj(λα)= 0 =λPrjlα;
λ<0
(二) 向量的坐标表示
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
向量平行 方向相反或者方向b 相同的向量a
a//b
零向量和任何向量都平行.
三、向量的线性运算
(一) 向量的加 减法
加法:a b c
(1) 平行四边形法则
b c
a
b
c
a
(b )
ab
(向(二((123量))))aa向与000,,,量实aaa与数与 与数aa0的2同 的反a乘向乘向法,积,|| 记aa作|||a||12,a规a||a定 | a是一个向量.
第七章二次型分析
第七章 二次型二次型是型论的内容之一,是非线性的.二次型的研究源于解析几何中对有心二次曲线和二次曲面方程的化简.由于实二次型的讨论,可以转化为对实对称矩阵的讨论,所以将它纳入线性代数的内容,本章内容可以看作矩阵化简理论一个方面的应用.本章的重点是实二次型化标准形及正定二次型.7.1 二次型及其矩阵定义1 数域F 上的一个二次齐次多项式n n n x x a x x a x a x x x f 112112211121),,,(+++=n n x x a x a x x a 2222221221++++++22211n nn n n n n x a x x a x x a +++∑∑===n i nj j i ij x x a 11, (1)称为F 上的一个n 元二次型.),,2,1,(n j i F a ij =∈称二次型),,,(21n x x x f 的系数.由于i j j i x x x x =,令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A212222111211, 其中n j i a a ji ij ,,2,1,, ==.即A 为对称矩阵:A A T=.那么(1)可表为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n n n x x x a a a a a a a a a x x x x x x f 212122221112112121),,,(),,,( AX X T=, (2)其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21.(2)称为(1)的矩阵表示式,称A 为二次型),,,(21n x x x f 的矩阵. A 的秩称为该二次型的秩.显然,每一个n 元二次型都对应一个n 阶对称矩阵.例1 三元二次型23322121321232),,(x x x x x x x x x f ++-=的矩阵⎪⎪⎪⎭⎫ ⎝⎛--=20010112323A .下面我们主要讨论实数域R 上的二次型,即对实对称矩阵进行讨论.我们的目的是化实对称矩阵为对角形矩阵.实对称矩阵有如下性质:性质1 实对称矩阵的特征值都是实数.证 设A 是n 阶实对称矩阵,λ为A 的特征值,Tn x x x ),,,(21 =α是属于特征值λ的特征向量.即有.λαα=A (3)令α为α的共轭向量,A 为A 的共轭矩阵(由A 的元素ij a 的共轭数ij a 构成).由(3)两边取共轭有λαα=A ,即αλα=A .因A A =,所以αλα=A . (4)对(4)两边取转置,得T T T A αλα=. (5)用α右乘(5)两边,得ααλααααααλTT T T T A A ===.于是0)(=-ααλλT .由222212211||||||n n T x x x x x x x x x +++=+++= αα,而0≠α,则有ααT>0.因此0=-λλ,即λλ=,故λ为实数.性质2 实对称矩阵的属于不同特征值的特征向量正交.证 设21,λλ是实对称矩阵A 的两个不同的特征值,21,αα是分别属于21,λλ的特征向量(实n 元列向量),即有111αλα=A , 222αλα=A ,那么><>=>=<<21121121,,,ααλααλααA .又><====>=<21221221212121,)(,ααλααλααααααααT T T T T A A A A . 于是0,)(2121>=<-ααλλ.而021≠-λλ,故0,21>=<αα,即21,αα正交.性质3 n 阶实对称矩阵相似于n 阶对角形矩阵. 证 对n 采用归纳法. 2=n ,令⎪⎪⎭⎫ ⎝⎛=c b b a A .若0=b ,A 已是对角形矩阵.若0≠b ,由22)(||b ac c a cb ba A E -++-=----=-λλλλλ. (6)(6)式右端为λ的二次三项式,其判别式22224)()(4)(b c a b ac c a +-=--+=∆>0.因而A 有两个不同的特征值,由定理6.3.1的推论,A 可对角化.设对1-n 阶实对称矩阵,结论成立.当A 为n 阶实对称矩阵时,设111αλα=A .由于0≠k ,1αk 也属于1λ的特征向量,于是可取1α为单位向量.令),,,(211n p ααα =为正交矩阵,则有),,,(212111111n T n T T TA A A AP p AP p αααααα ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-,212221212111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T n T n T nn TT T n T T T A A A A A A A A A αααααααααααααααααα该矩阵仍为对称矩阵.而.1,1,0,,111111≠=⎩⎨⎧>=<==j j A j Tj T j λααλαλααα 于是.00001111⎪⎪⎪⎪⎪⎭⎫⎝⎛=-BAp p λ 其中B 为1-n 阶对称矩阵.由归纳假设,有(1-n )阶可逆矩阵Q ,使得.321⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n BQ Q λλλ令,0012⎪⎪⎭⎫⎝⎛=Q p且令21p p p =,则⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----Q B Q p Ap p p Ap p 00100001112111121λ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n λλλ 21. (7)实对称矩阵的讨论可以放在欧氏空间中进行.一个实对称矩阵A 化对角形矩阵,先求出A 的全部特征值(它即为对角矩阵中的元素)及相应的特征向量.将A 的属于同一特征值的特征向量正交化,单位化,仍为A 的属于该特征值的特征向量.由于属于不同特征值的特征向量正交,那么,此时A 的这n 个特征向量均为单位向量,且两两正交.以它们为列构成(7)式中的p ,则p 为正交矩阵.于是有定理7.1.1 A 是n 阶实对称矩阵,则一定存在n 阶正交矩阵U ,使得AU U T为对角形矩阵.定义2 设A ,B 是数域F 上两个n 阶矩阵,如果存在F 上的一个n 阶可逆矩阵p ,使得B AP P T = (8)那么就称A 与B 合同,记为A ≈B .矩阵的合同关系具有以下性质:1°自反性: A ≈A . 在(8)中取E P =即可.2°对称性: 若A ≈B ,则有可逆矩阵P ,使B AP P T =.于是11)(--BPP TTP )(1-=A BP =-1.即有B ≈A .3°传递性: 若A ≈B ,B ≈C ,则有可逆矩阵P ,Q ,使得B AP P T =, C BQ Q T=.于是C BQ Q APQ P Q PQ A PQ TT T T ===)()(,即有A ≈C .若A ≈B ,显然秩(A )=秩(B ).定理7.1.1说明,任意一个实对称矩阵都合同于一个对角形矩阵.例2 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A求正交矩阵U ,使AU U T为对角形.解 A 的特征多项式)2)(4)(1(20212022+--=--=-λλλλλλλA E , 特征值为:2,4,1-===λλλ. 对,1=λ求得齐次线性方程组⎪⎩⎪⎨⎧=+=+=+-0202202323121x x x x x x 的基础解系T)2,1,2(1--=α.对应,42=λ23-=λ的齐次线性方程组分别求得基础解系: T )1,2,2(2-=α,T )2,2,1(3=α.将321,,ααα单位化得:T )32,31,32(1--=η, T )31,32,32(2-=η, T )32,32,31(3=η.于是 ⎪⎪⎪⎭⎫⎝⎛---=21222112231U ,而 ⎪⎪⎪⎭⎫ ⎝⎛-=241AU U T .习 题1.写出下列实二次型的矩阵.(1) ;4232),,(233222312121321x x x x x x x x x x x x f --+-+=(2) 433241312143216532),,,(x x x x x x x x x x x x x x g +-+-=;(3) 232221321432),,(x x x x x x h +-=.2.设⎪⎪⎪⎭⎫ ⎝⎛----=320222021A ,求可逆矩阵AP P P T使,为对角形.3.设A 是一个可逆对称矩阵.证明,1-A ≈A .4.A 为四阶实对称矩阵,秩(A )2=,问与A 合同的对角形矩阵有哪几种情况?*5. 设σ是欧氏空间V 的一个线性变换,若V ∈∀ηξ,有>>=<<)(,),(ησξηξσ,则称σ是一个对称变换.证明对称变换σ在V 的任一个标准正交基下的矩阵是对称矩阵.7.2 实二次型的标准形我们已经知道,如果A 是n 阶实对称矩阵,秩r A =)(≤n ,那么,总存在n 阶可逆矩阵P ,有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0021rTd d d AP P . (1) 显然,与(1)中这个对角形矩阵相应的二次型只含有变量的平方项,即为.2222211r r y d y d y d +++ 称此二次型为与A 相应的二次型的标准形.如何将一个二次型化为标准形,定理7.1.1已经给出了一个方法.事实上,设实二次型AX X x x x f T n =),,,(21 .其中,21⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X TA A =.由定理7.1.1,则有正交矩阵P ,使得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T AP P λλλ21. 令,PY X =,),,,(21Tn y y y Y =那么)()(),,,(21PY A PY AX X x x x f TT n ==),,,()(21n TT y y y Y AP P Y ==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y 21. (2) (2)中A n 为λλλ,,,21 的全部特征值.P 的第j 列为属于j λ的特征向量正交化、单位化后所得的特征向量.上述这种化二次型为标准形的方法,称为正交变换法.如果不考虑求正交矩阵P ,那么,求出实二次型矩阵的全部特征值后,便可得到该二次型的标准形.在正交变换法中,PY X =( P 为正交矩阵),称为坐标的正交变换.解析几何中.就是通过这种坐标的正交变换,将有心二次曲线或二次曲面方程化为标准形式的.正交变换法中,如果要求出正交矩阵P ,显然是比较麻烦的.下面我们再给出两种化二次型为标准形的方法.1.初等变换法 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T d d d AP P21, 由P 可逆,令s p p p P 21=,),,2,1(s i p i =为初等矩阵,那么有⎪⎪⎪⎪⎪⎭⎫⎝⎛=s S TT T s d d d P P AP P P P212112. (3) 又P P P EP s = 21. (4)(3)与 (4)说明,对A 施行某一类行初等变换后,同时施行相应的列的初等变换,并且对单位矩阵A E 随施行同样的列变换,当A 化成对角矩阵时,那么E 化为可逆矩阵P .综合(3)、(4),可表成如下形式:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛P D E A ,其中D 为对角形矩阵.这种化实二次型为标准形的方法称为初等变换法.例1 用初等变换法化下列二次型为标准形32312123222132142224),,(x x x x x x x x x x x x f +++---=.解 ),,(321x x x f 的矩阵⎪⎪⎪⎭⎫ ⎝⎛---=221241111A .−−→−⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛++)1()3()1()2(100010001221241111E A ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100010111130330001−−→−+)2()3(⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--100110211200030001. 所以⎪⎪⎪⎭⎫ ⎝⎛=100110211P ,而经可逆变量替换PY X =,23222132123),,(y y y x x x f +--=.2.配方法.配方法是将二次型的一些项,配成全完平方项,逐步通过可逆的变量替换,最后化成只含新变量的平方项的二次型例2 用配方法化下列二次型为标准形2332312122213214642),,(x x x x x x x x x x x x f +++++=.解 3223213212)]2([),,(x x x x x x x x f +++=令32112x x x y ++=, 32112y y y x --=, 22x y =,或22y x =,33x y =.33y x =.经变量替换Y p X 1=,其中⎪⎪⎪⎭⎫ ⎝⎛=321x x x X , ⎪⎪⎪⎭⎫ ⎝⎛=321y y y Y , ⎪⎪⎪⎭⎫⎝⎛--=1000102111p ,有 32213212),,(y y y x x x f +=.再令11z y =, 2y = 32z z +,=3y 32z z -.经变量替换 ,2Z P Y =其中⎪⎪⎪⎭⎫ ⎝⎛-=1101100012p , ⎪⎪⎪⎭⎫ ⎝⎛=321z z z Z ,有 3322212121222z z z y y y -+=+.令⎪⎪⎪⎭⎫ ⎝⎛--==11011013121p p p ,那么,经可逆变量替换PZ X =有23222132122),,(z z z x x x f -+=.采用初等变换法或配方法化二次型为标准形,由于变换过程不同,或者选择配方的变量不一样,所化得的标准形可能不同,但标准形中,所含变量的平方项的个数都是一样的,这是因为两个相似或合同的矩阵有相同的秩.一个二次型经过变量的替换后,化成一个含新变量的二次型,那么,称这两个二次型是等价的.于是可以说,一个实二次型与它的标准形等价.为了避免实二次型的标准形可能出现的不唯一性,我们需要将它的标准形作进一步的规范.设n A 是阶实对称矩阵,秩)(A =r (0<r <n ),P 为实可逆矩阵,且⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0021r Td d d AP P .必要时,交换对角矩阵中的两列和两行(相当于对它右乘以ij R 左乘以Tij R ),因而,总可以假定p d d ,,1 >0; r p d d ,,1 +<0, 0≤p ≤r .令⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=11||1||11 r d d Q , 则有.0000000⎪⎪⎪⎭⎫⎝⎛-=-Pr PT T E E APQ P Q 于是我们得到定理7.2.1 任意一个秩为r 的实n 元二次型,都与如下一个二次型等价:.221221r P P y y y y ---+++ (5)二次型(5)称为实二次型的规范形.下面我们进一步证明(5)中的P 也是唯一确定的,即有定理7.2.2(惯性定理) 实二次型的规范形是唯一的.证 设实二次型),,,(21n x x x f 的秩为r ,且经过可逆变量替换BY X =和CZ X =分别化为22122121),,(r p p n y y y y x x x f ---++=+ 和22122121),,(r q q n z z z z x x x f ---++=+ . 即经 BY C Z 1-=,有221221221221r p p r q q y y y y z z z z ---++=---++++ (6)假设p >q ,令⎪⎪⎪⎪⎪⎭⎫⎝⎛=-nn n n n n t t t t t tt t t B C 2122221112111. 那么,BY C Z 1-= 即为⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.22112222121212121111n nn n n n nn nn y t y t y t z y t y t y t z y t y t y t z (7)考虑齐次线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧===+++=++++,0000122111212111n p n qn q q n n y y y t y t y t y t y t y t (8)(8)中方程个数为 )()(q p n p n q --=-+<n ,因而有非零解:),,,,,(11n p p k k k k +,其中,01===+n p k k .将它代入(6)的右端得221p k k ++ >0,又代入(8)的前q 个方程知(7)中有01===q z z ,于是(6)的左端221r q z z ---+ ≤0,矛盾.因而p ≤q ,同法可得q ≤p ,从而q p =.规范形(5)中的p 称实二次型的正惯性指数,p r -称为负惯性指数,r p p r p -=--2)(称为二次型的符号差,记为s ,即r p s -=2.由惯性定理得,推论 两个实二次型等价,当且仅当它们有相同的秩和符号差.习 题1.用正交变换法,化二次型为标准形31232221321422),,(x x x x x x x x f +-+=.2.分别用初等变换法和配方法,将二次型2332222121321242),,(x x x x x x x x x x f -+-+=化为标准形.3.求下列二次型的秩、正惯性指数和符号差. (1);262),,(313221321x x x x x x x x x f +-=(2).4242),,(3221232221321x x x x x x x x x x f ++++=4.将等价的二次型作为一类,证明,所有的n 元实二次型共有)2)(1(21++n n 个类.7.3 正定二次型一个n 元实二次型AX X x x x f Tn =),,,(21 ,实际上可以看成定义在实数域R 上的一个n 元实函数.用Tn c c c X ),,,(210 =取代X ,得到一个唯一确定的实数0021),,,(AX X c c c f Tn = ,称该实数为),,(1n x x f 在0X X =时的值.定义 1 设有n 元实二次型AX X x x x f Tn =),,,(21 ,如果对于任何一组不全为零的实数n c c c ,,,21 ,都有),,,(21n c c c f >0,那么称),,,(21n x x x f 是正定二次型.正定二次型的矩阵A 称为正定矩阵(A 是正定矩阵简称A 正定).定理7.3.1 n 元实二次型AX X x x x f Tn =),,,(21 正定的充分必要条件是它的正惯性指数n p =.证 若),,,(21n x x x f 的正惯性指数n p =,则经可逆变量替换PY X =,可化为规范形2222121),,,(n n y y y x x x f +++= . (1)任取0),,,(210≠=Tn c c c X ,代入X PY =,得线性方程组0X PY =.由p 可逆及00≠X ,可得唯一非零解010X p Y -=.令.0),,,(210≠=T n b b b Y 得2222121),,,(n n b b b c c c f +++= >0.故),,,(21n x x x f 是正定二次型.反之,若AX X x x x f Tn =),,,(21 正定,而正惯性指数p <n .1=.设秩p A =)(,则该二次型经可逆变量替换Z Q X 1=,化为规范形:.),,,(221222121n n n z z z z x x x f -+++=- (2)取Tp n p Z )1,,1,0,,0(0个个-=,得010Z Q X =.由00≠Z 且1Q 可逆,知00≠X .令0),,,(210≠=T n k k k X ,代入(2),得0),,,(21=n k k k f ,与),,,(21n x x x f 正定矛盾.2).设秩()p r A >=,则该二次型经可逆变量替换W Q X 2=化为规范形:.),,,(22122121r p p n w w w w x x x f ---++=+取Tp n p W )1,,1,0,,0(0个个-=.同样可得.0),,,(210≠=T n t t t X 而,0)(),,,(21<--=p r t t t f n 必与),,,(21n x x x f 正定矛盾.故.n p =由定理7.3.1,可得推论1 n A 是阶实对称矩阵,A 正定的充分必要条件是A 的所有特征值都大于零. 推论2 n 阶实对称矩阵A 为正定矩阵的充分必要条件是A 合同于单位矩阵n E . 由推论1,2可知, A 是正定矩阵,那么A 对应的二次型是正定二次型.这样,对正定二次型的讨论可以转化为对正定矩阵的讨论,下面给出正定矩阵的几个性质.性质1 实对称矩阵A 正定的充分必要条件是存在可逆的实矩阵Q ,使得Q Q A T=.事实上,若A 正定,那么有可逆矩阵p ,使n T E AP P =.于是.)()(1111----==P P PP A T T令1-=P Q ,则有Q Q A T =.反过来,若Q Q A T=,且Q 可逆,那么.)()(1111E AQ Q AQ Q T T==----令1-=Q P ,便有E AP p T=,由定理7.3.1的推论2知,A 正定.性质2 实对称矩阵A 正定,则||A >0事实上,在性质1中,对Q Q A T=两边取行列式即得.为了直接从A 来判定A 是否正定,我们先给出定义2 设n a A ij 是)(=阶实对称矩阵,由A 的前k 行,前k 列的元构成的k 阶子式kkk k kk a a a a a a a a a212222111211,称为A 的k 阶主子式(或称k 阶顺序主子式).取,,,2,1n k =便得到A 的所有主子式.定理7.3.2 A 是n 阶实对称矩阵, A 正定的充分必要条件是A 的所有主子式都大于零.证 设),,,(21k k x x x f 为k 元二次型,其矩阵为k k ij k a A ⨯=)(.任取0),,,(210≠=T k c c c X 代入k f ,有∑==kj i jiij k k c c a c c c f 1,21.),,,(令Tk n k c c X )0,,0,,,(11个-=,则01≠X .由),,,(21n x x x f 正定,有),,,()0,,0,,,(211k k k c c c f c c f =>0,因此),,,(21k k x x x f 正定,从而k A 正定,由性质2, |k A |>0,.,,2,1n k =反之,设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A212222111211. A 的所有主子式||k A >0,n k ,,2,1 =.从第二行起,逐步对A 的第i 行,第i 列施行同样的第三类初等变换,首先有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→0000111B a A , 其中11a >0,1B 仍为对称矩阵(因为122112)(P P P P P AP P P P s T T S T T s =TT P AP 21 i T S P P , 为第三类初等矩阵).如此下去,最后得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→n d d a A211. (3) 由行列式的性质得知||111A a =>0,||2211A d a =>0,…,||211A d d a n = >0,因此11a >0,i d >0,n i ,,2 =.而(3)相当于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T d d a AP P211, 其中p 为第三类初等矩阵的乘积,而A 对应的二次型经可逆变量替换PY X =,有.),,(222221111n n n y d y d y a x x f +++=),,,(21n x x x f 的正惯性指数n p =,因而),,(1n x x f正定,故A 正定.例1 证明A 是正定矩阵⎪⎪⎪⎭⎫⎝⎛=521241111A . 证 由于A 的主子式1||1=A >0,34111||2==A >0,1||=A >0.所以A 正定.例2 λ为何值时,二次型3231212322213214225),,(x x x x x x x x x x x x f +-+++=λ是正定二次型.解 ),,(321x x x f 的矩阵⎪⎪⎪⎭⎫ ⎝⎛--=5212111λλA .A 的主子式11=A , 22111λλλ-==A ,.45521211123λλλλ--=--=A由⎩⎨⎧---λλλ45122 >0>0解得54-<λ<0.即当54-<λ<0时,所给二次型为正定二次型. 与正定二次型相仿,我们可以定义负定二次型,半正定二次型.即对任意的0),,(2,1≠=T n x x x X ,若AX X x x x f T n =),,,(21 <0,那么称),,(2,1n x x x f 为负定二次型;若有AX X x x x f T n =),,,(21 ≥0,那么称),,(2,1n x x x f 为半正定二次型.习 题1.下列矩阵中,哪些是正定矩阵(1) ;5221⎪⎪⎭⎫ ⎝⎛ (2);4331⎪⎪⎭⎫⎝⎛ (3)⎪⎪⎪⎭⎫⎝⎛510142022.2.下列二次型中,哪些是正定二次型(1) 3121232221443210x x x x x x x +++-; (2) 32312123222148455x x x x x x x x x --+++.3.λ取何值时,下列二次型是正定的.313221232221222)(x x x x x x x x x --+++λ.4.证明:如果A 正定,那么1-A 、)0(>k kA 、*A 也正定.5.如果n B A 为,阶正定矩阵,证明B A +也是正定矩阵.。
七章二次型与二次曲面
得正交阵 .
则 注:正交变换不惟一,但正交变换得到的标准形是惟一的.(不考虑对角元的次序时)
所以得同解方程组为 得基础解系为 . 正交化:
∥
单位化:
当 时,由方程组
即
ቤተ መጻሕፍቲ ባይዱ 得基础解系为 ,单位化为 .
4.(二次型的变换)合同二次型 设二次型 ,经可逆线性变换 ( 可逆) 其中 ,即 与 合同, 仍是对称阵. 所以经可逆线性变换后,二次型的对应矩阵是合同的. 也可以说:合同的矩阵是同一二次型关于不同变量的矩阵[我们教材是将变量看成 个基下的坐标, 是一个基到另一个基的过渡矩阵,合同阵是不同基下的矩阵].
7.1 实二次型 7.1.1 二次型的定义及矩阵表示
1.定义7.1 n个变量 的二次齐次函数 称为 n 元二次型,简称二次型.
定理7.2 设 元实二次型 经实可逆线性变换 分别化成标准形
及
则 中正数的个数,负数的个数及0的个数都与 中正数的个数,负数的个数及0的个数相同,正数的个数称为 的正惯性指数,记为 负数的个数称为 的负惯性指数,记为 .
5.实对称阵 (不但和对角阵相似,也与对角阵合同). 由于实对称可正交相似对角化. 所以存在正交阵 ,使 所以实对称阵 都与对角阵合同. 换句话说,就是任意实二次型都可通过一个适当的可逆线性变换化成只有平方项 而没有混合项 . 这就引出了二次型的标准形的概念.
(2)由 , 得 的特征值为 .
(3)对 时,解 . 即
7.2.3 用初等变换法化二次型为标准形 矩阵的初等变换法是对二次型矩阵 ,构造一个 的矩阵 ,对 交替作初等行变换和相应的初等列变换, 对 作列变换时,同时对 作相同的列变换,当 化作标准形时, 就化作了 . 这就是作可逆线性变换那个可逆矩阵. 对角阵.
数学论文 常见二次曲面上的特殊曲线-圆截线
毕业论文(设计)评语及成绩论文类型:理论研究型评语:该论文对常见二次曲面上的特殊曲线——圆截线展开了深入地研究,并且在前人的基础上用新方法讨论了一般二次曲面上的圆截线。
论文选题新颖,论点正确,论据充分,论证严谨,条理清晰,结构完整,系统逻辑性强,表现出有较强的专业理论基础,并在一些问题的阐述中有一定的拓展和延伸,有自己的见解、有创新,有一定的理论及应用价值。
作者在文中查阅了大量的资料,论文书写规范。
同意提交答辩。
指导教师(签字)年月日评语及评分成绩:答辩委员会主席(签字)年月日院(系)学位评定委员会意见:签字:年月日学校学位评定委员会意见:签字:年月日目录摘要 (1)Abstract (2)前言 (3)第一章二次曲面的一般理论 (4)1.1 二次曲面的概念 (4)1.2 二次曲面的分类 (4)第二章二次曲面的圆截线 (6)2.1 特殊二次曲面的圆截线 (6)2.1.1 椭球面的圆截线 (6)2.1.2 双曲面的圆截线 (6)2.1.3 抛物面的圆截线 (7)2.1.4 椭圆柱面的圆截线 (7)2.1.5 二次锥面的圆截线 (8)2.2 一般二次曲面的圆截线 (8)2.2.1 圆截线存在的条件 (8)2.2.2 一般二次曲面的圆截线 (11)第三章二次曲面圆截线公式的应用 (15)3.1 二次曲面圆截线所在平面 (15)3.1.1 二次锥面的圆截线平面 (15)3.1.2 椭圆球面的圆截线平面 (16)3.1.3 椭圆柱面的圆截线平面 (16)3.1.4 双曲面的圆截线平面 (17)3.1.5 椭圆抛物面的圆截线平面 (17)3.2 二次曲面圆截线的应用 (18)注释 (21)后记 (22)摘要在解析几何和画法几何中,对二次曲面的圆截线问题都有过研究,这是因为研究二次曲面的圆截线无论对丰富解析几何和画法几何理论,还是对生产实际应用都具有一定的价值。
前人采用从平面与曲面的截口问题入手,用平行截割法进行研究,讨论二次曲面圆截线及其性质。