专题10 函数与方程(原卷版)

合集下载

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版

2023年中考数学高频考点二次函数与一元二次方程专题训练原卷版一、综合题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x的取值范围.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根为;(2)不等式ax2+bx+c>0的解集为;(3)y随x的增大而减小的自变量x的取值范围为;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.3.在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(-5,6)时,求抛物线的表达式及顶点坐标;(2)当直线y=-x+l与直线y=x+3关于抛物线C的对称轴对称时,求m的值;(3)若抛物线C:y=mx2+4x+l(m>0)与x轴的交点的横坐标都在-l和0之间(不包括-l和0).结合函数的图象,求m的取值范围.4.已知抛物线y=x2+bx-3与x轴交于A(-3,0),B两点,交y轴于点C。

(1)求该抛物线的表达式;(2)求△ABC的面积。

5.已知:二次函数y=−x2+2x+m.(1)如果二次函数图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB解析式.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.设b为常数,已知二次函数y=−2x2−2bx+b2+1.(1)求证:无论b为何值,该二次函数的图象与x轴一定有两个不同的交点;(2)若把二次函数的图象沿y轴方向平移2个单位长度,则使得该二次函数的图象与x轴恰有一个公共点,求b的值.8.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)当m取何值时,ax2+bx+c=m有两个不相等的实数根.9.如图,将函数y=x2﹣2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2﹣2|x|的图象.(1)观察思考函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;方程x2﹣2|x|=2有个实数根;关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是;(2)拓展探究①如图2,将直线y=x+1向下平移b个单位,与y=x2﹣2|x|的图象有三个交点,求b的值;②如图3,将直线y=kx(k>0)绕着原点旋转,与y=x2﹣2|x|的图象交于A、B两点(A左B右),直线x=1上有一点P,在直线y=kx(k>0)旋转的过程中,是否存在某一时刻,△PAB是一个以AB为斜边的等腰直角三角形(点P、A、B 按顺时针方向排列).若存在,请求出k值;若不存在,请说明理由.10.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.11.已知关于x的二次函数y=ax2+bx+c( a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0).(1)求c的值和a,b之间的关系式;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<l时,求证:S1-S2为常数,并求出该常数.12.我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(﹣1,1),则点P为二次函数y=x2图象上的“互反点”.(1)求一次函数y=﹣2x﹣3的“互反点”.(2)若二次函数y=x2﹣(2a+1)x+a只有一个“互反点”,且与y轴交于正半轴,求当1≤x≤3时,y的取值范围.(3)若对于任意的实数n,在二次函数y=(m+1)x2+nx+n﹣1的图象上,恒有两个相异的“互反点”,求m的取值范围.13.如图1,已知抛物线L:y=ax2+bx﹣1.5(a>0)与x轴交于点A(-1,0)和点B,顶点为M,对称轴为直线l:x=1.(1)直接写出点B的坐标及一元二次方程ax2+bx﹣1.5=0的解.(2)求抛物线L的解析式及顶点M的坐标.(3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′,L′与直线l相交于点N.设点P的横坐标为m①当m=5时,PM与PN有怎样的数量关系?请说明理由.②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?③是否存在这样的点P,使△PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由.14.平面直角坐标系中,抛物线C1:y1=x2-2mx+2m2-1,抛物线C2:y2=x2-2nx+2n2-1,(1)若m=2,过点A(0,7)作直线l垂直于y轴交抛物线C1于点B、C两点.①求BC的长;②若抛物线C2与直线l交于点E、F两点,若EF长大于BC的长。

2022年初升高暑期数学精品讲义专题10 函数的三要素重难点突破(原卷版)

2022年初升高暑期数学精品讲义专题10 函数的三要素重难点突破(原卷版)

专题10 函数的三要素一、考情分析二、经验分享【重难点1.函数的定义域】当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,求函数定义域的一般方法有:①分式的分母不为0;②偶次根式的被开方数非负;③要求;y x =0x ≠④当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合;⑤已知的定义域,求的定义域,其实质是由的取值范围,求出的取值范围;()f x [()]f g x ()g x x ⑥已知的定义域,求的定义域,其实质是由的取值范围,求的取值范围;[()]f g x ()f x x ()g x ⑦由实际问题建立的函数,还要符合实际问题的要求.名师提醒:(1)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.(2)已知函数的定义域,逆向求解函数中参数的取值或取值范围,需运用分类讨论以及转化与化归的方法,转化为方程或不等式的解集问题,根据方程或不等式的解集情况来确定参数的值或取值范围.这种思想方法即通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.【重难点2.求函数值或函数的值域】(1)函数求值即用数值或字母代替表达式中的x ,而计算出对应的函数值的过程.注意所代入的数值或字母应满足函数的定义域要求.求函数值应遵循的原则:①已知的表达式求时,只需用a 替换表达式中的x .()f x ()f a ②求的值应遵循由里往外的原则.()f f a ⎡⎤⎣⎦③用来替换表达式中x 的数a 必须是函数定义域内的值.(2)求函数的值域,应根据各个式子的不同结构特点,选择不同的方法:①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此方法是求“二次函数类”值域的基本方法,即通过配方把函数转化为能直接看出其值域的方法.求值域时一定要注意定义域的影响.如函数的值域与函数223y x x =-+223,{|0y x x x x =-+∈≤的值域是不同的;3}x <③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.分离常数的目的是为了减少“变量”,变换后x 仅出现在分母上,这样x 对函数的影响就比较清晰了;利用有理函数求值域的方法,间接地求解原函数的值域.在利用换元法求解函数的值域时,一定要注意换元后新元的取值范围,否则会产生错解.求新元的范围,要根据已知函数的定义域.【重难点3.函数解析式的求法】(1)已知函数的模型求函数解析式,常采用待定系数法,由题设条件求待定系数.(2)已知f (g (x ))=h (x ),求f (x ),常用的有两种方法:①换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,即为所求解析式;②配凑法,即从f (g (x ))的解析式中配凑出“g (x )”,即用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.利用这两种方法求解时一定要注意g (x )的取值范围的限定.(3)已知f (x )与f (g (x ))满足的关系式,要求f (x )时,可用g (x )代替两边所有的x ,得到关于f (x )与f (g (x ))的方程组,消去f (g (x ))解出f (x )即可.常见的有f (x )与f (−x ),f (x )与.1()f x (4)所给函数方程含有两个变量时,可对这两个变量交替使用特殊值代入,或使这两个变量相等代入,再利用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定.三、题型分析(一).函数的定义域考点1.具体函数的定义域例1.(1)、(2022·四川·成都七中高二阶段练习(文))设集合,,则{A x y =={}1,0,1,2B =-( )A B = A .B .C .D .{}1,0-{}0,1,2{}1,2{}1,0,1-(2)、(2022·广西·平桂高中高二阶段练习(理))函数的定义域为___________.()f x =【变式训练1-1】、(2021·广西崇左市·崇左高中高一开学考试(文))函数的定义域()11f x x =+-为( )A .[)2,-+∞B .[)()2,11,-⋃+∞C .R D .(],2-∞-【变式训练1-2】、(2022·全国·高三专题练习)函数__________.()f x =考点2.抽象函数的定义域例2、(1)、(2022·江苏·高一)已知函数的定义域为,则函数的定义域为(21)y f x =+[]1,2-(1)=-y f x _________.(2)、(2022·黑龙江·双鸭山一中高二阶段练习)已知函数的定义域为,则函数()22f x -{}|1x x <的定义域为( )()211f x x --A .B .C .D .(,1)-∞(,1)-∞-()(),11,0-∞-- ()(),11,1-∞-- 【变式训练2-1】、(2021·上海市徐汇中学高一阶段练习)若函数的定义域为,则函数()f x []22-,的定义域是___________(21)f x -【变式训练2-2】、(2021·黑龙江大庆市·大庆中学高一开学考试)若函数的定义域为,则()y f x =[0,2]函数的定义域是__________.(2)()1f x g x x =-(二).求函数值或函数的值域考点3.一次函数、二次函数的值域的问题例3、(2022·浙江·金华市曙光学校高二阶段练习)已知函数f (x ),,则函数的值域2263x x =-+[]12x ∈-,是( )A .B .C .D .3[112-3[ 112,)[]111-,3112⎡⎤-⎢⎥⎣⎦【变式训练3-1】、(2021·浙江湖州市·湖州中学高一开学考试)若函数的定义域和值213()22f x x x =-+域都是,则( )[1,]b b =A .1B .3C .D .1或33-例4、(2022·江西省定南中学高二阶段练习(文))函数的值域为2y x = ( )A .B .C .D .15,8⎛⎤-∞- ⎥⎝⎦15,8⎛⎫-∞- ⎪⎝⎭15,8⎛⎫+∞ ⎪⎝⎭15,8⎡⎫+∞⎪⎢⎣⎭【变式训练4-1】、(2020·舒城育才学校高一月考)函数的值域是( )()f x x =+A .B .C .D .9,4⎡⎫+∞⎪⎢⎣⎭9,4⎛⎤-∞⎥⎝⎦[)2,+∞(],2-∞考点4.类“反比例”函数的值域的问题例5.(1)、(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))函数值域是( )()211f x x =+A .B .C .D .(],1-∞[)1,+∞[)0,∞+(]0,1(2)、(2021·四川自贡·高一期中)函数的值域是( )2()1xf x x =+A .B .(),1-∞- ()1,+∞(),2-∞C .D .(),2-∞ ()2,+∞[)1,-+∞【变式训练5-1】、(2021·河南南阳·高一阶段练习)函数的值域为___________.21(),(2,1)(1,2)1x f x x x -=∈-- 【变式训练5-2】、(2021·浙江高二期末)已知函数,则函数的值域为( )2(),[2,6]1x f x x x +=∈-A .B .C .D .8,45⎡⎤⎢⎥⎣⎦8,[4,)5⎛⎤-∞⋃+∞ ⎥⎝⎦8,[4,)5⎛⎫-∞⋃+∞ ⎪⎝⎭8,45⎛⎫⎪⎝⎭考点5.“双勾”函数的值域问题例6、(2022·湖南娄底·高二学业考试)下列函数中,最小值为2的函数是( )A .B .()10y x x x=+<222y x x -=+C .D .()301y x x =+<<y =【变式训练6-1】.(2021·上海虹口区·高一期末)函数,的值域为__________.4()f x x x =+1,42x ⎡⎤∈⎢⎥⎣⎦(三).函数解析式的求法考点6.用换元法求函数的解析式例7.(1)、(2022·河南·临颍县第一高级中学高二阶段练习(文))已知,则()22143f x x +=+( ).()f x =A .B .C .D .224x x -+22x x+221x x --223x x ++(2)、(2022·山西运城·高二阶段练习)已知函数满足,则( )()f x 2(1)71f x x x -=--(2)f =A .1B .9C .D .1-13-【变式训练7-1】.(2020·广西南宁市东盟中学高一期中)已知是一次函数,满足()f x ,则( ).()3164f x x +=+()f x =A .B .C .D .64x +24x +223x -263x -【变式训练7-2】、(2022·江苏·高一)已知,则( )()14f x x +=-()0f f ⎡⎤=⎣⎦A .B .C .D .9-10-11-12-考点7.求一次、二次函数的的解析式例8、(1)、(2021·山东威海·高一期中)已知函数是一次函数,满足,则()f x (())1630f f x x =-__________.()f x =(2)、(2021·广东·珠海市华中师范大学(珠海)附属中学高一阶段练习)已知是一次函数,且()f x ,则解析式为___________.(1)32f x x +=+()f x ()f x =【变式训练8-1】、(2020·黑龙江·哈尔滨市第一二二中学校高一期中)若二次函数满足()f x ,.()()12f x f x x +-=()01f =(1)求的解析式;()f x (2)求在上的值域;()f x []0,2(3)若在上恒成立,求m 的取值范围.()2f x x m>+[]1,1-考点8.用消去法求函数的解析式(方程思想)例9.(2021·湖北·黄冈中学新兴分校高一期中)已知函数满足,则()f x ()2()23f x f x x +-=+___________.()f x =【变式训练9-1】、(2021·全国·高一课时练习)若,则______.()1324f x f xx ⎛⎫+= ⎪⎝⎭()f x =(四).函数的综合应用例10、(2020·四川·广安二中高一期中)已知函数满足:()f x )13f x =+(1)求的解析式;()f x (2)判断函数在区间上的单调性,并证明.()()2f x x g x x +=[)2,+∞【变式训练10-1】、(2022·江苏·高一)已知函数.()f x =(1)若函数定义域为,求的取值范围;R a (2)若函数值域为,求的取值范围.[0,)+∞a。

专题10函数零点(原卷版)

专题10函数零点(原卷版)

《函数零点》专项突破 高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难. 考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理 题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-练(2022·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( ) A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)例1-2.(2022·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定类型二、区间零点存在性定理例2-1.(2022·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4练.(2022·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2022·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个 B .2个 C .3个 D .0个练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( ) A .ln 3,92e e ⎡⎫⎪⎢⎣⎭ B .ln 20,4e ⎛⎫ ⎪⎝⎭ C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e ⎡⎫⎪⎢⎣⎭例3-2(一个曲线一个直线)(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.例3-3【一个曲线和一个倾斜直线】【2022福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.例3-4(两个曲线)(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________.(两个曲线)(2022·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3 B .72C .4D .92(两个曲线)【2022河北省武邑中学高三】若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时, ()f x x =,则函数()3log y f x x =-的零点个数是( )A . 6个B . 4个C . 3个D . 2个例3-5(直接解出零点)(2022·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12 B .14 C .16 D .18类型三、利用周期性判断零点个数例3-1.(2022·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( ) A .404 B .804C .806D .402例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( ) A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24例4-2(2022·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36类型五、等高线的使用例5-1.(2022·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________.例5-2(2022·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( )A .109,32⎛⎫ ⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭例5-3(2022·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( )①()0,1m ∈;①()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ①函数()y f x x m =--恰有三个零点. A .①① B .①① C .①① D .①①①例5-4.(2022·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1 B .2 C .3 D .4类型六、嵌套函数零点例6-1.(2022·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个例6-2.(2022·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x =-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________.例6-3(2022·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________.例6-4. 已知函数f(x)={e |x−1|,x >0−x 2−2x +1,x ≤0 ,若关于x 的方程f 2(x)−3f(x)+a =0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A . (0,14) B . (13,3) C . (1,2) D . (2,94)类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x x ax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3 B .(]1,3 C .[]1,3 D .[)3,+∞例7-2已知函数()ln()(0)x af x ex a a -=-+>.(1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.类型八、隐零点之极值点偏离类型一、目标与极值点相关思想:偏离−−→−转化对称 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数类型二、目标与极值点不相关 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2022·江苏高三开学考试)已知函数()ln af x x x=+(a ∈R )有两个零点.(1)证明:10ea <<. (2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (①)求()f x 的单调区间;(①)证明:当12()()f x f x = 12()x x ≠时,120x x +<练、已知函数f(x)=xe -x .(1)求函数f(x)的单调区间和极值; (2)若x 1≠x 2且f(x 1)=f(x 2),求证:x 1+x 2>2.练、已知函数f(x)=xln x 的图象与直线y =m 交于不同的两点A(x 1,y 1),B(x 2,y 2).求证:x 1x 2<1e 2.练(2022·沙坪坝区·重庆八中)已知函数()222ln f x x ax x =-+(0a >).(1)讨论函数()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点1x ,2x (12x x <)恰为函数()g x 的两个零点,且()12122x x y x x g '+⎛⎫=- ⎪⎝⎭的取值范围是[)ln31,-+∞,求实数a 的取值范围.练.已知2()4ln f x x x a x =-+.已知函数()f x 有两个极值点12x x ,(12x x <),若123()20f x mx ->恒成立,试求m 的取值范围.。

专题10 三角函数定义(原卷版)

专题10 三角函数定义(原卷版)

第10讲三角函数定义考点1:角的概念1.定义:一条射线绕着端点从一个位置旋转到另一个位置所成的图形.其中顶点、始边、终边称为角的三要素.2.范围:R3.正角、负角、零角①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.4.终边相同的角:设α表示任意角,所有与 终边相同的角,包括α本身构成一个集合,这个集合可记为S={β|β=α+k⋅360° , k∈Z}.集合S的每一个元素都与α的终边相同,当k=0时,对应元素为α.5.象限角与轴线角象限角:定点在原点,始边在x轴正半轴,终边在第几象限就是第几象限角,k∈Z}或{α|k⋅3600<900+k⋅如:终边落在第一象限的角:{α|2kπ<α<2kπ+π23600,k∈Z}终边落在y轴上的角:{α|α=kπ+π,k∈Z}或{α|900+k⋅1800,k∈Z}.2轴线角:如果角的终边在坐标轴上则说这个角不在任何象限,而称之为“轴线角”.二、弧度制1.定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角.2.弧度与角度的换算:1800=πrad,1rad=(1800π)≈57.300=57018′3.弧长与扇形面积公式:①弧长公式:l=|α|r②扇形面积公式:S=12lr=12|α|r2典例精讲【典例1】已知本次数学考试总时间为2小时,你在奋笔疾书沙沙答题,分针滴答滴答忙着转圈.现在经过了1小时,则此时分针转过的角的弧度数是.【典例2】将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是.【典例3】终边在直线y=√3x上的角的集合为.【典例4】已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合M={x|x=k2×180°+45°,k∈Z},N={x|x=k4×180°+45°,k∈Z},那么两集合的关系是什么?【典例5】有一扇形其弧长为6,半径为3,则该弧所对弦长为,扇形面积为.【典例6】有一扇形其弧长为6,半径为3,则该弧所对弦长为,扇形面积为.【典例7】315°=弧度,弧度=°.考点2:三角函数基本知识一、三角函数定义1.定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(x,y),它与原点的距离为r(r=√|x|2+|y|2=√x2+y2>0),那么(1)比值yr 叫做α的正弦,记作sinα,即sinα=yr;(2)比值xr 叫做α的余弦,记作cosα,即cosα=xr;(3)比值yx 叫做α的正切,记作tanα,即tanα=yx;2.符号:由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:(1)正弦值yr对于第一、二象限为正(y>0,r>0),对于第三、四象限为负(y<0,r>0);(2)余弦值xr对于第一、四象限为正(x>0,r>0),对于第二、三象限为负(x<0,r>0);(3)正切值yx对于第一、三象限为正(x,y同号),对于第二、四象限为负x,y(异号).3.特殊角的三角函数:4.三角函数同角公式:sin2x+cos2x=1;tan x=sin xcos x.二、诱导公式1.各角与角α终边的关系yπ2+αy2.诱导公式(1)角α与α+k⋅2π(k∈Z)的三角函数间的关系;sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα;(2)角α与−α的三角函数间的关系;sin(−α)=−sinα,cos(−α)=cosα,tan(−α)=−tanα;(3)角α与α+(2k+1)π(k∈Z)的三角函数间的关系;sin[α+(2k+1)π]=−sinα,cos[α+(2k+1)π]=−cosα,tan[α+(2k+1)π]=tanα;(4)角α与α+π2的三角函数间的关系.sin(α+π2)=cosα,cos(α+π2)=−sinα,tan(α+π2)=−cotα.注:“奇变偶不变,符号看象限”:奇偶是指π2的奇数倍和偶数倍,符号看象限是令α为第一象限的角,考查变化后角所在的象限以及对应三角函数的符号.典例精讲【典例1】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sin α,3),则cosα=()A.12B.−12C.√32D.−√32【典例2】已知θ是第四象限角,且cos(θ−π4)=35,则tan(θ+π4)=()A.−43B.−34C.43D.34【典例3】已知x∈R,则下列等式恒成立的是()A.sin(﹣x)=﹣sin x B.C.D.cos(π﹣x)=cos x【典例4】如图,单位圆Q的圆心初始位置在点(0,1),圆上一点P的初始位置在原点,圆沿x轴正方向滚动.当点P第一次滚动到最高点时,点P的坐标为;当圆心Q 位于点(3,1)时,点P的坐标为.【典例5】已知,若,则的值为()A.B.C.D.【典例6】已知sin(π−α)=−1,则sin(﹣2π﹣α)=.2【典例7】若,那么的值为()A.B.C.D.综合练习一. 选择题(共2小题)1.已知θ是第四象限角,且cos(θ−π4)=35,则tan(θ+π4)=()A.−43B.−34C.43D.342.定义新运算a⊗b=2a(a+b)﹣3,若方程(√3sin x)⊗(cos x)=2在x∈(0,π)上的解为x1,x2,则cos(x1﹣x2)的值为()A.√3B.√33C.2 D.1二. 填空题(共4小题)3.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是.4.已知θ的终边过点P(﹣12,5),则cosθ=.5.已知角α的终边经过点P(−1,√3),则cosα=.6.已知sin(π−α)=−12,则sin(﹣2π﹣α)=.三. 解答题(共2小题)7.将下列角度化为弧度,弧度转化为角度(1)780°,(2)﹣1560°,(3)67.5°(4)−103π,(5)π12,(6)7π4.8.已知扇形的圆心角为α(α>0),半径为R.(1)若α=60°,R=10cm,求圆心角α所对的弧长.(2)若扇形的周长是8cm,面积是4cm2,求α和R.。

专题10 二次函数与一元二次方程-九年级数学上册(解析版)

专题10 二次函数与一元二次方程-九年级数学上册(解析版)

专题10二次函数与一元二次方程考点1:分析方程的根;考点2:分析坐标轴交点。

1.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m =0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=32.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.答案:B.2.已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是()A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,如图:由图可知,x1<x3<x4<x2,答案:B.题型01方程的根3.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图所示,则方程ax2+(b−23)x+c=0(a≠0)的两根之和()A.大于0B.等于0C.小于0D.不能确定解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴−>0.设方程ax2+(b−23)x+c=0(a≠0)的两根为m,n,则m+n=−K23=−+23,∵a>0,∴23>0,∴m+n>0.答案:A.4.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看作y=x2﹣2x+3与函数y=t的图象有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11.答案:A.5.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2和0B.﹣4和2C.﹣5和3D.﹣6和4解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,答案:B.6.抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是x1=﹣2,x2=5.解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),所以方程ax2+bx+c的解为x1=﹣3,x2=4,对于方程a(x﹣1)2+b(x﹣1)+c=0,则x﹣1=﹣3或x﹣1=4,解得x=﹣2或x=5,所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.答案:x1=﹣2,x2=5.7.已知函数y=|x2﹣4|的大致图象如图所示,如果方程|x2﹣4|=m(m为实数)有4个不相等的实数根,则m的取值范围是0<m<4.解:方程|x2﹣4|=m(m为实数)有4个不相等的实数根,可以转化为函数y=|x2﹣4|的图象与直线y=m的图象有四个交点,因为函数y=|x2﹣4|与y轴交点(0,4),观察图象可知,两个函数图象有四交点时,0<m<4.答案:0<m<4.8.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是−94<a<﹣2.解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>−94设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1<−−32<0,∴a<−32,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴−94<a<﹣2,答案:−94<a<﹣2.9.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=−2=32.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=52.10.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n 的值.(1)证明:由题意可得:Δ=(1﹣5m)2﹣4m×(﹣5)=1+25m 2﹣10m +20m=25m 2+10m +1=(5m +1)2≥0,故无论m 为任何非零实数,此方程总有两个实数根;(2)解:mx 2+(1﹣5m )x ﹣5=0,(x ﹣5)(mx +1)=0,解得:x 1=−1,x 2=5,由|x 1﹣x 2|=6,得|−1−5|=6,解得:m =1或m =−111;(3)解:由(2)得,当m >0时,m =1,此时抛物线为y =x 2﹣4x ﹣5,其对称轴为:x =2,由题已知,P ,Q 关于x =2对称,∴rr 2=2,即2a =4﹣n ,∴4a 2﹣n 2+8n =(4﹣n )2﹣n 2+8n =16.11.已知抛物线y =a (x ﹣h )2+k 与x 轴有两个交点A (﹣1,0),B (3,0),抛物线y =a (x ﹣h ﹣m )2+k 与x 轴的一个交点是(4,0),则m 的值是()A .5B .﹣1C .5或1D .﹣5或﹣1解:∵抛物线y =a (x ﹣h )2+k 的对称轴为直线x =h ,抛物线y =a (x ﹣h ﹣m )2+k 的对称轴为直线x =h +m ,∴当点A (﹣1,0)平移后的对应点为(4,0),则m =4﹣(﹣1)=5;当点B (3,0)平移后的对应点为(4,0),则m =4﹣3=1,即m 的值为5或1.答案:C .题型02坐标轴交点12.已知抛物线y=−16x2+32x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.154B.92C.132D.152解:令y=0,则−16x2+32x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∵C(0,6)∴OD=4.5,OC=6,当x=0时,y=6,∴OC=6,∴CD==152.答案:D.13.经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,则线段AB长为()A.10B.12C.13D.15解:∵经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,∴2−3r4rK12=−2×(−12),Δ=b2﹣4×(−12)×(﹣b2+2c)≥0,∴b=c+1,b2≤4c,∴(c+1)2≤4c,∴(c﹣1)2≤0,∴c﹣1=0,解得c=1,∴b=c+1=2,∴AB=|(4b+c﹣1)﹣(2﹣3b)|=|4b+c﹣1﹣2+3b|=|7b+c﹣3|=|7×2+1﹣3||14+1﹣3|=12,答案:B.14.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足△A1=△A2=△A3=m,则m的值是()A.1B.32C.2D.4解:∵二次函数y=2x2﹣8x+6的图象上有且只有P1,P2,P3三点满足△A1=△A2=△A3=m,∴三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,∵y=2x2﹣8x+6=2(x﹣2)2﹣2=2(x﹣1)(x﹣3),∴二次函数y=2x2﹣8x+6的图象的顶点坐标为(2,﹣2),令y=0,则2(x﹣1)(x﹣3)=0,解得x=1或x=3,∴与x轴的交点为(1,0),(3,0),∴AB=3﹣1=2,∴m=12×2×2=2.答案:C.15.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0B.a>0C.b2﹣4ac≥0D.x1<x0<x2解:A、当a>0时,∵点M(x0,y0),在x轴下方,∴x1<x0<x2,∴x0﹣x1>0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;当a<0时,若点M在对称轴的左侧,则x0<x1<x2,∴x0﹣x1<0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;若点M在对称轴的右侧,则x1<x2<x0,∴x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0;综上所述,a(x0﹣x1)(x0﹣x2)<0,故本选项正确;B、a的符号不能确定,故本选项错误;C、∵函数图象与x轴有两个交点,∴Δ>0,故本选项错误;D、x1、x0、x2的大小无法确定,故本选项错误.答案:A.16.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是(3,0).解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).答案:(3,0).17.已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为1或−45.解:当m=0时,y=﹣1,与坐标轴只有一个交点,不符合题意.当m≠0时,∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,∴Δ=0,m≠0,(3m)2﹣4m(m﹣1)=0,解得m=0(舍去)或m=−45,综上所述:m的值为1或−45.18.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是﹣3.解:∵△ABC中AB边上的高正好为C点的纵坐标的绝对值,=12×1×|c|=1,∴S△ABC解得|c|=2.设方程x2+bx+c=0的两根分别为x1,x2,则有x1+x2=﹣b,x1x2=c,∵AB=|x1﹣x2|=(1+2)2−412=(−p2−4=1,∴b2﹣4c=1,∵c=﹣2无意义,∴b2=9,∵抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,∴b的值是﹣3.19.已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.20.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴0=3+3=,解得:=−1=3,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).。

中考数学专题10二次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题10二次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题10.二次函数一、单选题1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+C .()2351y x =--D .()2311y x =+-2.(2021·四川凉山彝族自治州·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中不正确的是( )A .0abc >B .函数的最大值为a b c -+C .当31x -时,0yD .420a b c -+<3.(2021·四川达州市·中考真题)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( ) A .1个 B .2个 C .3个 D .4个4.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大5.(2021·四川眉山市·中考真题)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---6.(2021·上海中考真题)将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变7.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2-8.(2021·天津中考真题)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .39.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个10.(2021·山东泰安市·中考真题)将抛物线223y x x =--+的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )A .(2,2)-B .(1,1)-C .(0,6)D .(1,3)-11.(2021·四川资阳市·中考真题)已知A 、B 两点的坐标分别为()3,4-、()0,2-,线段AB 上有一动点(),M m n ,过点M 作x 轴的平行线交抛物线2(1)2y a x =-+于()11,P x y 、()22,Q x y 两点.若12x m x <≤,则a 的取值范围为( )A .342a -≤<-B .342a -≤≤-C .302a -≤<D .302a -<< 12.(2021·四川泸州市·中考真题)直线l 过点(0,4)且与y 轴垂直,若二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,且其对称轴在y 轴右侧,则a 的取值范围是( )A .a >4B .a >0C .0<a ≤4D .0<a <413.(2021·浙江中考真题)已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S P AB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当12221x x ->->时,12S S >;④当12221x x ->+>时,12S S <.其中正确结论的个数是( )A .1B .2C .3D .414.(2020·四川广安市·中考真题)二次函数y=ax 2十bx+c (a ,b ,c 为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x 轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①0abc <;②0a b c -+>;③c -4a=1;④24b ac >;⑤21am bm c ++≤(m 为任意实数).其中正确的有( )A .2个B .3个C .4个D .5个15.(2020·新疆中考真题)二次函数y =ax 2+bx+c 的图象如下左图所示,则一次函数y =ax+b 和反比例函数c y x=在同一平面直角坐标系中的图象可能是( ) A . B . C . D .16.(2020·山东济南市·中考真题)已知抛物线y =x 2+(2m ﹣6)x +m 2﹣3与y 轴交于点A ,与直线x =4交于点B ,当x >2时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若3t ≥-,则m 的取值范围是( )A .m ≥32B .32≤m ≤3C .m ≥3D .1≤m ≤317.(2020·辽宁阜新市·中考真题)已知二次函数 2y x 2x 4=-++ ,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向下B .图象的顶点坐标是 ()13,C .当 x 1<时,y 随x 的增大而减少D .图象与x 轴有唯一交点18.(2020·四川中考真题)已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( ) (1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是﹣34<m <0. A .1 B .2 C .3 D .419.(2020·山东日照市·中考真题)如图,二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为直线x =﹣1,下列结论:①abc <0;②3a <﹣c ;③若m 为任意实数,则有a ﹣bm ≤am 2+b ; ④若图象经过点(﹣3,﹣2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|),则2x 1﹣x 2=5.其中正确的结论的个数是( ) A .4个 B .3个 C .2个 D .1个20.(2020·辽宁铁岭市·)如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244+<a b ac ,④30a c +<.正确的个数是( ) A .1 B .2 C .3 D .421.(2020·四川绵阳市·中考真题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.B.C.D.7米22.(2020·云南昆明市·中考真题)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=23m+D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时,y1<y223.(2020·辽宁丹东市·中考真题)如图,二次函数2y ax bx c=++(0a≠)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(1,0)-,点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线2x=,有以下结论:①0abc>;②若点11,2M y⎛⎫-⎪⎝⎭,点27,2N y⎛⎫⎪⎝⎭是函数图象上的两点,则12y y<;③3255a-<<-;④ADB∆可以是等腰直角三形.其中正确的有()A.1个B.2个C.3个D.4个24.(2020·贵州毕节市·中考真题)已知2y ax bx c=++()0a≠的图象如图所示,对称轴为直线2x=,若1x,2x是一元二次方程20ax bx c++=()0a≠的两个根,且12x x<,110x-<<,则下列说法正确的是()A.12x x+<B.245x<<C.240b ac-<D.0ab>25.(2020·内蒙古呼和浩特市·中考真题)关于二次函数216274y x x a=-++,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点()4,5,则5a=-B.当12x=时,y有最小值9a-C .2x =对应的函数值比最小值大7D .当0a <时,图象与x 轴有两个不同的交点26.(2020·四川宜宾市·中考真题)函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0),顶点坐标为(-1,n),其中0n >,以下结论正确的是( )①0abc >;②函数2(0)y ax bx c a =++≠在1,2x x ==-处的函数值相等;③函数1y kx =+的图象与的函数2(0)y ax bx c a =++≠图象总有两个不同的交点;④函数2(0)y ax bx c a =++≠在33x -≤≤内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④ 27.(2020·黑龙江齐齐哈尔市·中考真题)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x =1,结合图象给出下列结论:①ac <0;②4a ﹣2b +c >0;③当x >2时,y 随x 的增大而增大;④关于x 的一元二次方程ax 2+bx +c =0有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个28.(2020·湖北随州市·中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①20a b +=;②23c b <;③当ABC是等腰三角形时,a 的值有2个;④当BCD 是直角三角形时,2a =-.其中正确的有( ) A .1个 B .2个 C .3个 D .4个29.(2020·福建中考真题)已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A .若12|1||1|->-x x ,则12y y >B .若12|1||1|->-x x ,则12y y <C .若12|1||1|-=-x x ,则12y y =D .若12y y =,则12x x =30.(2020·湖南长沙市·中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:2p at bt c =++(0,a ≠a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟二、填空题目31.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.32.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.33.(2021·湖北武汉市·中考真题)已知抛物线2y ax bx c =++(a ,b ,c 是常数),0a b c ++=,下列四个结论:①若抛物线经过点()3,0-,则2b a =;②若b c =,则方程20cx bx a ++=一定有根2x =-;③抛物线与x 轴一定有两个不同的公共点;④点()11,A x y ,()22,B x y 在抛物线上,若0a c <<,则当121x x <<时,12y y >.其中正确的是__________(填写序号).34.(2021·四川成都市·中考真题)在平面直角坐标系xOy 中,若抛物线22y x x k =++与x 轴只有一个交点,则k =_______.35.(2021·山东泰安市·中考真题)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0),对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为________(将所有正确结论的序号都填入).36.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.37.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________.38.(2021·安徽中考真题)设抛物线2(1)y x a x a =+++,其中a 为实数.(1)若抛物线经过点(1,)m -,则m =______;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.39.(2021·浙江中考真题)已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当b a的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则b a的值是____. 40.(2020·广西贵港市·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.41.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根;③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.42.(2020·湖北荆州市·中考真题)我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.43.(2020·广东广州市·中考真题)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mm 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.44.(2020·四川内江市·中考真题)已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x ;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)45.(2020·湖北武汉市·中考真题)抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论:①一元二次方程20ax bx c ++=的根为12x =,24x =-;②若点()15,C y -,()2,D y π在该抛物线上,则12y y <;③对于任意实数t ,总有2at bt a b +≤-; ④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号).46.(2020·山东泰安市·中考真题)已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表:下列结论:①0a >;②当2x =-时,函数最小值为6-;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <;④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)47.(2019·四川广元市·中考真题)如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设 4 2 M a b c =++,则M 的取值范围是___.48.(2019·广西贵港市·中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______. 三、解答题49.(2021·安徽中考真题)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.50.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上. (1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.51.(2021·湖北十堰市·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少? (3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.52.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元? (2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?53.(2021·湖南怀化市·中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?54.(2021·湖北黄冈市·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.55.(2021·新疆中考真题)已知抛物线223(0)y ax ax a =-+≠.(1)求抛物线的对称轴;(2)把抛物线沿y 轴向下平移3a 个单位,若抛物线的顶点落在x 轴上,求a 的值;(3)设点()1,P a y ,()22,Q y 在抛物线上,若12y y >,求a 的取值范围.56.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x xy tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上); (2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.57.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.58.(2021·陕西中考真题)已知抛物线228y x x =-++与x 轴交于点A 、B (其中A 在点B 的左侧),与y轴交于点C .(1)求点B 、C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称在y 轴上是否存在点P ,使PCC '△与POB 相似且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由.59.(2021·浙江杭州市·中考真题)在直角坐标系中,设函数21y ax bx =++(a ,b 是常数,0a ≠).(1)若该函数的图象经过()1,0和()2,1两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当,x p q =(p ,q 是实数,p q ≠)时,该函数对应的函数值分别为P ,Q .若2p q +=,求证6P Q +>.60.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?61.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=. (1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.62.(2021·浙江丽水市·中考真题)如图,已知抛物线2:L y x bx c =++经过点(0,5),(5,0)A B -.(1)求,b c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .①求点M 的坐标;②将抛物线L 向左平移(0)m m >个单位得到抛物线1L .过点M 作//MNy 轴,交抛物线1L 于点N .P 是抛物线1L 上一点,横坐标为1-,过点P 作//PE x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若10PE MN +=,求m 的值.63.(2021·江苏扬州市·中考真题)如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于点.()1,0A -、()3,0B ,与y 轴交于点C .(1)b =________,c =________; (2)若点D 在该二次函数的图像上,且2ABDABCSS=,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且APCAPBS S=,直接写出点P 的坐标.64.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+. (1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =,1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.65.(2021·山东泰安市·中考真题)二次函数2()40y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D . (1)求二次函数的表达式;(2)连接BC ,当2DPB BCO ∠=∠时,求直线BP 的表达式; (3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.66.(2021·浙江温州市·中考真题)已知抛物线228y ax ax =--()0a ≠经过点()2,0-.(1)求抛物线的函数表达式和顶点坐标.(2)直线l 交抛物线于点()4,A m -,(),7B n ,n 为正数.若点P 在抛物线上且在直线l 下方(不与点A ,B 重合),分别求出点P 横坐标与纵坐标的取值范围,67.(2021·浙江嘉兴市·中考真题)已知二次函数265y x x =-+-.(1)求二次函数图象的顶点坐标;(2)当14x ≤≤时,函数的最大值和最小值分别为多少? (3)当3t x t +≤≤时,函数的最大值为m ,最小值为n ,m -n=3求t 的值.68.(2021·浙江中考真题)如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.69.(2020·广西贵港市·中考真题)如图,已知抛物线212y x bx c =++与x 轴相交于()6,0A -,()10B ,,与y 轴相交于点C ,直线l AC ⊥,垂足为C .(1)求该抛物线的表达式:(2)若直线l 与该抛物线的另一个交点为D ,求点D 的坐标; (3)设动点()P m n ,在该抛物线上,当45PAC ∠=︒时,求m 的值.70.(2020·山东济南市·中考真题)如图1,抛物线y =﹣x 2+bx +c 过点A (﹣1,0),点B (3,0)与y 轴交于点C .在x 轴上有一动点E (m ,0)(0<m <3),过点E 作直线l ⊥x 轴,交抛物线于点M . (1)求抛物线的解析式及C 点坐标;(2)当m =1时,D 是直线l 上的点且在第一象限内,若△ACD 是以∠DCA 为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设△AEM 的面积为S 1,△MON 的面积为S 2,若S 1=2S 2,求m 的值.71.(2020·山东日照市·中考真题)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.(Ⅰ)求m,n的值以及函数的解析式;(Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;(Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.72.(2020·山东日照市·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.73.(2020·湖北荆门市·中考真题)如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.祝你考试成功!祝你考试成功!。

微专题10 导数解答题之零点问题(原卷版)

微专题10 导数解答题之零点问题(原卷版)

微专题10导数解答题之零点问题秒杀总结1.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.例1.(第21讲零点问题之一个零点-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()sin cos ,[,]2f x x x x ax x ππ=++∈-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当0a =时,求()f x 的单调区间;(3)当0a >时,()f x 在区间[,]2ππ有一个零点,求a 的取值范围.例2.(吉林省长春市东北师范大学附属中学2021-2022学年高三上学期第三次摸底考试理科数学试题)已知函数ln sin ()(0)x x a ea f x x a =+>,()'f x 为()f x 的导数. (1)若0x =为()'f x 的零点,试讨论()f x 在区间[]0,π的零点的个数;(2)当1a =时,()(0)2cos xf x mx x <>+,求实数m 的取值范围.例3.(湖南省长沙市雅礼中学2021-2022学年高三上学期月考(四)数学试题)已知函数()()sin ln 1f x x x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)证明:()f x 有且仅有2个零点.例4.(黑龙江省哈尔滨市呼兰区第一中学校2021-2022学年高三上学期第二次校内检测数学(理)试题)已知()()1e 0x f a x x x -->=,1x =是()f x 的极值点(其中e 是自然对数的底数).(1)求a 的值;(2)讨论函数()()sin h x f x x =-在()0,π的零点个数.(参考数据:12e 1.77π-≈).过关测试1.(江苏省南通市如皋、镇江市2021-2022学年高三上学期期末联考数学试题)设f (x )=x e x -mx 2,m ∈R .(1)设g (x )=f (x )-2mx ,讨论函数y =g (x )的单调性;(2)若函数y =f (x )在(0,+∞)有两个零点x 1,x 2,证明:x 1+x 2>2.2.(考点12导数与不等式,函数零点等-2021年新高考数学一轮复习考点扫描)已知函数()ln f x x ax a =-+,2()1g x x =-.(1)当0a =,0x >且1x ≠时,证明:212()()11xf xg x x x +<--;(2)定义,{,},m m nmax m n n m n ≥⎧=⎨<⎩,设函数(){(),()}(0)h x max f x g x x =>,试讨论()h x 零点的个数.3.(湖南省常德市部分重点中学2019-2020学年高三上学期10月联考文科数学试题)已知函数()2,()ln x f x e ax a g x x =--=.(1)讨论()f x 的单调性;(2)用max{,}m n 表示,m n 中的最大值,设函数()max{(),()}(0)h x f x g x x =>,讨论()h x 零点的个数.4.(广西玉林市2022届高三上学期教学质量监测数学(理)试题)已知函数()2ln 1f x x ax =-+.(1)若()f x 存在零点,求实数a 的取值范围;(2)若0x 是()f x 的零点,求证:00220032e 1xx a x x --≤≤.5.(江西省景德镇市2022届高三第二次质检数学(文)试题)已知函数24e ()ln 214e xx f x x =+++.(1)求函数()y f x =在(0,(0))f 处切线的斜率;(2)求证:()y f x =有且只有一个零点0x ,且满足0112e e 2x<<.参考数据:ln20.693≈6.(北京市密云区2022届高三上学期期末考试数学试题)已知函数()e x f x x k =+,R k ∈.(1)求曲线()y f x =在点()()2,2M f 处的切线方程;(2)求函数()f x 的单调区间;(3)若函数()e x f x x k =+有两个不同的零点,记较大的零点为0x ,证明:当()01,2x ∈时,()2201e e 0k x k +->.7.(辽宁省大连市2021-2022学年高三上学期期末数学试题)已知函数()()e ,ln x f x ax g x ax x =-=-,其中a ∈R .(1)若0x >时,()()0f x g x ⋅>恒成立,求实数a 的取值范围;(2)若函数()()()F x f x g x =+的最小值为m ,试证明:函数()e ln x m G x x -=-有且仅有一个零点.8.(广东省揭阳市2022届高三上学期期末数学试题)已知函数()e ln .x f x x ax a x a =--+(1)若e a =,判断函数()f x 的单调性,并求出函数()f x 的最值.(2)若函数()f x 有两个零点,求实数a 的取值范围.。

专题10 概率与统计 原卷版(2016-2020)高考数学(理)真题分项详解

专题10 概率与统计     原卷版(2016-2020)高考数学(理)真题分项详解

专题10 概率与统计【2020年】1.(2020·新课标Ⅲ)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ====D. 14230.3,0.2p p p p ====2.(2020·山东卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种 B. 90种 C. 60种D. 30种3.(2020·山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46%D. 42%4.(2020·天津卷)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A. 10B. 18C. 20D. 365.(2020·天津卷)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020·浙江卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.7.(2020·江苏卷)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.8.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.9.(2020·新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【2019年】1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7D .0.82.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是( )则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【2018年】1.【2018·全国Ⅱ卷】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1182.【2018·全国Ⅰ卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.【2018·全国Ⅲ卷】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.34.【2018·浙江卷】设01p <<,随机变量ξ的分布列是ξ 0 1 2 P12p- 122p 则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小5.【2018·全国Ⅰ卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 36.【2018·江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.7.【2018·江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【2017年】1.【2017·全国Ⅲ卷】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳2.【2017·全国Ⅰ卷】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.【2017·山东卷】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518 B .49 C .59D .7912.【2017·浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ4.【2017·山东卷】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160 B .163 C .166D .1705.【2017·全国Ⅱ卷】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________.6.【2017·江苏卷】记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.7.【2017·江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【2016年】1. 【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) (A )13 (B )12 (C )23 (D )342.【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个3.【2016高考山东理数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56(B )60(C )120(D )1404.【2016高考新课标2理数】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n5.【2016年高考北京理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多6.【2016高考江苏卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .7.【2016年高考四川理数】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .328.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .9.【2016高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.10.【2016高考山东理数】在[1,1]上随机地取一个数k,则事件“直线y=kx与圆22x y相交”发生(5)9的概率为.。

专题10 一次函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题10 一次函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题10一次函数及其应用(30道)一、单选题1.(2023·湖南益阳·统考中考真题)关于一次函数1y x =+,下列说法正确的是()A .图象经过第一、三、四象限B .图象与y 轴交于点()0,1C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <2.(2023·陕西·统考中考真题)在同一平面直角坐标系中,函数y ax =和y x a =+(a 为常数,a<0)的图象可能是()A .B .C .D .3.(2023·湖南娄底·统考中考真题)将直线 21y x =+向右平移2个单位所得直线的表达式为()A .21y x =-B .23y x =-C .23y x =+D .25y x =+4.(2023·辽宁沈阳·统考中考真题)已知一次函数y kx b =+的图象如图所示,则k ,b 的取值范围是()A .0k >,0b <B .0k <,0b <C .0k <,0b >D .0k >,0b >5.(2023·宁夏·统考中考真题)在同一平面直角坐标系中,一次函数1(0)y ax b a =+≠与2(0)y mx n m =+≠的图象如图所示,则下列结论错误的是()A .1y 随x 的增大而增大B .b n<C .当2x <时,12y y >D .关于x ,y 的方程组ax y b mx y n-=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩6.(2023·四川雅安·统考中考真题)在平面直角坐标系中.将函数y x =的图象绕坐标原点逆时针旋转90︒,再向上平移1个单位长度,所得直线的函数表达式为()A .1y x =-+B .1y x =+C .=1y x --D .1y x =-7.(2023·湖南·统考中考真题)下列一次函数中,y 随x 的增大而减小的函数是()A .21y x =+B .4y x =-C .2y x =D .1y x =-+8.(2023·江苏无锡·统考中考真题)将函数21y x =+的图像向下平移2个单位长度,所得图像对应的函数表达式是()A .21y x =-B .23y x =+C .43y x =-D .45y x =+9.(2023·贵州·统考中考真题)今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是()A .小星家离黄果树景点的路程为50kmB .小星从家出发第1小时的平均速度为75km/hC .小星从家出发2小时离景点的路程为125kmD .小星从家到黄果树景点的时间共用了3h10.(2023·甘肃兰州·统考中考真题)一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是()A .2B .1C .-1D .-211.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A .23y x =-+B .26y x =-+C .23y x =--D .26y x =--12.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数23y x =-的图象是()A .B .C .D .二、解答题13.(2023·四川绵阳·统考中考真题)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.14.(2023·陕西·统考中考真题)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m 处的请根据相关信息解答下列问题:(1)填空:①食堂离图书馆的距离为__________km;②小明从图书馆回家的平均速度是__________km/min;金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A种品牌小电器和1台B种品牌小电器,共需要65元销售一台A种品牌小电器获利3元,销售一台B种品牌小电器获利4元.(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?17.(2023·辽宁锦州·统考中考真题)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?18.(2023·山东济南·统考中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元系如图所示.请结合图象信息,解答下列问题:(1)甲车行驶的速度是_____km /h ,乙车行驶的速度是_____km /h .(2)求图中线段MN 所表示的y 与x 之间的函数解析式,并直接写出自变量x 的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km ?请直接写出答案.21.(2023·北京·统考中考真题)在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()0,1A 和()1,2B ,与过点()0,4且平行于x 轴的线交于点C .(1)求该函数的解析式及点C 的坐标;(2)当3x <时,对于x 的每一个值,函数23y x n =+的值大于函数()0y kx b k =+≠的值且小于4,直接写出n 的值.22.(2023·湖北鄂州·统考中考真题)1号探测气球从海拔10m 处出发,以1m/min 的速度竖直上升.与此同时,2号探测气球从海拔20m 处出发,以m/min a 的速度竖直上升.两个气球都上升了1h .1号、2号气球所在位置的海拔1y ,2y (单位:m )与上升时间x (单位:min )的函数关系如图所示.请根据图象回答下列问题:(1)=a___________,b=___________;(2)请分别求出1y,2y与x的函数关系式;(3)当上升多长时间时,两个气球的海拔竖直高度差为5m?23.(2023·吉林长春·统考中考真题)甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示.x≤≤时,求乙距山脚的垂直高度y与x之间的函数关系式;(1)当1540(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.24.(2023·湖南·统考中考真题)我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x元,全部售完的利润为y元.求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?25.(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.26.(2023·黑龙江绥化·统考中考真题)某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A的地的路程为300千米,甲车从学校出发(1)A,B两地之间的距离是______(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距三、填空题28.(2023·山东济南·统考中考真题)学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l和2l分别表示两人到小亮家的距11离()km s 和时间()h t 的关系,则出发h 后两人相遇.29.(2023·江苏无锡·统考中考真题)请写出一个函数的表达式,使得它的图象经过点(20),:.30.(2023·山东·统考中考真题)一辆汽车在行驶过程中,其行驶路程y (千米)与行驶时间x (小时)之间的函数关系如图所示.当00.5x ≤≤时,y 与x 之间的函数表达式为60y x =;当0.52x ≤≤时,y 与x 之间的函数表达式为.。

专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题10 二次函数一.选择题1.(2022·山东泰安)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表:下列结论不正确的是( )A .抛物线的开口向下B .抛物线的对称轴为直线12x =C .抛物线与x 轴的一个交点坐标为()2,0D .函数2y ax bx c =++的最大值为254 2.(2022·新疆)已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大 3.(2022·湖南株洲)已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D . 4.(2022·陕西)已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .231y y y << 5.(2022·浙江宁波)点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A .2m >B .32m >C .1m <D .322m <<6.(2022·山东泰安)一元二次方程2152121543x x x -++=-+根的情况是( ) A .有一个正根,一个负根B .有两个正根,且有一根大于9小于12C .有两个正根,且都小于12D .有两个正根,且有一根大于127.(2022·四川成都)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>8.(2022·四川泸州)抛物线2112y x x =-++经平移后,不可能得到的抛物线是( ) A .212y x x =-+ B .2142=--y x C .21202120222=-+-y x x D .21y x x =-++ 9.(2022·四川自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )A .方案1B .方案2C .方案3D .方案1或方案210.(2022·山东泰安)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .11.(2022·湖北随州)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点1,0对称轴为直线1x =.则下列结论:①0abc >;②20a b +=;③函数2y ax bx c =++的最大值为4a -;④若关于x 的方数21ax bx c a ++=+无实数根,则105a -<<.正确的有( )A .1个B .2个C .3个D .4个12.(2022·浙江杭州)已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x 轴的交点位于y 轴的两侧;命题④:该函数的图像的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( ) A .命题① B .命题② C .命题③ D .命题④13.(2022·天津)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论:①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( ) A .0 B .1 C .2 D .314.(2022·浙江温州)已知点(,2),(,2),(,7)A a B b C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( )A .若0c <,则a c b <<B .若0c <,则a b c <<C .若0c >,则a c b <<D .若0c >,则a b c << 15.(2022·浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,-5D .-1,516.(2022·山东滨州)如图,抛物线2y ax bx c =++与x 轴相交于点()()2,0,6,0A B -,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac ->;②40a b +=;③当0y >时,26x -<<;④0a b c ++<.其中正确的个数为( )A .4B .3C .2D .117.(2022·四川南充)已知点()()1122,,,M x y N x y 在抛物线222(0)y mx m x n m =-+≠上,当124x x +>且12x x <时,都有12y y <,则m 的取值范围为( )A .02m <≤B .20m -≤<C .2m >D .2m <-二、填空题18.(2022·新疆)如图,用一段长为16m 的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为_______2m .19.(2022·甘肃武威)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .20.(2022·江苏连云港)如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .21.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ≤≤时,w 的取值范围是_________;当23t ≤≤时,w 的取值范围是_________.22.(2022·四川遂宁)抛物线y =ax 2+bx +c (a ,b ,c 为常数)的部分图象如图所示,设m =a -b +c ,则m 的取值范围是______.23.(2022·湖北武汉)已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<; ③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).24.(2022·四川南充)如图,水池中心点O 处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O 在同一水平面.安装师傅调试发现,喷头高2.5m 时,水柱落点距O 点2.5m ;喷头高4m 时,水柱落点距O 点3m .那么喷头高_______________m 时,水柱落点距O 点4m .三.解答题25.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?26.(2022·湖北十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?27.(2022·四川广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?28.(2022·湖北黄冈)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.29.(2022·江苏扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且8AB= dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度8OC=dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.30.(2022·江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ; ②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.31.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.32.(2022·浙江温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1:图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2:为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1:确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2:探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3:拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.33.(2022·浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L 1的函数表达式.(2)将抛物线L 1向上平移m (m >0)个单位得到抛物线L 2.若抛物线L 2的顶点关于坐标原点O 的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.34.(2022·浙江杭州)设二次函数212y x bx c =++(b ,c 是常数)的图像与x 轴交于A ,B 两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数1y 的表达式及其图像的对称轴.(2)若函数1y 的表达式可以写成()2122y x h =--(h 是常数)的形式,求b c +的最小值.(3)设一次函数2y x m =-(m 是常数).若函数1y 的表达式还可以写成()()122y x m x m =---的形式,当函数12y y y =-的图像经过点()0,0x 时,求0x m -的值.35.(2022·浙江宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?36.(2022·浙江绍兴)已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.37.(2022·安徽)如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23P P ,34PP ,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P 的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值;(ⅰ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).38.(2022·山东滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.39.(2022·湖南湘潭)已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB .①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ⊥轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由.(2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.40.(2022·四川乐山)如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()1,0A -、()2,0B ,与y 轴交于点C ,且tan 2OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x ∥轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBC BCD S S =△△,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q .设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQ OQ的最大值.41.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⅰAP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.42.(2022·云南)已知抛物线2y x c =-+经过点(0,2),且与x 轴交于A 、B 两点.设k 是抛物线2y x c =-+与x 轴交点的横坐标;M 是抛物线2y x c =-+的点,常数m >0,S 为ⅰABM 的面积.已知使S =m 成立的点M 恰好有三个,设T 为这三个点的纵坐标的和.(1)求c 的值;(2)直接写出T 的值;(3)求486422416k k k k k ++++的值.43.(2022·四川自贡)已知二次函数()20y ax bx c a =++≠.(1)若1a =-,且函数图象经过()0,3,()2,5-两点,求此二次函数的解析式,直接写出抛物线与x 轴交点及顶点的坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值3y ≥时自变量x 的取值范围;(3)若0a b c ++=且a b c >>,一元二次方程20ax bx c ++= 两根之差等于a c -,函数图象经过121P c,y ⎛⎫- ⎪⎝⎭,()132Q c,y +两点,试比较12,y y 的大小 .44.(2022·四川凉山)在平面直角坐标系xoy 中,已知抛物线y =-x 2+bx +c 经过点A (-1,0)和点B (0,3),顶点为C ,点D 在其对称轴上,且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.(1)求抛物线的解析式;(2)求点P 的坐标;(3)将抛物线平移,使其顶点落在原点O ,这时点P 落在点E 的位置,在y 轴上是否存在点M ,使得MP +ME 的值最小,若存在,求出点M 的坐标;若不存在,请说明理由.45.(2022·江苏连云港)已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.46.(2022·浙江舟山)已知抛物线1L :2(1)4y a x =+-(0a ≠)经过点(1,0)A .(1)求抛物1L 的函数表达式.(2)将抛物线1L 向上平移m (0m >)个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移n (0n >)个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.47.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.48.(2022·山东泰安)若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x⊥轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.49.(2022·四川眉山)在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为(5,0)-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求点P 到直线AC 距离的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.50.(2022·湖南衡阳)如图,已知抛物线2y x x 2=--交x 轴于A 、B 两点,将该抛物线位于x 轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;=-+与图象W有三个交点,请结合图象,直接写出b的值;(2)若直线y x b∥轴交直线BC于点M,交图象W于点N,是否存在这样的点(3)P为x轴正半轴上一动点,过点P作PM y△与OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.P,使CMN21。

专题10二次函数与一元二次方程(3个知识点5种题型)(解析版)-初中数学北师大版9年级上册

专题10二次函数与一元二次方程(3个知识点5种题型)(解析版)-初中数学北师大版9年级上册

专题10二次函数与一元二次方程(3个知识点5种题型)【目录】倍速学习三种方法【方法一】脉络梳理法知识点1.二次函数c bx ax y ++=2与一元二次方程02=++c bx ax 的关系(重点)知识点2.二次函数c bx ax y ++=2与x 轴交点个数的判断(重点)知识点3.利用二次函数的图象求一元二次方程的近似根(难点)【方法二】实例探索法题型1.用列表法求一元二次方程的近似根题型2.二次函数与一次函数的综合应用题型3.函数与方程关系的综合应用题型4.阅读理解题题型5.探究题【方法三】成果评定法【学习目标】1.掌握二次函数c bx ax y ++=2与一元二次方程02=++c bx ax 的关系。

2.能根据二次函数与一元二次方程的关系确定二次函数与坐标轴的交点坐标。

3.能运用二次函数与一元二次方程之间的关系判断二次函数与x 轴的交点个数。

4.会利用二次函数的图象确定一元二次方程的根的近似值。

重点:二次函数与一元二次方程关系的理解。

难点:二次函数与一元二次方程关系的应用。

【倍速学习四种方法】【方法一】脉络梳理法知识点1.二次函数c bx ax y ++=2与一元二次方程02=++c bx ax 的关系(重点)求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).【例1】.(2023•泰州)二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,则n的值可以是.(填一个值即可)【分析】根据根与系数的关系即可求解.【解答】解:设二次函数y=x2+3x+n的图象与x轴交点的横坐标为x1、x2,即一元二次方程x2+3x+n=0的根为x1、x2,由根与系数的关系得:x1+x2=﹣3,x1•x2=n,∵二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,∴x1,x2为异号,∴n<0,故答案为:﹣3(答案不唯一).【点评】本题考查抛物线与x轴的交点,根与系数之间的关系,关键是根与系数之间的关系的应用.【变式】.(2023•杜尔伯特县一模)|x2﹣3|=a有四个解,则a的取值范围是.【分析】作函数y=|x2﹣3|的图象,如图.由图象知直线y=a与y=|x2﹣3|的图象应有四个交点,于是得到结论.【解答】解:方程|x2﹣3|﹣a=0⇔方程|x2﹣3|=a,作函数y=|x2﹣3|的图象,如图.由图象知直线y=a与y=|x2﹣3|的图象应有四个交点,当1<a<3时,有4个交点.故答案为:0<a<3.【点评】此题主要考查了函数图象与方程的解,根据直线与函数图象交点的个数得到方程解的个数.注意利用数形结合的数学思想解决根的存在性及根的个数判断问题.知识点2.二次函数c bx ax y ++=2与x 轴交点个数的判断(重点)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系.△=b 2﹣4ac 决定抛物线与x 轴的交点个数.△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.【例2】.(2023•郴州)已知抛物线y =x 2﹣6x +m 与x 轴有且只有一个交点,则m =.【分析】利用判别式Δ=b 2﹣4ac =0即可得出结论.【解答】解:∵抛物线y =x 2﹣6x +m 与x 轴有且只有一个交点,∴方程x 2﹣6x +m =0有唯一解.即Δ=b 2﹣4ac =36﹣4m =0,解得:m =9.故答案为:9.【点评】本题考查了抛物线与x 轴的交点知识,明确Δ=b 2﹣4ac 决定抛物线与x 轴的交点个数是解题的关键.【变式】.(2023春•江都区月考)已知二次函数y =﹣x 2+x +6及一次函数y =﹣2x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =﹣2x +m 与新图象有4个交点时,m 的取值范围是.【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线y=﹣2x+m经过点A(﹣2,0)时m的值和当直线y=﹣2x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣2x+m与新图象有4个交点时,m的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣2x+m经过点A(﹣2,0)时,4+m=0,解得m=﹣4;当直线y=﹣2x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣2x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣<m<﹣4.故答案为:﹣<m<﹣2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.知识点3.利用二次函数的图象求一元二次方程的近似根(难点)利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).【例3】(2023春•萧山区期中)已知二次函数y=ax2+bx+c,y与x的部分对应值为:x…﹣2﹣1012…y…﹣1232?…关于此函数的图象和性质,下列说法正确的是()A.当x>0时,函数图象从左到右上升B.抛物线开口向上C.方程ax2+bx+c=0的一个根在﹣2与﹣1之间D.当x=2时,y=1【分析】根据表格数据求出顶点坐标,对称轴,开口方向,根据二次函数的性质即可判断A,B,;x=﹣2时,y=﹣1;x=﹣1时,y=2即可判断C,D.【解答】解:∵x=﹣1和x=1时的函数值相同,都是2,∴抛物线的对称轴为直线x==0,∴抛物线的顶点为(0,3),∴y=3是函数的最大值,∴抛物线的开口向下,当x>0时,y随x的增大而减小,即当x>0时,函数图象从左到右下降,所以A错误,B错误;∵x=﹣2时,y=﹣1;x=﹣1时,y=2,∴方程ax2+bx+c=0的一个根在﹣2与﹣1之间,所以C正确,D错误.综上所述:其中正确的结论有C.故选:C.【点评】本题考查了图象法求一元二次方程的近似根,抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解决本题的关键是掌握二次函数的图象和性质.【方法二】实例探索法题型1.用列表法求一元二次方程的近似根3.(2022秋•嘉兴期末)二次函数y=ax2+bx+c(a≠0)中,自变量x与函数y的对应值如下表:x…﹣2﹣101234…y…m﹣4.5m﹣2m﹣0.5m m﹣0.5m﹣2m﹣4.5…若1<m<1.5,则下面叙述正确的是()A.该函数图象开口向上B.该函数图象与y轴的交点在x轴的下方C.对称轴是直线x=mD.若x1是方程ax2+bx+c=0的正数解,则2<x1<3【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵二次函数过(﹣1.,m﹣2),(3,m﹣2),∴对称轴为直线x==1,故C错误,不合题意;由表格可得,当x>1时,y随x的值增大而减小,∴该函数开口向下,故选项A错误,不符合题意;∵图象过点(0,m﹣0.5),1<m<1.5,∴1﹣0.5<m﹣0.5<1.5﹣0.5,即0.5<m﹣0.5<1,∴该函数图象与y轴的交点在x轴的上方,故B错误,不合题意;由表中数据可知:y=0在y=m﹣2与y=m﹣0.5之间,故对应的x的值在﹣1与0之间,故对应的x的值在2与3之间,即2<x1<3,故D正确,符合题意.故选:D.【点评】此题主要考查了图象法求一元二次方程的近似值,掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.题型2.二次函数与一次函数的综合应用6.(2022秋•确山县期中)某班“数学兴趣小组”对函数;y=﹣x2+2|x|+3的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣4﹣3﹣2﹣﹣101234…y…﹣503434m0﹣5…其中,m=3.(2)根据表中数据,在如图所示的平面直角坐标系中,直接画出该函数的图象.(3)观察函数图象,写出一条该函数的性质函数是轴对称图形,它的对称轴为y轴.(4)已知函数y=﹣x+4的图象如图所示,结合你所画的函数图象.直接写出方程﹣x2+2|x|+3=﹣x+4的解(保留一位小数,误差不超过0.2)【分析】(1)把x=2代入函数y=﹣x2+2|x|+3中,求得y值便可;(2)用光滑的曲线连接所描的点便可;(3)根据函数图象即可求解;(4)通过观察函数图象,即可求得.【解答】解:(1)把x=2代入函数y=﹣x2+2|x|+3中,得y=﹣4+4+3=3,∴m=3,故答案为:3;(2)描点,连线得出函数图象如图:(3)函数是轴对称图形,它的对称轴为y轴,故答案为:函数是轴对称图形,它的对称轴为y轴;(4)由图象可知方程﹣x2+2|x|+3=﹣x+4的解为x1=0.4,x2=2.6.【点评】本题主要考查了二次函数图象与性质,一次函数的性质,数形结合是解题的关键.题型3.函数与方程关系的综合应用6.(2023•黑龙江)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点.交y轴于点C.(1)求抛物线的解析式;=S△ABC,若存在,请直接写出点P的坐标;若不存在,请(2)抛物线上是否存在一点P,使得S△PBC说明理由.【分析】(1)把A(﹣3,0),B(1,0)两点,代入抛物线y=ax2+bx+3,解方程组即可得到抛物线的解析式;(2)分别求得A、B、C的坐标,与BC的解析式y=﹣3x+3;作PE∥x轴交BC于E,设点P的横坐标=S 为t,分别求得P点坐标为(t,﹣t2﹣2t+3)与E点坐标为(,﹣t2﹣2t+3);然后利用S△PBC列方程解答即可.△ABC【解答】解:(1)由抛物线与x轴交于A(﹣3,0),B(1,0)两点,代入抛物线y=ax2+bx+3得:,解得:;∴抛物线的解析式为y=﹣x2﹣2x+3;(2)存在,理由如下:∵A(﹣3,0),B(1,0),∴AB=4,抛物线y=ax2+bx+3与y轴交于点C,令x=0,则y=3,∴C点坐标为(0,3),OC=3,∴S△ABC=AB•OC=×4×3=6,=S△ABC=3;∴S△PBC作PE∥x轴交BC于E,如图:设BC的解析式为:y=kx+b,将B、C代入得:,解得:,∴BC的解析式为:y=﹣3x+3;设点P的横坐标为t,则P(t,﹣t2﹣2t+3),则E的纵坐标为:﹣3x+3=﹣t2﹣2t+3,解得:x=,∴E(,﹣t2﹣2t+3);∴PE=﹣t=,=××3=3,∴S△PBC解得:t=﹣2或3;∴P点纵坐标为:﹣(﹣2)2﹣2×(﹣2)+3=3;或﹣(3)2﹣2×(3)+3=﹣12,∴点P的坐标为(﹣2,3)或(3,﹣12).【点评】本题考查二次函数综合应用,涉及待定系数法,直角三角形的判定等,解题的关键是方程思想的应用.题型4.阅读理解题7.(2023•云南)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.【分析】(1)分一次函数和二次函数分别证明函数图象T与x轴总有交点即可;(2)当a=﹣时,不符合题意;当a≠时,由0=(4a+2)x2+(9﹣6a)x﹣4a+4,得x=﹣或x=,即x==2﹣,因a是整数,故当2a+1是6的因数时,是整数,可得2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,分别解方程并检验可得a=﹣2或a=﹣1或a=0或a=1.【解答】(1)证明:当a=﹣时,函数表达式为y=12x+6,令y=0得x=﹣,∴此时函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;当a≠时,y=(4a+2)x2+(9﹣6a)x﹣4a+4为二次函数,∵Δ=(9﹣6a)2﹣4(4a+2)(﹣4a+4)=100a2﹣140a+49=(10a﹣7)2≥0,∴函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;综上所述,无论a取什么实数,图象T与x轴总有公共点;(2)解:存在整数a,使图象T与x轴的公共点中有整点,理由如下:当a=﹣时,不符合题意;当a≠时,在y=(4a+2)x2+(9﹣6a)x﹣4a+4中,令y=0得:0=(4a+2)x2+(9﹣6a)x﹣4a+4,解得x=﹣或x=,∵x==2﹣,a是整数,∴当2a+1是6的因数时,是整数,∴2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,解得a=﹣或a=﹣2或a=﹣或a=﹣1或a=0或a=或a=1或a=,∵a是整数,∴a=﹣2或a=﹣1或a=0或a=1.【点评】本题考查抛物线与x轴的交点,其中还涉及了一次函数,二次函数与一元二次方程的关系,解题的关键是理解整点的意义.题型5.探究题过点C 作CF ED ⊥交ED ∵点A 的坐标为()2,0-∴2OA =,6OC =.∴1122AOC OA O S C ⋅== ∴33644BCD ADG S S ==⨯∴由平行四边形的性质可得,2341533600442n t n n +=+⎧⎪⎨-+--=+⎪⎩,解得∴点M 的坐标为(14,0)或当BD 是平行四边形BDNM∴由平行四边形的性质可得,243331560424n t n n +=+⎧⎪⎨--+=-⎪⎩∴点M 的坐标为()0,0;如图所示,当BD 是平行四边形∴由平行四边形的性质可得,2341533006442t n n n +=+⎧⎪⎨-=+--⎪⎩,解得∴点M 的坐标为()8,0;综上所述,点M 的坐标为()8,0或【方法三】成果评定法一.选择题(共10小题)1.(2022秋•泽州县期末)如图,抛物线21y ax bx c =++与直线2y kx b =+相交于(1,1)A --,(3,1)B 两点,则当12y y >时,自变量x 的取值范围是()A .13x -<<B .13x -C .1x <-或3x >D .1x -或3x 【分析】根据当12y y >时,自变量x 的取值范围是抛物线图象在一次函数图象上方部分所对应的x 的取值范围,结合图象进行作答即可.【解答】解:由图象可知,当12y y >时,自变量x 的取值范围是13x -<<,故选:A .【点评】本题考查了函数图象的交点与不等式的解集的关系.解题的关键在于对知识的熟练掌握.2.(2023秋•南开区期末)已知,二次函数2y ax bx c =++的图象如图所示,则点2(,4)P abc b ac -所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【分析】先由抛物线开口方向得到0a >,由抛物线的对称轴位置得到0b <,由抛物线与y 轴的交点位置得到0c <,则0abc >,然后由抛物线与x 轴有两个交点得到240b ac ->,于是可判断点2(,4)P abc b ac -所在象限.【解答】解: 抛物线开口向上,0a ∴>,抛物线的对称轴在y 轴右侧,a ∴、b 异号,0b ∴<,抛物线与y 轴的交点在y 轴的负半轴,0c ∴<,0abc ∴>,抛物线与x 轴有两个交点,240b ac ∴->,点2(,4)P abc b ac -在第一象限.故选:A .【点评】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程;△24b ac =-决定抛物线与x 轴的交点个数.也考查了二次函数的性质.3.(2022秋•上虞区期末)如图,在平面直角坐标系中,抛物线2y x mx =+交x 轴的负半轴于点A ,点B 是y 轴正半轴上一点,连结AB 并延长交抛物线于点A ',过点A '作x 轴的平行线交抛物线于另一点C .连结AC .若点A '的横坐标为1,且13A B BA '=,则AC 的长为()A .32B 17C .4D 15【分析】根据平行线分线段成比例结合点A '的横坐标为1,求得3AO =,解方程20x mx +=得(,0)A m -,进而求出点A 坐标,可求得抛物线解析式为23y x x =+,再计算自变量为1的函数值得到(1,4)A ',接着利用10C y m -+-=点的纵坐标为4,求出10C y m -+-=点的横坐标,然后计算AC 的长.【解答】解:过点A '作//A D BO ',则13A B OD BA AO'==, 点A '的横坐标为1,即:1OD =,3AO ∴=,当0y =时,20x mx +=,解得10x =,2x m =-,则0m >,则(,0)A m -,3AO = ,3m ∴=,∴抛物线解析式为23y x x =+,当1x =时,234y x x =+=,则(1,4)A ',当4y =时,234x x +=,解得14x =-,21x =,则(4,4)C -,AC ∴22(43)(40)17-++-=.故选:B .【点评】本题考查了平行线分线段成比例,勾股定理,抛物线与x 轴的交点,把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数图象上点的坐标特征.4.(2022秋•嘉禾县期末)如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与y 轴交于点(0,2)B -,点(1,)A m -在抛物线上,有下列结论:①0ab <;②一元二次方程20ax bx c ++=的正实数根在2和3之间;③23m a +=;④点11(,)P t y ,22(1,)P t y +在抛物线上,当实数13t >时,12y y <.其中,正确结论的个数是()A .4B .3C .2D .1【分析】由抛物线开口方向得到0a >,利用抛物线的对称轴方程得到20b a =-<,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x 轴的交点问题可对②进行判断;把(0,2)B -,(1,)A m -和2b a =-代入抛物解析式可对③进行判断;利用二次函数的增减性对④进行判断.【解答】解: 抛物线开口向上,0a ∴>,抛物线的对称轴为直线12b x a=-=,20b a ∴=-<,0ab ∴<,所以结论①正确; 抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标在(0,0)与(1,0)-之间,∴抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程20ax bx c ++=的正实数根在2和3之间,所以结论②正确;把(0,2)B -,(1,)A m -代入抛物线得2c =-,a b c m -+=,而2b a =-,22a a m ∴+-=,∴23m a +=,所以结论③正确; 点11(,)P t y ,22(1,)P t y +在抛物线上,∴当点1P 、2P 都在直线1x =的右侧时,12y y <,此时1t ;当点1P 在直线1x =的左侧,点2P 在直线1x =的右侧时,12y y <,此时01t <<且111t t +->-,即112t <<,∴当112t <<或1t 时,12y y <,所以结论④错误.故选:B .【点评】本题考查了图象法求一元二次方程的近似根:利用二次函数图象的对称性确定抛物线与x 轴的交点坐标,从而得到一元二次方程的根.也考查了二次函数的性质.5.(2023秋•杜尔伯特县期末)关于二次函数22(1)3y x =-+,下列说法正确的是()A .图象的对称轴是直线1x =-B .图象与x 轴有两个交点C .当1x >时,y 的值随x 值的增大而增大D .当1x =时,y 取得最大值,且最大值为3【分析】根据二次函数解析式得出函数对称轴,顶点坐标,开口方向,然后由函数的性质即可解答.【解答】解: 二次函数22(1)3y x =-+,∴抛物线开口向上,顶点坐标为(1,3),对称轴为直线1x =,∴当1x >时,y 随x 的增大而增大,当1x =时,y 有最小值,最小值为3,抛物线与x 轴没有交点,故A ,B ,D 错误,C 正确,故选:C .【点评】本题考查抛物线与x 轴的交点,二次函数的图象性质,熟悉性质是解题关键.6.(2023秋•西丰县期末)将抛物线2142y x x =-++与x 轴的交点坐标为()A .(4,0),(2,0)-B .(4,0)-,(2,0)C .(0,4),(0,2)-D .(0,4)-,(0,2)【分析】令21402y x x =-++=,解一元二次方程即可求解.【解答】解:令21402y x x =-++=,解得:4x =或2-,故选:A .【点评】本题考查的是抛物线和x 轴的交点,正确理解一元二次方程和二次函数的关系是解题的关键.7.(2023秋•西山区校级月考)关于抛物线244y x x =-+,下列说法正确的是()A .顶点坐标是(2,0)-B .对称轴是直线2x =C .抛物线有最高点D .抛物线与x 轴有两个交点【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:2244(2)y x x x =-+=-,则抛物线的顶点坐标为:(2,0),故A 错误,不符合题意;函数的对称轴为执行案2x =,故B 正确,符合题意;10a => ,故抛物线开口向上,函数有最低点,故C 错误,不符合题意;由2244(2)y x x x =-+=-知,抛物线与x 轴有一个交点,故D 错误,不符合题意,故选:B .【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在2()y a x h k =-+中,对称轴为直线x h =,顶点坐标为(,)h k .8.(2023秋•明光市期中)下表给出了二次函数2y x bx c =-++与自变量x 的部分对应值:x⋯2-1-012⋯y⋯56523-⋯则关于x 的一元二次方程22x bx c -++=的解为()A .11x =-,23x =B .11x =,23x =-C .10x =,22x =-D .12x =,26x =【分析】根据图表信息找出该二次函数图象的对称轴1x =-即可解答.【解答】解:从表格知道,当5y =时,所对应的x 值分别为2-和0,由二次函数的对称性知,该二次函数图象的对称轴2012x -+==-;设一元二次方程22x bx c -++=的解分别为1x 和2x 因为当2y =时,表格所对应的1x 的值为1,所以2112x +=-,解得23x =-,所以关于x 的一元二次方程22x bx c -++=的解为11x =,23x =-故选:B .【点评】本题考查了二次函数的图象性质,二次函数的对称性,掌握二次函数图象的对称轴1x =-是解题的关键.9.(2023秋•明光市期中)抛物线22y x x c =-+与x 轴有两个交点,则c 的值可能为()A .1-B .1C .3D .4【分析】根据抛物线22y x x c =-+与x 轴有两个交点,即△0>即可求出c .【解答】解: 抛物线22y x x c =-+与x 轴有两个交点,∴△2(2)40c =-->,解得1c <,∴选项A 符合题意.故选:A .【点评】本题考查抛物线与x 轴的交点,解答本题的关键是掌握二次函数与一元二次方程的关系.10.(2023秋•通榆县期末)如图,抛物线2y ax bx c =++的对称轴为1x =,点P 、点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(1,0)-,则点Q 的坐标为()A .(0,1)-B .(2,0)C .(4,0)D .(3,0)【分析】抛物线的对称轴为直线1x =,点(1,0)P -,由点P 、Q 关于抛物线的对称轴对称,即可求解.【解答】解:抛物线的对称轴为直线1x =,点(1,0)P -, 点P 、Q 关于抛物线的对称轴对称,故点(3,1)Q ,故选:D .【点评】本题考查的是抛物线和x 轴的交点,熟悉函数的对称性是解题的关键.二.填空题(共8小题)11.(2023秋•吉林期末)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++的对称轴为直线2x =,与x 轴的一个交点为(1,0),则关于x 的方程20ax bx c ++=的解为1x =或3x =.【分析】根据抛物线的轴对称性质得到抛物线与x 轴的另一个交点坐标,由此求得关于x 的方程20(0)ax bx c a ++=≠的两根.【解答】解: 抛物线2y ax bx c =++的对称轴为直线2x =,与x 轴的一个交点为(1,0),∴抛物线与x 轴的另一个交点坐标为(3,0),∴关于x 的方程20ax bx c ++=的解为1x =或3x =,故答案为:1x =或3x =.【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,解题的关键是求得抛物线与x 轴的两个交点坐标.12.(2023秋•西城区校级月考)抛物线223y ax ax =--与x 轴交于两点,分别是是(,0)m ,(1,0)-,则m 的值为3.【分析】利用抛物线解析式与一元二次方程之间的转化关系以及一元二次方程根与系数的关系求得答案即可.【解答】解: 抛物线223y ax ax =--与x 轴交于两点,分别是是(,0)m ,(1,0)-,∴令2230ax ax --=,则m ,1-为方程2230ax ax --=的两个根,∴2(1)2am a-+-=-=,3m ∴=,故答案为:3.【点评】本题考查了抛物线与x 轴的交点,一元二次方程根与系数的关系,根据一元二次方程根与系数的关系解答即可.13.(2023秋•西城区校级月考)若抛物线21y mx mx =-+与x 轴只有一个交点,则m 的值为4.【分析】直接根据题意得到20()40m m m ≠⎧⎨=--=⎩ 求解即可.【解答】解: 抛物线21y mx mx =-+与x 轴只有一个交点,∴20()40m m m ≠⎧⎨=--=⎩,解得4m =,故答案为:4.【点评】本题考查了二次函数与一元二次方程、一元二次方程根的判别式,正确得出一元二次方程210mx mx -+=只有一个实数解是解题关键.14.(2023秋•长春期末)二次函数22y x x =--的图象如图所示,则函数值0y 时,x 的取值范围是1x -或2x .【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案.【解答】解:由220x x --=可得,11x =-,22x =,观察函数图象可知,当1x -或2x 时,函数值0y .故答案为:1x -或2x .【点评】本题考查抛物线与x 轴的交点,正确利用数形结合进行解答是解题关键.15.(2022秋•抚松县期末)如图,二次函数21y x bx c =++与一次函数为2y mx n =+的图象相交于A ,B 两点,则不等式2x bx c mx n ++<+的解为13x -<<.【分析】由图象可知,1y 与2y 图象的交点的横坐标为1-和3,当13x -<<时,1y 的图象在2y 的图象的下方,即可得答案.【解答】解:由图象可知,1y 与2y 图象的交点的横坐标为1-和3, 当13x -<<时,1y 的图象在2y 的图象的下方,∴不等式2x bx c mx n ++<+的解为13x -<<.故答案为:13x -<<.【点评】本题考查二次函数与不等式(组),能够利用函数图象判断两个函数的大小关系是解题的关键.16.(2023秋•朝阳区校级期中)如图,平面直角坐标系中(0,1)A ,(2,1)B -,(4,5)C .抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线(0)y kx d k =+≠经过A ,C .当2ax bx c kx d ++<+时,x 的取值范围为04x <<.【分析】画出函数图象,根据图象即可求解.【解答】解:观察函数图象,直线(0)y kx c k =+≠经过点A ,C ,当2ax bx c kx d ++<+时,x 的取值范围是04x <<,故答案为:04x <<.【点评】本题考查了二次函数与不等式(组),数形结合是解题的关键.17.(2023•郴州)已知抛物线26y x x m =-+与x 轴有且只有一个交点,则m =9.【分析】利用判别式△240b ac =-=即可得出结论.【解答】解: 抛物线26y x x m =-+与x 轴有且只有一个交点,∴方程260x x m -+=有唯一解.即△243640b ac m =-=-=,解得:9m =.故答案为:9.【点评】本题考查了抛物线与x 轴的交点知识,明确△24b ac =-决定抛物线与x 轴的交点个数是解题的关键.18.(2022秋•泽州县期末)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则抛物线22y x x c =++与x 轴交点的个数为1个.【分析】抛物线与x 轴的交点的横坐标,即令0y =所对应的一元二次方程的根.【解答】解:由题意知,抛物线22y x x c =++与x 轴交点的个数为1个,故答案为:1.【点评】本题考查了二次函数与x 轴交点与一元二次方程根的关系.解题的关键在于熟练掌握一元二次方程20ax bx c ++=的根是二次函数2y ax bx c =++与x 轴交点的横坐标.三.解答题(共6小题)19.(2023秋•徐汇区期末)已知抛物线23y x bx =-++与y 轴交于点C ,与x 轴交于点(1,0)A -和点B ,顶点为D .(1)求此抛物线的表达式及顶点D 坐标;(2)联结CD 、BD ,求CDB ∠的余弦值.【分析】(1)依据题意,将(1,0)-代入23y x bx =-++求出b 进而的表达式,再化成顶点式可得D 的坐标;(2)依据题意,令0y =,可求得B 的坐标,令0x =,求得C 的坐标,再分别求出BC ,BD ,CD 的长,由勾股定理逆定理可得90DCB ∠=︒,进而求出cos CDB ∠的值.【解答】解:(1)由题意,将(1,0)-代入23y x bx =-++得,130b --+=,2b ∴=.∴抛物线为223y x x =-++.又2223(1)4y x x x =-++=--+,∴顶点D 为(1,4).(2)如图,由题意,令0y =,即2230x x -++=.3x ∴=或1x =-.(3,0)B ∴.又令0x =,3y ∴=.(0,3)C ∴.CD ∴==,DB ==BC ==.222BC CD BD ∴+=.90BCD ∴∠=︒.cos10CD CDB BD ∴∠===.【点评】本题主要考查了抛物线的图象与性质、解直角三角形,解题时要熟练掌握并能灵活运用是关键.20.(2023秋•日喀则市期末)如图,顶点为M 的抛物线234y x x =-++,与x 轴交于A ,B 两点.(1)求抛物线顶点M 的坐标.(2)求直线AM 的解析式.【分析】(1)由2232534()24y x x x =-++=--+,即可求解;(2)用待定系数法即可求解.【解答】解:(1)2232534()24y x x x =-++=--+,则点3(2M ,25)4;(2)令2340y x x =-++=,解得:1x =-或4,即点(1,0)A -,设直线AM 的表达式为:(1)y k x =+,将点M 的坐标代入上式得:253(1)42k =+,解得:52k =,则直线AM 的表达式为:5522y x =+.【点评】本题考查的是抛物线和x 轴的交点,正确理解一元二次方程和二次函数的关系是解题的关键.21.(2023秋•吉林期末)如图,抛物线2(4)8y a x =-+与x 轴交于点A 、B ,C 是抛物线的顶点,ABCD 的顶点D 在y 轴上.(1)求a 的值;(2)若抛物线沿其对称轴向上平移后恰好经过点D ,求平移后抛物线的解析式.【分析】(1)易求抛物线的顶点坐标(4,8),在平行四边形ABCD 中,根据平行四边形的性质,//CD AB ,4CD AB ==,即可求出a 的值;(2)先根据题(1)求出抛物线的解析式,再根据抛物线的平移特点,可设平移后抛物线的解析式为22(4)8y x k =--++,平移后抛物线经过D 点,将(0,8)D 代入解析式,求出即可.【解答】解:(1) 抛物线2(4)8y a x =-+,∴顶点C 的坐标为(4,8)四边形ABCD 是平行四边形,//CD AB ∴,4CD AB ==,设A ,B 的横坐标分别为1x ,2x ,则12||4x x -==,解得2a =-,(2)22(4)8y x =--+ ,22216242(4)8y x x x =-+-=--+ ,∴设平移后抛物线的解析式为22(4)8y x k =--++,把(0,8)代入得8328k =-++,解得32k =,∴平移后抛物线的解析式为22(4)40y x =--+,即22168y x x =-++.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的性质,坐标与图形性质,以及平移规律,熟练掌握待定系数法是解本题的关键.22.(2023秋•杜尔伯特县期末)二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题.。

专题10一次函数-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

专题10一次函数-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题10一次函数一.选择题(共10小题)1.(2022•娄底)将直线y=2x+1向上平移2个单位,相当于()A.向左平移2个单位B.向左平移1个单位C.向右平移2个单位D.向右平移1个单位2.(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y 的方程组的解为()A.B.C.D.3.(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y 的方程组的解为()A.B.C.D.4.(2022•株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y轴的交点的坐标为()A.(0,﹣1)B.(﹣,0)C.(,0)D.(0,1)5.(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(2022•眉山)一次函数y=(2m﹣1)x+2的值随x的增大而增大,则点P(﹣m,m)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.(2022•邵阳)在直角坐标系中,已知点A(,m),点B(,n)是直线y=kx+b(k<0)上的两点,则m,n的大小关系是()A.m<n B.m>n C.m≥n D.m≤n9.(2022•乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少10.(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0二.填空题(共8小题)11.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.12.(2022•天津)若一次函数y=x+b(b是常数)的图象经过第一、二、三象限,则b的值可以是(写出一个即可).13.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.14.(2022•扬州)如图,函数y=kx+b(k<0)的图象经过点P,则关于x的不等式kx+b>3的解集为.15.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是.16.(2022•武威)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).17.(2022•德阳)如图,已知点A(﹣2,3),B(2,1),直线y=kx+k经过点P(﹣1,0).试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是.18.(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.三.解答题(共12小题)19.(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6(Ⅱ)填空:①阅览室到超市的距离为km;②小琪从超市返回学生公寓的速度为km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.20.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.21.(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.22.(2022•新疆)A,B两地相距30km,甲、乙两人分别开车从A地出发前往B地,其中甲先出发1h.如图是甲,乙行驶路程y甲(km),y乙(km)随行驶时间x(h)变化的图象,请结合图象信息,解答下列问题:(1)填空:甲的速度为km/h;(2)分别求出y甲,y乙与x之间的函数解析式;(3)求出点C的坐标,并写出点C的实际意义.23.(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?24.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.25.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c (a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.26.(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.27.(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.28.(2022•成都)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?29.(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达乙地?30.(2022•德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?。

专题10 二次函数与一元二次方程、不等式(原卷版)

专题10 二次函数与一元二次方程、不等式(原卷版)

专题10 二次函数与一元二次方程、不等式题组1 一元二次不等式的解法1.下列不等式中是一元二次不等式的是()A.a2x2+2≥0B.21x x<3C.-x2+x-m≤0D.x3-2x+1>02.不等式(x+5)(3-2x)≥6的解集为()A.B.C.D.3.不等式3x2-7x+2<0的解集为()A.B.C.D.{x|x>2}4.解关于x的不等式x2-(a+a2)x+a3>0(a∈R).5.已知f(x)=ax2+x-a,a∈R.(1)若a=1,解不等式f(x)≥1;(2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围;(3)若a<0,解不等式f(x)>1.6.(1)已知当-1≤a≤1时,不等式ax2-(3a+2)x+6≤0恒成立,求实数x的取值范围.(2)解关于x的不等式ax2-(3a+2)x+6≤0.题组2 “三个二次”的对应关系的应用7.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.{x|2<x<3}B.{x|-3<x<-2}C.{x|-<x<-}D.{x|<x<}8.设f(x)=x2+bx+1,且f(-1)=f(3),则f(x)>0的解集是()A.(-∞,-1)∪(3,+∞)B.RC.{x|x≠1}D.{x|x=1}9.不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},则()A.a=-8,b=-10B.a=-1,b=9C.a=-4,b=-9D.a=-1,b=2题组3 分式不等式的解法10.设集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},则A∩B等于()A.(-3,-2]B.(-3,-2]∪[0,]C.(-∞,-3]∪[,+∞)D.(-∞,-3)∪[,+∞)11.关于x的不等式ax+b>0的解集为{x|x>2},则关于x的不等式>0的解集为()A.{x|-2<x<-1或x>3}B.{x|-3<x<-2或x>1}C.{x|-1<x<2或x>3}D.{x|x<-1或x<3}题组4 一元二次不等式的应用12.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速(km/h)满足下列关系:s=+(n为常数,且n∈N*),做了两次刹车试验,有关试验数据如图所示,其中(1)求n的值;(2)要使刹车距离不超过12.6 m,则行驶的最大速度是多少?13.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加费,为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P%(即每百元征收P元)时,每年的销售量减少10P万件,据此,问:(1)若税务部门对商品M每年所收税金不少于96万元,求P的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P值?(3)若仅考虑每年税收金额最高,又应如何确定P值?题组5 一元二次不等式恒成立问题14.若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是()A.0B.-2C.-D.-315.关于x的不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是()A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)16.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞)B.[0,+∞)C.[0,4)D.(0,4)17.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.18.已知不等式x2-x-m+1>0.(1)当m=3时,求此不等式的解集;(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.19.(1)解不等式-3<4x-4x2≤0;(2)若不等式mx2+2mx-4<2x2+4x对任意x均成立,求实数m的取值范围.。

专题-函数的表示(原卷版)

专题-函数的表示(原卷版)

专题3.2 函数的表示知识点一表示函数的三种方法解析法用数学表达式表示两个变量之间的对应关系列表法列出表格来表示两个变量之间的对应关系图象法用图象表示两个变量之间的对应关系知识点二分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3.作分段函数图象时,应分别作出每一段的图象.函数的图象的画法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍. (2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象. 【例1】作出下列函数的图象并求出其值域. (1)y x =-,{0x ∈,1,2-,3}; (2)2y x=,[2x ∈,)+∞;(3)22y xx =+,[2x ∈-,2).【变式训练1】作出下列各函数的图象: (1)21y x =+,{1x ∈-,0,1,2,3}; (2)2y x =-,[0x ∈,2].【变式训练2】作出下列函数的图象. (1)2y x =,{2x ∈-,1-,0,1,2}; (2)21y x =-,{|11}x x x ∈-<<; (3)||y x =,x R ∈; (4)2y x=,{|14}x x x ∈<<;(5)|5|2y x =-+,x R ∈.【变式训练3】作出下列函数的图象并求出其值域. (1)21y x =+,[0x ∈,2]; (2)2y x=,[2x ∈,)+∞;.(3)22y xx =+,[2x ∈-,2].求函数的解析式(1)换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式 (2)配凑法:对f (g (x ))的解析式 (3)待定系数法:若已知f (x )的解析式(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. 【例2】已知()f x 满足下列条件,分别求()f x 的解析式. (1)已知(1)2f x x x =-()f x ;(2)已知()f x 为二次函数,(0)0f =,(1)()1f x f x x +=++,求()f x ; (3)已知()f x 满足1()2()1f x f x x+-=+,求()f x ; 【变式训练1】(1)已知()f x 是一次函数,且()()()()21323,2101f f f f +=--=-,求()f x 的解析式;(2)已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式.【变式训练2】求下列函数解析式: (1)已知22131(1)x f x x x++=+,求函数()f x 的解析式; (2)已知1(1)2(3)f x f x x x++-=+,求函数()f x 的解析式;(3)已知()f x 是二次函数,且2(1)(1)244f x f x xx ++-=-+,求函数()f x 的解析式.【变式训练3】求下列函数()f x 的解析式. (1)已知1()21x f x x-=+,求()f x ;(2)已知221(12)x f x x --=,求()f x ;(3)已知1()2()59f x f x x+=+,求()f x ;(4)已知()f x 为二次函数,且(0)2f =,(1)()1f x f x x +-=-,求()f x .分段函数求值(1)分段函数求值的方法①先确定要求值的自变量属于哪一段区间. ②然后代入该段的自变量的值(2)已知分段函数的函数值求对应的自变量的值,可分段利用函数【例3】设2,10()[(6)],10x x f x f f x x -⎧=⎨+<⎩,则()5f 的值为( ) A .10 B .11C .12D .13【变式训练1】若函数1,(0)()(2),(0)x x f x f x x +⎧=⎨+<⎩,则(3)f -的值为( ) A .5B .1-C .7-D .2【例4】已知函数1(1)()3(1)x x f x x x +⎧=⎨-+>⎩,则5[()]2f f 的值为( ) A .52B .32C .12D .12-【变式训练1】若2,(0)(),(0)x x f x x x ⎧=⎨-<⎩,则[(2)](f f -=) A .2B .3C .4D .5【例5】设函数2,0(),0x x f x x x -⎧=⎨>⎩,若()9f α=,则α= . 【变式训练1】已知函数21(0)2(0)x x y x x ⎧+=⎨>⎩,若f(a )10=,则a 的值是( ) A .3或3-B .3-或5C .3-D .3或3-或5【变式训练2】已知函数21,0()2,0x x f x x x ⎧+=⎨->⎩,若()5f x =,则x 的值是()A .2-B .2或52-C .2或2-D .2或2-或52-【例6】已知211,0()2(1),0x x f x x x ⎧+⎪=⎨⎪-->⎩使()1f x -成立的x 的取值范围是()A .[4-,2)B .[4-,2]C .(0,2]D .(4-,2]【例7】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩(1)(5)f -,(3)f -,5(())2f f -的值.(2)若f (a )3=,求实数a 的值. (3)若()f m m >,求实数m 的取值范围.【变式训练1】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩.(1)求5(5),(3),2f f f f⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值; (2)若()3f a =,求实数a 的值.【变式训练2】已知函数225,0()2,0x x f x x x x -⎧=⎨+<⎩.(1)求(f f (1))的值;(2)若(|1|)3f a -<,求实数a 的取值范围.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.【例8】已知函数()|24||1|f x x x =+--.(1)画出函数()f x 的图象;(2)若a ,0b >,函数()f x 的最小值为M ,且0a b M ++=,求222a b +的最小值.【例9】给定函数()1f x x =-+,2()(1)g x x =-,x R ∈.(1)画出函数()f x ,()g x 的图象;(2)x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析法表示函数()m x .【变式训练1】已知函数()|21|f x x =-,2()3g x x x =--+,x R ∈.(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析式法表示函数()m x ; (注:图象法请在图2中表示,本题中的单位长度请自己定义且标明.)(3)写出函数()m x 的单调区间和函数的值域.【变式训练2】已知函数2()43f x x x =-+,()1g x x =-,x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x . (1)写出函数()m x 的解析式,并画出它的图象;(2)当[0x ∈,](0)n n >时,若函数()m x 的最大值为1324n -,求实数n的取值集合.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数【例10】如图所示,等腰梯形ABCD 的两底分别为2AD a =,BC a =,45∠=︒,作直线MN AD⊥交AD于M,交折线ABCD于N.设AM x=,BAD试将梯形ABCD位于直线MN左侧的面积y表示为x的函数.则y=.【变式训练1】如图,OAB∆位∆是边长为2的正三角形,记OAB于直线(0)=>左侧的图形的面积为()f t.x t t(1)求函数()f t解析式;(2)画出函数()=的图象;y f t(3)当函数()()=-有且只有一个零点时,求a的值.g t f t at【变式训练2】《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率(%)不超过1500元的部分3超过1500元至4500元的部分10超过4500元至9000元的部分20(1)若某人全月工资、薪金所得为(012500)元,应纳税为yx x元,写出y与x的函数关系式;(2)若某人一月份纳税145元,那么他当月的工资、薪金所得是多少元.【变式训练3】星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;(3)根据你的研究,请给刘先生一个合理化的建议.1.设函数11(0)2()1(0)x x f x x x⎧-⎪⎪=⎨⎪<⎪⎩,若f(a )a =,则实数a 的值为()A .1±B .1-C .2-或1-D .1±或2-2.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--⎩,若(1)(1)f a f a -=+,则a 的值为( ) A .34-B .34C .35-D .353.已知函数2(0)()3(0)x x f x x x ⎧=⎨+<⎩,若0(())4f f x =,则0x 的值等于()A .5-或1B .1-C 2D 21-二.填空题(共1小题) 4.设函数22(2)()2(2)x x f x x x ⎧+=⎨>⎩,若0()8f x =,则0x =.三.解答题(共8小题)5.作出函数:函数(3)||y x x =--的图象,并写出函数的单调区间.(用格尺作图)6.依法纳税是每个公民应尽的义务,国家征收个人所得税是分段计算,扣除三险一金后月总收入不超过3500元,免征个人所得税,超过3500元的部分需征税.设全月应纳税所得额为x 元,则x =扣除三险一金后全月总收入3500-元,税率见下表: 级数全月应纳税所得额税率1 不超过1500元的部分 3% 2超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%4 超过9000元至35000元的部分25%5 超过35000元至55000元的部分30%6 超过55000元至80000元的部分35%7 超过80000元的部分45%(Ⅰ)若应纳个人所得税为()f x ,试用分段函数表示1~3级个人所得税()f x 的计算公式;(Ⅱ)某人2012年5月扣除三险一金后总收入为5500元,试求该人此月份应缴纳个人所得税多少元?(Ⅲ)某人六月份应缴纳此项税款500元,则他当月扣除三险一金后总收入为多少元? 7.设函数()|1|()f x kx k R =-∈.(Ⅰ)若不等式()2f x 的解集为1|13x x ⎧⎫-⎨⎬⎩⎭,求k 的值; (Ⅱ)若f (1)f +(2)5<,求k 的取值范围.8.已知()f x 是R 上的偶函数,且当0x 时,2()21f x x x =++.(1)求()f x 的解析式; (2)画出函数()f x 的图象. 9.已知函数()f x 是定义在R 上的偶函数,且当0x时,2()2f x x x =+.现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象完成下列各小题. (1)补全函数图象.(2)写出函数()()f x x R ∈的解析式.(3)若函数()()22([1g x f x ax x =-+∈,2]),求函数()g x 的最小值.10.已知函数()f x 是定义在R 上的偶函数,当0x 时,2()2f x x x =+.(1)求函数()f x 的解析式; (2)画出函数()f x 的图象;(3)根据图象写出()f x 的单调区间和值域.11.给定函数()1f x x =+,2()(1)g x x =+,x R ∈,(1)在同一直角坐标系中画出函数()f x ,()g x 的图象; (2)x R ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为(){M x max f=()x ,()}g x .12.已知函数2()|2|f x x x =-+.(1)去掉绝对值,写出()f x 的分段解析式; (2)画出()f x 的图象,并写出值域.21。

专题10 分段函数的研究(原卷版)

专题10 分段函数的研究(原卷版)

专题10 分段函数的研究一、题型选讲题型一、含义抽象函数的求值问题含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2019南京三模)若函数f (x )=⎩⎨⎧2x , x ≤0f (x -2),x >0,则f (log 23)= .例2:设函数()()cos ,011,0x x f x f x x π>⎧=⎨+-≤⎩,则103f ⎛⎫- ⎪⎝⎭的值为_________题型二 与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。

另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例3、(2019苏锡常镇调研). 已知函数f(x)=⎩⎪⎨⎪⎧log 2(3-x ),x ≤0,2x -1,x>0,若f(a -1)=12,则实数a =________.例4、(2019苏北四市、苏中三市三调) 已知函数2220()20x x x f x x x x ⎧-=⎨--<⎩,≥,,,则不等式()()f x f x >-的解集为 .题型三、分段函数的值域分段函数的定义域与值域——各段的并集例5、(2016苏州期末)函数f (x )=⎩⎨⎧2x, x ≤0,-x 2+1, x >0的值域为________.例6、(2018无锡期末) 已知函数f(x)=⎩⎨⎧x 2+2x -1x 2,x ≤-12,log 12⎝⎛⎭⎫1+x 2,x>-12,g(x)=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________. 题型四 分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

专题10一次函数及其应用(共41题)(解析版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题10一次函数及其应用(共41题)(解析版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题10一次函数及其应用一、单选题1.(2023·四川乐山·统考中考真题)下列各点在函数21y x =-图象上的是()A .()13-,B .()01,C .()11-,D .()23,【答案】D 【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式21y x =-,进行计算即可得到答案.【详解】解: 一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式21y x =-,A.当=1x -时,=3y -,故本选项错误,不符合题意;B.当0x =时,1y =-,故本选项错误,不符合题意;C.当1x =时,1y =,故本选项错误,不符合题意;D.当2x =时,3y =,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.2.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A .23y x =-+B .26y x =-+C .23y x =--D .26y x =--【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B .【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.3.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数23y x =-的图象是()....【答案】D【分析】依据一次函数)3-,和302⎛⎫ ⎪⎝⎭,,即可得到一次函数三、四象限.【详解】解:一次函数=3y -;令0y =,则一次函数23y x =-的图象经过点一次函数23y x =-的图象经过一、三、四象限,故选:D .【点睛】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.(2023·新疆·统考中考真题)一次函数A .0k >B .0kb <C .0k b +>DA.8:28B.8:30【答案】A【分析】利用待定系数法求出两条直线的函数解析式,将两个解析式联立,通过解方程求出交点的横坐标即可.【详解】解:令小亮出发时对应的t值为70,小莹到达甲地时对应的t值为40,A.()2,5B.()3,5【答案】C【分析】先根据一次函数解析式求得点∠=︒,=9090OAC∠︒,进而得出ACD故选:C.【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.10.(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,已知点A.1M B.M【答案】B∴PA y ⊥轴,4PA =,由旋转得:60APB AP ∠=︒=,如图,过点B 作BC y ⊥轴于C ∴30BPC ∠=︒,∴223BC PC ==,,∴()2123B +,),设直线PB 的解析式为:y kx =+则21231k b b ⎧+=+⎪⎨=⎪⎩,∴31k b ⎧=⎪⎨=⎪⎩,∴直线PB 的解析式为:3y x =当=1x -时,31y =-+,∴点()11,3M --不在直线PB 当33x =-时,333y ⎛=⨯- ⎝二、填空题11.(2023·山东·统考中考真题)一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12.(2023·江苏苏州·统考中考真题)已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=________________.【答案】6-【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.【详解】解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.13.(2023·天津·统考中考真题)若直线y x =向上平移3个单位长度后经过点()2,m ,则m 的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.【详解】解: 直线y x =向上平移3个单位长度,∴平移后的直线解析式为:3y x =+.平移后经过()2,m ,235m ∴=+=.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.14.(2023·湖南郴州·统考中考真题)在一次函数()23y k x =-+中,y 随x 的增大而增大,则k 的值可以是___________(任写一个符合条件的数........即可).【答案】3(答案不唯一)【分析】根据一次函数的性质可知“当20k ->时,变量y 的值随x 的值增大而增大”,由此可得出结论.【详解】解:∵一次函数23y k x =-+()中,y 随x 的值增大而增大,∴20k ->.解得:2k >,故答案为:3(答案不唯一).【点睛】本题考查了一次函数的性质,解题的关键是根据函数的单调性确定k 的取值范围.本题属于基础题,难度不大,解决该题型题目时,结合一次函数的增减性,得出k 的取值范围是关键.15.(2023·广西·统考中考真题)函数3y kx =+的图象经过点()2,5,则k =______.【答案】1【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为:1.【答案】5【分析】分别求出三个函数解析式,然后求出【详解】解:设111y k x b =+过111232b k b =⎧⎨=+⎩,解得:11122k b ⎧=⎪⎨⎪=⎩同理:22275k b +=-+=,k 则分别计算11k b +,223,k b k +故答案为:5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.三、解答题17.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点线交y 轴于点()0,3B .(1)求m的值和直线(2)若点()1,P t y在线段【答案】(1)32 m=,钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-;(2)180【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ≤≤,联立12180y x =-()1540x ≤≤,即可求解.【详解】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;(1)A ,B 两地之间的距离是______千米,(2)求线段FG 所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)【答案】(1)60,1;(2)60120y x =-+;【分析】(1)根据货车从A 地到B 地花了(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组己停工的天数.【答案】(1)30;(2)(3120y x =+30<【分析】(1)由图可知,前30天甲乙两组合作,(2)设乙组停工后y 关于x 的函数解析式为(2)解:设该商场节前购进m 千克A 粽子,则节后购进()400m -千克A 粽子,获得的利润为w 元,根据题意得:()()()2012161040022400w m m m =-+--=+,∵()121040046000m m m ⎧+-≤⎨>⎩,∴0300m <≤,∵20>,∴w 随m 的增大而增大,∴当300m =时,w 取最大值,且最大值为:230024003000w =⨯+=最大,答:节前购进300千克A 粽子获得利润最大,最大利润为3000元.【点睛】本题主要考查了分式方程和一次函数的应用,解题的关键是根据等量关系列出方程和关系式.22.(2023·四川成都·统考中考真题)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A 种食材单价是每千克38元,B 种食材单价是每千克30元;(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【分析】(1)设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意列出不等式,得出24x ≤,进而设总费用为y 元,根据题意,()38303681080y x x x =+-=+,根据一次函数的性质即可求解.【详解】(1)解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得,6853280a b a b +=⎧⎨+=⎩,解得:3830a b =⎧⎨=⎩,答:A 种食材的单价为38元,B 种食材的单价为30元;(2)解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意,()236x x ≥-解得:24x ≥,设总费用为y 元,根据题意,()38303681080y x x x =+-=+∵80>,y 随x 的增大而增大,∴当24x =时,y 最小,∴最少总费用为82410801272⨯+=(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.23.(2023·浙江·统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y 关于x 的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.【答案】(1)30件;(2)20600y x =+;(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,利用待定系数法即可得到方案二y 关于x 的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论.【详解】(1)解:由图象可知交点坐标为()30,1200,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,把()()0,600,30,1200代入上式,得600,301200.b k b =⎧⎨+=⎩解得20,600.k b =⎧⎨=⎩∴方案二的函数表达式为20600y x =+.(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一.【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信息和掌握待定系数法是解题的关键.24.(2023·浙江金华·统考中考真题)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妺妺比哥哥迟2分钟到书吧.①求图中a 的值;②妺妺在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄【点睛】本题考查了一次函数的实际应用(行程问题)25.(2023·四川遂宁·统考中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多乙种粽子的个数相同.(1)甲、乙两种粽子每个的进价分别是多少元?(1)求大巴离营地的路程s 与所用时间t 的函数表达式及(2)求部队官兵在仓库领取物资所用的时间.【答案】(1)4020s t =+,2a =;(2)1h 3【分析】(1)设出函数解析式,利用待定系数法求出函数解析式,将(2)先求出军车的速度,然后分别求出军车到达仓库,和从仓库出发到达基地的时间,用总时间减去两段(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到【答案】(1)200y x =;(2)出发后甲机器人行走【分析】(1)利用待定系数法即可求解;则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.30.(2023·上海·统考中考真题)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900;(2)0.90.27y x =-;(3)1.00【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【详解】(1)解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;(2)解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;(3)解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.31.(2023·江苏扬州·统考中考真题)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2(1)小聪在直角坐标系中描出了表中数据对应的点.︒)与加热的时间位:C选填“正比例”“一次”“二次(2)根据以上判断,求(3)当加热110s时,油沸腾了,请推算沸点的温度.【答案】(1)一次;(2)【详解】(1)由表格中两个变量对应值的变化规律可知,时间每增加10s ,油的温度就升高20℃,故可知可能是一次函数关系,故答案为:一次;(2)设这个一次函数的解析式为()0y kt b k =+≠,当0=t 时,10y =;当10t =时,30y =,103010b k b =⎧∴⎨=+⎩,解得210k b =⎧⎨=⎩,∴y 关于t 的函数解析式为210y t =+;(3)当110t =时,211010230y =⨯+=答:当加热110s 时,油沸腾了,推算沸点的温度为230C ︒.【点睛】本题考查函数的表示方法以及求函数值;能够通过表格确定自变量与因变量的变化关系是解题的关键.36.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【详解】(1)设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;(2)①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:(3)∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为916y x b a ⎛⎫=-++ ⎪-⎝⎭∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a ⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.37.(2023·广西·统考中考真题)【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:中秤盘质量0m 克,重物质量m 克,秤砣质量【方案设计】m=,目标:设计简易杆秤.设定01050厘米.任务一:确定l和a的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于(1)男女跑步的总路程为_______________(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m ;(2)315m【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:出解析式为 3.580y x =+,【详解】(1)解:∵开始时男生跑了100s .∴男生跑步的路程为50 4.5+(1)=a___________,b=___________(2)请分别求出1y,2y与x的函数关系式;(3)当上升多长时间时,两个气球的海拔竖直高度差为【答案】(1)12,30;(2)110y x=+【分析】(1)根据1号探测气球的出发海拔和速度即可计算和运动时间可计算2号探测气球的速度可计算(1)图中a的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数概念与基本初等函数
专题10 函数与方程
考点1 函数的零点与方程根的个数
1. 【2020年高考天津卷9】已知函数3,0,(),0.
x x f x x x ⎧=⎨-<⎩若函数2
()()2()g x f x kx x
k =--∈R 恰有4
个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫
-∞-+∞ ⎪⎝⎭
B .1,(0,22)2⎛⎫
-∞-
⎪⎝⎭
C .(,0)
(0,22)-∞ D .(,0)(22,)-∞+∞
2. 【2019年高考浙江】已知,a b ∈R ,函数32
,0()11(1),03
2x x f x x a x ax x <⎧⎪
=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0
D .a >–1,b >0
3. 【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨
>⎩
,,
,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞)
D .[1,+∞)
4. 【2017年高考全国Ⅲ卷理数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =
A .12
- B .
13
C .
12
D .1
5. 【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫
=+
⎪⎝

在[]0π,的零点个数为________. 6. 【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λ
λ
-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是
___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.
7. 【2018年高考天津理数】
已知0a >,函数()222,0,
22,0.
x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是______________.
8. 【2016高考天津理数】已知函数f (x )=2(4,0,
log (1)13,0
3)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,
且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,
23] (B )[23,34
] (C )[13,2
3]
{
34
}(D )[13,2
3)
{
3
4
} 考点2 函数的综合应用问题
1. 【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=
2
1
52lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1
B .10.1
C .lg10.1
D .10−10.1
2. 【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,
()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8
()9
f x ≥-,则m 的取值范围是
A .9,4
⎛⎤-∞ ⎥⎝

B .7,3
⎛⎤-∞ ⎥⎝

C .5,2
⎛⎤-∞ ⎥⎝

D .8,3
⎛⎤-∞ ⎥⎝
⎦。

相关文档
最新文档