Quantifying different types of urban growth in Guangzhou using multi-temporal remote sensing data
城市可渗透地面面积比例的计算方式
英文回答:The assessment of the permeable ground area ratio in an urban environment is of paramount importance in gauging the extent of urbanization and the potential for sustainable development.A fundamental aspect in calculating this ratio involves the initial determination of the total ground area within the city. This epasses all the land epassed by the city limits, including built-up infrastructure, roads, parks, and various green spaces. Subsequently, the identification of the permeable ground area is imperative, epassing locales such as parks, gardens, and other green spaces which facilitate water infiltration into the ground. It is essential to exclude impermeable surfaces such as buildings, roads, and paved areas from this evaluation.评估城市环境中的可渗透地面面积比例对于衡量城市化的程度和可持续发展的潜力至关重要。
计算这一比率的一个基本方面是初步确定城市内地面总面积。
distances
distancesDistancesIntroductionDistances play a significant role in various aspects of our lives. Whether it is understanding the physical distance between two locations, measuring the psychological distance between individuals, or quantifying the genetic distance between species, the concept of distance is omnipresent. This document aims to explore the different types of distances and their applications in different fields. From geography to psychology to biology, distances are used to describe and analyze a wide range of phenomena. So, let's delve deeper into the world of distances.Geographical DistancesGeographical distances are perhaps the most common and widely used type of distances. They refer to the physical distance between two or more locations. Geographical distances are typically measured in terms of kilometers or miles and are used to calculate travel times, plan routes, anddetermine the proximity of one place to another. With the advent of technologies like GPS and online mapping services, calculating geographical distances has become more accessible and accurate.In addition to measuring distances between cities, countries, or continents, geographical distances are also crucial in fields such as urban planning, transportation, and logistics. For example, urban planners use distance metrics to determine the accessibility of essential services like schools, hospitals, and markets. Transportation companies rely on distances to optimize delivery routes and minimize costs. Geographical distances are paramount for efficient supply chain management and effective city development.Psychological DistancesPsychological distances refer to the perceived separation or difference between individuals, groups, or objects. Unlike geographical distances, psychological distances are subjective and can vary from person to person. They can manifest in the form of perceived social, cultural, or emotional differences. For example, a person may feel a greater psychological distance from someone belonging to a different culture or social class.Understanding psychological distances is crucial in various fields, including marketing, communication, and conflict resolution. Marketers often rely on psychological distance theories to understand consumer behavior and develop effective advertising strategies. Similarly, in conflict resolution, bridging psychological distances is a key factor in promoting understanding and reconciliation among warring parties. By recognizing and addressing psychological distances, individuals and organizations can foster better relationships and enhance cooperation.Genetic DistancesGenetic distances quantify the genetic differences between individuals, populations, or species. In genetics, distances are used to measure the genetic divergence or similarity between organisms. These distances are typically based on the comparison of genetic markers or DNA sequences. Genetic distances are instrumental in evolutionary biology, population genetics, and conservation efforts.By analyzing genetic distances, scientists can understand the evolutionary relationships between species, trace migratory patterns, and identify genetic variations within populations.Genetic distances also play a crucial role in conservation biology, helping researchers determine the genetic diversity within endangered species and develop effective conservation strategies. Furthermore, genetic distances aid in the identification of disease susceptibility, enabling personalized medicine and tailored treatments.ConclusionDistances are more than just physical measurements. They are abstract concepts that are applied in various scientific fields and real-life scenarios. From understanding physical distances in geography to perceiving psychological distances in interpersonal relationships, distances play a significant role in shaping our world. Furthermore, genetic distances offer insight into the evolutionary history and genetic makeup of species. By understanding and quantifying distances, scientists, researchers, and individuals can make informed decisions, drive innovation, and improve our understanding of the world around us.。
湖北省黄冈、襄阳市2024届高三第三次调研英语试题试卷含解析
湖北省黄冈、襄阳市2024届高三第三次调研英语试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分(共20小题,每小题1.5分,满分30分)1.Their youngest girl is at the stage ______ she can say a single word but not a full sentenceA.when B.whichC.that D.where2.Tourists are required to _________ local customs and mind their manners when travelling abroad.A.spot B.confirmC.observe D.spread3.The scientist does not study nature ________ it is useful to do so. He studies it because he takes pleasure in it. A.until B.becauseC.though D.unless4.The art historians tried to figure out how the temple __________ when built around 15 B.C.A.might look B.might have looked C.must look D.must have looked5.—Sorry, I didn’t hear the door bell ring.—Your bell . Perhaps it needs repairing.A.never worked B.is never workingC.never works D.had never worked6.--- I’ve got something weighing on my mind. Could you give me some advice?--- ______. Tell me all about it and I’ll do what I can.A.Don’t mention it B.No wonderC.No problem D.My pleasure7.This book is said to be the special one, which ________ many events that cannot be found in other history books. A.covers B.writesC.prints D.reads8.The 90’s people seem to have enjoyed the great benefits ________ about by the great level of cultural andeconomic development.A.brought B.bringingC.to be brought D.having brought9.Due to large investment in housing, many cities can ________ the flow of new arrivals, improving the quality of theirlife.A.give rise to B.make way for C.take part in D.keep pace with10.---How was your trip to Xi'an last month?--_____________. It was raining cats and dogs during my stay there.A.Wonderful B.ExcitingC.Not bad D.It couldn't be worse11.Though lacking the necessary working experience, my cousin got the job ______ her confidence and flexibility. A.in terms of B.in response toC.by virtue of D.with respect to12.______ the deadline, the workers had to work overtime to get the job finished.A.Giving B.Given C.Having given D.To give13.Our football team had a lead in the match, but the last minute goal of the guest team .A.gave it away B.put it awayC.wiped it away D.carried it away14.(2018·海淀二模)—Excuse me, sir. Can you spare me a dollar ________ I can buy this book?—Sure, no problem.A.for B.soC.but D.or15.— Would you mind my coming over and having a look at your rehearse (排练)? My little son’s curious about the performance.— _______ . Just come round.A.Y es, I do B.Never mind C.Not at all D.Y es, please16.Someone who lacks staying power and perseverance is unlikely to ______ a good researcher.A.make B.turnC.get D.grow17.With a travelling speed of up to 350 kilometres per hour, the railway to be built between Beijing and Shanghai _______ the journey time from 12 hours to 5 hours.A.cuts B.will cut C.is cutting D.has cut18.—Do you like the mobile game Traveling Frog?—Yes, the posts about the virtual green frog ________ over 4 million times.A.have read B.have been readC.would be read D.are reading19.. I was embarrassed to admit that yesterday I ______ a serious error.A.acted B.committed C.performed D.completed20.______ to nuclear radiation, even for a short time, may influence genes in human bodies.A.Having exposed B.Being exposedC.To expose D.Exposed第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
数据采集 英文文献
Developing conversational interfaces is a classic chicken and egg problem. In order to develop the system capabilities, one needs to have a large corpus of data for system development, training and evaluation. In order to collect data that reflect actual usage, one needs to have a system that users can speak to. Figure 1 illustrates a typical cycle of system development. For a new domain or language, one must first develop some limited natural language capabilities, thus enabling an “experimenter-in-the-loop,” or wizard-of-oz, data collection paradigm, in which an experimenter types the spoken sentences to the system, after removing spontaneous speech artifacts. This process has the advantage of eliminating potential recognition errors. The resulting data are then used for the development and training of the speech recognition and natural language components. As these components begin to mature, it becomes feasible to collect more data using the “system-in-the-loop,” or wizardless, paradigm, which is both more realistic and more cost effective. Performance evaluation using newly collected data will facilitate system refinement.
英语作文-生态系统服务价值评估与补偿机制
英语作文-生态系统服务价值评估与补偿机制Ecosystem services are the benefits that humans freely gain from the natural environment and from properly-functioning ecosystems. Such services include, but are not limited to, products like clean drinking water and processes like the decomposition of wastes. The concept of ecosystem services has been developed as a way to improve the management of ecosystems and to provide a guide for evaluating the wide array of services they provide.The valuation of ecosystem services is a method that encompasses both the intrinsic value of the environment and its contribution to human well-being. This approach allows for a more comprehensive understanding of the benefits provided by ecosystems, which can be translated into economic terms. It involves assessing services such as air and water purification, flood protection, carbon sequestration, and biodiversity conservation. By quantifying these services, we can better appreciate the direct and indirect contributions of ecosystems to our quality of life and economic prosperity.Compensation mechanisms for ecosystem services are strategies designed to provide financial or other types of compensation for the maintenance or enhancement of ecosystem services. Payment for Ecosystem Services (PES) is one such mechanism that has gained popularity. It involves transactions where the beneficiaries of ecosystem services make payments to the landowners or stewards who manage the ecosystems providing those services. This creates a financial incentive for the conservation and sustainable management of natural resources.The implementation of PES programs can be complex, as it requires the identification of service providers and beneficiaries, the establishment of a payment scheme, and the monitoring of service delivery. However, when effectively designed, these programs can align the interests of stakeholders and lead to improved ecosystem management. For instance, a PES program might compensate farmers for adopting agricultural practices that enhance soil health and water quality, thereby benefiting downstream communities.In urban areas, green infrastructure projects like parks, green roofs, and wetlands can be part of a compensation mechanism. These projects not only provide recreational spaces but also offer services like temperature regulation, air purification, and stormwater management. Municipalities may incentivize property owners to integrate green infrastructure through tax breaks or subsidies.The challenge in valuing ecosystem services lies in the complexity of nature and the interdependence of different services. It is difficult to isolate the value of a single service without considering its relationship with others. Moreover, there is a risk of commodifying nature and overlooking non-market values such as cultural significance and biodiversity.In conclusion, the valuation and compensation of ecosystem services are essential for promoting environmental stewardship and sustainability. By recognizing the full value of these services, we can create economic models that encourage the conservation and restoration of natural ecosystems. This, in turn, ensures that future generations will continue to benefit from the rich array of services that ecosystems provide. It is a step towards a more sustainable and equitable relationship with our natural environment, one that acknowledges the myriad ways in which our lives are intertwined with and dependent upon the health of ecosystems around us. 。
城市蓝绿空间格局对碳固存的影响测度及关键指标
㊀第21卷㊀第6期2023年12月中㊀国㊀城㊀市㊀林㊀业JournalofChineseUrbanForestryVol 21㊀No 6Dec 2023城市蓝绿空间格局对碳固存的影响测度及关键指标∗袁旸洋1ꎬ2㊀郭㊀蔚1㊀汤思琪1㊀杨明珠1㊀汪瑞军31㊀东南大学建筑学院㊀南京㊀2100962㊀江苏省城乡与景观数字技术工程中心㊀南京㊀2100963㊀合肥工业大学建筑与艺术学院㊀合肥㊀230601㊀收稿日期:2023-10-30∗基金项目:国家自然科学基金重点项目(51838003)ꎻ东南大学 至善青年学者 支持计划(2242023R40002)㊀第一作者/通信作者:袁旸洋(1987-)ꎬ女ꎬ博士ꎬ副教授ꎬ硕士生导师ꎬ研究方向为风景园林规划设计及理论㊁数字景㊀㊀㊀㊀㊀㊀观技术㊁城市蓝绿空间ꎮE-mail:yyy@seu edu cn㊀通信作者:汪瑞军(1986-)ꎬ男ꎬ博士ꎬ讲师ꎬ研究方向为风景园林规划设计与理论㊁城市绿地生态㊁城乡风貌与环境设㊀㊀㊀㊀㊀㊀计ꎮE-mail:2021800162@hfut edu cn摘要: 双碳 背景下城市空间碳汇结构与布局的提升与优化是重要的研究内容ꎮ作为碳汇效益的主要载体ꎬ城市蓝绿空间在增汇减碳方面具有协同作用ꎬ但当下对于城市蓝绿空间整体格局对其碳固存的影响关联研究不足ꎮ文章以合肥中心城区为例ꎬ基于2000㊁2010㊁2020年的数据ꎬ在量化城市蓝绿空间格局特征的基础上ꎬ采用机器学习XGBoost ̄SHAP模型测度与解译城市蓝绿空间格局对碳固存的影响及关键指标ꎮ结果表明:1)城市蓝绿空间格局对碳固存具有影响ꎬ且不同格局特征的影响程度不同ꎮ2)影响碳固存的城市蓝绿空间格局关键指标有斑块层的FRAC㊁CONTIG㊁AREA和ENNꎬ类型层的ED㊁COHESION㊁DIVISION和LSIꎮ3)蓝绿斑块形状复杂度越高ꎬ越有利于碳汇效益的发挥ꎻ蓝绿空间分布的聚集度越高㊁距离越近㊁连通度越高ꎬ碳汇效益越好ꎮ据此ꎬ提出以碳增汇为目标的城市蓝绿空间格局规划优化策略ꎬ以期为城市蓝绿空间规划与管理提供参考ꎮ关键词:城市蓝绿空间ꎻNPPꎻ景观格局指标ꎻ数字景观技术ꎻXGBoost ̄SHAP模型DOI:10.12169/zgcsly.2023.10.30.0001AssessingtheImpactofUrbanBlue ̄GreenSpacePatternonCarbonSequestrationandItsKeyIndicatorsYuanYangyang1ꎬ2㊀GuoWei1㊀TangSiqi1㊀YangMingzhu1㊀WangRuijun3(1 SchoolofArchitectureꎬSoutheastUniversityꎬNanjing210096ꎬChinaꎻ2 JiangsuProvincialUrbanandRuralDigitalTechnologyEngineeringCenterꎬNanjing210096ꎬChinaꎻ3 CollegeofArchitectureandArtꎬHefeiUniversityofTechnologyꎬHefei230601ꎬChina)Abstract:Inthecontextof dualcarbongoals ꎬenhancingandoptimizingthestructuresandlayoutsofcarbonsinkinurbanspacesisasignificantresearchtopic.Urbanblue ̄greenspace(UBGS)ꎬservingastheprimaryfacilitatorsofcarbonsinkbenefitsꎬexertsasynergisticinfluenceoncarbonsequestrationandemissionsreduction.TakingHefei scitycoreasanillustrativecasestudyꎬthispaperemploysthemachinelearningmodelꎬXGBoost ̄SHAPꎬtogaugeandelucidatetheinfluenceoftheUBGSpatternoncarbonsequestrationandtheirpivotalindicatorsafterquantifyingthecharacteristicsoftheUBGSpatternwiththedataspanningtheyears2000ꎬ2010ꎬand2020.Thefindingsunveil:1)TheUBGSpatternhasadiscernibleinfluenceoncarbonsequestrationꎬandpatternswithdifferentcharacteristicshavevariedextentofinfluenceatthatꎻ2)ThepivotalindicatorsoftheUBGSpatternforassessingtheinfluenceoncarbonsequestration㊀第6期㊀袁旸洋㊀郭㊀蔚㊀汤思琪ꎬ等:城市蓝绿空间格局对碳固存的影响测度及关键指标㊀㊀includethepatch ̄levelmetricslikeFRACꎬCONTIGꎬAREAandENNꎬandtheclass ̄levelmetricssuchasEDꎬCOHESIONꎬDIVISIONandLSIꎻand3)Highercomplexityintheshapeofblueandgreenpatcheswillbringhigherbenefitsfromcarbonsequestrationꎬandlinearpatchesexhibitsubstantiallylowercarbonsinkbenefitsincomparisontoarea ̄shapedpatches.Enhancedaggregationꎬcloserproximityꎬandheightenedconnectivityofblueandgreenspacescorrelatewithsuperiorcarbonsinkbenefits.BasedonthisꎬtheoptimizationstrategiesforUBGSpatternplanningareproposedwiththecarbonsequestrationandemissionreductionasthegoalꎬwiththeaimtoprovidereferencesfortheplanningandmanagementoftheUBGS.Keywords:urbanblue ̄greenspaceꎻNPPꎻlandscapemetricꎻdigitallandscapetechnologyꎻXGBoost ̄SHAPmodel㊀㊀近年来CO2等温室气体排放加速全球变暖ꎬ引发了系列环境和社会问题ꎮ为应对气候变化所产生的威胁ꎬ2016年«巴黎协定»敦促世界各国通过实际行动减少温室气体排放ꎬ增强固碳能力ꎬ减缓全球变暖的速度[1]ꎮ我国在第75届联合国大会上提出了碳中和㊁碳达峰战略ꎮ城市虽然仅占全球陆域总面积的3%ꎬ却产生了超过70%的碳排放[2]ꎮ由此ꎬ城市在我国 双碳 战略的实施中具有关键地位ꎬ推动城市空间碳源汇结构与布局向绿色低碳转型成为当下重要的研究内容ꎮ城市蓝绿空间(Urbanblue ̄greenspaceꎬUBGS)是城市发展过程中留存或新建的绿色空间和蓝色空间的总和ꎬ包括所有自然㊁半自然㊁人工的绿地与水体ꎬ是城市生态系统的重要组成部分[3-4]ꎮ研究表明ꎬ绿色空间是碳汇量最大的贡献者ꎬ其产生的碳汇可以抵消28%~37%的CO2排放量ꎬ而湿地㊁河流㊁湖泊和沼泽等蓝色空间是巨大的碳库ꎮ除了植被㊁土壤的固碳释氧功能ꎬ城市蓝绿空间还可以通过缓解城市热岛效应㊁改善人居环境微气候ꎬ促进居民绿色出行等途径ꎬ间接减少碳排放[5]ꎮ综上ꎬ蓝绿空间具有直接增碳汇㊁间接减碳排的双重生态效益ꎬ是城市中发挥碳汇效益的主要载体[6]ꎮ以往关于城市蓝绿空间碳汇的研究多聚焦绿地和森林的碳汇量估算方法ꎬ包括样地清查法㊁模型估算法[7]㊁遥感反演法[8]和温室气体清查法等ꎮ其中ꎬ基于遥感技术的植被净初级生产力(NetPrimaryProductivityꎬNPP)[9-10]估算已广泛应用于区域和城市尺度ꎮ有学者从城乡规划学和生态学的角度ꎬ分析土地利用变化㊁气候变化[11-12]㊁城市树种及其生长周期[13]对城市蓝绿空间碳汇的影响机制ꎮ例如:Li等[14]证明城市中森林面积的增大对NPP有正向影响ꎻYang等[15]研究了NPP对土地利用变化的响应认为ꎬ耕地向林地和草地的转换可以有效提高生态系统固碳能力ꎮ景观格局是市域生态空间尺度影响碳汇功能提升的关键因素ꎮ城市蓝㊁绿空间具有相似的自然生态属性ꎬ在生态功能和物质交换㊁能量流动等自然过程中相互影响㊁相互依存ꎬ具有强关联性和整体性[16]ꎬ共同构成了城市自然碳汇系统ꎮ现有研究多从单一绿色空间中格局及群落构成的角度展开[17-18]ꎬ而已有研究证实ꎬ城市水体对绿地的碳汇能力提升具有一定促进作用ꎬ当下关于城市整体蓝绿空间格局对碳汇效益影响的研究有待开展[19-20]ꎮ本研究从整体性视角出发ꎬ以合肥中心城区为例ꎬ采用景观格局指标量化2000㊁2010㊁2020年城市蓝绿空间格局特征ꎬ基于机器学习的XGBoost ̄SHAP模型测度蓝绿空间格局特征对NPP的影响ꎬ并解译其关键指标ꎬ解析城市蓝绿空间格局特征如何影响碳固存(Carbonsequestration)ꎬ旨在为高质量发展背景下基于碳增汇目标的城市蓝绿空间格局优化提供参考ꎬ助力城市蓝绿空间融合发展ꎮ1 研究区概况合肥位于安徽省中部(117ʎEꎬ31ʎN)ꎬ属长三角城市群ꎬ天然山水禀赋良好ꎬ呈现 岭湖辉映 的蓝绿交织体系ꎮ平均海拔约37 51mꎬ地形以平原和丘陵为主ꎬ属于亚热带湿润季风气候ꎬ冬冷夏热ꎻ年平均气温15 7ħꎬ年平均日照2100h以上ꎻ降雨量近1000mmꎬ主要集中在5 6月ꎮ2000年以来ꎬ合肥城市快速扩张㊁人口增长7㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第21卷迅速ꎬ2022年迈入了特大城市行列ꎮ在此期间ꎬ合肥市政府重视城市环境建设ꎬ积极响应生态文明建设战略ꎬ出台了一系列政策聚焦于城市环境修复ꎬ蓝绿空间在发展中得到保护与恢复ꎮ从国土区位㊁发展特点㊁自然资源等方面来看ꎬ合肥是长江中下游高密度城市发展的典型代表之一ꎮ本文的研究范围为合肥市中心城区ꎬ即«合肥市国土空间总体规划(2021 2035年)»中市辖区范围ꎬ包括蜀山㊁包河㊁瑶海㊁庐阳4个行政区ꎬ总面积为1312 5km2ꎮ2㊀研究方法选取2000㊁2010㊁2020年的数据进行研究ꎬ以避免单个年份的遥感及气象数据因精度㊁极端气候等因素带来误差ꎮ主要内容包括城市蓝绿空间格局特征量化㊁碳固存计算㊁关键指标分析与解译ꎮ2 1㊀数据获取与处理本研究所采用的数据包括土地利用数据㊁气象数据㊁植被类型数据㊁NDVI数据(表1)ꎮ从地理空间数据云平台(https://www.gscloud.cn/)获取2000㊁2010年LandsatTM及2020年LandsatOLI共3期遥感影像ꎬ空间分辨率30mꎮ基于GoogleEarthEngine平台对影像进行辐射定标㊁大气几何校正㊁条带修复等处理ꎮ根据中国土地利用/土地覆盖遥感监测数据分类系统(LUCC)遥感解译处理后的影像ꎬ将其划分为耕地㊁林地㊁草地㊁建设用地㊁水体㊁未利用地6类ꎬ得到各期合肥市土地利用分类数据ꎮ采用Kappa系数对分类后图像精度评估验证ꎬ总体精确度达到85%ꎬ高于最低精度要求ꎮ利用ArcMap10 8软件将林地㊁草地重分类成绿色空间ꎬ将水体重分类成蓝色空间ꎬ获得2000㊁2010与2020年合肥中心城区蓝绿空间分布图(图1)ꎮ表1㊀数据来源及处理㊀㊀数据类型㊀㊀㊀㊀㊀㊀㊀数据来源数据精度土地利用数据GoogleEarthEngine(https://earthengine google com/)Landsat ̄5(2000年)㊁landsat ̄7(2010年)㊁Landsat ̄8(2020年)30mˑ30m气象站点数据气温降水日辐射地理遥感生态网(http://www gisrs cn/)30mˑ30m植被类型覆盖图地理遥感生态网(http://www gisrs cn/)30mˑ30mNDVI数据GoogleEarthEngine(https://earthengine google com/)Landsat ̄5(2000年)㊁landsat ̄7(2010年)㊁Landsat ̄8(2020年)30mˑ30m图1㊀合肥中心城区蓝绿空间分布2 2㊀基于CASA模型的NPP计算采用NPP表征城市蓝绿空间碳固存能力ꎬ选用CASA模型进行计算ꎮCASA模型由Potter等[21]1993年提出ꎬ用于表征陆地生态系统中H2O㊁C和N通量跟随时间演变而不断变化的生态系统过程ꎬ适合区域尺度的NPP研究和估算[22]ꎬ计算公式如下:NPPxꎬt()=APRAxꎬt()ˑεxꎬt()(1)㊀㊀式(1)中:NPP(xꎬt)表示像元x在t月的植被净初级生产力(单位:gC m-2 a-1)ꎻAPAR(xꎬt)表示像元x在t月吸收的光合有效辐射(单位:gC m-2 month-1)ꎻε(xꎬt)表示像元x在t月的实际光能利用率(单位:gC MJ-1)ꎮ8㊀第6期㊀袁旸洋㊀郭㊀蔚㊀汤思琪ꎬ等:城市蓝绿空间格局对碳固存的影响测度及关键指标㊀㊀植被吸收的光合有效辐射取决于太阳辐射和植物本身的特征ꎬAPRA的计算公式如下:APRAxꎬt()=SOLxꎬt()ˑFPARxꎬt()ˑ0 5(2)㊀㊀式(2)中:SOL(xꎬt)表示t时期像元x在t月的太阳总辐射(单位:MJ m-2month-1)ꎻFPAR(xꎬt)为植被层对入射光合有效辐射的吸收比例ꎻ常数0 5表示植被所能利用的太阳有效辐射占太阳总辐射的比例ꎮεxꎬt()=Tεxꎬt()ˑTεxꎬt()ˑWεxꎬt()ˑεmax(3)㊀㊀式(3)中:Tε1(xꎬt)和Tε2(xꎬt)分别指月高温㊁月低温对光能利用率的胁迫作用系数ꎻWε(xꎬt)为水分胁迫的影响系数ꎻεmax是理想条件下的最大光能利用率(单位:gC MJ-1)ꎮ基于NPP计算结果ꎬ使用自然断点法对计算结果分级ꎬ得到合肥中心城区3年的NPP空间分布(图2)ꎮ图2㊀合肥中心城区2000㊁2010㊁2020年NPP空间分布2 3㊀城市蓝绿空间格局特征量化选用斑块层与类型层的景观格局指标量化城市蓝绿空间格局特征(表2)ꎮ斑块层指标强调单个蓝绿斑块的特征ꎬ类型层侧重表征蓝绿空间整体形态特征ꎬ采用Fragstats4 3软件计算ꎮ由于城市区域的蓝绿空间格局表现出高度的空间异质性和尺度依赖性[23]ꎬ需选取适宜的移动窗口尺度ꎮ通过粒度和幅度分析方法确定60m为最适合研究区的粒度值ꎬ400m作为格局计算时移动窗口的大小ꎮ2 4㊀XGBoost模型构建与SHAP方法解译eXtremeGradientBoosting(XG ̄Boost)机器学习模型是由Chen等[24]提出的一种结合监督学习和集成学习方法的极限梯度提升树算法ꎮ针对本研究数据集庞大㊁特征复杂的问题ꎬXGBoost模型训练结果稳定㊁模型训练效率高ꎬ可很好地避免过拟合现象的发生[25]ꎮ本研究分别基于斑块层和类型层2类指标及其对应的3年NPP值ꎬ构建6个数据集ꎮ以2020年为例ꎬ采用ArcGIS10 7软件的随机取样工具创建随机取样点20000个ꎬ将斑块层各指标和NPP计算值提取至点ꎮ在建立类型层数据集时ꎬ考虑到取样点分布的均匀性及数据量ꎬ创建随机取样点40000个ꎬ剔除不属于蓝绿空间的点ꎮ为避免模型的过拟合现象发生ꎬ对数据集进行了正则化处理ꎬ将80%的数据作为训练集㊁20%的数据作为测试集用于模型验证ꎮ其次ꎬ借助贝叶斯优化方法(Tree ̄structuredParzenEstimatorꎬTPE)调整XGBoost模型超参数ꎬ选取模型中主要超参数n_estimators㊁max_depth㊁learning_rate进行优化ꎮ之后ꎬ选择平均绝对误差(MeanAbsoluteErrorꎬMAE)㊁均方根误差(RootMeanSquaredErrorꎬRMSE)和决定系数(R2)做为预测效果的评价指标ꎬR2越接近1ꎬ表明模型拟合效果越好[26]ꎮ此外ꎬ利用十折交叉验证法检验模型的泛化能力ꎬ对预测模型精度进行估计[27]ꎮ验证结果6个数据集的均方根误差RMSE㊁评价绝对误差MAE均较小ꎬR2值均接近1ꎬ十折交叉验证结果为0 699~0 942ꎬ表明建立的XGBoost模型在训练集和测试集上的精度水平符合预期要求ꎮ9㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第21卷表2㊀蓝绿空间格局特征指标指标分类指标名称㊀㊀计算公式㊀㊀㊀㊀内涵斑块层面积(AREA)AREA=aij110000()蓝绿斑块的面积周长(PERIM)PERIM=pij斑块的周长ꎬ包括斑块内部孔隙的边缘长度欧式距离(ENN)ENN=ðzr=1hijrz斑块边缘与斑块质心之间的平均距离分形维数(FRAC)FRAC=2ln0 25pij()lnaij1ɤFRACɤ2()空间尺度(斑块大小)范围内的形状复杂性近圆指数(CIRCLE)SQUARE=1-aijasij[]0ɤCIRCLEɤ1()方形斑块CIRCLE=0ꎬ细长线性斑块CIRCLE=1邻近指数(CONTIG)CONTIG=ðzr-1cijkasijéëêêùûúú-1v-10ɤCONTIGɤ1()蓝绿斑块的空间连通性或邻近性类型层面积占比(PLAND)PLAND=ðnj=1aijA每种斑块类型的比例丰度最大斑块指数(LPI)LPI=maxaij()A100()空间类型的优势度量边缘密度(ED)ED=EA在一定程度上表征空间形状复杂度景观形状指数(LSI)LSI=0 25E㊀A总边缘或边缘密度的标准化度量聚集度(AI)AI=giimaxңgii[]100()蓝绿空间的聚集程度破碎度(DIVISION)DIVISION=A2ðnj=1a2ij蓝绿空间的破碎程度内聚力指数(COHESION)COHESION=1-ðmj=1Pijðmj=1Pij㊀aijéëêêùûúú1-1㊀A[]-1100()(0<COHENSION<100)蓝绿空间的物理连通性㊀㊀SHAP(SHapleyAdditiveexPlanations)方法由Lundberg和Lee[28]提出ꎬ可准确解释机器学习模型中每个特征对结果的贡献度ꎬ提供全局模型和单个特征的局部解释结论ꎬ适用于解译城市蓝绿空间格局多个特征对碳固存的影响关系ꎮ同时ꎬSHAP与XGBoost集成良好ꎬ可通过TreeSHAP算法有效地估计SHAP值[29]ꎬ公式如下ꎮ^yi=shap0+shapX1i()+shapX2i()++shapXpi()(4)㊀㊀式(4)中:shapXji()为观测i的第j个特征的shap值ꎬ表示该特征对预测的边际贡献ꎮ假设一个XGBoost模型ꎬ其中一组N(具有N个特征)用于预测输出v(N)ꎮ在SHAP中ꎬ每个特征Φi是特征i的贡献ꎬ对模型输出v(N)的贡献是基于它们的边际贡献分配的ꎬ公式如下:Φival()=ðSɪxꎬ x{}\x{}S!p-S-1()!p!valSɣxj{}()-valS()()(5)式(5)中:p是特征的总数ꎻ{xiꎬxp}\{xj}是不包括xj的所有可能的特征组合的集合ꎻS是{xiꎬ xp}\{xj}的特征集ꎻval(Sɣ{xj})是特征在S加上特征xj的模型预测ꎮ3㊀结果与分析3 1㊀特征重要程度斑块层指标重要性排序(图3A)表明ꎬ2000年前3分别是FRAC㊁CONTIG㊁AREAꎬ2010年是FRAC㊁ENN㊁CONTIGꎬ2020年为FRAC㊁ENN㊁AREAꎮ综合来看ꎬFRAC在3年中ꎬ对NPP的影响程度均最高ꎬ说明蓝绿斑块形状的复杂程度对碳固存最为重要ꎮ其次ꎬCONTIG在2000㊁2010年ꎬAREA在2000㊁2020年ꎬENN在2010㊁2020年的贡献度排序为前3ꎬ表明蓝绿斑块的邻近度㊁面积㊁距离与碳固存有较强的相关01㊀第6期㊀袁旸洋㊀郭㊀蔚㊀汤思琪ꎬ等:城市蓝绿空间格局对碳固存的影响测度及关键指标㊀㊀性ꎮ类型层指标重要性表明排名前3(图3B)分别为:2000年是COHESION㊁ED㊁DIVISIONꎬ2010年是LSI㊁ED㊁DIVISIONꎬ2020年是ED㊁COHESION㊁LSIꎮED在3年中ꎬ对NPP的影响程度均最高ꎮ由此ꎬ蓝绿空间整体形状的复杂程度是影响碳固存的重要格局特征ꎮCOHESION在2000㊁2020年ꎬDIVISION在2000㊁2010年ꎬLSI在2010㊁2020年的重要性排序为前3ꎬ这表明蓝绿空间整体的连通性㊁破碎度㊁形状复杂性对于碳固存有较强的影响ꎮ综上ꎬ从特征重要程度排序可见斑块层中的FRAC㊁CONTIG㊁AREA和ENN是影响碳固存的4个关键指标ꎬ类型层的关键指标是ED㊁COHESION㊁DIVISION和LSIꎮ图3㊀城市蓝绿空间格局特征重要程度排序3 2㊀关键指标分析3 2 1㊀斑块层指标由图4可知ꎬ3年中ꎬ斑块层指标对NPP影响趋势基本相似ꎮ表征斑块形状的FRAC㊁CIRCLE中ꎬFRAC反映蓝绿斑块的形状ꎬ与NPP呈正相关ꎬ即随着单个蓝绿斑块形状复杂程度的增加ꎬ碳固存能力增强ꎮ这可能是生态斑块形状越复杂ꎬ斑块与其他斑块之间的物质和能量信息交换越频繁ꎬ对斑块的生态功能辐射越有利ꎮ城市建成密度较高的区域大量蓝绿空间因受建筑㊁道路等硬质边界的限制ꎬ形状规则ꎬ碳固存能力较弱ꎮ因此ꎬ自然植被覆盖度高㊁人为干扰较少的蓝绿空间斑块ꎬ其形状复杂且受环境影响较小ꎬ斑块内部的生态结构较为稳定ꎬ碳固存能力更高ꎮCIRCLE表征蓝绿斑块的近圆指数ꎬ与NPP呈负相关ꎮCIRCLE值接近1时ꎬ其形状越接近线形ꎬNPP值显著降低ꎬ即线形蓝绿斑块的碳固存能力较低ꎮ合肥中心城区的线形蓝绿斑块主要是十五里河㊁南淝河等水体及两侧绿地ꎬ以及道路绿地ꎮ河道等线性蓝绿斑块的碳固存能力较低的原因可能是硬化的河道驳岸阻碍了蓝绿之间的物质交换ꎬ限制了固碳能力的发挥ꎮ而道路绿地碳固存不高的原因可能是由于机动车排放的CO2浓度过高ꎬ对道路两侧绿化植物的碳固存能力产生一定的胁迫作用ꎮ表征蓝绿斑块分布的ENN㊁CONTIG与NPP均呈负相关ꎮ其中ꎬENN表征蓝绿斑块之间的距离ꎬ其与NPP呈负相关ꎬ表明蓝绿斑块在空间分布上呈现更加分散的状态时ꎬ不利于碳固存能力的发挥ꎮENN越小意味着城市蓝绿斑块的聚集度越高㊁破碎度越低ꎬ越有利于发挥碳固存能力ꎮQiu等[30]研究得出林地聚集有利于UGI植被碳吸收ꎬMngadi等[31]认为景观破碎化会引起碳固存能力降低ꎬ与本文的研究结论基本一致ꎮ景观破碎度的增加会直接影响生境质量[32]ꎬ若蓝绿空间的破碎度过高ꎬ即使植被覆盖程度较高ꎬ也不一定有好的碳固存能力ꎮ究其原因ꎬ一是蓝绿空间的破碎导致彼此联系减弱ꎬ阻断了物质交换与能量流动ꎮ研究表明ꎬ蓝绿空间的结构改变会直接影响植被的固碳功能[33]ꎬ进而影响生态系统的净初级生产力ꎮ二是蓝绿空间的聚集程度将通过影响11㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第21卷图4㊀斑块层关键影响指标分析温度等植被生长环境ꎬ从而影响固碳能力ꎮ大量研究证实城市绿地的总面积相同情况下更密集的绿地通常比碎片化的更凉爽ꎮ高聚集度的蓝绿空间温度相对较低ꎬ避免了高温对植物光合作用的胁迫ꎬ影响植物的固碳能力[34]ꎮCONTIG表征蓝绿斑块邻近度ꎬ其值在[0ꎬ0 6]区间ꎬSHAP值保持稳定ꎬ但在[0 6ꎬ1 0]区间ꎬ随着CONTIG值的增大ꎬSHAP值下降ꎮ其原因是:在合肥中心城区内ꎬ绿地中的绿色植物是发挥固碳作用的主体ꎬ而CONTIG较高的区域为巢湖㊁董铺水库㊁大房郢水库等大面积水域ꎬ蓝绿空间中水体占比过大ꎬ导致其固碳量较低ꎮ表征斑块大小的AREA㊁PERIM与NPP的相关性趋势相似ꎬ均表现为指标值越大ꎬSHAP值21㊀第6期㊀袁旸洋㊀郭㊀蔚㊀汤思琪ꎬ等:城市蓝绿空间格局对碳固存的影响测度及关键指标㊀㊀越高ꎬ与NPP呈正相关ꎬ即蓝绿斑块的面积越大ꎬ有利于碳固存能力提升ꎮ值得注意的是ꎬ当AREA与PERIM的值在0附近时ꎬ对应的NPP值变化区间较大ꎮ原因可能有二:一是形状的差异导致相似面积大小的蓝绿斑块碳固存能力有所不同ꎻ另一个是蓝绿斑块中不同的植物种类与群落结构造成了相同面积下碳固存的差异ꎮ因此ꎬ针对城市中尺度较小的蓝绿斑块ꎬ在面积增大受到限制的情况下ꎬ其碳固存能力的提升更应关注斑块形状和空间分布的调控ꎮ3 2 2㊀类型层指标表征蓝绿空间形状的ED㊁LSI与NPP均呈现正相关(图5)ꎮ其中ꎬED指标在[0ꎬ125]区间的NPP值上升趋势加剧ꎬ在[125ꎬ200]区间图5㊀类型层关键影响指标分析31㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第21卷的NPP值上升趋势减缓ꎬ表明蓝绿空间的生态效益存在边缘效应ꎬ其与周边环境之间的界面越长ꎬ越有利于碳汇功能的发挥ꎮ同时ꎬED㊁LSI均体现了蓝绿空间形状的复杂程度ꎬ均与NPP正相关ꎬ表明蓝绿空间整体形状越复杂㊁固碳效果越好ꎮ其原因在于:蓝绿空间整体的形状复杂度提升ꎬ使之与周围环境间的界面更长[4]ꎬ蓝绿斑块之间㊁蓝绿斑块与其他斑块之间的物质和能量信息交换越频繁ꎬ碳汇效益的辐射范围更广ꎮ此外ꎬ有研究指出不规则的蓝绿斑块形态会降低其冷岛效应ꎬ使环境温度有一定的增加ꎬ从而间接影响植物的固碳作用[35-36]ꎮDIVISION和AI分别表征蓝绿空间破碎度与聚集度ꎮ当AI值在80时ꎬSHAP值最高ꎬ当[80ꎬ100]时ꎬSHAP值降低ꎬ即NPP降低ꎬ这是因为研究区内AI值[80ꎬ100]的区域为水体ꎬ而水体的碳汇效益明显低于绿地ꎮDIVISION与NPP的正负关系不明晰ꎬ原因在于绿地的破碎度较高ꎬ而水体较低ꎬ蓝绿空间碳汇机制的不同对结果造成了一定的影响ꎮ与此类似的是表征蓝绿空间占比的PLANDꎬ其与NPP的关系呈现出一定的波动性ꎬ笔者认为主要原因在于合肥中心城区内蓝绿空间区域中水体的占比较大ꎮCOHESION表征蓝绿空间分布上的连通性ꎬ与NPP呈现显著的正相关ꎬ即蓝绿空间的连通度越高ꎬ越有利于碳固存ꎮ这说明城市蓝绿空间的连通性是影响城市生态环境效益的重要因素ꎬ连通性的增加有助于改善城市蓝绿空间的均衡布局ꎬ更好地发挥降温效应ꎬ为植物提供良好的生长环境ꎬ从而增强植物的碳固存ꎻ另一方面ꎬ蓝绿空间连通性的增大可改善土壤水文连通性ꎬ水文通过影响土壤养分含量ꎬ调节植物营养元素浓度从而影响植被生长和固碳效率[37-38]ꎮ4 城市蓝绿空间格局优化策略本研究的模型计算结果证实了城市蓝绿空间格局对其碳固存能力存在影响ꎬ指征蓝绿斑块形状的FRAC㊁CONTIG㊁AREA㊁ENN以及表征蓝绿空间关系的ED㊁DIVISION㊁COHESION㊁LSI均是关键的影响指标ꎮ通过提取并比对高碳汇区域(图6)ꎬ据此提出以碳增汇为目标的城市蓝绿空间格局规划优化策略ꎮ图6㊀典型高碳汇蓝绿空间图谱单元㊀㊀1)规划与管理者要重视蓝绿斑块形状的调整与优化ꎮ对于面积较小ꎬ规模受限的蓝绿斑块ꎬ提升其碳固存能力的最重要途径在于形状和分布的调控ꎮ本研究发现蓝绿斑块边缘密度和斑块形状复杂程度对碳固存具有促进作用ꎮ因此ꎬ一方面应针对沿湖沿河地区ꎬ加强岸线保护ꎬ增加边缘式斑块如滨江湿地㊁林地的建设ꎬ合理利用巢湖沿岸的蓝绿空间资源ꎻ同时ꎬ进一步恢复城市发展中被填埋的沟㊁渠㊁小溪等水网末端支流㊁修复边角绿色空间ꎬ增大自然形态的蓝绿空间占41㊀第6期㊀袁旸洋㊀郭㊀蔚㊀汤思琪ꎬ等:城市蓝绿空间格局对碳固存的影响测度及关键指标㊀㊀比ꎮ另一方面ꎬ针对地块或街区尺度的蓝绿空间设计ꎬ需对蓝绿空间形态进行精细化调控ꎬ避免形状过于规则的蓝绿斑块ꎬ在蓝绿空间与灰色空间之间增加过渡区域ꎬ增大蓝绿空间的渗透作用ꎮ2)提高城市蓝绿空间的聚集度㊁降低破碎度㊁提高连通性ꎮ在市域及城区尺度上ꎬ根据原有蓝绿空间的形态特征及空间组合模式开展针对性地规划设计ꎮ针对较大规模蓝绿斑块ꎬ如大蜀山㊁紫蓬山㊁巢湖等自然林地和水体ꎬ须严守政府制定的生态保护红线ꎬ设立生态核心区ꎬ限制建设用地的扩张ꎬ避免破碎化的发生ꎻ河道㊁道路绿化等线性蓝绿廊道ꎬ应尽量增加其宽度ꎻ关注新增蓝绿空间与周边蓝绿空间之间的连接ꎬ织补城市中心城区蓝绿空间网络ꎬ提升城市蓝绿斑块之间的连通性ꎮ5 结论城市蓝绿空间格局对碳汇效益具有影响ꎬ不同的城市蓝绿空间格局特征对碳汇效益的影响程度不同ꎮ从格局特征的重要性程度来说ꎬ在斑块层中ꎬ城市蓝绿空间格局的FRAC㊁CONTIG㊁AREA和ENN是影响碳固存的4个主要特征ꎻ在类型层中ꎬED㊁COHESION㊁DIVISION和LSI是影响碳固存的4个主要特征ꎮ在形态方面ꎬ城市蓝绿斑块的形态特征较面积特征对碳固存的影响更突出ꎮ在一定阈值内ꎬ城市蓝绿斑块的形状越复杂越有利于其碳固存的发挥ꎬ线性蓝绿空间斑块的碳固存能力明显低于面状蓝绿空间ꎮ此外ꎬ蓝绿斑块之间的距离越大ꎬ其碳固存能力越低ꎮ在分布方面ꎬ蓝绿空间聚集度越高㊁破碎度越低㊁碳汇效益越好ꎮ同时ꎬ蓝绿斑块之间的邻接性越高㊁连通度越高ꎬ碳汇效益越高ꎮ本研究尚存在一定的局限性ꎮ首先ꎬ由于受到遥感数据精度的限制ꎬ以及生态过程复杂性的制约ꎬ城市蓝绿空间碳固存的量化难以做到精准化ꎮ其次ꎬ在更小尺度上ꎬ植物种类㊁树木覆盖度㊁植物群落结构等是影响碳固存的重要因素ꎮ今后可以从多尺度㊁系统化出发ꎬ在关键影响指标研究的基础上ꎬ进一步探究水体对不同植被类型绿地碳固存能力的促进机制ꎬ研究蓝色空间对绿色空间固碳的增效作用ꎮ城市蓝绿空间是复杂且动态变化的三维实体ꎬ未来可将城市蓝绿空间的三维形态特征㊁拓扑空间网络引入研究ꎻ此外ꎬ还可基于城市化进程中蓝绿空间格局演变特征ꎬ探讨城市化对于碳固存的影响ꎬ更加全面深入地分析城市蓝绿空间形态特征与碳固存之间的关联ꎮ参考文献[1]GRIMMNBꎬFAETHSHꎬGOLUBIEWSKINEꎬetal.Globalchangeandtheecologyofcities[J].Scienceꎬ2008ꎬ319(5864):756-760.[2]IntergovernmentalPanelonClimateChange(IPCC).Climatechange2013:thephysicalsciencebasis.ContributionofworkinggroupItothefifthassessmentreportoftheintergovernmentalpanelonclimatechange[C].CambridgeUniversityPressꎬ2014. [3]周聪惠ꎬ张诗宁ꎬ赵金ꎬ等.城市蓝绿系统一体规划编制的关键问题与对策[J].规划师ꎬ2023ꎬ39(11):109-116. [3]YUZWꎬYANGGYꎬZUOSDꎬetal.Criticalreviewonthecoolingeffectofurbanblue ̄greenspace:athreshold ̄sizeperspective[J].UrbanForestry&UrbanGreeningꎬ2020ꎬ49:126630. [5]宋菊芳ꎬ江雪妮ꎬ郭贞妮ꎬ等.城市蓝绿空间特征参数与地表温度的关联量化分析[J].中国城市林业ꎬ2023ꎬ21(1):20-26. [6]MITSCHWJꎬBERNALBꎬNAHLIKAMꎬetal.Wetlandsꎬcarbonꎬandclimatechange[J].LandscapeEcologyꎬ2013ꎬ28(4):583-597.[7]ZHANGYꎬMENGWQꎬYUNHFꎬetal.Isurbangreenspaceacarbonsinkorsource? ̄AcasestudyofChinabasedonLCAmethod[J].EnvironmentalImpactAssessmentReviewꎬ2022ꎬ94:106766.[8]WOLCHJRꎬBYRNEJꎬNEWELLJP.Urbangreenspaceꎬpublichealthꎬandenvironmentaljustice:thechallengeofmakingcities justgreenenough [J].LandscapeandUrbanPlanningꎬ2014ꎬ125:234-244.[9]MAJꎬLIXTꎬJIABQꎬetal.Spatialvariationanalysisofurbanforestvegetationcarbonstorageandsequestrationinbuilt ̄upareasofBeijingbasedoni ̄TreeEcoandKriging[J].UrbanForestry&UrbanGreeningꎬ2021ꎬ66:127413.[10]LEEJHꎬKOYꎬMCPHERSONEG.Thefeasibilityofremotelysenseddatatoestimateurbantreedimensionsandbiomass[J].UrbanForestry&UrbanGreeningꎬ2016ꎬ16:208-220. [11]BELTRÁN ̄SANZNꎬRAGGIOJꎬGONZALEZSꎬetal.ClimatechangeleadstohigherNPPattheendofthecenturyintheAntarcticTundra:responsepatternsthroughthelensoflichens[J].ScienceoftheTotalEnvironmentꎬ2022ꎬ835:155495. [12]HUYBꎬZHANGQꎬHUSJꎬetal.Researchprogressandprospectsofecosystemcarbonsequestrationunderclimatechange(1992-51㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第21卷2022)[J].EcologicalIndicatorsꎬ2022ꎬ145:109656. [13]FRANCINIGꎬHUINꎬJUMPPONENAꎬetal.Vegetationtypeandagematter:howtooptimizetheprovisionofecosystemservicesinurbanparks[J].UrbanForestry&UrbanGreeningꎬ2021ꎬ66:127392.[14]LIXTꎬJIABQꎬLIFꎬetal.Effectsofmulti ̄scalestructureofblue ̄greenspaceonurbanforestcarbondensity:BeijingꎬChinacasestudy[J].ScienceoftheTotalEnvironmentꎬ2023ꎬ883:163682.[15]YANGHFꎬZHONGXNꎬDENGSQꎬetal.AssessmentoftheimpactofLUCConNPPanditsinfluencingfactorsintheYangtzeRiverBasinꎬChina[J].CATENAꎬ2021ꎬ206:105542. [16]成玉宁ꎬ王雪原.城市蓝绿空间融合规划的生态逻辑[J].中国园林ꎬ2023ꎬ39(10):39-43.[17]刘颂ꎬ张浩鹏.多尺度城市绿地碳汇实现机理及途径研究进展[J].风景园林ꎬ2022ꎬ29(12):55-59.[18]王晶懋ꎬ高洁ꎬ孙婷ꎬ等.双碳目标导向下的绿色生态空间碳汇能力优化设计[J].中国城市林业ꎬ2023ꎬ21(4):33-42. [19]JIANGYꎬSUNYꎬLIUYꎬetal.Exploringthecorrelationbetweenwaterbodiesꎬgreenspacemorphologyꎬandcarbondioxideconcentrationdistributionsinanurbanwaterfrontgreenspace:asimulationstudybasedonthecarboncycle[J].SustainableCitiesandSocietyꎬ2023ꎬ98:104831.[20]武静ꎬ蒋卓利ꎬ吴晓露.城市蓝绿空间的碳汇研究热点与趋势分析[J].风景园林ꎬ2022ꎬ29(12):43-49.[21]POTTERCSꎬRANDERSONJTꎬFIELDCBꎬetal.Terrestrialecosystemproduction:aprocessmodelbasedonglobalsatelliteandsurfacedata[J].GlobalBiogeochemicalCyclesꎬ1993ꎬ7(4):811-841.[22]朱文泉ꎬ潘耀忠ꎬ张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报ꎬ2007ꎬ31(3):413-424.[23]邱陈澜ꎬ王彩侠ꎬ章瑞ꎬ等.京津冀城市群生态空间固碳服务功能及其与景观格局的关系特征[J].生态学报ꎬ2022ꎬ42(23):9590-9603.[24]CHENTQꎬGUESTRINC.XGBoost:ascalabletreeboostingsystem[C]//Proceedingsofthe22ndACMSIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMining.ACMꎬ2016.[25]YANGCꎬCHENMYꎬYUANQ.TheapplicationofXGBoostandSHAPtoexaminingthefactorsinfreighttruck ̄relatedcrashes:anexploratoryanalysis[J].AccidentAnalysis&Preventionꎬ2021ꎬ158:106153.[26]WANGSꎬZHOUYꎬYOUXXꎬetal.QuantificationoftheantagonisticandsynergisticeffectsofPb2+ꎬCu2+ꎬandZn2+bioaccumulationbylivingBacillussubtilisbiomassusingXGBoostandSHAP[J].JournalofHazardousMaterialsꎬ2023ꎬ446:130635.[27]YEMꎬZHULꎬLIXJꎬetal.EstimationofthesoilarsenicconcentrationusingageographicallyweightedXGBoostmodelbasedonhyperspectraldata[J].ScienceoftheTotalEnvironmentꎬ2023ꎬ858:159798.[28]LUNDBERGSMꎬLEESI.Aunifiedapproachtointerpretingmodelpredictions[C]//Proceedingsofthe31stInternationalConferenceonNeuralInformationProcessingSystems.ACMꎬ2017. [29]LUNDBERGSMꎬERIONGGꎬLEESI.Consistentindividualizedfeatureattributionfortreeensembles[EB/OL].(2018-02-12) [2023-10-30].http://arxiv.org/abs/1802.03888.[30]QIUSꎬFANGMZꎬYUQꎬetal.StudyofspatialtemporalchangesinChineseforesteco ̄spaceandoptimizationstrategiesforenhancingcarbonsequestrationcapacitythroughecologicalspatialnetworktheory[J].ScienceoftheTotalEnvironmentꎬ2023ꎬ859:160035.[31]MNGADIMꎬODINDIJꎬMUTANGAOꎬetal.Estimatingabovegroundnetprimaryproductivityofreforestedtreesinanurbanlandscapeusingbiophysicalvariablesandremotelysenseddata[J].ScienceoftheTotalEnvironmentꎬ2022ꎬ802:149958.[32]TIANYHꎬJIMCYꎬWANGHQ.Assessingthelandscapeandecologicalqualityofurbangreenspacesinacompactcity[J].LandscapeandUrbanPlanningꎬ2014ꎬ121:97-108. [33]王敏ꎬ石乔莎.城市绿色碳汇效能影响因素及优化研究[J].中国城市林业ꎬ2015ꎬ13(4):1-5.[34]ESTOQUERCꎬMURAYAMAYꎬMYINTSW.Effectsoflandscapecompositionandpatternonlandsurfacetemperature:anurbanheatislandstudyinthemegacitiesofSoutheastAsia[J].ScienceoftheTotalEnvironmentꎬ2017ꎬ577:349-359.[35]MASOUDIMꎬTANPY.Multi ̄yearcomparisonoftheeffectsofspatialpatternofurbangreenspacesonurbanlandsurfacetemperature[J].LandscapeandUrbanPlanningꎬ2019ꎬ184:44-58.[36]LIAOWꎬGULDMANNJMꎬHULꎬetal.Linkingurbanparkcoolislandeffectstothelandscapepatternsinsideandoutsidethepark:asimultaneousequationmodelingapproach[J].LandscapeandUrbanPlanningꎬ2023ꎬ232:104681.[37]ZHANGQJꎬWANGZSꎬXIASXꎬetal.Hydrologic ̄inducedconcentratedsoilnutrientsandimprovedplantgrowthincreasedcarbonstorageinafloodplainwetlandoverwet ̄dryalternatingzones[J].ScienceoftheTotalEnvironmentꎬ2022ꎬ822:153512. [38]LIYꎬLIMDꎬZHENGZCꎬetal.TrendsindroughtandeffectsoncarbonsequestrationovertheChinesemainland[J].ScienceoftheTotalEnvironmentꎬ2023ꎬ856:159075.61。
TOTAL CONTENTS
IWater Science and EngineeringISSN 1674-2370, CN 32-1785/TVVol. 13, Nos.1-4 2020TOTAL CONTENTSNo. 1Aggregated morphodynamic modelling of tidal inlets and estuaries.....……………………………………………………………………. Zheng Bing Wang, Ian Townend, Marcel Stive (1) Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs)..................................................Christopher Kiiza, Shun-qi Pan, Bettina Bockelmann-Evans, Akintunde Babatunde (14) Emergency control of Spartina alterniflora re-invasion with a chemical method in Chongming Dongtan, China .....................................................Zhi-yuan Zhao, Yuan Xu, Lin Yuan, Wei Li, Xiao-jing Zhu, Li-quan Zhang (24) Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species ..............................................................................................................................Si-long Huang, Yi-ning Chen, Yan Li (34) Control of wind-wave power on morphological shape of salt marsh margins...Alvise Finotello, Marco Marani, Luca Carniello, Mattia Pivato, Marcella Roner, Laura Tommasini, Andrea D’alpaos (45) Ecological impact of land reclamation on Jiangsu coast (China): A novel ecotope assessment for Tongzhou Bay ........................................................................... Jos R. M. Muller, Yong-ping Chen, Stefan G. J. Aarninkhof, Ying-Chi Chan, Theunis Piersma, Dirk S. van Maren, Jian-feng Tao, Zheng Bing Wang, Zheng Gong (57) Removal of hexavalent chromium in aquatic solutions by pomelo peel..........................................................................Qiong Wang, Cong Zhou, Yin-jie Kuang, Zhao-hui Jiang, Min Yang (65) Numerical analysis of seabed dynamic response in vicinity of mono-pile under wave-current loading ........................................................................................Jie Lin, Ji-sheng Zhang, Ke Sun, Xing-lin Wei, Ya-kun Guo (74) Thank you to our academic editors and peer reviewers (I)Guide for Authors (II)No. 2Hydrological response to climate change and human activities: A case study of Taihu Basin, China ........................................................................................Juan Wu, Zhi-yong Wu, He-juan Lin, Hai-ping Ji, Min Liu (83) Possibilities of urban flood reduction through distributed-scale rainwater harvesting....................................................................................................Aysha Akter, Ahad Hasan Tanim, Md. Kamrul Islam (95) Toxic response of aquatic organisms to guide application of artemisinin sustained-release granule algaecide ........................................Li-xiao Ni, Na Wang, Xuan-yu Liu, Fei-fei Yue, Yi-fei Wang, Shi-yin Li, Pei-fang Wang (106) Effects of water application intensity of micro-sprinkler irrigation and soil salinity on environment of coastal saline soils .................................................................................................. Lin-lin Chu, Yao-hu Kang, Shu-qin Wan (116) Responses of river bed evolution to flow-sediment process changes after Three Gorges Project in middle Yangtze River: A case study of Yaojian reach...............................................................Li-qin Zuo, Yong-jun Lu, Huai-xiang Liu, Fang-fang Ren, Yuan-yuan Sun (124) Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights .........................................................................................Hai-tao Chen, Wen-chuan Wang, Xiao-nan Chen, Lin Qiu (136) PIV analysis and high-speed photographic observation of cavitating fl ow field behind circular multi-orifi ce plates ......................................................................................................Zhi-ping Guo, Xi-huan Sun, Zhi-yong Dong (145) Scour around submarine pipes due to high-amplitude transient waves...........................................................................................................................Hassan Vosoughi, Hooman Hajikandi (154) Deformation coordination analysis of CC-RCC combined dam structures under dynamic loads..............................................................Bo-wen Shi, Ming-chao Li, Ling-guang Song, Meng-xi Zhang, Yang Shen (162)IINo. 3Impacts of topographic factors on regional snow cover characteristics...........................................................................................................................................Muattar Saydi, Jian-li Ding (171) Evaluation of alum-based water treatment residuals used to adsorb reactive phosphorus.............................................................................................................................George Carleton, Teresa J. Cutright (181) Phosphorus removal by adsorbent based on poly-aluminum chloride sludge......................................Hui-fang Wu, Jun-ping Wang, Er-gao Duan, Wen-hua Hu, Yi-bo Dong, Guo-qing Zhang (193) Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium ..............................................................Muibat Diekola Yahya,Kehinde Shola Obayomi, Mohammed Bello Abdulkadir, Yahaya Ahmed Iyaka, Adeola Grace Olugbenga (202) Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River .................................................................................Nilesh Kumar, Shriya Hans, Ritu Verma, Aradhana Srivastava (214) Three-dimensional modelling of shear keys in concrete gravity dams using an advanced grillage method ...................................................................................................Mahdi Ben Ftima, Stéphane Lafrance, Pierre Léger (223) Influences of flow rate and baffle spacing on hydraulic characteristics of a novel baffl e dropshaft ..........................................................Xi-chen Wang, Jian Zhang, Zong-fu Fu, Hui Xu, Ting-yu Xu, Chen-lu Zhou (233) Influence of correlation scale errors on aquifer hydraulic conductivity inversion precision.....................................................................Yun-xiao Mu, Lei Zhu, Tong-qing Shen, Meng Zhang, Yuan-yuan Zha (243)No. 4Change of stream network connectivity and its impact on fl ood control.......................................................................................Yu-qin Gao, Yun-ping Liu, Xiao-hua Lu, Hao Luo, Yue Liu (253) Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran ........................................................................................................................................... ....Zahra Noorisameleh,Shahriar Khaledi, Alireza Shakiba, Parviz Zeaiean Firouzabadi, William A. Gough, M. Monirul Qader Mirza (265) Improved ecological development model for lower Yellow River fl oodplain, China................................................................................Jin-liang Zhang, Yi-zi Shang, Ji-xiang Liu, Jian Fu, Meng Cui (275) Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye .......Ahmed Khudhair Hassan, Ghayda Yaseen Al-Kindi, Dalal Ghanim (286) Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction ...................................................................................Yi Lu, Xing-kai Cui, Cheng-xiao Zhao, Xiao-fei Yang (299) Batch and fixed-bed column studies of selenite removal from contaminated water by orange peel-based sorbent .............Bárbara Pérez Mora, Fernando A. Bertoni, María F. Mangiameli, Juan C. González, Sebastián E. Bellú (307) Quantifying water quality and flow in multi-branched urban estuaries for a rainfall event with mass balance method ......................................................................Joan Cecilia Casila, Gubash Azhikodan, Katsuhide Yokoyama (318) Characterizing ship-induced hydrodynamics in a heavy shipping traffic waterway via intensifi ed fi eld measurements .............................................................................................................Li-lei Mao, Yi-mei Chen, Xin Li (330) Total contents of 2020 (I)。
外文翻译农村向城市的迁移和工资肯定
Rural–urban migration and wage determination:The case of Tianjin, China1. IntroductionSince the mid-1980s, mass labor migration from the countryside to urban areas has been one of the most dramatic and noticeable changes in China. Based on survey data from Tianjin, this paper examines the characteristics of migrants and compares the employment and social conditions of migrants with those of permanent urban residents. It also investigates the determinants that affect wages of both migrant and nonimmigrant workers in order to evaluate how economic and social-demographic factors contribute to the earning gap between rural and urban workers.The economic reform in China that started in 1978 has created a “floating population” as over 100 million people have left their villages and streamed into cities where manufacturing and businesses boom. The migration of labor from agricultural to non-agricultural industries has increased the average income of rural people as migrant workers send a significant portion of their income back home. At the same time, rural migrant laborers havemade great contributions to economic growth by complementing the labor force of cities and providing low-cost work. However, the benefits from economic growth have not been fairly shared between urban and migrant workers, and clear disparities exist in China's urban and rural labor markets. It is estimated that between 12 and 15 million non-farm jobs will be required annually just to absorb this surplus labor.Rural migrants generally make less money, receive far fewer benefits, and have no health insurance. Most live in precarious dormitories provided by their employers if they have any housing. Rural surplus laborers who moved to urban areas are called mingong to mark their difference from the city-dwelling workers. Rural migrants are treated as strangers and outsiders in cities. They are denied formal urban membership and substantive rights and their children are largely prohibited from attending city schools.The urban–rural disparities in China's labor market may be categorized into two types. The first difference relates to productivity-related characteristics, such as education and job training, and the second relates to non-productivity-relatedcharacteristics, such as race, gender, or in our case, hukou status, which also could affect labor status. Discrimination is present if equally productive individuals within the same enterprise are treated differently simply because of their hukou status.In order to promote labor mobility and efficiency and to improve equality and social stability, it is important to first understand the motivations for migration and then examine the conditions that migrants encounter. Why do farmers migrate to cities? What are characteristics of migrants? What factors determine wages? Are migrant workers discriminated in China's urban labor market? To answer these questions, a survey of employees was conducted from October to December 2021 in Tianjin, one of the four central government municipalities in China. We found that, in addition to economic and social-demographic factors such as ownership of business, education, experience, and age, the restrictive hukou system has negatively influenced migrants' income. This paper limits its discussions to migrant and non-migrant workers with migrant workers defined as those not having Tianjin hukou.2. Rural–urban migration and wage determinants: a literature reviewMillions of people in the rural populations of the developing world confront the decision of migrating to urban areas and every year; many find it worthwhile to leave their villages for cities. The 2000 population census data show that 144.39 million rural residents in China, or 11.6% of the total population, moved into cities and towns, in 2000.The massive rural–urban migration since 1980 can be broadly attributed to the huge surplus of rural labor, widening income and consumption disparities between rural and urban residents, and heavy taxation on the agricultural sector. The rapid expansion of China's rural labor force, improvement in production efficiency, and the continuing reduction of cultivated land have caused a larger portion of rural laborers to be underemployed or unemployed. In the early 1980s, the surplus of rural laborers was 70 million, or 18% of the entire rural labor force and this surplus grew to about 130 million, or 28% 10 years later.The widening income and consumption disparity between ruraland urban residents is clearly a factor contributing to increasing migration. In 1978, annual per capita disposable income was 2.6 times higher for urban residents than for rural peasants and, by 2021, that ratio increased to 2.9. Over the same time period, the ratio of urban to rural consumption per capita increased from 2.9 to 3.5, demonstrating widening income and consumption disparities (NBSC, various years, 1994–2021). In addition, urban residents also enjoy various state-subsidies on food, education, employment, and medical services.The heavy tax burden on farmers also influences rural migration. Although the central government emphasized the importance of alleviating this burden, according to, local governments still tax a significant portion of farmers' income. Even worse, the agricultural taxation is regressive. For example, in 1996, the tax rate was 16.7% for rural families with an annual income between 400 and 500 yuan, but only 2.8% for those with incomes of 2500 to 5000. The high tax on farmers' income discourages investment in agricultural production, which also contributes to city migration.Table 1lists major reasons why the rural laborers surveyed wanted toTable 1 Reasons for rural–urban migrationSource: Survey conducted by the authors in Tianjin, 2021.Responses are not mutually exclusive. Total number of respondents is 455.migrate to the city of Tianjin. As expected, rural people migrate to seek higher income, better opportunities, a better quality of life, and a better education for themselves and their children. Interestingly, more than 20% of migrants cited loss of land in the countryside as a factor.The impact of education on rural–urban migration has been examined in the literature with some studies concluding that education is critical in driving rural laborers away from their land, while others suggest that education is not important in determining migration choice.Previous studies have argued that non-market factors are more important than market forces in driving the rural population to non-agricultural migrating jobs. Wu, Wang, and Xu (1990) and Wu (1994)found that many Chinese rural workers had been securing non-agricultural jobs through their friends or relatives, showed that networks of information and assistance are importantfor rural workers to get jobs in cities.The return of education on earnings is extremely low in China. The OLS estimates of the increase in earnings from an additional year of schooling range from 1.4% to 5.4%. Another study uses generalized method of moments estimation for young workers in China, and concludes that the estimated returns to schooling are about 15% overall and 16.9% for women.Zhao (1997)uses rural school education to show that OLS estimation underestimates the returns to education in China by ignoring the segregation of rural and urban labor markets. She found that the expected rate of return for a rural senior high school education is rather high because it improves access to urban employment where greater earnings are possible. Scholars have suggested various government policies to address migration issues .While wage and gender discrimination are common in many countries, they are particularly strong in China because of its unique ownership structure and hukou system.Meng (1998)found that overall wage discrimination was more prevalent in the state-owned sector. There is some disagreement about the relative level ofgender discrimination in the state owned sector ( Maurer-Fazio & Hughes, 2000; Rozelle, Dong, Zhang, & Mason, 2000), but Dong and Bowles (2021)found that wage discrimination against women and migrant workers exists across ownership types. Significant sorting of rural labor migrants exist by occupation, sector, gender,age, marital status, education, and, especially, region of origin (see Roberts, 2021).3. Discussion and conclusionRural–urban migration has become a socioeconomic phenomenon in China since the late 1980s. This study examines factors of rural–urban migration, migrant characteristics, and the determinants of wages. Since the late 1980s, the labor surplus, heavy tax burden, and loss of lands in rural areas, combined with higher income, more opportunities, and better education in cities, have driven farmers to leave their homelands for cities. Past institutions, especially the hukou system, however, make rural–urban migration difficult. The government finds itself in a dilemma trying to balance the benefits brought by migrants and limit their inflow at the same time.A wage regression model is developed to study the determinants of the wage gap between rural and urban workers. Wages for both groups are sensitive to standard worker characteristics in the expected direction. The results also show that urban workers make more than migrant workers, holding all other things constant, which suggests wage discrimination. In this sample, hukou does have a significant impact on the wage gap between migrant and non-migrant workers. After accounting for human capital characteristics, female workers earn significantly lower wages than male workers in the urban sample, but not in the migrant sample. The ownership of the enterprise plays an important role in determining a worker's earning with, workers in SOEs receiving lower pay than those in other enterprises.The empirical results give the following policy implications. First, the hukou system not only hinders rural–urban migration but also contributes to a wage gap between migrant and urban workers. Abolishment of the hukou system will thus improve labor mobility, efficiency, and fairness. Second, given the positive influence of education and training on wages for both migrant and non-migrantworkers, it is important to invest in human capital in order to increase the productivity of both rural and urban laborers. Strategies to alleviate poverty should place more emphasis on raising the educational level of the rural population than on restricting migration to cities. Third, female workers may face wage discrimination in the urban labor market. Much needs to be done to better protect female workers so that women are not pushed into low-status, low-wage jobs in the service sector.农村向城市的迁移和工资肯定:基于中国天津的情况一、导言自20世纪80年代年代中期以来,大规模的劳动力从农村迁移到城市地域一直在戏剧性的和显著的转变着。
高二英语数据分析单选题50题
高二英语数据分析单选题50题1.The most common data types are numbers, text and _____.A.picturesB.graphsC.booleansD.sounds答案:C。
本题考查常见数据类型。
选项A“pictures”( 图片)、选项B“graphs” 图表)和选项D“sounds” 声音)都不是常见的数据类型。
而选项C“booleans” 布尔值)与数字、文本一起是最常见的数据类型之一。
2.Which of the following is a statistical method for analyzing data?A.DrawingB.WritingC.CountingD.Painting答案:C。
本题考查统计方法。
选项A“Drawing”(绘画)、选项B“Writing”(写作)和选项D“Painting”(绘画)都不是统计方法。
而选项C“Counting” 计数)是一种基本的统计方法。
3.Data analysis often involves collecting, organizing and ____ data.A.analyzingB.readingC.watchingD.listening答案:A。
本题考查数据分析的流程。
数据分析通常包括收集、组织和分析数据。
选项B“reading”( 阅读)、选项C“watching”( 观看)和选项D“listening” 听)与数据分析的流程不相关。
4.One of the main purposes of data analysis is to find ____.A.problemsB.solutionsC.patternsD.questions答案:C。
本题考查数据分析的目的。
数据分析的主要目的之一是发现模式。
选项A“problems”(问题)、选项B“solutions”(解决方案)和选项D“questions” 问题)不是数据分析的主要目的。
2024美赛c题词典解释
2024美赛c题词典解释English Answer:Task A: Morphological Analysis.Morphological analysis involves breaking down wordsinto their constituent morphemes, which are the smallest units of meaning. The goal is to identify the base form or stem of the word and any prefixes or suffixes that have been added to it. This analysis can provide insights into the word's meaning, origin, and grammatical function.Task B: Syntactic Analysis.Syntactic analysis focuses on the structure of sentences and how words are combined to form phrases and clauses. It involves identifying the parts of speech of each word, as well as the grammatical relationships between them. This analysis can help to determine the meaning of a sentence, identify its subject and predicate, andunderstand its overall structure.Task C: Semantic Analysis.Semantic analysis examines the meaning of words and sentences. It involves understanding the literal and figurative meanings of words, as well as the broader context in which they are used. This analysis can help to determine the overall message or theme of a text, identify any ambiguities or contradictions, and make inferences based on the information provided.Task D: Pragmatic Analysis.Pragmatic analysis considers the context in which language is used and the intentions behind it. It involves understanding the speaker's or writer's goals, the relationship between the participants, and the social and cultural factors that influence communication. This analysis can help to interpret the meaning of utterances, identify any hidden messages or assumptions, and understand the overall communicative purpose of the text.Task E: Discourse Analysis.Discourse analysis examines the structure and organization of texts or conversations as a whole. It involves identifying the different sections or paragraphs, the progression of ideas, and the overall coherence and cohesion of the text. This analysis can help to understand the author's purpose, the intended audience, and theoverall impact of the text on the reader.Task F: Stylistic Analysis.Stylistic analysis focuses on the language choices made by the author or speaker and their impact on the text. It involves examining the use of figures of speech, rhetorical devices, sentence structure, and vocabulary. This analysis can provide insights into the author's style, tone, and overall aesthetic choices.Task G: Interaction Analysis.Interaction analysis examines the dynamics of conversations and other forms of interaction. It involves identifying the different roles played by participants, the patterns of communication, and the overall quality of the interaction. This analysis can help to understand thesocial dynamics of the group, identify any conflicts or misunderstandings, and assess the effectiveness of the communication process.Task H: Genre Analysis.Genre analysis examines the characteristics ofdifferent genres of writing or speech. It involves identifying the conventions and expectations of each genre, as well as the ways in which authors or speakers use these conventions to achieve their communicative goals. This analysis can help to understand the purpose and structure of different genres, identify the intended audience, and make comparisons between different texts or performances.Task I: Critical Analysis.Critical analysis involves evaluating the strengths and weaknesses of a text or performance. It involves considering the author's or speaker's purpose, the intended audience, the overall impact of the text, and the broader context in which it was produced. This analysis can help to identify any biases or limitations of the text, make informed judgments about its quality, and develop a deeper understanding of its meaning and significance.Task J: Comparative Analysis.Comparative analysis examines the similarities and differences between two or more texts or performances. It involves identifying the shared features and unique characteristics of each text, as well as the ways in which they interact with and influence each other. This analysis can help to understand the relationships between different texts, identify patterns and trends, and gain a broader perspective on the topic being discussed.Chinese Answer:任务 A,形态分析。
城市的好处 英语作文
Living in a city offers a multitude of benefits that can significantly enhance ones lifestyle and opportunities.Here are some of the key advantages of urban living:1.Access to Employment Opportunities:Cities are economic hubs with a wide range of job opportunities across various sectors.This diversity allows individuals to find work that aligns with their skills and interests.cational Resources:Urban areas are home to numerous educational institutions, from renowned universities to specialized training centers.This provides residents with access to highquality education and continuous learning opportunities.3.Cultural Diversity:Cities are melting pots of cultures,where people from different backgrounds and ethnicities coexist.This diversity enriches the social fabric and provides exposure to various traditions,cuisines,and perspectives.4.Entertainment and Recreation:Urban dwellers have a plethora of entertainment options, from cinemas and theaters to sports events and concerts.The vibrant nightlife and numerous parks and recreational facilities contribute to a lively social scene.5.Public Transportation:Cities typically have welldeveloped public transportation systems,including buses,subways,and trains.This not only makes commuting easier but also reduces the need for personal vehicles,leading to less traffic congestion and environmental benefits.6.Healthcare Facilities:Access to healthcare is often more readily available in cities, with a higher concentration of hospitals,clinics,and specialized medical centers.This ensures that residents have access to timely and quality healthcare services.working Opportunities:The density of professionals in cities provides ample opportunities for networking,both personally and professionally.This can lead to new friendships,collaborations,and career advancements.8.Shopping and Dining:Urban areas offer a wide variety of shopping and dining experiences,from highend boutiques and gourmet restaurants to local markets and street food vendors.This variety caters to different tastes and budgets.9.Technology and Innovation:Cities are often at the forefront of technological advancements and innovation.Residents can take advantage of the latest technologies and be part of cuttingedge developments in various fields.munity and Support Services:Cities provide a range of community services and support systems,including libraries,community centers,and social services,which can be crucial for personal development and wellbeing.In conclusion,city life offers a dynamic and enriching experience with numerous opportunities for personal and professional growth.While it may come with its own set of challenges,such as higher living costs and potential overcrowding,the benefits of urban living can greatly outweigh these drawbacks for many individuals.。
保山市油菜始花期预报模型构建及检验
油菜花是云南省保山市春季主要自然景观之一,保山市各县(市、区)均有千亩规模的油菜花田,腾冲市界头镇更是因拥有1万hm 2连片的油菜花海而被《中国国家地理》评为“云南最美的地方”。
自2016年起,腾冲市界头镇每年春季都会举行高黎贡花海节,吸引国内外众多游客前来欣赏游玩。
同时,油菜作为一种经济作物,遇气候异常会提前开花,并影响其产量。
油菜花期的准确预报,能为农户授粉提供参考,并指导开展采摘等一系列生产经营活动。
因此,油菜的花期预报在旅游、农业生产等方面有较高的实用价值。
油菜生长发育期经历秋、冬、春三季,受气象条件影响较大。
目前已有学者研究了气温对油菜的影响,对于花期的预报,目前有逐步回归方法、芽生长量测量统计预报法、积温物候预报法等方法[1-4]。
保山市对于气象条件与油菜花期的相关性研究、花期预报模型的建立等工作开展滞后,笔者采用逐步回归分析方法,建立保山市油菜始花期的预报模型,以期为今后油菜始花期研究提供参考。
1材料与方法油菜生育期数据来源于保山市农业科学研究所2016—2023年观测资料,气象资料来源于保山市气象局,采用保山国家气象监测站(站号56748)2015—2023年多年逐日降水、气温和日照资料。
油菜是越冬作物,保山市油菜基本于11月播种,次年2月开花,为使预报模型有一定提前量,选择2015—2020年11月上旬至次年1月下旬逐日气象资料(即气象资料年份较生育期资料年份提前1年,对应2016—2021年油菜花期),采用SPSS 进行相关性分析和逐步回归分析,建立基于气象要素的油菜始花期预报模型,并使用2022年、2023年油菜生育期资料及同期气象要素资料对预报模型进行检验。
2结果与分析2.1下限温度的确定有研究指出,当环境温度在最低和最适宜温度之间时,生物的发育速度会随着温度的升高而加快[5]。
统计油菜从抽薹期到始花期的天数(n ),以1/n 作为发育速率(y )和同期日平均气温(x )进行回归分析,得到生长速率与平均气温的散点图及拟合直线,如图1所示。
高三英语非虚构文本分析终极单选题40题
高三英语非虚构文本分析终极单选题40题1. The following is an excerpt from a news report: "The local government has launched a new project to improve the urban environment. This includes building more parks, enhancing waste management, and promoting public transportation. The project is expected to bring a series of positive changes to the city." What is the main idea of this passage?A. The local government has a lot of work to do.B. The urban environment needs improvement.C. The new project by the local government aims to improve the urban environment.D. Building parks is important for the city.答案:C。
解析:文章开篇指出当地政府开展了一个新项目,后面具体阐述项目内容包括建公园、加强废物管理和推广公共交通等,这些都是为了改善城市环境,所以主旨是当地政府的新项目旨在改善城市环境。
A选项文中未体现政府工作多;B选项只是一个背景,不是主旨;D选项只是项目中的一部分内容,不能概括主旨。
2. A passage in a biography reads: "John grew up in a small town. He faced many difficulties during his childhood, but he was always full of curiosity and a thirst for knowledge. He overcame poverty and lack of educational resources to study hard. Eventually, he became a renowned scientist." What is the main point of this passage?A. John's small - town origin.B. John's difficult childhood.C. John's journey from a difficult childhood to becoming a scientist.D. John's lack of educational resources.答案:C。
《南京林业大学学报(自然科学版)》2020 年论文题录
第44卷㊀第6期2020年11月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalScienceEdition)Vol.44,No.6Nov.,2020‘南京林业大学学报(自然科学版)“2020年论文题录(作者)索引AUTHORANDSUBJECTINDEXES2020著录格式:作者.文题(外文文题).刊名,出版年,卷(期):起止页码.(作者以姓氏汉语拼音为序)边黎明,黄㊀豆,张学峰,童鑫磊,叶代全,施季森.杉木优树收集区无性系花期物候与同步性分析(Analysisonfloweringphenologyandsyn⁃chronizationindexesofChinesefirclonalarchive).南京林业大学学报(自然科学版),2020,44(6):207-212.才㊀琪,才玉石,李㊀岩,侯一蕾,温亚利.林业有害生物防治压力区域差异及影响因素分析(Thespatiallydifferentiatedfactorsofforestpestcontrolpressure).南京林业大学学报(自然科学版),2020,44(1):111-118.蔡㊀汉,朱㊀权,罗云建,马㊀坤.快速城镇化地区耕地景观生态安全格局演变特征及其驱动机制(Evolutioncharacteristicsanddrivingmecha⁃nismsofcultivatedlandscapeeco⁃securitypatternsinrapidurbanizationareas).南京林业大学学报(自然科学版),2020,44(5):181-188.曹加杰,王㊀杰,吴向崇,丁昌辉,王伟希,王㊀浩.城市河道开放空间景观修复后评价研究 以南京内秦淮河东段为例(Post⁃evaluationofurbanriveropenspacelandscaperestoration:acasestudyoftheeasternpartoftheInnerQinhuaiRiverinNanjing).南京林业大学学报(自然科学版),2020,44(3):221-227.曹加杰,张梦凡.基于语义分析法的城市滨水景观质量评价研究 以南京市秦淮河中华门段为例(Evaluationofurbanwaterfrontlandscapequalitybasedonsemanticdifferentialmethod:acaseofZhonghuamensectionofQinhuaiRiverinNanjing).南京林业大学学报(自然科学版),2020,44(6):229-235.常㊀娟,张增信,田佳西,陈㊀喜,陈奕兆.西北地区草地水分利用效率时空特征及其对气候变化的响应(Spatio⁃temporalcharacteristicsofgrasslandwateruseefficiencyanditsresponsetoclimatechangeinnorthwestChina).南京林业大学学报(自然科学版),2020,44(3):119-125.车㊀通,罗云建.量化社会经济发展对城市景观破碎化的影响(Quantifyingeffectsofsocioeconomicdevelopmentonurbanlandscapefragmenta⁃tion).南京林业大学学报(自然科学版),2020,44(1):154-162.陈㊀晨,刘光武.黄龙山林区白皮松天然次生林生长规律研究(ThegrowthlawfornaturalsecondaryforestsofPinusbungeanaintheHuanglongMountainforestregion).南京林业大学学报(自然科学版),2020,44(6):125-130.陈㊀黎,朱㊀超,朱庆祥,王翠鸣,鲍佳书,莫㊀辰,施婷婷,万志兵.NaN3处理对乌桕种子萌发及幼苗生长的影响(EffectsofNaN3onSapiumsebiferumseedgerminationandseedlinggrowth).南京林业大学学报(自然科学版),2020,44(4):47-54.陈㊀培,周明明,方升佐,刘㊀洋,杨万霞,尚旭岚.光质对不同家系青钱柳叶酚类物质积累及抗氧化活性的影响(Effectsoflightqualityonac⁃cumulationofphenoliccompoundsandantioxidantactivitiesinCyclocaryapaliurus(Batal.)Iljinskajaleavesfromdifferentfamilies).南京林业大学学报(自然科学版),2020,44(2):17-25.陈㊀炜,成铁龙,纪㊀敬,武妍妍,谢田田,江泽平,史胜青.杨树GABA支路3个基因家族的鉴定和表达分析(IdentificationofthreegenefamiliesintheGABAshuntandtheirexpressionanalysisinpoplar).南京林业大学学报(自然科学版),2020,44(5):67-77.陈大胜.基于特色小镇建设的苏北多肉植物产业发展研究(Developmentofsucculentplantbasedoncharacteristicstownplanning).南京林业大学学报(自然科学版),2020,44(6):201-206.陈俊华,周大松,牛㊀牧,别鹏飞,谢天资,赵㊀润,慕长龙.川中丘陵区4种乡土阔叶树细根性状对比研究(Comparativeanalysisonthefineroottraitsofthefournativebroad⁃leavedtreesinthehillyregionofcentralSichuanProvince).南京林业大学学报(自然科学版),2020,44(1):31-38.陈文文,吴怀通,陈赢男.SPL家族基因复制及功能分化分析(GeneduplicationsandfunctionaldivergenceanalysesoftheSPLgenefamily).南京林业大学学报(自然科学版),2020,44(5):55-66.陈永忠,邓绍宏,陈隆升,马㊀力,何㊀宏,王湘南,彭邵锋,刘彩霞,王㊀瑞,许彥明,张㊀震.油茶产业发展新论(Anewviewonthedevelopmentofoilteacamelliaindustry).南京林业大学学报(自然科学版),2020,44(1):1-10.程㊀强,吴小芹,叶建仁,林司曦.菊方翅网蝽在南京分布及其对中国的风险分析(DistributionofCorythuchamarmoratainNanjinganditsrisk042南京林业大学学报(自然科学版)第44卷analysisinChina).南京林业大学学报(自然科学版),2020,44(1):125-130.储吴樾,范俊俊,张往祥.观赏海棠花期物候稳定性及其对温度变化的响应(Phenologicalstabilityofornamentalcrabappleanditsresponsetotemperaturechange).南京林业大学学报(自然科学版),2020,44(5):49-54.崔令军,刘瑜霞,林㊀健,石开明.盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响(EffectsofarbuscularmycorrhizalfungionrootsgrowthandendogenoushormonesofPhoebezhennanundersaltstress).南京林业大学学报(自然科学版),2020,44(4):119-124.单雪萌,杨克彬,史晶晶,朱成磊,高志民.毛竹GeBP转录因子家族的全基因组鉴定和表达分析(Genome⁃wideidentificationandexpressiona⁃nalysisofGeBPtranscriptionfactorgenefamilyinmosobamboo).南京林业大学学报(自然科学版),2020,44(3):41-48.邓小军,唐㊀健,王会利,宋贤冲,曹继钊,覃祚玉,宋光桃.猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析(Soilni⁃trificationdenitrificationrespirationandtheirinfluencefactoranalysisindifferentvegetationzonesalongelevationnalgradientinMao erMountainofChina).南京林业大学学报(自然科学版),2020,44(1):81-88.丁丽花,顾㊀艳,罗康宁,许志敏,刘茂松.洪泽湖淮河入湖河口区群落间营养元素分布特征(TheallocationofnutrientelementsamongplantcommunitiesinestuaryofHuaiheRiverinHongzeLake).南京林业大学学报(自然科学版),2020,44(3):111-118.丁思惠,方升佐,田㊀野,宋子琪,张艳华.不同热解温度下杨树各组分生物质炭的理化特性分析与评价(Analysisandevaluationonphysico⁃chemicalpropertiesofpoplarbiocharatdifferentpyrolysistemperatures).南京林业大学学报(自然科学版),2020,44(6):193-200.丁苏芹,李㊀玺,唐东芹.小苍兰实时荧光定量PCR中的内参基因筛选(Screeningonreferencegenesforreal⁃timefluorescentquantitativePCRofFreesiahybrida).南京林业大学学报(自然科学版),2020,44(3):19-25.丁显印,陶学雨,刁㊀姝,栾启福,姜景民.Pilodyn和Resistograph对湿地松活立木基本密度的评估(EstimationofwoodbasicdensityinaPinuselliottiistandusingPilodynandResistographmeasurements).南京林业大学学报(自然科学版),2020,44(3):142-148.董京京,王㊀宇,司家鹏,彭智奇,董㊀鹏,杨㊀宏,陈㊀洁,李㊀蒙,王贤荣,伊贤贵.樱花新品种 龙韵 (Cerasusconradinae Longyun :anewcherryblossomcultivar).南京林业大学学报(自然科学版),2020,44(6):236-238.董玉峰,朱婉芮,丁昌俊,黄秦军,王华田,李善文,王延平.杨树不同根序细根形态对酚酸的响应(Rootorder⁃dependentresponsesofpoplarfinerootmorphologytophenolicacids).南京林业大学学报(自然科学版),2020,44(1):39-46.范洪旺,BUIVanThang,陶㊀晓,管致玮,许克福.城乡空间差异对麻栎林土壤活性有机碳的影响(EffectsofspatialdifferencebetweenurbanandruralareasonsoilactiveorganiccarboninQuercusacutissimaforests).南京林业大学学报(自然科学版),2020,44(4):151-158.费文君,高祥飞.我国城市绿地防灾避险功能研究综述(AreviewondisasterpreventionandreductionfunctionofurbangreenspaceinChina).南京林业大学学报(自然科学版),2020,44(4):222-230.冯㊀烨,张焕朝,杨瑞珍,胡立煌.杨-桤混交林及其凋落物对土壤氮矿化的影响(Theinfluenceofpoplar⁃aldermixedforestandlitteronsoilni⁃trogenmineralization).南京林业大学学报(自然科学版),2020,44(2):191-196.冯大兰,魏立本,黄小辉,王玉书,张㊀宏.梁平柚果实膨大期叶片矿质营养诊断研究(DiagnosticstudyonmineralnutritioninleavesofLiangpingpomeloduringfruitexpansionperiod).南京林业大学学报(自然科学版),2020,44(2):111-116.甘四明.林木分子育种研究的基因组学信息资源述评(Areviewongenomicsinformationresourcesavailableformolecularbreedingstudiesinforesttrees).南京林业大学学报(自然科学版),2020,44(4):1-11.郜红娟,韩会庆,刘㊀悦,汪田归,白玉梅,马淑亮,陈思盈.1995 2015年贵州省陡坡土地利用景观干扰度变化(Changesinlandscapedisturb⁃ancedegreeofsteepslopelanduseinGuizhouProvincefrom1995to2015).南京林业大学学报(自然科学版),2020,44(4):183-190.郭传阳,林开敏,郑鸣鸣,任正标,李㊀茂,郑㊀宏,游云飞,陈志云.间伐对杉木人工林土壤微生物生物量碳氮的短期影响(Short⁃termeffectsofthinningonsoilmicrobialbiomasscarbonandnitrogeninaCunninghamialanceolataplantation).南京林业大学学报(自然科学版),2020,44(5):125-131.郭芳芸,曹㊀兵,宋丽华,哈㊀蓉.CO2浓度升高对宁夏枸杞果实发育期形态指标及糖分积累影响(EffectsofelevatedCO2concentrationonLyci⁃umbarbarumfruitmorphologicalparametersandsugaraccumulationduringdevelopmentperiodinNingxia).南京林业大学学报(自然科学版),2020,44(1):105-110.郭子武,杨丽婷,林㊀华,陈双林,杨清平.坡位对毛竹林下黄花远志生物量积累与分配及其异速生长关系的影响(Effectsofslopepositionsongrowthandbiomassaccumulation,allocationandallometryofPolygalafallaxinPhyllostachysedulisforest).南京林业大学学报(自然科学版),2020,44(6):79-84.韩玉娜,张㊀瑜,金光泽.腐烂等级㊁径级对阔叶红松林木质残体含水率和密度的影响(Effectsofdecayclassanddiameterclassonmoisturecontentandwooddensityinatypicalmixedbroadleaf⁃Koreanpineforest).南京林业大学学报(自然科学版),2020,44(2):133-140.郝泉龄,徐国祺,王立海,时小龙,许明贤,纪文文,张广晖.基于Logistic回归模型的红松立木腐朽分级预测(Logisticregression⁃based142㊀第6期‘南京林业大学学报(自然科学版)“2020年论文题录(作者)索引predictionofwooddecayinstandingKoreanpine(Pinuskoreiensis)).南京林业大学学报(自然科学版),2020,44(2):150-158.何㊀斌,李㊀青,冯㊀图,薛晓辉,李望军,刘㊀勇.不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系(Variationinleaffunctionaltraitsofdifferent⁃agedPinusmassonianacommunitiesandrelationshipswithsoilnutrients).南京林业大学学报(自然科学版),2020,44(2):181-190.何㊀培,夏宛琦,姜立春.基于非参数方法的落叶松树干削度方程(Stemtapermodelingequationfordahurianlarchbasedonnonparametricregres⁃sionmethods).南京林业大学学报(自然科学版),2020,44(6):184-192.何倩倩,彭㊀麒,宗绡卓,朱天辉,李姝江.蛋白毒素AP-Toxin诱导撑绿杂交竹抗梢枯病及其分泌物响应(InducedresistanceofBambusaper⁃variabilisˑDendrocalamopsisgrandistoArthriniumphaeospermum).南京林业大学学报(自然科学版),2020,44(5):199-208.洪㊀舟,杨曾奖,张宁南,郭俊誉,刘小金,崔之益,徐大平.降香黄檀生长和材性性状种源差异及早期选择(VariationandprovenancejuvenileselectionofgrowthandwoodcharactersforDalbergiaodorifera).南京林业大学学报(自然科学版),2020,44(1):11-17.洪㊀舟,杨曾奖,张宁南,郭俊誉,刘小金,崔之益,徐大平.越南黄花梨种源家系生长遗传变异及早期选择(Geneticvariationandjuvenilese⁃lectionofgrowthtraitsofDalbergiatonkinensisPrain).南京林业大学学报(自然科学版),2020,44(1):25-31.洪㊀舟,吴培衍,张金文,王维辉,许丽鸿,申㊀巍,徐大平.漳州地区交趾黄檀幼龄期生长表现及适应性分析(Earlygrowthperformancesanda⁃daptabilityofDalbergiacochinchinensisinZhangzhou,FujianProvince).南京林业大学学报(自然科学版),2020,44(6):118-124.黄红兰,钟沃谷,衣德萍,蔡军火,张㊀露.未来气候变化对我国毛红椿适生区分布格局的影响预测(PredictingtheimpactoffutureclimatechangeonthedistributionpatternsofToonaciliatavar.pubescensinChina).南京林业大学学报(自然科学版),2020,44(3):163-170.黄雅茹,辛智鸣,李永华,马迎宾,董㊀雪,罗凤敏,李新乐,段瑞兵.乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系(SeasonalvariationofthestemsapflowofartificialHaloxylonammodendron(C.A.Mey.)BungeanditsrelationshipwithmeteorologicalfactorsinUlanBuhDesert).南京林业大学学报(自然科学版),2020,44(6):131-139.冀盼盼,张健飞,张玉珍,黄选瑞,张志东.不同林龄华北落叶松人工林生态化学计量特征(EcologicalstoichiometrycharacteristicsofLarixprinci⁃pis⁃rupprechtiiplantationsatdifferentages).南京林业大学学报(自然科学版),2020,44(3):126-132.贾艳艳,唐晓岚,唐芳林,杨㊀阳.1995 2015年长江中下游流域景观格局时空演变(Spatial⁃temporalevolutionoflandscapepatterninthemiddleandlowerreachesoftheYangtzeRiverbasinfrom1995to2015).南京林业大学学报(自然科学版),2020,44(3):185-194.贾志怡,陈㊀聪,马宇萱,李寿银,樊斌琦,王㊀焱,郝德君.温度对香樟齿喙象生长发育的影响(EffectsoftemperatureongrowthanddevelopmentofPagiophloeustsushimanusMorimoto).南京林业大学学报(自然科学版),2020,44(4):131-136.姜㊀磊,李焕勇,张㊀芹,张会龙,乔艳辉,张华新,杨秀艳.AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响(Effectsofarbuscularmy⁃corrhizafungionthegrowthandphysiologicalmetabolismofPyrusbetulaefoliaBungeseedlingsundersaline⁃alkalinestress).南京林业大学学报(自然科学版),2020,44(6):152-160.姜楠南,张启翔,王㊀媛,孙㊀音,房义福,徐金光.赤霉素对 大富贵 芍药休眠解除及内源激素和糖类代谢的影响(EffectsofGA3ondormancyrelease,endogenoushormoneslevelsandsugarmetabolisminPaeonialactiflora DaFugui ).南京林业大学学报(自然科学版),2020,44(3):26-32.荆茹月,王佩兰,黄㊀振,何林骏,李志辉.碳源对不同产地香樟体细胞胚胎发生及植株再生的影响(EffectsofdifferentcarbonsourcesonsomaticembryoofCinnamomumcamphoraL.).南京林业大学学报(自然科学版),2020,44(1):54-62.鞠㊀烨,江建平,尹增芳,魏㊀强.孝顺竹笋箨全长转录组测序分析(Full⁃lengthtranscriptomesequencingandannotationanalysesofBambusamultiplexsheath).南京林业大学学报(自然科学版),2020,44(6):175-183.康向阳.林木遗传育种研究进展(Researchprogressofforestgeneticsandtreebreeding).南京林业大学学报(自然科学版),2020,44(3):1-10.寇晓琳,谢㊀楠,吴彩娥,范龚健,洑香香.青钱柳产黄酮类物质真菌的分离与鉴定(IsolationandidentificationofendophyticfungifromCyclocaryapaliurus(Batal.)Iljinskaja).南京林业大学学报(自然科学版),2020,44(2):26-34.乐㊀志,应天慧,马㊀群.园林历史研究中的量化及分析算法研究 以南京明㊁清杏花村地块为例(AlgorithmandquantizationinhistoricalgardenresearchinXinghuaVillage,Nanjing,intheMingandQingdynasties).南京林业大学学报(自然科学版),2020,44(5):25-33.李㊀鹏,罗建中,莫继有,王楚彪,卢万鸿,林㊀彦.第二世代粗皮桉种子园的花粉污染及其影响(PollencontaminationanditsinfluenceonthesecondgenerationEucalyptuspellitaseedorchard).南京林业大学学报(自然科学版),2020,44(2):51-58.李㊀威,李佳熙,李吉平,吕宝玲,张银龙.我国不同环境介质中的抗生素污染特征研究进展(PollutioncharacteristicsofantibioticsindifferentenvironmentmediainChina:areview).南京林业大学学报(自然科学版),2020,44(1):205-214.李峰卿,王秀花,楚秀丽,张东北,吴小林,周生财,叶㊀明.缓释肥N/P比及加载量对5种珍贵树种1年生苗生长和养分库构建的影响(EffectsofN/Pratioandloadingongrowthandconstructionofnutrientsreservesofone⁃year⁃oldseedlingsforfivekindsofprecioustreespecies).南京林业大学学报(自然科学版),2020,44(1):72-80.李晓锐,周㊀樊,冯㊀刚,郑小琴,李永荣,彭方仁.砧木对薄壳山核桃嫁接苗光合及荧光特性的影响(Photosyntheticandfluorescencecharacter⁃isticsofpecangraftingseedlingsgraftedondifferentrootstocks).南京林业大学学报(自然科学版),2020,44(2):84-90.李雪楠,霍嘉新,杨㊀柳,彭剑峰.木札岭华山松树轮宽度年表的建立及其气候响应(Developmentandclimaticresponseofthetree⁃ringwidthchronologyofPinusarmandiiatMuzhalingMountain).南京林业大学学报(自然科学版),2020,44(3):157-162.梁慧琳,张青萍.园林文化遗产三维数字化测绘与信息管理研究进展(Areviewofthree⁃dimensionaldigitalsurveyingandinformationmanagementforgardenculturalheritages).南京林业大学学报(自然科学版),2020,44(5):9-16.242南京林业大学学报(自然科学版)第44卷梁薇薇,陈立新,段文标,李亦菲,李少然,于颖颖.椴树-红松林林隙大小与枯叶分解对土壤香草酸含量的影响(EffectsofgapsizeandlitterdecompositiononsoilvanillicacidcontentinTiliaamurensis⁃Pinuskoraiensisforest).南京林业大学学报(自然科学版),2020,44(5):109-116.林㊀源,陈㊀培,周明明,尚旭岚,方升佐.天然居群青钱柳叶主要生物活性物质及抗氧化活性研究(Keybioactivesubstancesandtheirantioxi⁃dantactivitiesinCyclocaryapaliurus(Batal.)Iljinskajaleavescollectedfromnaturalpopulations).南京林业大学学报(自然科学版),2020,44(2):10-16.林朝剑,张广群,杨㊀洁,徐㊀鹏,李英杰,汪杭军.基于迁移学习的林业业务图像识别(Transferlearningbasedrecognitionforforestrybusinessimages).南京林业大学学报(自然科学版),2020,44(4):215-221.林司曦,叶建仁.栎树猝死病在中国的入侵风险评估(InvasionriskanalysisofPhytophthoraramoruminChina).南京林业大学学报(自然科学版),2020,44(6):161-168.刘大伟,侯森林,周用武,费宜玲,何㊀建.涉案偶蹄目动物DNA条形码构建(DNAbarcodingofArtiodactylaincasesinvolvedinwildlifeforspe⁃ciesidentification).南京林业大学学报(自然科学版),2020,44(6):27-32.刘嘉政,王雪峰,王㊀甜.基于深度学习的树种图像自动识别(Automaticidentificationoftreespeciesbasedondeeplearning).南京林业大学学报(自然科学版),2020,44(1):138-144.刘诗琦,贾黎明.林业生物柴油可持续发展研究进展(Reviewonsustainabledevelopmentofforest⁃basedbiodiesel).南京林业大学学报(自然科学版),2020,44(3):216-224.刘文丽,包怡红.松针精油的协同抑菌效应及机制(Synergisticantimicrobialeffectandmechanismofpineneedleessentialoil).南京林业大学学报(自然科学版),2020,44(2):98-104.刘玉梅,赵焕元,崔茂凯,王田雨,高向倩,杨桂燕.核桃JrERF2⁃2基因克隆及其对逆境的响应(CloningandstressresponseoftheJrERF2⁃2genefromJuglansregia).南京林业大学学报(自然科学版),2020,44(3):58-64.刘玉鑫,颜开义,何㊀伟,潘惠新.美洲黑杨无性系木材纤维性状遗传变异(GeneticvariationoffibertraitsinPopulusdeltoidesclones).南京林业大学学报(自然科学版),2020,44(2):67-74.刘增才,孙婷婷,王世新,马依莎,王旭彤,孙㊀健,邹㊀莉.暴马桑黄MVD基因cDNA全长克隆及表达特性分析(Thecloningandexpressiona⁃nalysisofmevalonatepyrophosphatedecarboxylasegenecDNAsequencefromSanghuangporusbaumii).南京林业大学学报(自然科学版),2020,44(4):79-85.刘子宣,贾㊀存,秦志强,李永宁.华北落叶松林下光环境对白扦幼树生长的影响(EffectsoflightconditionsonthegrowthofunderstoryPiceameyerisaplinginLarixprincipis⁃rupprechtiiforest).南京林业大学学报(自然科学版),2020,44(6):111-117.龙㊀伟,姚小华,吕乐燕,王开良.油茶种子性状及浸种后内源激素含量分析(AnanalysisofseedtraitsandendogenoushormonelevelsafterseedsoakingsinCamelliaoleifera).南京林业大学学报(自然科学版),2020,44(5):148-156.龙秋宁,王润松,徐涵湄,曹国华,沈彩芹,阮宏华.沼液与生物炭联合施用对杨树人工林土壤甲螨密度的影响(Effectsofbiogasslurryandbio⁃charonoribatidadensityinpoplarplantation).南京林业大学学报(自然科学版),2020,44(3):211-215.卢明星,徐传红,朱咏莉,李萍萍.Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制(HormeticeffectofCdonsoilalkalinephospha⁃tase:drivingmechanismoflandusechange).南京林业大学学报(自然科学版),2020,44(2):173-180.卢伟伟,耿慧丽,张伊蕊,阮宏华.生物质炭对杨树人工林土壤微生物群落的影响(EffectsofbiocharspyrolyzedatdifferenttemperaturesonsoilmicrobialcommunityinapoplarplantationincoastaleasternChina).南京林业大学学报(自然科学版),2020,44(4):143-150.鲁㊀强,杨㊀玲,王昊伟,袁佳秋,洑香香,方㊀彦.秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应(Responsesofphotosyntheticcharac⁃teristicsandchloroplastultrastructuretosaltstressinseedlingsofCornushongkongensissubsp.elegans).南京林业大学学报(自然科学版),2020,44(4):29-36.鲁宏旺,胡文敏,佘济云,曾㊀文,宋亚斌.生态退杨对洞庭湖湿地景观格局变化影响研究(StudyontheinfluenceofecologicalpoplarwithdrawalonthelandscapepatternofDongtingLakewetland).南京林业大学学报(自然科学版),2020,44(3):171-178.罗㊀艳,何朋俊,吕㊀倩,范㊀川,冯茂松,李贤伟,陈露蔓.目标树经营初期对马尾松人工林碳贮量的影响(EarlyeffectoftargettreemanagementoncarbonstorageinPinusmassonianaplantations).南京林业大学学报(自然科学版),2020,44(2):206-214.罗碧珍,胡海清,罗斯生,魏书精,吴泽鹏,刘㊀菲.林火干扰对广东马尾松林土壤有机碳密度及其活性有机碳的影响(Effectsofforestfiredis⁃turbanceonsoilorganiccarbondensityandlabileorganiccarbonofPinusmassonianaforestsinGuangdongProvince,China).南京林业大学学报(自然科学版),2020,44(5):132-140.马㊀坤,唐晓岚,王奕文,任宇杰,陈永哲.小尺度丘陵山地风景区游览路线的规划与优化(Planningandoptimizationofsmall⁃scalemountainlandscapesightseeingroutes).南京林业大学学报(自然科学版),2020,44(1):163-170.马娟娟,赵㊀斌,陈㊀颖,凌熙晨,俞㊀婕,陈㊀茜.4个北美冬青品种苗对低温胁迫的生理响应及抗寒性比较(Physiologicalresponsesofseed⁃lingsoffourIlexverticillatavarietiestolowtemperaturestressandacomparisonoftheircoldresistance).南京林业大学学报(自然科学版),2020,44(5):34-40.闵可怜,王㊀丹,湛晓蝶,陈㊀敏,岳海燕,何㊀毅,刘㊀亮,黎㊀青,向㊀毅,李建伟.3种辐射保护剂对60Co-γ射线辐照小苍兰的保护效应(Effectsofthreeradiationprotectionagentsonthe60Co⁃γradiationirradiatedfreesia).南京林业大学学报(自然科学版),2020,44(3):11-18.缪李飞,于晓晶,张秋悦,封超年.4个杜梨半同胞家系苗期耐盐性分析(Salttoleranceoffourhalf⁃sibfamiliesofPyrusbetulaefoliaBungefromcoastalareas).南京林业大学学报(自然科学版),2020,44(5):157-166.342㊀第6期‘南京林业大学学报(自然科学版)“2020年论文题录(作者)索引牛㊀牧,陈俊华,周大松,谢天资,别鹏飞,赵㊀润,慕长龙.川中丘陵区4种乡土阔叶树根系拓扑结构特征(Topologicalcharacteristicsoftherootsystemsoffournativebroad⁃leavedtreesinthecentralSichuanhillyregion).南京林业大学学报(自然科学版),2020,44(2):125-132.欧建德,吴志庄,康永武.杉莲混交林中乳源木莲生长形质㊁空间利用能力的混交比例效应(Effectsofmixingproportiononthegrowth,stemformqualityandspatialutilizataionabilityofManglietiayuyuanensisinmixedforestswithCunninghamialanceolataandM.yuyuanensis).南京林业大学学报(自然科学版),2020,44(1):89-96.潘㊀磊,孙玉军,王轶夫,陈丽萍,曹元帅.基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算(EstimationofabovegroundbiomassinaChinesefir(Cunninghamialanceolata)forestcombiningdataofSentinel⁃1andSentinel⁃2).南京林业大学学报(自然科学版),2020,44(3):149-156.潘婷婷,陈㊀林,杨国栋,伊贤贵,王贤荣.南京北部郊野森林群落物种多样性及其环境解释(Speciesdiversityofcommunitiesandenviron⁃mentalinterpretationofthesuburbanforestinNorthernNanjing).南京林业大学学报(自然科学版),2020,44(6):48-54.彭㊀鹏,初㊀冬,耿海东,孙贺廷,刘㊀衍,解林红,秦思源,李景浩,张晓田,吴长江.我国陆生野生动物疫源疫病监测防控体系建设(Con⁃structionofsurveillanceandpreventionandcontrolsystemforterrestrialwildlife⁃borneinfectiousdiseasesinChina).南京林业大学学报(自然科学版),2020,44(6):20-26.彭㊀洋,陆跃堂,赵㊀杨,肖㊀枫.棕榈半同胞子代家系苗期测定及优良家系选择(Ahalf⁃sibprogenytestandjuvenileselectionofTrachycarpusfortunei).南京林业大学学报(自然科学版),2020,44(5):78-84.乔东亚,王㊀鹏,王淑安,李林芳,高露璐,杨如同,汪庆,李亚.基于SNP标记的紫薇遗传多样性分析(GeneticdiversityanalysisofLagerstroemiagermplasmresourcesbasedonSNPmarkers).南京林业大学学报(自然科学版),2020,44(4):21-28.佘新松,甘卓亭,姚㊀婷,王思强,汪㊀勇.安茶产区典型茶园土壤-茶树系统重金属元素富集与分配(Bioconcentrationanddistributionofheavymetalelementsinthesoil⁃teaplantsystemsofAn-teaproducingareas).南京林业大学学报(自然科学版),2020,44(4):102-110.沈星诚,周㊀婷,范俊俊,徐立安,张往祥.日本红枫春季叶片色彩评价(EvaluationofleafcolorsofJapanesemaplesinspring).南京林业大学学报(自然科学版),2020,44(6):213-220.施婷婷,杨秀莲,王良桂.3个桂花品种花香组分动态特征及花被片结构解剖学观测(DynamiccharacteristicsoffloralcomponentsandanatomicalobservationofpetalsinthreecultivarsofOsmanthusfragrans).南京林业大学学报(自然科学版),2020,44(4):12-20.史久洲,姬晓悦,陈继超,卢㊀雯,徐㊀莉.SPME/GC-MS分析不同产地枫香树脂中挥发性成分(AninvestigationofvolatilecomponentsinLiq⁃uidambarresinfromdifferentareasusingSPME/GC⁃MS).南京林业大学学报(自然科学版),2020,44(5):239-244.宋㊀娟,徐国芳,赵㊀邢,姚㊀尧,杨学祥,唐荣林,崔家旺,陈凤毛,任嘉红.枫香根际解有机磷细菌筛选及其促生效应(Screeningofindigenousphosphate⁃solubilizingbacteriafromLiquidambarformosanaHancerhizosphereanditspotentialapplicationsforimprovingplantgrowth).南京林业大学学报(自然科学版),2020,44(3):95-104.宋来萍,刘礴霏,王玉华,高敬泽.呼伦贝尔沙地不同树龄樟子松对气候的响应(Age⁃dependent⁃tree⁃ringgrowthresponsesofPinussylvestrisvar.mongolicatoclimateinHulunbuirsandyland).南京林业大学学报(自然科学版),2020,44(2):159-164.宋雅婷,刘任军,江㊀奕,周立峰,谈家金,孙守慧,陈凤毛.中国辽宁咽滑刃线虫的形态与分子系统学描述(Molecularandmorphologicalcharac⁃terizationofLaimaphelenchusliaoningensisn.sp.(Nematoda:Aphelenchoididae)inChina).南京林业大学学报(自然科学版),2020,44(4):93-101.宋雅婷,王立超,孙守慧,陈凤毛.滑刃属线虫1个中国新记录种(FirstreportofAphelenchoidesrotundicaudatusinChina).南京林业大学学报(自然科学版),2020,44(3):105-110.苏㊀涛,周怀烨,周碧瑶,石婉婷,张㊀琪.杨树根特异性表达β-果糖苷酶抑制子的功能性验证(Theenzymepurificationandfunctionalevaluationofaroot⁃expressedinvertaseinhibitorinpoplar).南京林业大学学报(自然科学版),2020,44(6):169-174.苏佳露,林树燕,史无双,王㊀星,郑㊀笑,万雅雯,丁雨龙.6个竹种竹叶的解剖形态观察与三维构建(Anatomicalobservationandthree⁃dimen⁃sionalconstructionofleafbladesfromsixbamboos).南京林业大学学报(自然科学版),2020,44(1):47-53.苏胜荣,张巧巧,叶建仁.黄山地区垂柳叶锈病病原及发生规律研究(ThepathogenandoccurrencelawofweepingwillowleafrustintheHuangshanRegion).南京林业大学学报(自然科学版),2020,44(4):137-142.苏小飞,童佳鸣,李㊀铭,王福升,刘国华.竹龄对金佛山方竹形态可塑性的影响(EffectsofageonmorphologicalplasticityofChimonobambusautilis(Keng)Kengf.).南京林业大学学报(自然科学版),2020,44(4):86-92.孙㊀圆,梁子瑜,汪贵斌,贾卫国,郑文江,陆兴安,郭起荣,曹福亮.农林复合经营工程领域研究热点与前沿分析(Researchhotspotsandfrontieranalysesforagroforestrymanagement).南京林业大学学报(自然科学版),2020,44(6):228-235.孙晓波,陈佩珍,吴晓刚,吴㊀帆,季孔庶.马尾松PmAOX基因克隆与不同逆境胁迫表达分析(ThecloningandexpressionanalysisofPmAOXgenefromPinusmassonianaunderdifferentstress).南京林业大学学报(自然科学版),2020,44(4):70-78.汤文华,窦全琴,潘平平,季艳红,谢寅峰.不同薄壳山核桃品种光合特性研究(PhotosyntheticcharacteristicsofgraftedplantsofdifferentCaryail⁃linoinensisvarieties).南京林业大学学报(自然科学版),2020,44(3):81-88.陶㊀韵,杨红强. 伞形集团 典型国家LULUCF林业碳评估模型比较研究(Comparativestudyoncarbonassessmentmodelsinlanduse,landusechangeandforestryoftypical UmbrellaGroup countries).南京林业大学学报(自然科学版),2020,44(3):202-210.田雪瑶,周㊀洁,王保松,何开跃,何旭东.柳树NAC基因的克隆与表达模式分析(CloningandexpressionpatternanalysisofNACgenesinSalix).南京林业大学学报(自然科学版),2020,44(1):119-124.442南京林业大学学报(自然科学版)第44卷王㊀雷,徐家琛,朱鹏飞,李佳艳,张㊀恒.呼和浩特市主要园林树种理化性质及燃烧性研究(PhysicalandchemicalpropertiesandcombustibilityofpredominantlandscapetreespeciesinHohhot,China).南京林业大学学报(自然科学版),2020,44(3):74-80.王㊀磊,刘㊀强,杨俊杰,雷㊀宇,祁天法.基于卫星跟踪的钳嘴鹳家域研究(HomerangesofAsianopenbill(Anastomusoscitans)determinedusingsatellitetracking).南京林业大学学报(自然科学版),2020,44(6):33-38.王㊀琳,朱淑霞,李㊀蒙,伊贤贵,段一凡,何碧珠,廖鹏辉,王贤荣.樱花新品种 惜春 (AnewCerasuscampanulatacultivar Xichun ).南京林业大学学报(自然科学版),2020,44(1):223-224.王㊀敏,席㊀东,莫正海,陈㊀于,赵玉强,朱灿灿.薄壳山核桃CiAGL6基因的克隆㊁亚细胞定位及表达(Cloning,subcellularlocalizationandex⁃pressionanalysisofCiAGL6geneinpecan).南京林业大学学报(自然科学版),2020,44(4):63-69.王㊀宁,袁美丽.入侵植物节节麦种子萌发及幼苗生长对盐碱胁迫的响应(SeedgerminationandseedlinggrowthresponsesofinvasivealienplantAegilopstauschiitosaline⁃alkalistress).南京林业大学学报(自然科学版),2020,44(5):167-173.王㊀琪,于水强,王维枫,詹龙飞,王静波.不同密度和植株配置形状的杨树人工林细根生物量特征研究(Characteristicsoffine⁃rootbiomassinpoplarplantationswithdifferentplantingdensitiesandspacingconfigurations).南京林业大学学报(自然科学版),2020,44(1):179-185.王㊀周.云南省林草火险空间模拟和等级评价(SpatialmodelingandgradeevaluationofforestandgrassfiredangerinYunnanProvince).南京林业大学学报(自然科学版),2020,44(2):141-149.王爱斌,宋慧芳,张流洋,张㊀明,杨诗雯,张凌云.生物肥和菌肥对蓝莓苗生长及土壤养分的影响(Effectsofbio⁃organicandmicrobialfertilizersongrowthandsoilnutrientsofVacciniumspp.seedlings).南京林业大学学报(自然科学版),2020,44(6):63-70.王冬至,胡雪娇,李大勇,高雨珊,李天宇.基于非线性混合效应模型的针阔混交林地位指数研究(Creatingsiteindexesforneedleandbroad⁃leavedmixedforestusingthenonlinearmixedeffectmodel).南京林业大学学报(自然科学版),2020,44(4):159-166.王改萍,张㊀磊,姚雪冰,祝遵凌.金叶银杏叶色变化特性分析(Ananalysisofcolorvariationcharacteristicsofgoldenleafginkgo).南京林业大学学报(自然科学版),2020,44(5):41-48.王改萍,王良桂,王晓聪,张㊀晨,章㊀雷,刘㊀彬.楸树嫩枝扦插生根发育及根系特征分析(DynamiccharacteristicsofcuttingrootingofCatalpabungeiwithtenderbranches).南京林业大学学报(自然科学版),2020,44(6):94-102.王昊伟,杨㊀玲,鲁㊀强,洑香香.盐胁迫对大花四照花种子萌发与幼苗生长的影响(EffectsofsaltstressonseedgerminationandseedlinggrowthofCornusflorida).南京林业大学学报(自然科学版),2020,44(3):89-94.王建平,王纪章,周㊀静,贺㊀通,李萍萍.光照对农林植物生长影响及人工补光技术研究进展(Recentprogressofartificiallightingtechniqueandeffectoflightonplantgrowth).南京林业大学学报(自然科学版),2020,44(1):215-222.王邵军. 植物-土壤 相互反馈的关键生态学问题:格局㊁过程与机制(Keyecologicalissuesinplant⁃soilfeedback:pattern,processandmecha⁃nism).南京林业大学学报(自然科学版),2020,44(2):1-9.王祥玉,张红霄,徐静文,何文剑.农地流转契约对流转农户收入的影响分析(Animpactofcontractsandtheirdurationonhouseholdincomeoffarmersinvolvedinlandtransfer).南京林业大学学报(自然科学版),2020,44(4):205-214.王小敏,吴文龙,闾连飞,张春红,杨海燕,黄正金,赵慧芳,李维林.蓝莓新品种 寨选4号 (Anewcultivarofblueberry Zhaixuan4 ).南京林业大学学报(自然科学版),2020,44(3):225-226.王晓蕾,崔晓坤,张㊀鹏,沈海龙,杨㊀玲.裸层积处理方式和时间对红松种子萌发状态的影响(EffectsofnakedstratificationpatternsandperiodonseedgerminationofPinuskoraiensisSieb.etZucc.).南京林业大学学报(自然科学版),2020,44(4):37-46.王新新,韩建刚,徐传红,徐㊀莎.碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响(EffectsofC/NO-3⁃NchangeondenitrificationanddissimilatorynitratereductiontoammoniumintheChongmingDongtanwetland).南京林业大学学报(自然科学版),2020,44(5):174-180.王莹莹,马钰莹,张㊀永,黄㊀峥.生物多样性与传染病风险(Biodiversityandtheriskofinfectiousdiseases).南京林业大学学报(自然科学版),2020,44(6):9-19.王玥琳,徐大平,杨曾奖,刘小金,洪㊀舟,张宁南,陈文德.乙烯利对降香黄檀生长和光合生理特性的影响(EffectsofethephononthegrowthandphotosyntheticcharacteristicsofDalbergiaodorifera).南京林业大学学报(自然科学版),2020,44(1):18-24.王云鹏,张㊀蕊,周志春,华㊀斌,黄少华,马丽珍,范辉华.10年生木荷生长和材性性状家系变异及选择(Avariationandselectionofgrowthandwoodtraitsfor10⁃year⁃oldSchimasuperba).南京林业大学学报(自然科学版),2020,44(5):85-92.王章荣.我国林木良种繁育基地建设发展形势及可持续发展策略(ThecurrentscenarioandsustainabledevelopmentalstrategiesforgeneticallyimprovedtreeseedproductionbasesinChina).南京林业大学学报(自然科学版),2020,44(5):1-8.魏丹萍,叶建仁,梁茂金,陈飞飞.瓦莱氏芽孢杆菌YH-18发酵液的喷雾干燥工艺(SpraydryingprocessesofBacillusvalerianaYH⁃18).南京林业大学学报(自然科学版),2020,44(5):209-214.魏黔春,江泽平,刘建锋,史胜青,赵秀莲,常二梅.侧柏古树扦插试验及插穗营养物质变化(Effectsofseveralfactorsonrootingofcuttingprop⁃agationofancientPlatycladusorientaliasandthechangesofnutritivematerial).南京林业大学学报(自然科学版),2020,44(1):63-71.魏玉龙,张秋良.兴安落叶松林缘天然更新与立地环境因子的相关分析(ForestedgerenewalofLarixgmeliniianditsresponsetotheenviron⁃ment).南京林业大学学报(自然科学版),2020,44(2):165-172.吴㊀慧,王树力,郝玉琢,周㊀磊.阿什河流域6种人工林叶片-凋落物-土壤系统的养分分配与利用格局(Nutrientdistributionandutilizationpatternsinsixplantationsleaf⁃litter⁃soilsystemintheAshiRiverBasin).南京林业大学学报(自然科学版),2020,44(5):100-108.向㊀钰,丁雨龙,张春霞,魏㊀强.矢竹地下茎节间生长的解剖学和转录组研究(Anatomicalandtranscriptomicanalysisofbamboorhizomeinter⁃542㊀第6期‘南京林业大学学报(自然科学版)“2020年论文题录(作者)索引nodegrowth).南京林业大学学报(自然科学版),2020,44(3):33-40.肖红菊,程㊀强.植物模式识别受体FLS2的研究进展(TheprogressinplantpatternrecognitionreceptorFLS2).南京林业大学学报(自然科学版),2020,44(2):220-226.熊㊀瑶,张建萍,严㊀妍.基于气候适应性的苏州留园景观要素研究(ResearchonthelandscapeelementsofLingeringGardenbasedonclimatea⁃daptability).南京林业大学学报(自然科学版),2020,44(1):145-153.徐志霞,张雅倩,陶㊀月,李㊀玲,李㊀蕾.不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析(NutrientcompositionoflittersandfunctionaldiversityofdifferentmicroorganismsinvariousdecompositionstagesofCasuarinaequisetifoliaplantations).南京林业大学学报(自然科学版),2020,44(2):197-205.许梦璐,吴㊀炜,颜铮明,曹国华,沈彩芹,阮宏华.滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布(Contentandverticaldistribu⁃tionofsoillabileorganiccarbonsindifferentlandusetypesinthetidalflatarea).南京林业大学学报(自然科学版),2020,44(4):167-175.薛媛媛,栾兆擎,史㊀丹,闫丹丹.东北三江平原地区水位梯度对湿地植被群落生态特征的影响(TheinfluencesofthehydraulicgradientontheecologicalcharacteristicsofwetlandvegetationcommunitiesinSanjiangPlain,NortheastChina).南京林业大学学报(自然科学版),2020,44(6):39-47.严㊀煜,崔志华.基于用地变化的苏北小城镇总体规划实施评估研究(Implementationofasmall-townmasterplanbasedonlandusechangeinthenorthofJiangsu).南京林业大学学报(自然科学版),2020,44(4):191-198.阎雄飞,王亚文,李㊀刚,刘永华,张幼怡.不同配方引诱剂和诱捕器对枣飞象成虫的田间诱集效果(TrappingefficacyofdifferentattractantsandtrapsonScythropusyasumatsuiadultsinfield).南京林业大学学报(自然科学版),2020,44(4):125-130.杨㊀阳,施皓然,及㊀利,杨立学.指数施肥对紫椴实生苗生长和根系形态的影响(Effectsofexponentialfertilizationongrowthandrootmorpholo⁃gyofTiliaamurensisseedlings).南京林业大学学报(自然科学版),2020,44(2):91-97.杨㊀颖,段㊀豪,郭金博,王紫阳,施㊀钦,宣㊀磊,於朝广.[落羽杉ˑ墨西哥落羽杉(墨杉)]ˑ墨杉回交子代扦插生根性状的遗传变异及QTL定位(GeneticvariationandQTLanalysisofrootingtraitsofbackcrossprogeniesof(TaxodiumdistichumˑT.mucronatum)ˑT.mucronatumhardwoodcuttingssteckling).南京林业大学学报(自然科学版),2020,44(3):49-57.杨海燕,吴文龙,闾连飞,张春红,黄正金,王小敏,赵慧芳,李维林.蓝莓新品种 寨选7号 (Anewcultivarofblueberry Zhaixuan7 ).南京林业大学学报(自然科学版),2020,44(3):227-228.杨赛兰,耿庆宏,许崇华,彭凡茜,张梦华,徐㊀侠.加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响(EffectsofSolidagocanadensisL.invasiononsoilrespirationinpoplarplantations(Populusdeltoides)).南京林业大学学报(自然科学版),2020,44(5):117-124.姚丹丹,徐奇刚,闫晓旺,李玉堂.基于贝叶斯方法的蒙古栎林单木树高-胸径模型(Individualdiameter⁃heightmodelforMongolianoakforestsbasedonBayesianmethod).南京林业大学学报(自然科学版),2020,44(1):131-137.姚文静,王㊀茹,林树燕,王㊀星,杨㊀蒙,郑㊀毅,丁雨龙.翠竹实生苗生长发育规律及构件生物量模型拟合研究(GrowthmechanismsandmodelfittingofmodulebiomassofPleioblastuspygmaeusseedlings).南京林业大学学报(自然科学版),2020,44(6):103-110.叶查龙,颜㊀斌,申婷婷,宁㊀坤,李慧玉.转BpmiR156基因白桦株系的耐盐性分析(AnalysisofsalttoleranceinBpmiR156overexpressionBetulaplatyphylla).南京林业大学学报(自然科学版),2020,44(6):147-151.叶思源,尚㊀鹤,陈㊀展,曹吉鑫.不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响(EffectsofelevatedCO2onphotosyntheticcharac⁃teristicsandmonoterpeneemissionsinPinusmassonianaseedlings).南京林业大学学报(自然科学版),2020,44(6):71-78.叶天文,李艳民,张㊀健,龚倩颖,袁德义,肖诗鑫.普通油茶染色体制片技术优化及核型分析(OptimizationofchromosomemountingtechniqueandkaryotypeanalysisofCamelliaoleifera).南京林业大学学报(自然科学版)2020,44(5):93-99.易㊀敏,张㊀露,雷㊀蕾,程子珊,孙世武,赖㊀猛.湿地松转录组SSR分析及EST-SSR标记开发(AnalysisofSSRinformationintranscriptomeanddevelopmentofEST⁃SSRmolecularmarkersinPinuselliottiiEngelm.).南京林业大学学报(自然科学版),2020,44(2):75-83.俞琳琳,胡海波,余㊀伟.城市绿地类型对大气PM2.5浓度的影响(EffectsofurbangreenspacesonPM2.5concentrationsinatmosphere).南京林业大学学报(自然科学版),2020,44(3):179-184.岳喜良,秦㊀健,洑香香,尚旭岚,方升佐.氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响(EffectsofnitrogenfertilizationonsecondarymetaboliteaccumulationandantioxidantcapacityofCycolcuryapaliurus(Batal.)Iljinskajaleaves).南京林业大学学报(自然科学版),2020,44(2):35-42.张㊀晨,臧㊀颖,许㊀倩,郑兆娟,欧阳嘉.毛果杨苯丙氨酸解氨酶活性比较及肉桂酸制备(Comparisononactivitiesofphenylalanineammonia⁃lyasefromPopulustrichocarpaanditsapplicationintrans⁃cinnamicacidproduction).南京林业大学学报(自然科学版),2020,44(1):97-104.张㊀恒,刘晓婷,陈㊀嵩,周雪燕,司冬晶,李㊀莹,赵曦阳.盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析(Analysisofdifferen⁃tiallyexpressedproteinsinleavesoftriploidPopulussimoniiˑP.nigrahybridclonesundersaltstress).南京林业大学学报(自然科学版),2020,44(2):59-66.张㊀恒,张秋良,岳㊀阳,宋希明,代海燕,伊伯乐.呼伦贝尔市气候变化对森林草原火灾的影响及未来趋势分析(TheimpactofclimatechangeonforestandgrasslandfiresandfuturetrendsinHulunbuirCity,InnerMongolia).南京林业大学学报(自然科学版),2020,44(5):222-230.张㊀巧,李㊀杰,山萌蒙,刘㊀鑫,李媛媛.春剑种子无菌萌发过程的显微观察(MicroscopicobservationontheprocessofaxenicseedgerminationofCymbidiumtortisepalumvar.longibracteatum).南京林业大学学报(自然科学版),2020,44(2):105-110.张㊀庆,魏树和,代惠萍,贾根良.硒对茶树镉毒害的缓解作用研究(Thealleviatingeffectsofseleniumoncadmium⁃inducedtoxicityintea。
2022-2023学年巴中市重点中学英语高三第一学期期末统考试题含解析
2022-2023高三上英语期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
第一部分(共20小题,每小题1.5分,满分30分)1.Most people quit ________ any results appear; they give up too soon and a quitter never wins.A.while B.until C.since D.before2.一Would you be so kind as to take this heavy box upstairs for me?一A.It's my pleasure.B.Help yourself.C.Sure,with pleasure.D.Take your time.3.—You mean the position is still vacant?—Yes, but you must know our job is very demanding.—_______.A.With pleasure B.I don’t mind C.Don’t mention it D.That’s all right 4.The old woman who ________ in the deserted house alone for ten years has been settled in a nursing home now.A.lived B.has livedC.had lived D.has been living5.Afghans used to hold big weddings, costing thousands of dollars, in a county _____ the average annual income is less than $400.A.which B.whose C.where D.what 6.Maria is constantly making efforts, she deserves the goal of entering the key university.A.achieving B.to achieve C.being achieved D.to be achieve7.—What do you think of Tom?—He has been working very hard. ______ he is an advanced worker.A.No wonder B.No doubt C.No worry D.No problem8.________ two hours daily has made considerable difference to my physical condition. A.To walk B.WalkingC.Walked D.Having walked9.That children ______meet with setbacks is a matter of necessity as they_____, soparents don’t worry about that.A.shall; grew up B.must;grew up C.can; grow up D.will; grow up 10.Mark ______ have hurried. After driving at top speed, he arrived half an hour early. A.needn’t B.wouldn’t C.mustn’t D.could n’t11.If we forgave criminals, we might become a society of endless excuses _____ no one accepts responsibility for anything.A.which B.where C.when D.as12.—What did she want to know, Tom?—She wondered _______ we could complete the experiment.A.when was it B.it was when thatC.it was when D.when it was that13.______ students should be given more free time is suggested by many experts and welcomed by kids in school.A.What B.Why C.Whether D.That14.—Mr, White, do you have anything ________?—No, nothing. You can take a rest now.A.type B.typed C.to type D.to be typed15.The expert points out the phenomenon that cream goes bad faster than butter______ its structure rather than its chemical composition.A.lives up to B.gets down toC.comes down to D.stands up to16.— Nancy, what classes are you taking this term?— _____ I want to take two English courses, or maybe Spanish.A.What’s up? B.It’s none of your business. C.I’ve no idea. D.I’m not sure yet.17.Due to the reform and opening-up, our living conditions, undoubtedly, have improved ________ over the past decades.A.considerately B.approximately C.appropriately D.considerably18.—What does Nicky’s job involve as a public relations director?—______ quite a lot of time with other people.A.Spending B.Having spentC.To spend D.To have spent19.--- What caused the party to be put off? --- ______ the invitations.A.Tom delayed sending B.Tom’s delaying sendingC.Tom delaying to send D.Tom delayed to send20.I wouldn’t have missed the train if I ______ up earlier.A.got B.had got C.will get D.have got第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
不同天气下植物叶面滞尘量的动态变化
不同天气下植物叶面滞尘量的动态变化查燕;冯驰;张银龙;王月【摘要】选取大叶黄杨(Buxus megistophylla Levl.)、海桐(Pittosporum tobira)、红叶石楠(Photiniax fraseri)和桂花(Osman-thus fragrans)为研究对象,测定不同天气下4种植物的叶面滞尘量,并分析其与气象因子和大气中颗粒物浓度的关系.研究表明:(1)叶面滞尘量由大到小依次为海桐(3.47~5.46 g/m2)、桂花(2.37~4.16g/m2)、大叶黄杨(1.95~3.88 g/m2)、红叶石楠(1.08~2.35 g/m2);(2)在12.4 mm降雨的作用下,大叶黄杨和红叶石楠的叶面滞尘量相比降雨前分别降低42%、49%;(3)经历连续6、9d的晴天后,4种植物叶面滞尘量变化幅度极小,基本达到饱和状态;(4)叶面具有脊状突起或较高气孔密度的植物能够有效滞留大气颗粒物,表面光滑的植物对大气颗粒物的滞留能力较弱.因此,海桐和桂花可以选作滞留大气颗粒物的优势植物.【期刊名称】《环境污染与防治》【年(卷),期】2016(038)008【总页数】5页(P44-47,54)【关键词】叶面滞尘量;降雨;大气颗粒物;动态变化【作者】查燕;冯驰;张银龙;王月【作者单位】南京林业大学南方现代林业协同创新中心,江苏南京210037;南京林业大学生物与环境学院,江苏南京210037;南京林业大学南方现代林业协同创新中心,江苏南京210037;南京林业大学生物与环境学院,江苏南京210037;南京林业大学南方现代林业协同创新中心,江苏南京210037;南京林业大学生物与环境学院,江苏南京210037;南京林业大学南方现代林业协同创新中心,江苏南京210037;南京林业大学生物与环境学院,江苏南京210037【正文语种】中文随着城市化进程的不断加快,能源消耗量日益增大。
大气颗粒物成为全球多数国家特别是发展中国家的首要污染物[1-2],被广泛认定是对人体健康有害的污染物之一[3-4]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
International Journal of Applied Earth Observation and Geoinformation 21(2013)409–417Contents lists available at SciVerse ScienceDirectInternational Journal of Applied Earth Observation andGeoinformationj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j agQuantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing dataCheng Sun a ,b ,c ,∗,Zhi-feng Wu c ,d ,Zhi-qiang Lv e ,Na Yao f ,Jian-bing Wei caGuangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China bGraduate University of Chinese Academy of Science,Beijing 100049,China cGuangdong Institute of Eco-environment and Soil Sciences,Guangzhou 510650,China dSchool of Geographical Sciences,Guangzhou University,Guangzhou 510006,China eDepartment of Land Resource Management,Chongqing Technology and Business University,Chongqing 400067,China fSchool of Remote Sensing Information Engineering,Wuhan University,Wuhan 430079,Chinaa r t i c l ei n f oArticle history:Received 21May 2011Accepted 17December 2011Keywords:Urban growth types Change dynamic Spatial metricsObject-oriented classificationa b s t r a c tThere is a widespread concern about urban sprawl.It has negative impacts on natural resources,economic health,and community character.Without a universal definition of urban sprawl,its quantification and modeling is difficult.Traditionally,urban sprawl was described using qualitative terms,and landscape patterns.Quantitative methods are required to help local,regional and state land use planners to better identify,understand and address it.In this study,an integrated approach of remote sensing and GIS was used to identify three urban growth types of infilling growth,outlying growth and edge-expansion growth at the city of Guangzhou,China.Spatial metrics were used to characterize long-term trends and patterns of urban growth.Result shows that the proposed method can identify and visualize different urban growth types.Infilling growth is the dominant expansion type.Edge-expansion is concentrated at suburban areas.Outlying growth mainly occurs relatively far from the urban core.The analysis shows that initially the urban area expands mainly as outlying growth,causing increased fragmentation and dispersion of urban areas.Next,growth filled in vacant non-urban area inwards,resulting into a more compact and aggregated urban pattern.The study shows an improved understanding of urban growth,and helps to provide an effective way for urban planning.©2012Elsevier B.V.All rights reserved.1.IntroductionUrbanization has been an important social and economic phe-nomenon taking place at an unprecedented scale and rate all over the world.The dynamic process of urbanization has led to fun-damental changes resulting in various impacts on the structure,functions,and dynamics of ecological systems at a wide range of scales (Luck and Wu,2002;Charles et al.,2005;Ma et al.,2008).Much research has addressed urban growth,and especially the concept of urban sprawl (Ewing,1997;Hasse and Lathrop,2003).Evidence of the environmental impact of sprawl has been well-documented (Ewing,1997;Hasse and Lathrop,2003).It is cited as a factor in air pollution because of the car-dependent lifestyle imposed by dispersed land development leading to increased fossil fuel consumption (Johnson,2001).Widely dispersed development requires more pavements that cause more urban run-off,thus pol-luting waterways (Tang et al.,2005).Other concerns focused on∗Corresponding author.Tel.:+862087024633;fax:+862087024123.E-mail address:sunz0412@ (C.Sun).the increasing loss of critical land resources such as agriculture (Camagni et al.,2002).Despite these concerns,there is no universally accepted defi-nition of urban sprawl (Hoffhine Wilson et al.,2003;Hasse and Lathrop,2003;Bhatta et al.,2010).Without a universal defini-tion,quantifying and modeling urban sprawl is difficult,especially from remote sensing data (Bhatta et al.,2010).Traditionally,urban sprawl has been described using qualitative terms (Ewing,1997).Several recent studies attempted to develop a means of character-izing sprawl (Hasse and Lathrop,2003).A general consensus exists that urban sprawl is characterized by unplanned and uneven pattern of growth,leading to ineffi-cient resource utilization (Ewing,1997;Hasse and Lathrop,2003;Bhatta et al.,2010).Research has further pointed out that the use of the term urban sprawl has a negative connotation,and not all urban growth is considered to be sprawl (Hoffhine Wilson et al.,2003).Recent research has started to pay attention to differ-ent types of urban growth.This identifies both how much urban growth has occurred,and also its ing results of urban growth types,users could decide what is to be considered as sprawl according to the study objective (Hoffhine Wilson et al.,2003).0303-2434/$–see front matter ©2012Elsevier B.V.All rights reserved.doi:10.1016/j.jag.2011.12.012410 C.Sun et al./International Journal of Applied Earth Observation and Geoinformation21(2013)409–417Developing a quantitative method to identify different types of urban growth is useful and meaningful to help local,regional and state land use planners better understand and address the issues attributed to sprawl.In many of the previous researches,urban growth analyses were conducted either at the metropolitan scale as a whole(Weng,2002;Yang and Lo,2002;Serra et al.,2003; Xian and Crane,2005;Huang et al.,2007;Jat et al.,2008a,b),or within natural landscape boundaries such as those of a watershed (Clapham,2003).Technology about quantifying different urban growth types from remote sensing data has not been adequately investigated.Hoffhine Wilson et al.(2003)first quantified three urban growth types of infilling,edge-expansion,and outlying from Land-sat classification imagery.Each type represents a special urban growth pattern.Infilling means the non-urban area surrounded by urban being converted to urban.Edge-expansion refers to the newly developed urban area spreading out from the fringe of existing urban patches.The outlying growth tends to be distributed at a larger distance from existing developed areas. It can be further classified into isolated,linear and clustered growth.Hoffhine Wilson et al.(2003)quantified three urban growth types according to the percentage of land cover types by a moving window method.The results,however,may vary with the win-dow size.Xu et al.(2007)observed that the ratio between the length of common edge and patch perimeter can be used to dis-tinguish between infilling,edge-expansion,and outlying growth, but no spatial visualization of different urban growth types has been provided.Pham and Yamaguchi(2011)used a percentage of a like adjacency metric to generate the three urban growth types from Landsat TM/MSS imagery.The results are likely to have a relationship with the window size.In this study,we developed a quantitative method in order to identify and visualize different types of urban growth.Research on different urban growth types has been mainly rmation derived solely from maps of urban growth types is incapable of describing the spatial temporal details of urban pattern dynamics.Each of the three urban growth types is generated by a specific urban growth process,which may lead to different environmental impact.Therefore,characterizing the changing pattern and trend of urban growth types over time is essential for monitoring and alleviating ecological consequences caused by urban growth and urban sprawl(Luck and Wu,2002).There has been an increasing interest in applying spatial met-rics in analyzing land use dynamics and urban growth processes (Charles et al.,2005;Jat et al.,2008a,b;Deng et al.,2009).Remote sensing provides a spatially consistent coverage of large areas with a high spatial detail and a high temporal frequency.It has advan-tages in characterizing the spatial temporal trends of urban growth using multi-stage images(Weng,2002;Yang and Lo,2002;Serra et al.,2003;Xian and Crane,2005;Huang et al.,2007;Jat et al., 2008a,b).Combined with spatial metrics,remote sensing data offer the potential to characterize the change of urban growth dynamics (Herold et al.,2003).This paper explores how using remote sens-ing technology in combination with spatial metrics can improve the understanding of urban growth processes.Urbanization has caused significant impacts on the environ-ment.Therefore,quantifying the urban growth pattern and its change is essential for monitoring and assessing urbanization and its ecological consequences.The primary objective of this research is to quantify different urban growth types.The change dynamics have been explored in Guangzhou,a fast growing region in south China.To address these objectives,multi-temporal remote sensing data and GIS are used to quantify infilling,edge-expansion,outly-ing urban growth types,and to characterize the long-term trends and patterns of urban growth.2.Study area and data pre-processing2.1.Study areaGuangzhou is located in south China between22◦26 N–23◦56 N and112◦57 E–114◦3 E,with an area of approximately7434.4km2. It is located in the piedmont and coastal plain regions at the conflu-ence of Pearl River(Fig.1).Guangzhou consists of10administrative districts and two county-level cities.Huadu and Panyu,formerly county-level cities,were amalgamated to Guangzhou as urban districts by the State Council in June2000.This study focused on the core area of Guangzhou,which is composed of eight dis-tricts,including Liwan,Yuexiu,Dongshan,Haizhu,Fangcun,Tianhe, Baiyun and Huangpu district.Guangzhou is the largest city in south China.It is also the bus-iest port in China after Shanghai.In2008,Forbes assessed the Top Ten Cities that had experienced the largest changes in China. Guangzhou,which was an agricultural city30years ago,was now on the top of the list of international big cities.As the capital of the Guangdong province,it is an important political,economic, cultural,and scientific center in southern China.Guangzhou has experienced different economic stages since1970s.Rapid urban development started in the1970s,when the central government stimulated economic growth by embarking on a series of ambi-tious reforms.Since the implementation of the economic reform and opening-up policy at the late of1970s,Guangzhou has expe-rienced large economic growth and rapid urbanization.After the introduction of the land market reform,the economic value of land has been fully recognized in nd became a main source of revenue for the government(Zhang,2000),thus providingfinan-cial resources for the construction of new roads,resulting in a fast urban growth in period1990–1995.Affected by the Asianfinancial crisis,the economic growth of China declined slowly during the first half of1998.Exports,imports,and foreign direct investments fell sharply,resulting into a decrease of urban growth(GAR-ON YEH and Li,1999).In2000,the Panyu District was incorporated into the city scope of Guangzhou.After that urban areas expanded in a gradually accelerating rate under the guidance of a new urban development planning strategy.2.2.Data pre-processingAs urban growth rate in Guangzhou is not even,we selected four periods to characterize the long-term trends and patterns of urban growth.Five cloud-free Landsat MSS/TM/ETM+images(path 122,row44)of Guangzhou were acquired on October19,1979 (MSS),October13,1990(TM),December30,1995(TM),September 14,2000(ETM+)and December1,2008(TM).These images were rectified to the WGS-84datum and Universal Transverse Merca-tor zone49N coordinate system.The geometric rectification was based on ground control points(GCPs)that were evenly spread over the study area.The root mean square error(RMSE)was less than0.4pixel.The nearest-neighbor algorithm was used to resam-ple all the reflectance bands of MSS/TM/ETM+images to a spatial resolution of30m.Object-oriented classification was used to get land use maps for thefive years.In addition to the spectral signature,the tone,tex-ture,and shape of image objects were evaluated when performing the object-oriented classification(Geneletti and Gorte,2003;Benz et al.,2004;Durieux et al.,2008).In addition,the Normalized Differ-ence Water Index(NDWI)was combined with other images bands for image segmentation and classification as it reportedly has the potential to highlight the information of water bodies(Xu,2006;C.Sun et al./International Journal of Applied Earth Observation and Geoinformation21(2013)409–417411Fig.1.Location of the study area,Guangzhou city,in the Southern part of China. Jackson et al.,2004;Chen et al.,2009).The NDWI is expressed byEq.(1):NDWI= G− NIRG+ NIR(1)where G and NIR are the near-infrared band and red band reflectances of TM images,respectively(Gao,1996).This index pro-duced values in the range from−1to1,in which positive values indicate water areas and negative values signify non-water regions.Six land use types were identified:urban area,cropland,shrub,fishery,bare land,forest,and water.Urban area,as used in this study,is synonymous with developed land,and includes residential as well as commercial and industrial land uses.These have proven to be key indicators for monitoring the spatial extent and intensity of urbanization(Clapham,2003).The overall accuracy was89.11%,86.52%,88.16%,89.24%,and 89.94%and the Kappa coefficient was0.8503,0.8412,0.8317, 0.8615,and0.8741for the years1979,1990,1995,2000and2008, respectively.For the purpose of this study,the classification result is satisfactory.Since the focus of this study was urban growth, the classified land use types were further converted into the two classes:urban and non-urban.3.Methods3.1.Identify three urban growth types of infilling,edge-expansion,and outlyingHoffhine Wilson et al.(2003)developed a quantitative method to characterize three urban growth categories:infilling,edge-expansion,and outlying.Xu et al.(2007)and Pham and Yamaguchi (2011)further developed Hoffhine Wilson’s method,maintaining the definition of the urban growth categories.Other patterns can be regarded as variants or hybrids of these three basic forms(Hoffhine Wilson et al.,2003;Xu et al.,2007).This study also adopts Hoffhine Wilson’s definition of the urban growth categories.The ratio between the length of common edge and patch perimeter of patches was used to distinguish these urban growth types(Xu et al.,2007).A patch means a relatively homo-geneous area that differs from its surroundings.It is the basic unit of landscape change.In previous research,GIS along with remote sensing data can help in analyzing the growth,pattern and extent of sprawl(Sudhira et al.,2004).In this study,we use GIS to visualize the three urban growth types.To get the three urban growth types,wefirst converted the clas-sified images into vector format.For each period,the urban patches412C.Sun et al./International Journal of Applied Earth Observation and Geoinformation 21(2013)409–417Table 1Definitions of spatial metrics for the urban growth change analysis.Metrics (abbreviation)EquationVariablesUnitPatch Density (PD)n i A(10,000).(100)n i =number of patches in the landscape of patch type (class)i ;A =total landscape area (m 2)Number per 100haLandscape Shape Index (LSI)e i min e ie i =total length of the edge of class i ;mine i =minimum total length of edge (or perimeter)of class iNoneEuclidean Nearest-Neighbor Distance (ENN)h ijh ij =distance (m)patch distance of the same typeMetersMean Patch Size (MPS)ni =1a iNa i =area (m 2)of patch of class i ;n i =number of patchesha 2were divided into two groups,i.e.newly developed urban patches and old urban patches.The urban patch which existed in the two adjacent study years was defined as old urban areas,wheras the patch that did not exist in the previous year and appeared in the lat-ter year was labeled as newly developed urban area.Fig.2illustrates the three types of urban growth.We define a metric R for calculating the ratio between the length of common edge between newly developed urban patches and existing urban patch and the total perimeter of the newly developed urban patch as:R =l c l(2)where l c is the length of the common edge between a newly devel-oped urban patch and an existing urban patch and l is the perimeter of the newly developed urban patch.The value of R ranges from 0to 1.The infilling type has R >0.5,and refers to the development of newly developed urban patch surrounded by at least 50%old urban area (Fig.2a).Edge-expansion has 0<R <0.5as it is characterized by the newly developed urban area spreading out from the edge of an existing urban area and surrounded by less than 50%exist-ing urban area (Fig.2b).Outlying growth is newly developed urban area without spatial connection to the existing urban area (Fig.2c)and hence has R =0.For each newly developed urban patch,the value of R can be quantified and calculated according to Eq.(2).After convertingpolygon features into line features,the common edge was extracted according to the feature attribute.3.2.Spatial metricsTo distinguish the pattern of the urban growth types,this paper used spatial metrics.Several spatial metrics are highly correlated,although no single metric can capture the complex patterns of urban change (Luck and Wu,2002;Herold et al.,2003;Huang et al.,2007;Hung et al.,2010).We combined four landscape-level spa-tial metrics selected to characterize the urban landscape pattern,i.e.the Landscape Shape Index,Patch Density,Euclidean Nearest-Neighbor Distance (ENN)and mean Patch Size (MPS)(Table 1).These metrics describe four key aspects of the landscape:edge,density,isolation,and size metric and have proven to be useful in quantify unique spatial urban characteristics (Neel et al.,2004;Weng,2007;Xu et al.,2007;Ji et al.,2006).The Landscape Shape Index (LSI)is a measure of irregularity of the landscape and should increase with the emergence of new urban nuclei,but may decline as urban areas fuse.Patch Density (PD)is a measure of landscape heterogeneity and is lowest when the urban landscape is dis-persed and fragmented.The Euclidean Nearest-Neighbor distance (ENN)equals the distance over all patches of a class to the nearest neighboring patch based on shortest patch edge-to-edge distance,computed from cell center to cell center.The Mean Patch Size (MPS)is a measure of the average area of all patches in the landscape.Calculations of spatial metrics were performed using thesoftwareFig.2.Three types of urban growth.The grey area represents the newly developed urban areas and the dark area represents the old urban areas.C.Sun et al./International Journal of Applied Earth Observation and Geoinformation21(2013)409–417413Fig.3.Urban areas as observed atfive years between1979and2008. Table2Urban area of Guangzhou infive different years.Year19791990199520002008Urban area(km2)63.35146.94251.19310.14487.66FRAGSTATS version3.3.The four spatial metrics were calculated forurban areas offive years respectively.4.Results4.1.Detection of urban area from1979to2008Fig.3shows the urban area in Guangzhou from1979to2008.Asshown in Table2,the urban area in Guangzhou was63.3km2,cov-ering4.6%of the study area.In2008,the urban area in Guangzhouequaled487.7km2,covering35.6%of the study area.Apparently,the urban area expanded by more than seven times during30years.Table3shows the spatial distribution of different urban growthtypes in four periods.The increasing rate of urban area wasdiffered in each of the four periods:1979–1990,1990–1995,1995–2000and2000–2008.During the period1979–1990,theurban area of Guangzhou increased by83.6km2,at an averageannual rate7.59km2yr−1.The urban area increased to251.2km2during the period1990–1995,growing at an average annual rateTable3Increasing rate and annual change rate for urban area in four different periods1979–1990,1990–1995,1995–2000and2000–2008.1979–19901990–19951995–20002000–2008Increasing area(km2)83.59104.2658.94177.52Annual change rate (km2/year)7.6020.8511.7922.1920.85km2yr−1.During the third period(1995–2000),the urbanarea increased to310.13km2at an average annual growth rate of11.79km2yr−1,which was a little slower than before.In the fourthperiod(2000–2008),the mean annual growth rate was equal to22.19km2yr−1.4.2.Map three urban growth typesThe output for the three urban growth types according to Eq.(2)is a series of maps that illustrate the changes in the urban areasof Guangzhou during the four periods:1979–1990,1990–1995,1995–2000and2000–2008(Fig.4).Edge-expansion growth was mainly taken place along the majortransportation networks.Infilling growth mainly occurred withinthe free spaces among urban core areas.Outlying growth wasmainly scattered far from the urban core.As can been seen from Fig.4,urban growth shows distinctgrowth patterns during the different periods in study area.In thefirst period1979–1990,urban growth was dominated by the out-lying growth and infilling growth was less(Fig.4a).During theperiod of1990–1995,outlying growth decreased,while the edge-expansion growth became the dominant type(Fig.4b)and infillinggrowth increased as well.In this way,a multi nuclei urban patternwas formed in Guangzhou.During the period of1995–2000,theoutlying-type growth was still decreasing,and the edge-expansiontype and the infilling growth became dominant(Fig.4c).Duringthe last period2000–2008,edge-expansion and infilling growthremained dominant(Fig.4d).To obtain a more detailed temporal characteristic of urbangrowth in Guangzhou,the area and proportion of the three growthtypes in the four periods was calculated.Fig.5shows that edge-expansion growth was the dominant type of urban growth duringthe whole study period.As the majority urban growth type,outly-ing growth reached a peak value during the period1990–1995and414C.Sun et al./International Journal of Applied Earth Observation and Geoinformation 21(2013)409–417Fig.4.Spatial distribution of three urban growth types in study area during the four periods 1979–1990,1990–1995,1995–2000and 2000–2008.then decreased,whereas outlying and infilling growth increased.During 2000–2008,infilling growth exceeded outlying growth and became the main type of urban growth.There was little evidence of infilling growth before 2000.In the first period 1979–1990,the infilling type of the entire study area was 5.04km 2,covering 6.03%of the total newly developed urban areas.Outlying growth reached the peak value during this period,with the proportion of 82.37%.The edge-expansion type accounted for a considerable proportion of 16.5%.In the period of 1990–1995,the proportion of the outlying type reduced to 60.5%.In contrast,there was a tremendous increase of the infilling type and the edge-expansion type,with the proportion of 25.2%and 63.7%respectively.During the period 1995–2000,the area of the infilling type increased to 14.37km 2,covering 24.37%of the totalnewly developed urban areas.Meanwhile the edge-expansion type accounted for 51.43%,whereas the outlying type decreased to 24.2%in this period.During the period 2000–2008,the outlying type became the smallest type (5.02%),whereas the infilling and edge-expansion types dominated,increasing to 47.47%and 47.5%,respectively.4.3.Changing patterns of urban areaAn analysis of spatial patterns of urban growth can further strengthen the understanding of urban growth dynamics.The met-ric signatures shown in Fig.6reflect the dynamic patterns of the urban growth.C.Sun et al./International Journal of Applied Earth Observation and Geoinformation 21(2013)409–417415Fig.5.Area of three urban growth types during the four periods 1979–1990,1990–1995,1995–2000and 2000–2008.Fig.6a shows the changes of Patch Density (PD).Patch den-sity increased exponentially with accelerating urbanization in Guangzhou,reaching its peak in 2000.The Euclidean Nearest-Neighbor Distance (ENN)reached its highest value in 1979.With the emergence of new urban cen-ters,urban patches fused together and boundaries of urban areas became dissolved.The value of ENN decreased from 374m to 181m in 1995.Fig.6c shows the changes of the Landscape Shape Index (LSI).The LSI value increased steadily in the early stage of urbanization,and it decreased during the period 2000–2008.The Mean Patch Size (MPS)decreased continuously before 2000,in contrast to the LSI.The lowest value of Mean patch size was 19ha 2which occurred in the year 2000.Thereafter it increased,reaching its highest value of 36ha 2in the year 2008.5.Discussion5.1.Urban growth typesThis paper describes an approach to identify different urban growth types.Input data of this method are land cover maps which were converted to two classes:urban and non-urban.This method can be easy to calculate for widespreadapplication.Fig.6.Spatial metrics of Guangzhou during the period 1979–2008:(a)Patch density (PD);(b)Euclidean Nearest-Neighbor Distance (ENN);(c)Landscape Shape Index (LSI);and (d)Mean Patch Size (MPS).416 C.Sun et al./International Journal of Applied Earth Observation and Geoinformation21(2013)409–417Ewing(1997)states that,whatever is used to separate sprawl development and non-sprawl development must be quantifiable and related to impacts.This paper describes an approach to quantify and visualize different urban growth types.Although our method is not directly related to impact,users of our method could decide what to consider as sprawl according to the study objective.5.2.Change dynamic of urban growth types along with urban landscape patternIn this study,the combined analysis of three urban growth types and spatial metrics demonstrated two distinct phases of urban growth in Guangzhou from1979to2008.At the initial period of urban growth,urban expansion mainly occurred as outlying,caus-ing an increased fragmentation and dispersion of urban areas.As urban growth continues,newly grown urban area started tofill in the vacant non-urban area inwards.With the increase of infilling growth,the urban pattern became more aggregated and compact. This process is reflected in the spatial metrics.Urban growth in Guangzhou started with the expansion of the urban seed or urban core.The density metric(PD)is a gen-eral measure of landscape heterogeneity and is lowest when the urban landscape is more dispersed and fragmented.The lowest PD,LSI value and the largest MPS,ENN values in1979indicated the small urban core at the initial stage of urban growth.At the initial period of urban growth,urban area expanded mainly as out-lying,and there was little evidence of infilling growth in this period (Figs.4and5).With the increase of outlying growth,more indi-vidual urban patches are formed,causing a multiple nuclei urban growth.This process caused an increased fragmentation and com-plexity of the urban area,as reflected in the spatial metrics(Fig.6). It is also reflected by the decreasing isolation metric and size metric in the initial period.Urban expansion along both sides of the roads was particularly apparent from1990onwards when urban growth occurred around the periphery of the initial urban area,leading to edge-expansion growth.Hence the urban area became less dispersed,and frag-mentation decreased.This is reflected by a peak in the four spatial metrics(Fig.6).After1995,urban area became more spread out from the fringe of existing area and vacant non-developed urban area inwards werefilled in and the urban pattern become more aggregated and compact(Fig.4).The increase of individual urban patches and expansion into open spaces continued toward the later stage of urban growth.As the infilling type became the predominant growth type,the urban core started to form a homogeneous urban patch as is reflected by the decreasing patch density and edge metric in later periods as well as by the increase in isolation metric,and size metric(Fig.6).The analysis in this paper from the observation of urban growth in Guangzhou in a29-year period might contribute to urban model-ing.The impact of driving socioeconomic factors on urban dynamics might better explain the mechanism of periodicity of urban growth pattern.With a spatial and temporal analysis along with sufficient information provided by socioeconomic data,a guide for poten-tially more accurate representations of dynamic spatial processes might be given.Further,this research has resulted in an improved understand-ing of urban growth,and may have implications for urban planning. Rapid urban growth in Guangzhou has led to severe environmen-tal issues as urban development encroached upon cultivated land. The loss of agricultural land is alarming in the Pearl River Delta (Li and Yeh,2004).In Guangzhou,most regions surrounding the urban areas are used for agriculture.After the implementation of economic reform and opening-up policy in1979,several new development districts of various types such as Special economic development zones,and High-tech industry zones were established to attract foreign investment(Seto and Fragkias,2005;Yu and Ng, 2007).These new development industrial zones were constructed in rural areas,usually on agricultural land because of a low devel-oping cost.The rapid urban expansion resulted in agricultural land loss(Li and Yeh,2004).As the rapid urban expansion between1979 and1995encroached on a large amount of cropland,the central government started to implement stricter land use management measures.The‘Ordinance for the Protection of Primary Agricultural Land’was implemented in1994(Li and Yeh,2004).With the imple-mentation of the cropland protection strategy and the change of administrative boundaries in2000,most future growth types may turn out to be infilling,a trend which is already evident.When the growing space has been compressed and urban form has become more compact,however,the main form of urban growth may return to outlying growth.Apparently,the loss of agricultural land is inevitable in fast growing regions,but planning may focus on min-imizing this amount in the future.Considering that urbanization in Guangzhou is rapid,it is necessary to pay attention to land policies and the role of urban planning in Guangzhou.While agricultural and economic policy reforms have raised economic development, they have also caused problems in agriculture land loss.Therefore, a key question facing policymakers now is how to manage urban growth and its direct and indirect consequences.Therefore,a sus-tainable land development strategy guiding future directions and patterns of urban growth needs to be developed to minimize the amount of cropland loss caused by urban expansion in cities like Guangzhou.6.ConclusionIn this study,an integrated approach of remote sensing,and GIS was used to identify different urban growth types in Guangzhou. The dynamic pattern and change trend of three urban growth types was investigated using multi-stage remote sensing data and spatial metrics.The study revealed that the spatial relationship between urban patches is capable of identifying different urban growth types. Newly developed urban areas were grouped into infilling,edge expansion,and outlying growth.The method visualized the dif-ferent types of urban growth.Infilling growth was the dominant expansion type in urban core,whereas outlying growth was mainly located relatively far from the urban core and edge-expansion occurred in suburban areas.Edge-expansion growth was taking place at suburban areas.Examining the spatial temporal dynamic patterns of urban land-scape we concluded that this pattern is consistent with urban growth phases.At the initial period of urban growth,urban area expanded mainly as outlying growth,causing increased fragmen-tation and dispersion of urban areas.This was followed by infilling growth and later by edge-expansion growth.With the increases of infilling growth,the urban pattern becomes more aggregated and compact.The study showed that the combination of remote sensing and spatial metrics is valuable for monitoring urban growth.This research did not only identify how much growth has occurred,but also its type.It thus improved traditional research on urban growth. The results in this study may have important implications for future city design and planning in Guangzhou.AcknowledgmentThis research was in part supported by the National Natural Sci-ence Foundation of China(Nos.41171446;41171399;31170445; 41101155),and Natural Science Foundation of Guangdong province。